Well-Composedness in Alexandrov Spaces implies Digital Well-Composedness in \mathbb{Z}^n

Nicolas Boutry^{1,2} Thierry Géraud¹ Laurent Najman²

¹ EPITA Research and Development Laboratory (LRDE), France

² Université Paris-Est, LIGM, Équipe A3SI, ESIEE, France

DGCI 2017

- Motivation
- Digital topology and posets
- 3 Sketch of the proof
- 4 Conclusion

- Motivation
- Digital topology and posets
- 3 Sketch of the proo
- 4 Conclusion

Context

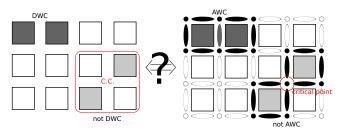
DWC ≡ Digital Well-Composed:

 \rightarrow a set $X \subset \mathbb{Z}^n$ is DWC iff it does not contain any critical configuration

AWC ≡ Alexandrov Well-Composed:

 \rightarrow a set $X \subset \mathbb{Z}^n$ is AWC iff the boundary of its immersion is made of a disjoint union of discrete (n-1)-surfaces,

Are AWCness and DWCness related?



Why is DWCness so important?

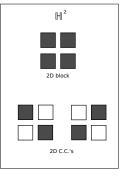
For DWC sets:

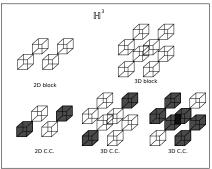
- no ambiguity in matter of connectivities (locally),
 - → no "hole problem" using the Marching Cubes (2D/3D),
- no ambiguity in matter of connectivities (globally),
 - → the tree of shapes is well-defined (Géraud and Najman ISMM 2013),

If AWCness implies DWCness, AWC sets benefit from these strong properties.

- Motivation
- Digital topology and posets
- 3 Sketch of the proo
- 4 Conclusion

Digital Well-composedness





A *n*D set *X* is said DWC iff *X* does NOT contain any critical configuration.

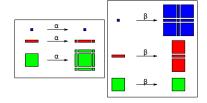
Khalimsky grids

Let \mathbb{H}^n be the Khalimsky grids of dimension n.

Faces of dimension k (k-faces):

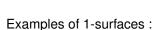
Topological operators:

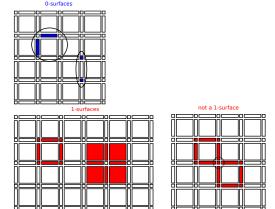
- $\bullet \ \beta(f) = \{f' \in \mathbb{H}^n \ ; \ f \le f'\}$
- $\theta(f) = \alpha(f) \cup \beta(f)$ ("neighborhood")



n-D discrete surfaces

Examples of 0-surfaces:

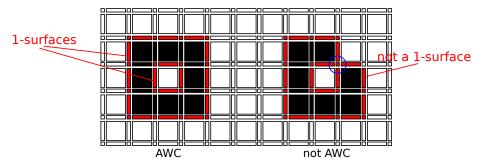




|N| is a *n*-surface iff:

- $N = \{a, b\}$ such that $a \notin \theta(b)$ when n = 0,
- |N| is connected, non empty, and if $\forall z \in N, |\theta_N^\square(z)| = \theta(z) \cap N \setminus \{z\}$ is a (n-1)-surface when $n \ge 1$.

Alexandrov Well-Composedness



An AWC set X is a set such as the components of the boundary of its immersion X in \mathbb{H}^n are (n-1)-surfaces.

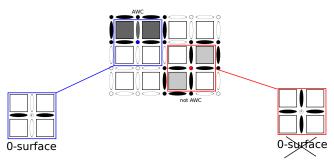
- Motivation
- Digital topology and posets
- 3 Sketch of the proof
- 4 Conclusion

Reformulating the problem

"X is not AWC" can be expressed in a local way:

X is AWC iff $\forall z \in N$, the subspace $|\beta_N^{\square}(z)|$ is a $\xi(z)$ -surface,

where N is the boundary of the immersion X of X, and $\xi(z) \equiv (n-2-dim(z))$.



Key idea of proof

Summarily, our aim is then to prove that:

"If X contains a critical configuration,

 $\exists z^* \in N$, s.t. the subspace $|\beta_N^\square(z^*)|$ is NOT a $\xi(z^*)$ -surface"

Hint: for $k \ge 0$, the disjoint union of two k-surfaces is NOT a k-surface.

Proof

Schematically, we obtain that if X is not DWC,

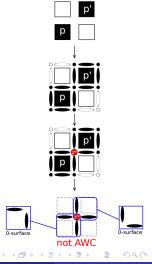
$$\exists S \in \mathcal{B}(\mathbb{Z}^n), X \cap S = \{p, p'\} \text{ or } S \setminus X = \{p, p'\}$$
 with $p' = \text{antag}_S(p)$,

 \Rightarrow the infimum $z^* = p \land p'$ between p and p' satisfies:

$$|\beta_N^{\square}(z^*)| = |\alpha(p) \wedge \beta(z^*)| \cup |\alpha(p') \wedge \beta(z^*)|$$

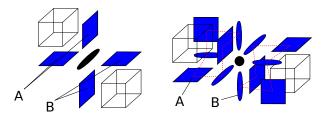
Since $|\alpha(p) \wedge \beta(z^*)|$ and $|\alpha(p') \wedge \beta(z^*)|$ are disjoint $\xi(z^*)$ -surfaces, $|\beta_N^\square(z^*)|$ is NOT a $\xi(z^*)$ -surface.

Then X is not AWC.



Examples in 2D and in 3D

3D examples:



 $|\beta_N^{\square}(z^*)|$ is the union of two 0-surfaces (2D C.C.) or of two 1-surfaces (3D C.C.), and then is NOT a discrete surface.

- Motivation
- Digital topology and posets
- 3 Sketch of the proo
- 4 Conclusion

Conclusion and perspectives

Conclusion:

By cross-section topology, we easily extend our result to functions.

Perspective:

"Does DWCness implies AWCness in n-D?"

Recall: it is well-known to be true in 2D and in 3D.

Thanks for your attention !:)