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Introduction

Forewords

Classical issues in digital topology:

the set of connected components depends on the chosen

connectivity!

Jordan Curve Theorem does not work anymore!

(Latecki 1995 CVIU)
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Introduction

Forewords

Having a well-composed image is great:

3n
− 1 and 2n−connectivities in images are equivalent

(Rosenfeld 1970 JACM)

the Jordan Separation Theorem holds

topological properties are conserved by rigid transforms

(image registration and warping) (Ngo 2014 ITIP)

thinning algorithms are simplified (Marchadier 2004 PRL)

graph structures resulting from skeleton algorithms are

simplified (Latecki 1995 CVIU)

the Tree of Shapes (ToS) is unique

(Najman 2013 ISMM, Geraud 2013 ISMM)

Nicolas Boutry (LRDE/LIGM) On making nD images well-composed by a self-dual local interpolation DGCI 2014-09-11 5
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State-of-the-Art

Well-composedness in nD

Blocks of Zn: (1D), (2D), (3D), ...

Two points are said antagonist of a block iff they are as far

from each other as it is possible in the block

A critical configuration is a set of two points which are

antagonist in a block of dimension k, k ∈ [2,n].

k = 2,n = 2 k = 2,n = 3 k = 3,n = 3

A set X ⊆ Zn is well-composed iff there is no critical

configuration in X or Xc.
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State-of-the-Art

Well-composedness for nD Images

Let D ⊆ Zn be the domain of the image u.

For any λ ∈ R, we call strict upper threshold set and strict
lower threshold set the sets [u > λ] =

{
m ∈ D

∣∣∣u(m) > λ
}
and

[u < λ] =
{
m ∈ D

∣∣∣u(m) < λ
}
.

An image u : D 7→ Z is said well-composed iff all its
threshold sets are well-composed.

One eye of Lena ... and this eye thresholded!
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State-of-the-Art

2D Characterization of Latecki

An image u : Z2
7→ Z is well-composed iff ∀z ∈ Z2:

intvl(u(z1, z2),u(z1 + 1, z2 + 1)) ∩ intvl(u(z1 + 1, z2),u(z1, z2 + 1)) , ∅

Counter-example:
1

2

4

5 [u > 3] 
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Local Interpolation Scheme
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Local Interpolation Scheme

Interpolation VS Approximations

How to make an image well-composed:

interpolations with
usual constraints

well-composed 
interpolations

Approximations
(change values)

Interpolations
(add values)
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Local Interpolation Scheme

Usual Constraints (1)

One Subdivision: to limit the necessary amount of memory.

Invariances: by translations, π/2-rotations, and axial
symmetries.

Ordered: First we set the values at the centers of the edges,

then at the centers of the squares, and so on ...
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Local Interpolation Scheme

Usual Constraints (2)

In-between: we preserve the slopes in the image along the

coordinate axes.

Local: we compute the pixels only from the nearest neighbors.

Self-Dual: we do not want to favor bright components over

dark ones and conversely (Φ(−f) = −Φ(f))
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Local Interpolation Scheme(
Z
2

)n
as a poset (1)

We subdivide the space Zn: we obtain (Z/2)n!

0 0

0 0

1

1

11
2⇨

Order of a point in
(
Z
2

)n

(i+½,j+½)

(i,j) (i+1,j) (i,j+1) (i+1,j+1)

(i+½,j) (i+1,j+½)(i,j+½) (i+½,j+1)

(
Z
2

)n
as a partially ordered

set.

E0 are the original points, E1 the centers of the subdivided edges, E2 the
centers of the subdivided squares, ...
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Local Interpolation Scheme(
Z
2

)n
as a poset (2)

Parents Ancesters Groups
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Local Interpolation Scheme

Formulation (1)

Lemma
Any interpolation I : u 7→ u′ verifying locality, orderedness, and invariance by
translations and rotations can be characterized by a set of functions {fk }k∈[1,n]
such that:

∀ z ∈
(
Z

2

)n

, u′(z) =

{
u(z) if z ∈ E0

fk (u
∣∣∣
A(z)

) if z ∈ Ek , k ∈ [1,n]

u′ at z depends only on u at the ancesters of z

We have a set of functions {f1, f2, f3, . . . } such that:

f1 interpolates at the centers of the subdivided edges,
...
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Local Interpolation Scheme

Formulation (2): Which function f1?

f1 has to be self-dual, symmetrical, and in-between.

We choose one usual function satisfying these constraints:

the mean function f1(a,b) = (a + b)/2.

N.B.: There exists some other functions (e.g., med(a,b , 1
2 )).
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Local Interpolation Scheme

Formulation (3): And about f2?

f2, f3, . . . must choose a value u′(z) such as u′ is well-composed on
the group of z! (necessary condition)

With m = f2(a,b , c,d):

intvl(a,m) ∩ intvl((a + b)/2, (a + c)/2) , ∅, (1)

intvl((a + b)/2, (b + d)/2) ∩ intvl(m,b) , ∅, (2)

intvl((a + c)/2, (c + d)/2) ∩ intvl(m, c) , ∅, (3)

intvl(m,d) ∩ intvl((c + d)/2, (b + d)/2) , ∅. (4)

a b

dc

(a+b)/2

(c+d)/2

(a+c)/2 m (b+d)/2
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Local Interpolation Scheme

Formulation (4): Resulting f2

We obtain finally that f2 must satisfy:

Theorem

f2(u
∣∣∣
A(z)

) = med{u
∣∣∣
A(z)
} if u

∣∣∣
A(z)

is not W.C.,

f2(u
∣∣∣
A(z)

) is in − between otherwise.

9 11 15

7 1 13

3 5 3

Original Image

9 10 11 13 15

8 7 6 10 14

7 4 1 7 13

5 4 3 4 8

3 4 5 4 3

Mean/Median
(Latecki)

9 10 11 13 15

8 8 6 12 14

7 4 1 7 13

5 4 3 4 8

3 4 5 4 3

Median
(Geraud)
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Local Interpolation Scheme

Formulation (5): And about f3?

We have: a definition of 3D well-composed images

(Geraud, GT GéoDis, June 2013).

We need: a characterization (to study f3).

Nicolas Boutry (LRDE/LIGM) On making nD images well-composed by a self-dual local interpolation DGCI 2014-09-11 20



Well-composedness for 3D Images
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Well-composedness for 3D Images

3D Well-Composed Images (1)

Characterization
A gray-valued 3D image u : D 7→ R is well-composed on D iff on any block
S ⊆ D, u

∣∣∣
S

satisfies the properties (Pi), i ∈ [1,10].

These ten constraints allow to search for a 3D well-composed

interpolation.
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Well-composedness for 3D Images

Characterization (2)

Lemma 1: The threshold sets [u > λ] and [u < λ], λ ∈ R, of a
gray-valued image u defined on a block S do not contain any
critical configurations of type 1 iff the six following

properties hold:

Lemma (1)

intvl(a,d)
⋂

intvl(b , c) , ∅ (P1),
intvl(e,h)

⋂
intvl(g, f) , ∅ (P2),

intvl(a, f)
⋂

intvl(b ,e) , ∅ (P3),
intvl(c,h)

⋂
intvl(g,d) , ∅ (P4),

intvl(a,g)
⋂

intvl(e, c) , ∅ (P5),
intvl(b ,h)

⋂
intvl(f ,d) , ∅ (P6).

x

y
z a

c
d

b

e
f

g h
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Well-composedness for 3D Images

Characterization (3)

Lemma 2: The threshold sets [u > λ] and [u < λ], λ ∈ R, of a
gray-valued image u do not contain any critical configurations of
type 2 iff the six following properties hold:

Lemma (2)

intvl(a,h)
⋂

span{b , c,d,e, f ,g} , ∅ (P7)
intvl(b ,g)

⋂
span{a, c,d,e, f ,h} , ∅ (P8)

intvl(c, f)
⋂

span{a,b ,d,e,g,h} , ∅ (P9)
intvl(d,e)

⋂
span{a,b , c, f ,g,h} , ∅ (P10)

x

y
z a

c
d

b

e
f

g h
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A counter-example for n ≥ 3
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A counter-example for n ≥ 3

We have chosen f1.

We have the equations of f2.

We have (a part of) the equations of f3.

We can test our interpolation on an example.
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A counter-example for n ≥ 3

Equations of f3 (1)

2 4

4 0

4 0

0 2

Initial value of the 3D image.
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A counter-example for n ≥ 3

Equations of f3 (2)

2 4

4 0

4 0

0 2

3

2

3

2
1

1

2

2

2 1

3 2

Applying the mean function f1.
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A counter-example for n ≥ 3

Equations of f3 (3)

2 4

4 0

4 0

0 2

3

2

3

2
1

1

2

2

2 1

3 23

1

13

3

1

u is not well-composed on its faces! ⇒ f2 is the median function.
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A counter-example for n ≥ 3

Equations of f3 (4)

2 4

4 0

4 0

0 2

3

2

3

2
1

1

2

2

2 1

3 23

1

13

3

1

m ≤ 1

m ≥ 3

m

2 incompatible constraints ⇒ no solution.
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Conclusion

Our contributions

We extended the characterization formula of a 2D

well-composed gray-valued image to 3D.

We proposed a formulation, and then a model, for an usual

local interpolation scheme in nD.

We provided a counter-example showing that this reviewed

scheme cannot succeed.
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Conclusion

Future Works

We have to remove some constraints : the locality !

⇒ Proposed solution: a front propagation algorithm!

Nicolas Boutry (LRDE/LIGM) On making nD images well-composed by a self-dual local interpolation DGCI 2014-09-11 33



Conclusion

Thanks for your attention!

Questions? :D
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