
Practical Genericity: Writing Image Processing
Algorithms Both Reusable and Efficient

Roland Levillain1, Thierry Géraud1, Laurent Najman2,
Edwin Carlinet1,2

1EPITA Research and Development Laboratory (LRDE)
2Laboratoire d’Informatique Gaspard-Monge (LIGM)

first.lastname@lrde.epita.fr first.lastname@esiee.fr

November 2014, 3rd



Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

Objective

Be able to process easily and efficiently many kind of images.

A generic watershed transform

On a regular grid On an edge-valued graph On a 3D surface mesh

A single algorithm processes these “images” !
2/ 16



Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

What about image processing algorithms?

Case study. Dilation by a structuring element (SE).

2D dilation of float images with a square SE

image

dilation(image f, int r)

image out(f.nrows(), f.ncols());

for i = 0 to f.nrows(); do

for j = 0 to f.ncols(); do

float sup = FLT_MIN;

for k = -r to r; do

for l = -r to r; do

if sup < f[i+k, j+l]

sup = f[i+k, j+l]

out[i,j] = sup;

return out;

It works but. . .

3/ 16



Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

What about image processing algorithms?
Problem. It works but. . .

• what if the image is in color? (genericity in the value space)
• what if the image is 3D? (genericity in the domain space)
• what if the image is a graph? (structural genericity)
• what if the structuring element is a ball?

SE

Ball

Square

Images

image2d image3d graph

Values

uint8

double

rgb8

Possible uses of the di-
lation with a square SE.

We want genericity to cover
the space of possibilities!

4/ 16



Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

Paradigms Code Complexity

Efficiency

Stru
ctural Generic

ity

1 alg. =
1 im

pl.

Code duplication 7 3 7 7

Code duplication. Copy & paste and adapt the code
→ redundancy and maintainability issues. . .

1D dilation for 8-bits unsigned

image

dilation(image f, int r)

image out(f.size());

for i = 0 to f.size(); do

unsigned char sup = 0;

for k = -r to r; do

sup = max(f[i+k], sup);

out[i] = sup;

return out;

2D dilation for float

image

dilation(image f, int r)

image out(f.nrows(), f.ncols());

for i = 0 to f.nrows(); do

for j = 0 to f.ncols(); do

float sup = FLT_MIN;

for k = -r to r; do

for l = -r to r; do

if sup < f[i+k, j+l]

sup = f[i+k, j+l]

out[i,j] = sup;

return out;

Bad !

5/ 16



Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

Paradigms Code Complexity

Efficiency

Stru
ctural Generic

ity

1 alg. =
1 im

pl.

Code duplication 7 3 7 7
Generalization 3 7 7 3
Object-Oriented Programming 3 7 3 3

Generalization. e.g. consider 3D image of double for every images (the
wider type).
→ efficiency issues and still not structurally generic

Object-Oriented Programming. Generalization through type hierarchies.
→ efficiency issues (virtual methods)

6/ 16



Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

Paradigms Code Complexity

Efficiency

Stru
ctural Generic

ity

1 alg. =
1 im

pl.

Code duplication 7 3 7 7
Generalization 3 7 7 3
Object-Oriented Programming 3 7 3 3
Generic Programming 3 3 3 3

Generic programming is the way to go. . .

Because the algorithm is intrasically generic and so should be the code

V is the image value type

dilation(Image f, SE win)

initialize out from f
foreach Site p in f’s domain do

out(p)← inf (V )
foreach Site n in win(p) do

out(p)← sup(out(p), f (n))

return out

Real implementation should
look like this! (see full code)

7/ 16



Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

Specific algorithms.

Input Type 1
image2d int

Input Type 2
image2d float

Input Type 3
image3d int

out

out

out

1 Input Type
= 1 Implementation

Generic algorithm.

Input Type 1
image2d int

Input Type 2
image2d float

Input Type 3
image3d int

out
1 Algorithm

= 1 Implementation
= Many Input Types

8/ 16



Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

Outline

Why do we need genericity?

On the (re)conciliation of Genericity and Efficiency

9/ 16



Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

Genericity vs Efficiency Trade-Off

Before.

Graph

Image 2D

Image 3D Generic

out
OK but

no so efficient
slower than impl. with pointers

After.

Graph

Image 2D

Image 3D Dilation
(dispatcher)

Generic

Partially Specialized
for regular images

out

10/ 16



Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

Hidden layer

Interface layer
Dilation
(Facade)

GenericPartially Specialized
using pointers

Partially Specialized
using pointers and separability

Graph
Image 2D

+ Ball

Image 2D

+ Square

otherwise
f is regular only?f is regular and

se is separable?

11/ 16



Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

Hidden layer

Interface layer
Dilation
(Facade)

GenericPartially Specialized
using pointers

Partially Specialized
using pointers and separability

f = any image-like type
se = any SE-like type

f = {image2d<uint8>,
image3d<rgb8>...}
se = {ball, cross...}

f = {image1d<float>, image2d<uint8>,
image3d<rgb8>...}
se = {square, losange, hexagon...}

otherwise
f is regular only?f is regular and

se is separable?

Remark 1.
Partially Specialized = Partially Generic = More efficient

6= Specific
→ Yet 1 implementation = Many input types

11/ 16



Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

Hidden layer

Interface layer
Dilation
(Facade)

GenericPartially Specialized
using pointers

Partially Specialized
using pointers and separability

f = any image-like type
se = any SE-like type

f = {image2d<uint8>,
image3d<rgb8>...}
se = {ball, cross...}

f = {image1d<float>, image2d<uint8>,
image3d<rgb8>...}
se = {square, losange, hexagon...}

otherwise
f is regular only?f is regular and

se is separable?

Remark 2.

The interface does not change.
→ 1 specialization = any dilation-based code gets optimized for free !

11/ 16



Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

Conclusion

Why Generic Programming?

• No code duplication

• One implementation to handle any kind of images

• Somewhat efficient

Reconciliation of genericity and efficiency.

• Complexity hidden and transparent from the user POV

• Partial specialization: loosing some genericity for efficiency. . .

• . . . but we are still generic!

→ generic implementations can run as fast as hand-written specific
implementations

Implemented in the Milena IP library of the Olena project
http://olena.lrde.epita.fr

12/ 16

http://olena.lrde.epita.fr


Thank you for your attention



Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

Bibliography

Milena: Write generic morphological algorithms once, run on many
kinds of images. Levillain, R., Levillain, R., Géraud, T., Najman, L.
In: Proceedings of the ISMM. Lecture Notes in Computer Science,
vol. 5720, pp. 295–306. Springer Berlin / Heidelberg, Groningen,
The Netherlands (August 2009)

Writing reusable digital topology algorithms in a generic image
processing framework. Levillain, R., Géraud, T., Najman, L. In:
Proc. of WADGMM. Lecture Notes in Computer Science, vol. 7346,
pp. 140–153. Springer-Verlag (2012)

14/ 16



Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

Full C++ dilation code with Milena

template <class I, class W>

I dilation(I input, W win)

I output;

initialize(output, input);

mln_piter(I) p(input.domain());

mln_qiter(W) q(win, p);

for_all(p)

accu::supremum<mln_value(I)> sup;

for_all(q) if (input.has(q))

sup.take(input(q));

output(p) = sup.to_result();

return output;

15/ 16



Why do we need genericity? On the (re)conciliation of Genericity and Efficiency

Full C++ pointer-based dilation with Milena

template <class I, class W>

I dilation(I input, W win) {

I output;

initialize(output, input);

mln_pixter(I) pi(input);

mln_pixter(I) po(output);

mln_qixter(I, W) q(pi, win);

for_all_2(pi, po) {

accu::supremum<mln_value(I)> sup;

for_all(q)

sup.take(q.val());

po.val() = sup.to_result();

}

return output;

16/ 16


	Why do we need genericity?
	On the (re)conciliation of Genericity and Efficiency

