Practical Genericity: Writing Image Processing
Algorithms Both Reusable and Efficient

Roland Levillain?, Thierry Géraud!, Laurent Najmanz,

Edwin Carlinet!?

LEPITA Research and Development Laboratory (LRDE)
2| aboratoire d'Informatique Gaspard-Monge (LIGM)
first.lastname@lrde.epita.fr first.lastnameQesiee.fr

November 2014, 3

Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

Objective

Be able to process easily and efficiently many kind of images.

A generic watershed transform
/"

On a regular grid On an edge-valued graph On a 3D surface mesh

A single algorithm processes these “images” !
2/ 16

Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

What about image processing algorithms?

Case study. Dilation by a structuring element (SE).

2D dilation of float images with a square SE

image
dilation(image f, int r)
image out(f.nrows(), f.ncols());
for i = 0 to f.nrows(); do
for j = 0 to f.ncols(); do

float sup = FLT_MIN;
for k = -t to T; do It works but. . .
for 1 = -r to r; do

if sup < f[i+k, j+1]
sup = fli+k, j+1]
out[i,j] = sup;
return out;

3/ 16

Why do we need genericity?

On the (re)conciliation of Genericity and Efficiency

What about image processing algorithms?

Problem. It works but. ..

o what if the image is in color? (genericity in the value space)
e what if the image is 3D? (genericity in the domain space)

e what if the image is a graph? (structural genericity)

e what if the structuring element is a ball?

SE Possible uses of the di-
lation with a square SE.
Square
Ball . .
a image2d image3d graph
uint8 N - Images
double R ARPTHBT R
rgh8 R

Values

4/ 16

We want genericity to cover
the space of possibilities!

On the (re)conciliation of Genericity and

Why do we need genericity? ciency
€>*
'\\«\! Q\
Q\e N
o S \)(’b =

o e \> ACS
. \S
Paradigms o (’5 o
Code duplication X v X X
Code duplication. Copy & paste and adapt the code
— redundancy and maintainability issues. ..
1D dilation for 8-bits unsigned 2D dilation for float
image image
dilation(image f, int r) dilation(image f, int r)
image out(f.siz ; image out(f.nrows(), f.ncols());
for i = 0 to f.size for i = 0 to f.nrows(); do
unsigned char sup = for j = 0 to f.ncols(); do
for k = -r to r; do Eg (1 | float sup = FLT_MIN;
sup = max(f[i+k], sup); Ei . for k = -r to r; do
out[i] = sup; or 1 = -r to r; do
< fli+k, j+1]

return out;
sup =~£[i+k, j+1]
out[i,j] = sup;
return out;

5/16

Why do we need genericity? On the (re)conc h\;mm of (’,wwumglé\’liq< iency
\-
Q® . \ RN
o o o 2
o QQﬁﬁa O NS
Paradigms o7 eV gy
Code duplication X v X X
Generalization A SR SE4
Object-Oriented Programming X v/

Generalization. e.g. consider 3D image of double for every images (the
wider type).
— efficiency issues and still not structurally generic

Object-Oriented Programming. Generalization through type hierarchies.
— efficiency issues (virtual methods)

6/ 16

Why do we need genericity?

e,,;\\,\! e(\e Q\'
o“\Q\(\d @ 2 C3/ ¥
Paradigms o (’3\\0 ‘3‘(\) O
Code duplication X v X X
Generalization o x X/
Object-Oriented Programming X v/
Generic Programming v v v/

Generic programming is the way to go. ..

Because the algorithm is intrasically generic and so should be the code

V is the image value type

dilation(Image f, SE win)
initialize out from f
foreach Site p in f's domain do Real implementation should
out(p) + inf(V) look like this! (see full code)
foreach Site n in win(p) do
out(p) < sup(out(p), f(n))

return out
7/ 16

Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

Specific algorithms.

Input Typel —— — out
image2d_int
Input Type 2 ——— E —— out
image2d_float 1 Input Type
= 1 Implementation
Input Type 3 —— —— out
image3d_int

Generic algorithm.

Input Type 1
image2d_int

1 Algorithm

Input Type 2 ——— — out .

image2d,f/V = 1 Implementation
Input Type 3 = Many Input Types
image3d_int

8/ 16

Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

Outline

On the (re)conciliation of Genericity and Efficiency

9/ 16

Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

Genericity vs Efficiency Trade-Off

Before.
Graph F======-=-=---

Image 2D \li\‘ ! out OK bUt
/ ! no so efficient

Image 3D slower than impl. with pointers

I E :
! 1
! 1
! 1
mage eneric i
1 1

1 1

Image 3D /DilatIOn\ /i
(dispatcher) !
Partially Specialized 1

for regular images !

1

Why do we need genericity?

Image 2D
+ Square

On the (re)conciliation of Genericity and Efficiency

Image 2D

+ Ball Graph

Interface layer

(Facade)

A 4
Dilem‘ E —

Hidden layer

f is regular and
se is separable?

E :
Partially Specialized
using pointers and separability

Partially Specialized

f is regular only?
* otherwise

N
= =

Generic

using pointers

11/ 16

Why do we need genericity?

f = {imageld<float>
image3d<rgb8>...}
se = {square

, image2d<uint8>, f = {image2d<uint8>,
image3d<rgb8> .}
hexagon. ..} se = {ball,

, losange,

Cross.
Interface layer

On the (re)conciliation of Genericity and Efficiency

f = any image-like type
se = any SE-like type

(Facade)
Hidden layer

W./

f is regular and
se is separable?

\
e

fis regular only?

Partially Specialized

Partially Specialized
using pointers and separability

using pointers

otherwise

N

Generic

Remark 1.

Partially Specialized = Partially Generic

= More efficient

Specific
— Yet 1 implementation = Many input types

11/ 16

Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

f = {imageld<float>, image2d<uint8>, f = {image2d<uint8>,
image3d<rgb8>. ..} image3d<rgb8> .} f = any image-like type
se = {square, losange, hexagon...} se = {ball cross. se = any SE-like type
Interface layer \ /
Dilatio
(Facade)
Hidden layer
f is regular and fis regular only? herwi
se is separable? v RLUSIEEE

o N

Partially Specialized Partially Specialized Generic
using pointers and separability using pointers
Remark 2.

The interface does not change.
— 1 specialization = any dilation-based code gets optimized for free !

11/ 16

e need genericity? On the (re)conciliation of Genericity and Efficiency

Conclusion

Why Generic Programming?
e No code duplication
e One implementation to handle any kind of images

e Somewhat efficient

Reconciliation of genericity and efficiency.
e Complexity hidden and transparent from the user POV
o Partial specialization: loosing some genericity for efficiency. ..
e ...but we are still generic!

— generic implementations can run as fast as hand-written specific
implementations

Implemented in the Milena IP library of the Olena project
http://olena.lrde.epita.fr

12/ 16

http://olena.lrde.epita.fr

Thank you for your attention

Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

Bibliography

@ Milena: Write generic morphological algorithms once, run on many
kinds of images. Levillain, R., Levillain, R., Géraud, T., Najman, L.
In: Proceedings of the ISMM. Lecture Notes in Computer Science,
vol. 5720, pp. 295-306. Springer Berlin / Heidelberg, Groningen,
The Netherlands (August 2009)

@ Writing reusable digital topology algorithms in a generic image
processing framework. Levillain, R., Géraud, T., Najman, L. In:
Proc. of WADGMM. Lecture Notes in Computer Science, vol. 7346,
pp. 140-153. Springer-Verlag (2012)

14/ 16

we need genericity?

On the (re)conciliation of Genericity and Efficiency

Full C++4+ dilation code with Milena

template <class I, class W>
I dilation(I input, W win)
I output;
initialize(output, input);
mln_piter(I) p(input.domain());
mln_qgiter (W) q(win, p);
for_all(p)
accu: :supremum<mln_value(I)> sup;
for_all(q) if (input.has(q))
sup.take (input(q));
output(p) = sup.to_result();
return output;

15/ 16

Why do we need genericity?

On the (re)conciliation of Genericity and Efficiency

Full C++ pointer-based dilation with Milena

template <class I, class W>
I dilation(I input, W win) {
I output;
initialize(output, input);
mln_pixter(I) pi(input);
mln_pixter(I) po(output);
mln_qgixter(I, W) q(pi, win);
for_all_2(pi, po) {
accu: :supremum<mln_value(I)> sup;
for_all(q)
sup.take(q.val());
po.val() = sup.to_result();
}

return output;

16/ 16

	Why do we need genericity?
	On the (re)conciliation of Genericity and Efficiency

