On making *n*D images well-composed by a self-dual local interpolation

Nicolas Boutry^{1,2} Thierry Géraud¹ Laurent Najman²

nicolas.boutry@lrde.epita.fr

EPITA Research and Development Laboratory, LRDE, France

Université Paris-Est, LIGM, Équipe A3SI, ESIEE, France

DGCI 2014-09-11

Nicolas Boutry (LRDE/LIGM)

On making nD images well-composed by a self-dual local interpolation

DGCI 2014-09-11

Outline

Introduction

State-of-the-Art

- 3 Local Interpolation Scheme
 - Well-composedness for 3D Images
 - A counter-example for $n \ge 3$

Conclusion

Outline

Introduction

2 State-of-the-Art

3 Local Interpolation Scheme

Well-composedness for 3D Images

A counter-example for $n \ge 3$

Conclusion

< A

B → < B

Outline

2 State-of-the-Art

Well-composedness for 3D Images

A counter-example for $n \ge 3$

Outline

2 State-of-the-Art

- 3 Local Interpolation Scheme
 - Well-composedness for 3D Images
 - A counter-example for $n \ge 3$

Outline

2 State-of-the-Art

- 3 Local Interpolation Scheme
 - Well-composedness for 3D Images
- 5 A counter-example for $n \ge 3$

Outline

2 State-of-the-Art

- 3 Local Interpolation Scheme
 - Well-composedness for 3D Images
- 5 A counter-example for $n \ge 3$

Introduction

Outline

Introduction

2) State-of-the-Art

3 Local Interpolation Scheme

Well-composedness for 3D Images

A counter-example for $n \ge 3$

Classical issues in digital topology:

- the set of connected components depends on the chosen connectivity!
- Jordan Curve Theorem does not work anymore! (Latecki 1995 CVIU)

B 6 4 B

Having a well-composed image is great:

- 3ⁿ 1 and 2n-connectivities in images are equivalent (Rosenfeld 1970 JACM)
- the Jordan Separation Theorem holds
- topological properties are conserved by rigid transforms (image registration and warping) (*Ngo 2014 ITIP*)
- thinning algorithms are simplified (Marchadier 2004 PRL)
- graph structures resulting from skeleton algorithms are simplified (*Latecki 1995 CVIU*)
- the Tree of Shapes (ToS) is unique (*Najman 2013 ISMM*, *Geraud 2013 ISMM*)

2 State-of-the-Art

- 3 Local Interpolation Scheme
- Well-composedness for 3D Images
- A counter-example for $n \ge 3$
- Conclusion

- Blocks of \mathbb{Z}^n : $\circ \circ$ (1D), $\circ \circ$ (2D), $\circ \circ$ (3D), ...
- Two points are said antagonist of a block iff they are as far from each other as it is possible in the block
- A critical configuration is a set of two points which are antagonist in a block of dimension $k, k \in [2, n]$.

• A set $X \subseteq \mathbb{Z}^n$ is well-composed iff there is no critical configuration in X or X^c .

- Blocks of \mathbb{Z}^n : $\circ \circ$ (1D), $\circ \circ$ (2D), $\circ \circ$ (3D), ...
- Two points are said antagonist of a block iff they are as far from each other as it is possible in the block
- A critical configuration is a set of two points which are antagonist in a block of dimension k, $k \in [2, n]$.

• A set $X \subseteq \mathbb{Z}^n$ is well-composed iff there is no critical configuration in X or X^c .

4 3 5 4 3 5 5

- Blocks of \mathbb{Z}^n : $\circ \circ$ (1D), $\circ \circ \circ$ (2D), $\circ \circ \circ \circ \circ$ (3D), ...
- Two points are said antagonist of a block iff they are as far from each other as it is possible in the block
- A critical configuration is a set of two points which are antagonist in a block of dimension k, $k \in [2, n]$.

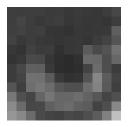
• A set $X \subseteq \mathbb{Z}^n$ is well-composed iff there is no critical configuration in X or X^c .

- Blocks of \mathbb{Z}^n : $\circ \circ$ (1D), $\circ \circ$ (2D), $\circ \circ$ (3D), ...
- Two points are said antagonist of a block iff they are as far from each other as it is possible in the block
- A critical configuration is a set of two points which are antagonist in a block of dimension k, $k \in [2, n]$.

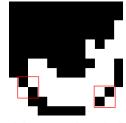
• A set $X \subseteq \mathbb{Z}^n$ is well-composed iff there is no critical configuration in X or X^c .

Let $\mathcal{D} \subseteq \mathbb{Z}^n$ be the domain of the image u.

- For any $\lambda \in \mathbb{R}$, we call strict upper threshold set and strict lower threshold set the sets $[u > \lambda] = \{m \in \mathcal{D} | u(m) > \lambda\}$ and $[u < \lambda] = \{m \in \mathcal{D} | u(m) < \lambda\}.$
- An image $u : \mathcal{D} \mapsto \mathbb{Z}$ is said well-composed iff all its threshold sets are well-composed.



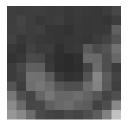
One eye of Lena ...



and this eye thresholded!

Let $\mathcal{D} \subseteq \mathbb{Z}^n$ be the domain of the image U.

- For any $\lambda \in \mathbb{R}$, we call strict upper threshold set and strict lower threshold set the sets $[u > \lambda] = \{m \in \mathcal{D} | u(m) > \lambda\}$ and $[u < \lambda] = \{m \in \mathcal{D} | u(m) < \lambda\}.$
- An image $u: \mathcal{D} \mapsto \mathbb{Z}$ is said well-composed iff all its threshold sets are well-composed.

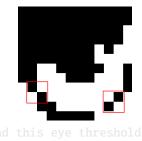


One eye of Lena ...

Let $\mathcal{D} \subseteq \mathbb{Z}^n$ be the domain of the image U.

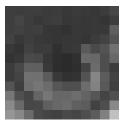
- For any $\lambda \in \mathbb{R}$, we call strict upper threshold set and strict lower threshold set the sets $[u > \lambda] = \{m \in \mathcal{D} | u(m) > \lambda\}$ and $[u < \lambda] = \{m \in \mathcal{D} | u(m) < \lambda\}.$
- An image $u: \mathcal{D} \mapsto \mathbb{Z}$ is said well-composed iff all its threshold sets are well-composed.

One eye of Lena ...

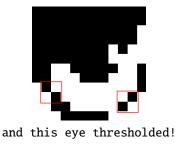


Let $\mathcal{D} \subseteq \mathbb{Z}^n$ be the domain of the image U.

- For any $\lambda \in \mathbb{R}$, we call strict upper threshold set and strict lower threshold set the sets $[u > \lambda] = \{m \in \mathcal{D} | u(m) > \lambda\}$ and $[u < \lambda] = \{m \in \mathcal{D} | u(m) < \lambda\}.$
- An image $u: \mathcal{D} \mapsto \mathbb{Z}$ is said well-composed iff all its threshold sets are well-composed.



One eye of Lena ...

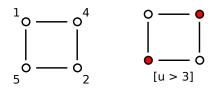


2D Characterization of Latecki

An image $u: \mathbb{Z}^2 \mapsto \mathbb{Z}$ is well-composed iff $\forall z \in \mathbb{Z}^2$:

 $intvl(u(z_1, z_2), u(z_1 + 1, z_2 + 1)) \cap intvl(u(z_1 + 1, z_2), u(z_1, z_2 + 1)) \neq \emptyset$

Counter-example:

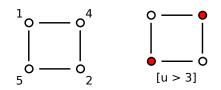


2D Characterization of Latecki

An image $u: \mathbb{Z}^2 \mapsto \mathbb{Z}$ is well-composed iff $\forall z \in \mathbb{Z}^2$:

 $\operatorname{intvl}(u(z_1, z_2), u(z_1 + 1, z_2 + 1)) \cap \operatorname{intvl}(u(z_1 + 1, z_2), u(z_1, z_2 + 1)) \neq \emptyset$

Counter-example:



1 Introduction

2 State-of-the-Art

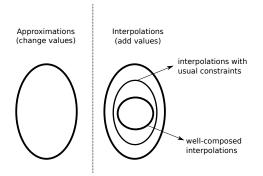
3 Local Interpolation Scheme

Well-composedness for 3D Images

A counter-example for $n \ge 3$

Interpolation VS Approximations

How to make an image well-composed:



Usual Constraints (1)

• One Subdivision: to limit the necessary amount of memory.

- <u>Invariances</u>: by translations, $\pi/2$ -rotations, and axial symmetries.
- Ordered: First we set the values at the centers of the edges, then at the centers of the squares, and so on ...

Usual Constraints (1)

- <u>One Subdivision:</u> to limit the necessary amount of memory.
- <u>Invariances</u>: by translations, $\pi/2$ -rotations, and axial symmetries.
- Ordered: First we set the values at the centers of the edges, then at the centers of the squares, and so on ...

Usual Constraints (1)

- <u>One Subdivision:</u> to limit the necessary amount of memory.
- <u>Invariances</u>: by translations, $\pi/2$ -rotations, and axial symmetries.
- <u>Ordered:</u> First we set the values at the centers of the edges, then at the centers of the squares, and so on ...

- <u>In-between:</u> we preserve the slopes in the image along the coordinate axes.
- Local: we compute the pixels only from the nearest neighbors.

• <u>Self-Dual</u>: we do not want to favor bright components over dark ones and conversely $(\Phi(-f) = -\Phi(f))$

医下子 医

- <u>In-between:</u> we preserve the slopes in the image along the coordinate axes.
- Local: we compute the pixels only from the nearest neighbors.

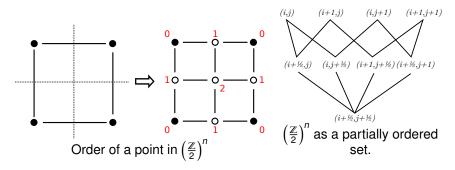
• <u>Self-Dual</u>: we do not want to favor bright components over dark ones and conversely $(\Phi(-f) = -\Phi(f))$

- <u>In-between:</u> we preserve the slopes in the image along the coordinate axes.
- Local: we compute the pixels only from the nearest neighbors.

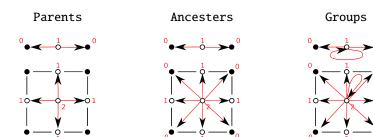
• <u>Self-Dual</u>: we do not want to favor bright components over dark ones and conversely $(\Phi(-f) = -\Phi(f))$

$\left(\frac{\mathbb{Z}}{2}\right)^n$ as a poset (1)

We subdivide the space \mathbb{Z}^n : we obtain $(\mathbb{Z}/2)^n$!



 \mathbb{E}_0 are the original points, \mathbb{E}_1 the centers of the subdivided edges, \mathbb{E}_2 the centers of the subdivided squares, ...



∃ → < ∃ →</p>

Formulation (1)

Lemma

Any interpolation \Im : $u \mapsto u'$ verifying locality, <u>orderedness</u>, and <u>invariance</u> by translations and rotations can be characterized by a set of functions $\{f_k\}_{k \in [1,n]}$ such that:

$$\forall z \in \left(\frac{\mathbb{Z}}{2}\right)^n, \ u'(z) = \begin{cases} u(z) & \text{if } z \in \mathbb{E}_0\\ f_k(u|_{\mathbb{A}(z)}) & \text{if } z \in \mathbb{E}_k, \ k \in [1, n] \end{cases}$$

U' at Z depends only on U at the ancesters of Z

We have a set of functions $\{f_1, f_2, f_3, ...\}$ such that:

f₁ interpolates at the centers of the subdivided edges,
...

E > < E >

Formulation (1)

Lemma

Any interpolation \Im : $u \mapsto u'$ verifying locality, orderedness, and invariance by translations and rotations can be characterized by a set of functions $\{f_k\}_{k \in [1,n]}$ such that:

$$\forall z \in \left(\frac{\mathbb{Z}}{2}\right)^n, \ u'(z) = \begin{cases} u(z) & \text{if } z \in \mathbb{E}_0\\ f_k(u|_{\mathbb{A}(z)}) & \text{if } z \in \mathbb{E}_k, \ k \in [1, n] \end{cases}$$

u' at z depends only on u at the <u>ancesters</u> of z

We have a set of functions $\{f_1, f_2, f_3, ...\}$ such that:

f₁ interpolates at the centers of the subdivided edges,
...

∃ ► < ∃ ►</p>

Formulation (1)

Lemma

Any interpolation \Im : $u \mapsto u'$ verifying locality, orderedness, and invariance by translations and rotations can be characterized by a set of functions $\{f_k\}_{k \in [1,n]}$ such that:

$$\forall z \in \left(\frac{\mathbb{Z}}{2}\right)^n, \ u'(z) = \begin{cases} u(z) & \text{if } z \in \mathbb{E}_0\\ f_k(u\big|_{\mathbb{A}(z)}) & \text{if } z \in \mathbb{E}_k, \ k \in [1, n] \end{cases}$$

u' at z depends only on u at the <u>ancesters</u> of z

We have a set of functions $\{f_1, f_2, f_3, ...\}$ such that:

f₁ interpolates at the centers of the subdivided edges,
...

글 🕨 🖌 글

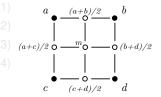
Formulation (2): Which function f_1 ?

- f₁ has to be <u>self-dual</u>, symmetrical, and <u>in-between</u>.
- We choose one usual function satisfying these constraints: the mean function $f_1(a,b) = (a+b)/2$.
- N.B.: There exists some other functions (e.g., $med(a, b, \frac{1}{2})$).

Formulation (3): And about f_2 ?

 f_2 , f_3 , ... must choose a value U'(z) such as U' is well-composed on the group of *z*! (necessary condition)

 $\operatorname{intvl}((a+b)/2,(b+d)/2) \cap \operatorname{intvl}(m,b) \neq \emptyset, \quad (2)$ $\operatorname{intvl}((a+c)/2, (c+d)/2) \cap \operatorname{intvl}(m, c) \neq \emptyset, (3) (a+c)/2 \circ \underline{m_0} \circ \underline{(b+d)/2}$

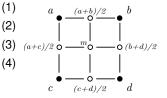


Formulation (3): And about fo?

 f_2 , f_3 , ... must choose a value U'(z) such as U' is well-composed on the group of *z*! (necessary condition)

With $m = f_2(a, b, c, d)$:

 $\operatorname{intvl}(a,m) \cap \operatorname{intvl}((a+b)/2,(a+c)/2) \neq \emptyset$, $\operatorname{intvl}(a, m) \mapsto \operatorname{intvl}(a + b)/2, (a + c)/2) \neq \emptyset, \quad (1) \qquad a \qquad \underbrace{(a+b)/2}_{a \to 0} = b$ $\operatorname{intvl}((a + b)/2, (b + d)/2) \cap \operatorname{intvl}(m, b) \neq \emptyset, \quad (2) \qquad \bigcup_{(a+c)/2} = \underbrace{(a+b)/2}_{a \to 0} = b$ $\operatorname{intvl}((a + c)/2, (c + d)/2) \cap \operatorname{intvl}(m, c) \neq \emptyset, \quad (3) \qquad \underbrace{(a+c)/2}_{a \to 0} = \underbrace{(a+b)/2}_{a \to 0} = b$ $\operatorname{intvl}(m,d) \cap \operatorname{intvl}((c+d)/2,(b+d)/2) \neq \emptyset.$ (4)



Local Interpolation Scheme

Formulation (4): Resulting f_2

We obtain finally that f₂ must satisfy:

Theorem $\begin{aligned} f_2(u|_{A(z)}) &= \text{med}\{u|_{A(z)}\} & \text{if } u|_{A(z)} \text{ is not W.C.,} \\ f_2(u|_{A(z)}) & \text{is in - between} & \text{otherwise.} \end{aligned}$

Original Image

9	10	11	13	15
8	7	6	10	14
7	4	1	7	13
5	4	3	4	8
3	4	5	4	3

Mean/Median (*Latecki*)

9	10	11	13	15
8	8		12	14
7	4	1	7	13
5	4	3	4	8
3	4	5	4	3

Median (*Geraud*)

Local Interpolation Scheme

Formulation (5): And about f_3 ?

- We have: a definition of 3D well-composed images (*Geraud*, *GT GéoDis*, *June* 2013).
- We need: a characterization (to study f_3).

Outline

Introduction

2 State-of-the-Art

- 3 Local Interpolation Scheme
- Well-composedness for 3D Images
- A counter-example for $n \ge 3$

Conclusion

Well-composedness for 3D Images

3D Well-Composed Images (1)

Characterization

A gray-valued 3D image $u : \mathcal{D} \mapsto \mathbb{R}$ is well-composed on \mathcal{D} iff on any block $S \subseteq \mathcal{D}, u|_{S}$ satisfies the properties $(P_i), i \in [1, 10]$.

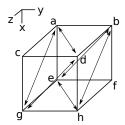
These ten constraints allow to search for a 3D well-composed interpolation.

Characterization (2)

• LEMMA 1: The threshold sets $[u > \lambda]$ and $[u < \lambda]$, $\lambda \in \mathbb{R}$, of a gray-valued image u defined on a block S do not contain any critical configurations of type 1 iff the six following properties hold:

Lemma (1)

$\operatorname{intvl}(a, d) \cap \operatorname{intvl}(b, c) \neq \emptyset$	(<i>P</i> 1),
$\operatorname{intvl}(e,h) \cap \operatorname{intvl}(g,f) \neq \emptyset$	(P2),
$\operatorname{intvl}(a, f) \cap \operatorname{intvl}(b, e) \neq \emptyset$	(P3),
$\operatorname{intvl}(c,h) \cap \operatorname{intvl}(g,d) \neq \emptyset$	(P4),
$\operatorname{intvl}(a,g) \cap \operatorname{intvl}(e,c) \neq \emptyset$	(P5),
$\operatorname{intvl}(b,h) \cap \operatorname{intvl}(f,d) \neq \emptyset$	(P6).

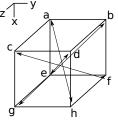


Characterization (3)

LEMMA 2: The threshold sets $[u > \lambda]$ and $[u < \lambda]$, $\lambda \in \mathbb{R}$, of a gray-valued image u do not contain any critical configurations of type 2 iff the six following properties hold:

Lemma (2)

 $\begin{aligned} & \operatorname{intvl}(a,h) \cap \operatorname{span}\{b,c,d,e,f,g\} \neq \emptyset \quad (P7) \\ & \operatorname{intvl}(b,g) \cap \operatorname{span}\{a,c,d,e,f,h\} \neq \emptyset \quad (P8) \\ & \operatorname{intvl}(c,f) \cap \operatorname{span}\{a,b,d,e,g,h\} \neq \emptyset \quad (P9) \\ & \operatorname{intvl}(d,e) \cap \operatorname{span}\{a,b,c,f,g,h\} \neq \emptyset \quad (P10) \end{aligned}$



Outline

Introduction

2 State-of-the-Art

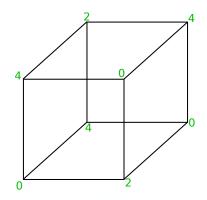
- 3 Local Interpolation Scheme
 - Well-composedness for 3D Images

5 A counter-example for $n \ge 3$

Conclusion

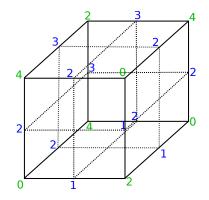
- We have chosen *f*₁.
- We have the equations of *f*₂.
- We have (a part of) the equations of f_3 .
- We can test our interpolation on an example.

Equations of $f_3(1)$



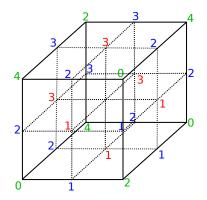
Initial value of the 3D image.

Equations of f_3 (2)



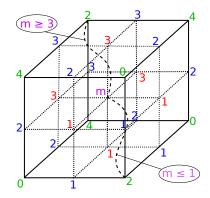
Applying the mean function f_1 .

Equations of f_3 (3)



u is not well-composed on its faces! \Rightarrow *f*₂ is the median function.

Equations of f_3 (4)



2 incompatible constraints \Rightarrow no solution.

∃ ▶ ∢

Conclusion

Outline

Introduction

2 State-of-the-Art

3 Local Interpolation Scheme

Well-composedness for 3D Images

A counter-example for $n \ge 3$

Conclusion

- We extended the characterization formula of a 2D well-composed gray-valued image to 3D.
- We proposed a formulation, and then a model, for an usual local interpolation scheme in *n*D.
- We provided a counter-example showing that this reviewed scheme cannot succeed.

We have to remove some constraints : the locality !

 \Rightarrow Proposed solution: a front propagation algorithm!

Thanks for your attention!

Questions? :D

< < >> < < < < >>