A Self-Dual and Digitally Well-Composed Representation of *n*D Digital Images

Nicolas Boutry^{1,2} Thierry Géraud¹ Laurent Najman²

nicolas.boutry@lrde.epita.fr

EPITA Research and Development Laboratory, LRDE, France

Université Paris-Est, LIGM, Équipe A3SI, ESIEE, France

ISMM 2015-05-29

We propose here a new method to represent *n*D gray-valued images.

Mainly, this new representation:

- is *similar* to the initial image (in-between interpolation)
- treats bright and dark components in the same way (self-duality)
- get rid of the topological paradox of connectivities (well-composedness)
- is the first to work in nD (similar methods fail since $n \ge 3$)

Self-dual-operators applied on this representation are purely self-dual: the results are the same whatever the chosen connectivities.

Outline

Outline

1 A new representation

B → < B

Outline

An application: Pure Self-Duality

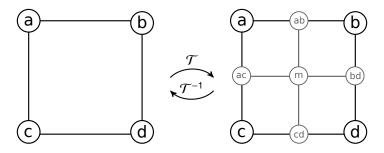
< 17 ▶

프 (프)

A Representation Similar to the Initial Image

u given, we compute the new representation $u' = \mathcal{T}(u)$ by interpolation.

The interpolation method is in-between (no new extrema):

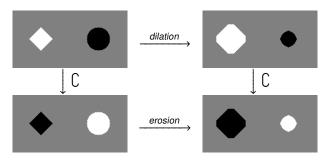


The new representation is *similar* to the initial image.

A Self-dual Representation (1)

Two operators Φ and Ψ are said dual iff $\bigcap \circ \Phi = \Psi \circ \bigcap$.

Dual operators are everywhere in MM: dilation/erosion, opening/closing, thickening/thinning,...



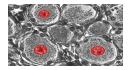
 Φ treats the bright components as Ψ treats the dark components and vice-versa.

Nicolas Boutry (LRDE/LIGM)

A Self-dual Representation (2)

Dual operators needs to know a priori the contrast of the "object".

Dark nuclei over bright cytosols:



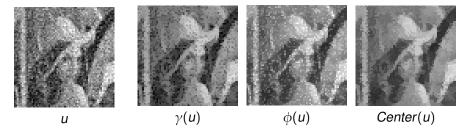
Crop fields with varying contrast:

Dual operators fail when the constrast varies too much.

-29 7

A Self-dual Representation (3)

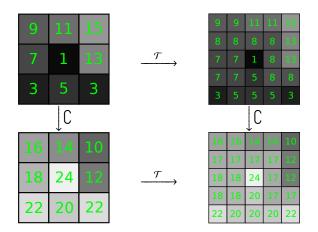
An operator φ is said self-dual iff $\varphi \circ C = C \circ \varphi$. Example (grain filtering):



A self-dual operator treats symmetrically bright and dark components.

A new representation

A Self-dual Representation (4)



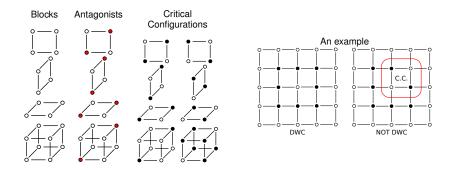
Our transform \mathcal{T} is self-dual: $\mathcal{T}(-u) = -\mathcal{T}(u)$.

< 17 ▶

э

A new representation

A Digitally Well-Composed Representation (1)



A *n*D set X is said DWC iff X and X^c does not contain any CC.

A *n*D image *u* is said DWC iff $\forall \lambda \in \mathbb{R}$, $\chi_{\lambda}(u)$ and $\chi_{\lambda}^{c}(u)$ are DWC.

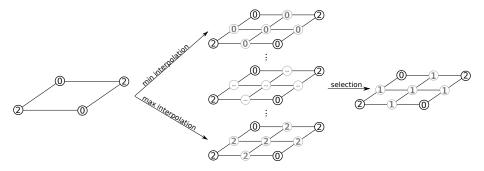
< 17 ▶

∃ → < ∃</p>

A new representation

A Digitally Well-Composed Representation (2)

Let $\mathcal{G}(u)$ be the collection of images between u_{min} and u_{max} .

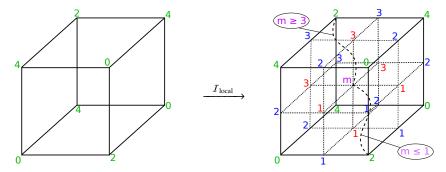


The selection process in our algorithm chooses in a self-dual way a DWC image which interpolates *u* (quasi-linear time).

Our representation is digitally well-composed.

A *n*D representation (1)

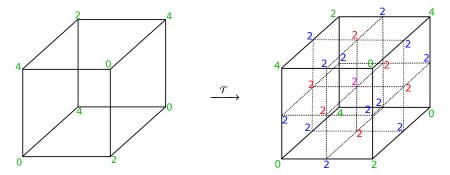
Interpolating this image into a DWC image in a self-dual way leads to an incompatible set of constraints (DGCI'2014):



<u>Local</u> interpolation methods fail in nD ($n \ge 3$).

A nD representation (2)

Using a front-propagation approach, we get rid of the local criterion.



Our method succeeds to interpolate nD images.

Summary

The new representation:

- is an interpolation
- is in-between
- is self-dual
- is digitally well-composed
- works in nD
- **(**) is invariant by $\pi/2$ rotations and symmetries (not developed here)
- is deterministic (not developed here)
- is computed in quasi-linear time

Outline

An application: Pure Self-Duality

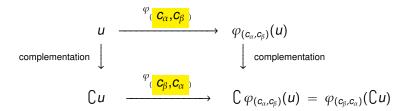
< 17 ▶

프 (프)

Self-duality is impure

In digital topology, a self-dual operator φ uses dual connectivities (c_{α} , c_{β}) for upper/lower threshold sets.

We obtain the Self-Duality Equation by switching the connectivities:



Self-duality is said impure.

DWCness to Pure Self-duality (1)

Property (DWC \Rightarrow EWC)

Let u be a DWC image. Then the set of connected components of $\chi_{\lambda}(u)$ (resp. $\chi_{\lambda}^{c}(u)$) does not depend on the chosen connectivity (EWCness).

The connectivities of a DWC image are said equivalent.

Consequence on the Self-Duality Equation:

$$\mathbb{C}(\varphi_{(\mathbf{c}_{\alpha},\mathbf{c}_{\beta})}(u)) \stackrel{SD}{=} \varphi_{(\mathbf{c}_{\beta},\mathbf{c}_{\alpha})}(\mathbb{C}(u)) \stackrel{DWC}{=} \varphi_{(\mathbf{c}_{\alpha},\mathbf{c}_{\beta})}(\mathbb{C}(u))$$

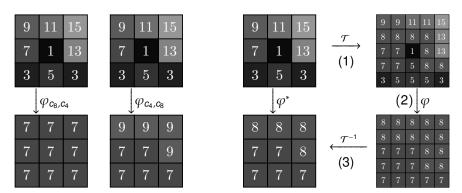
DWCness + Self-Duality \Rightarrow Pure Self-Duality

An application: Pure Self-Duality

DWCness to Pure Self-duality (2)

With $\varphi = GF$ (grain filtering):

Before



The results do not depend on the chosen connectivities (Unicity).

a n

After

Conclusion

Outline

A new representation

An application: Pure Self-Duality

< 17 ▶

Practical contributions:

- We provide the first method to compute self-dual digitally well-composed representations of <u>nD</u> images.
- We give an access to pure self-duality using any morphological self-dual operator.

Theoretical contributions:

- A generalization of *n*D (digital) well-composedness (sets/functions)
- An extension of digitally well-composedness to interval-valued maps (not developed here)
- A characterization of digitally well-composed images (not developed here)
- A proof that DWCness implies the EWCness (in *n*D)

3 b 4 3

Conclusion

Well-Composedness: State-Of-The-Art

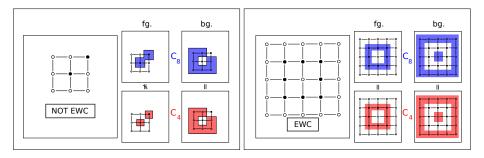
Thanks for your attention! ... Questions? :D

Г								
	based on:	connectivities		C.C.'s		n-surfaces		manifolds
	2D case:	EWC	⇔	DWC	\iff	AWC	\iff	CWC
	3D case:	EWC	⇐	DWC	\iff	AWC	\iff	<u>cwc</u>
	nD case:	EWC	←	DWC	⇔? ⇒	AWC	⇐? ⇒	<u>cwc</u>
	not EWC	• •			X ^c	X ^c X X X ^c AWC		

Nicolas Boutry (LRDE/LIGM)

EWCness

A set X is said EWC iff the set of 2*n*-components of X (resp. X^c) is equal to the set of $(3^n - 1)$ -components of X (resp. X^c).

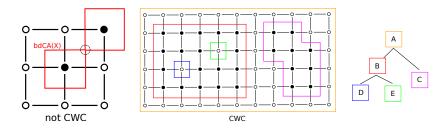


An image *u* is said EWC iff for any $\lambda \in \mathbb{R}$, $\chi_{\lambda}(u)$ and $\chi_{\lambda}^{c}(u)$ are EWC.

∃ > <</p>

CWCness

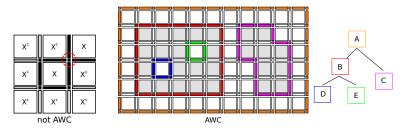
A set X is said C-well-composed or CWC iff the components of the boundary of its continuous analog are (n - 1)-manifolds.



An image *u* is said CWC iff $\forall \lambda \in \mathbb{R}$, $\chi_{\lambda}(u)$ and $\chi_{\lambda}^{c}(u)$ are CWC.

AWCness

A set X is said Alexandrov-well-composed or AWC iff the components of its boundary are (n - 1)-surfaces.

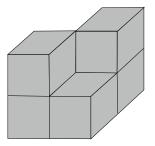


An image *u* is said AWC iff $\forall \lambda \in \mathbb{R}$, $\chi_{\lambda}(u)$ and $\chi_{\lambda}^{c}(u)$ are AWC.

∃ >

EWC ⇒ DWC

DWCness implies EWCness but the converse is not true:



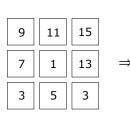
Since $n \ge 3$, the equivalence *EWC* \Leftrightarrow *DWC* does not hold anymore.

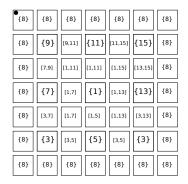
Supplementary Materials

How the algorithm works

We start from this image:

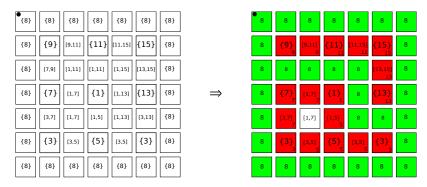
We immerse it into this interval-valued image:

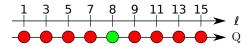




э

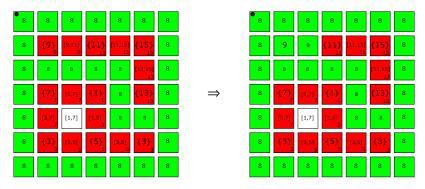
... and we start the propagation ($\ell = 8$):

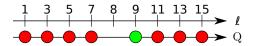




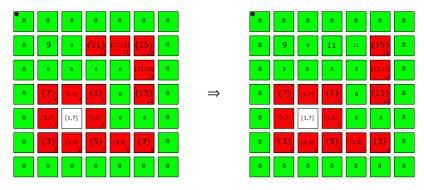
∃ → < ∃ →</p>

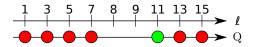
... and we continue until the hierarchical queue is empty ($\ell = 9$):



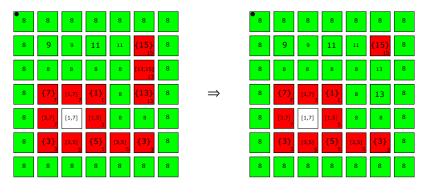


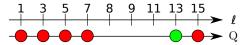
... and we continue until the hierarchical queue is empty ($\ell = 11$):



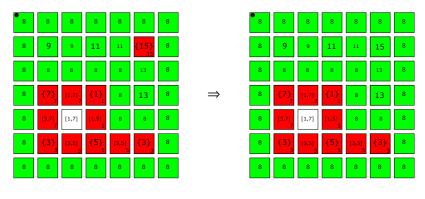


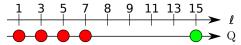
... and we continue until the hierarchical queue is empty ($\ell = 13$):



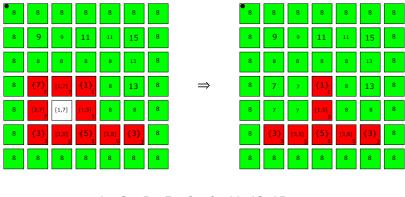


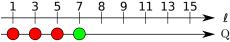
... and we continue until the hierarchical queue is empty ($\ell = 15$):





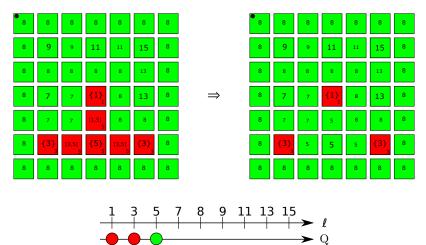
... and we continue until the hierarchical queue is empty ($\ell = 7$):





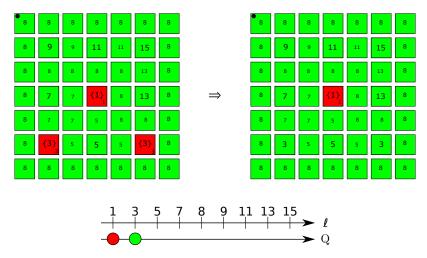
∃ > ∢

... and we continue until the hierarchical queue is empty ($\ell = 5$):



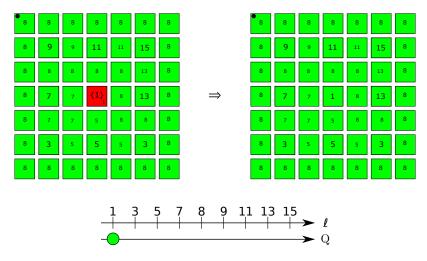
∃ > ∢

... and we continue until the hierarchical queue is empty ($\ell = 3$):



ㅋㅋ ㅋㅋ

... and we continue until the hierarchical queue is empty ($\ell = 1$):

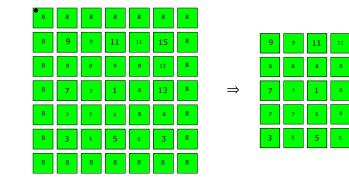


B → < B

Supplementary Materials

How the algorithm works

... and we obtain our new representation:



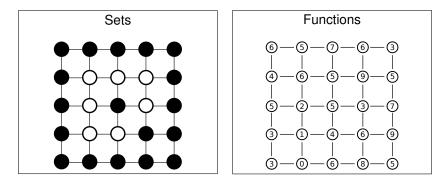
15

13

3

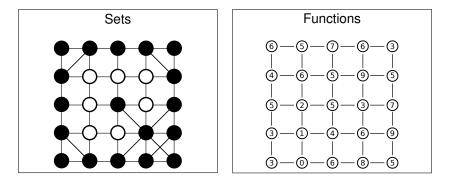
Underlying Graph(1)

Using 8-connectivity for foreground (black) and upper level sets, and 4-connectivity for background (white) and lower level sets:



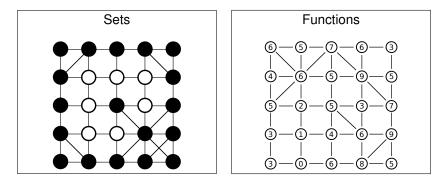
Underlying Graph(1)

Using 8-connectivity for foreground (black) and upper level sets, and 4-connectivity for background (white) and lower level sets:



Underlying Graph(1)

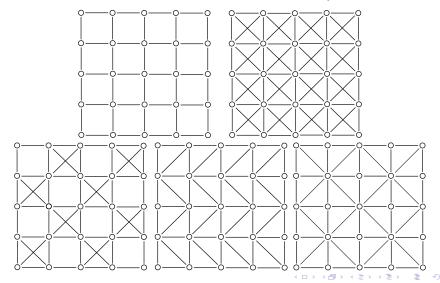
Using 8-connectivity for foreground (black) and upper level sets, and 4-connectivity for background (white) and lower level sets:



The underlying graph depends on the values of the image (not EWC).

Underlying Graph(2)

However, for EWC/DWC sets, all the connectivities are equivalent:



Summary

