Introducing the Dahu Pseudo-Distance

Que la montagne de pixels est belle. Jean Serrat.

Thierry Géraud, Yongchao Xu, Edwin Carlinet, and Nicolas Boutry

EPITA Research and Development Laboratory (LRDE), France
theo@lrde.epita.fr

ISMM, Fontainebleau, France, May 2017

About image representations

(mathematical morphology way of thinking) topographical landscape

\downarrow

a surface
L.W. Najman and J. Cousty, "A graph-based mathematical morphology reader," Pattern Recognition Letters, vol.

47, pp. 3-17, Oct. 2014. [PDF]

The Minimum Barriere (MB) Distance

this talk is about a distance between points in gray-level images...
R. Strand, K.C. Ciesielski, F. Malmberg, and P.K. Saha, "The minimum barrier distance," Computer Vision and Image Understanding, vol. 117, pp. 429-437, 2013. [PDF]
K.C. Ciesielski, R. Strand, F. Malmberg, and P.K. Saha, "Efficient Algorithm for Finding the Exact Minimum Barrier

Distance," Computer Vision and Image Understanding, vol. 123, pp. 53-64, 2014. [PDF]
...and a variant of this distance, and its computation

The Minimum Barriere (MB) Distance

Barrier τ of a path π in an image u

Interval of gray-level values (dynamics of u) along a path:

$$
\tau_{u}(\pi)=\max _{\pi_{i} \in \pi} u\left(\pi_{i}\right)-\min _{\pi_{i} \in \pi} u\left(\pi_{i}\right) .
$$

The Minimum Barriere (MB) Distance

Barrier τ of a path π in an image u

Interval of gray-level values (dynamics of u) along a path:

$$
\tau_{u}(\pi)=\max _{\pi_{i} \in \pi} u\left(\pi_{i}\right)-\min _{\pi_{i} \in \pi} u\left(\pi_{i}\right) .
$$

pink path values $=\langle 1,3,0,0,2\rangle \rightsquigarrow$ interval $=[0,3] \rightsquigarrow$ barrier $=3$

The Minimum Barriere (MB) Distance

Barrier τ of a path π in an image u

Interval of gray-level values (dynamics of u) along a path:

$$
\tau_{u}(\pi)=\max _{\pi_{i} \in \pi} u\left(\pi_{i}\right)-\min _{\pi_{i} \in \pi} u\left(\pi_{i}\right) .
$$

blue path values $=\langle 1,0,0,0,2\rangle \rightsquigarrow$ interval $=[0,2] \rightsquigarrow$ barrier $=2$

The Minimum Barriere (MB) Distance

MB distance (MBD) between two points x and x^{\prime}

MBD = minimum barrier (considering all paths) between these points:

$$
d_{u}^{\mathrm{MB}}\left(x, x^{\prime}\right)=\min _{\pi \in \Pi\left(x, x^{\prime}\right)} \tau_{u}(\pi)
$$

\rightsquigarrow distance $=$ minimum barrier $=2$

An important distance

- relying on function dynamics (so not a "classical" path-length distance)
- effective for segmentation tasks

J. Zhang, S. Sclaroff, Z. Lin, X. Shen, B. Price, and R. Mech, "Minimum barrier salient object detection at 80 FPS," in: Proc. of ICCV, pp. 1404-1412, 2015. [PDF]
W.C. Tu, S. He, Q. Yang, and S.Y. Chien, "Real-time salient object detection with a minimum spanning tree," in:

Proc. of IEEE CVPR, pp. 2334-2342, 2016. [PDF]
J. Zhang, S. Sclaroff, "Exploiting Surroundedness for Saliency Detection: A Boolean Map Approach," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 38, num. 5, pp. 889-902, 2016. [PDF]

- and actually related to mathematical morphology...

In the graph world:

the MB distance is $\mathbf{2}$

In the graph world:

the MB distance is $\mathbf{2}$

In the continuous world:

the MB distance should be 1!

In the graph world:

the MB distance is $\mathbf{2}$

In the continuous world:

the MB distance should be 1!
\Rightarrow we need a new definition...
to get a new definition...
a continuous representation of an image / surface is required...

$A \approx$ new representation!

Given a scalar image $u: \mathbb{Z}^{n} \rightarrow Y$, we use two tools:

- cubical complexes: \mathbb{Z}^{n} is replaced by \mathbb{H}^{n}
- set-valued maps: Y is replaced by \mathbb{I}_{Y}
\Rightarrow a continuous, yet discrete, representation of images

[^0]
A both continuous and discrete representation

discrete point $x \in \mathbb{Z}^{n} \rightsquigarrow n$-face $h_{x} \in \mathbb{H}^{n}$ domain $\mathcal{D} \subset \mathbb{Z}^{n} \rightsquigarrow \mathcal{D}_{H}=c l\left(\left\{h_{x} ; x \in \mathcal{D}\right\}\right) \subset \mathbb{H}^{n}$

from a scalar image u...

A both continuous and discrete representation

$$
\begin{array}{rll}
\text { discrete point } x \in \mathbb{Z}^{n} & \rightsquigarrow & n \text {-face } h_{x} \in \mathbb{H}^{n} \\
\text { domain } \mathcal{D} \subset \mathbb{Z}^{n} & \rightsquigarrow & \mathcal{D}_{H}=c l\left(\left\{h_{x} ; x \in \mathcal{D}\right\}\right) \subset \mathbb{H}^{n}
\end{array}
$$

scalar image $u: \mathcal{D} \subset \mathbb{Z}^{n} \rightarrow Y \rightsquigarrow \quad$ interval-valued map $\widetilde{u}: \mathcal{D}_{H} \subset \mathbb{H}^{n} \rightarrow \mathbb{I}_{Y}$

1	3	2
0	0	0

from a scalar image $u \ldots$

乪 [1] 圆 $¢ 3\}$	$23 \square[2]$
(11) $\{1\}$	$\{2\}$
	[0.7 [0,2]
[0] $\{0\}$	
[0] $\{0\}$ [0] 00	[0] $\{0\}$

We set:

$$
\forall h \in \mathcal{D}_{H}, \widetilde{u}(h)=\operatorname{span}\left\{u(x) ; x \in \mathcal{D} \text { and } h \subset h_{x}\right\}
$$

A both continuous and discrete representation

zoomed in:

A both continuous and discrete representation

1	3	2
0	0	0

image u

A both continuous and discrete representation

1	3	2
0	0	0
image u		

\rightsquigarrow

A both continuous and discrete representation

we have a representation for the image surface
$\leadsto \quad$ we want to express the "continuous" distance...

Inclusion

with u a scalar image, and U a set-valued image:

$$
u \in U \Leftrightarrow \forall x \in X, \quad u(x) \in U(x)
$$

Searching for the continuous MB distance

回［10］回
［0：$\{0\}$［0］$\{0\}$ 戒 $\{0\}$
回 ¢07 圆 ¢07 回 ¢07

Searching for the continuous MB distance

...and its 3D version

Searching for the continuous MB distance

回［10］回
［0：$\{0\}$［0］$\{0\}$ 戒 $\{0\}$
回 ¢07 圆 ¢07 回 ¢07

The Dahu distance

The Dahu distance:

The Dahu distance

The Dahu distance:

it looks like we have added an extra combinatorial complexity w.r.t. the original MB distance...

We have a combinatorial continuous-like def. of the MB distance...
...but it can be computed exactly and efficiently with: the morphological tree of shapes!!!

The morphological tree of shapes (ToS)

With $\lambda \in Y$:

- lowel level sets: $[u<\lambda]=\{x \in X ; u(x)<\lambda\}$
- upper level sets: $[u \geq \lambda]=\{x \in X ; u(x) \geq \lambda\}$

a lower level set

u

a upper level set

A couple of dual trees:

- min-tree: $\mathcal{T}_{\min }(u)=\{\Gamma \in \mathcal{C C}([u<\lambda])\}_{\lambda}$
- max-tree: $\mathcal{T}_{\max }(u)=\{\Gamma \in \mathcal{C C}([u \geq \lambda])\}_{\lambda}$

The morphological tree of shapes (ToS)

Tree of shapes:

$$
\mathfrak{S}(u)=\{\operatorname{Sat}(\Gamma) ; \Gamma \in \mathcal{C C}([u<\lambda]) \cup \mathcal{C C}([u \geq \lambda])\}_{\lambda}
$$

A shape:

- an element $\mathcal{S} \in \mathfrak{S}(u)$
- a sub-tree in the representation above

Level lines: $\{\partial \Gamma ; \Gamma \in \mathfrak{S}(u)\}$

The morphological tree of shapes (ToS)

Let us consider a couple of points of the image: each point belongs to a particular ToS node

The morphological tree of shapes (ToS)

finding a path between the red dots is straightforward: all paths have to go through regions A and C ...

The morphological tree of shapes (ToS)

\rightsquigarrow a minimal path in the image only goes through the minimal set of regions and it can be "read" on the ToS!

The morphological tree of shapes (ToS)

and this minimal path crosses the image level lines (so they have to be "well formed" \leftarrow issue ignored in this talk!)

Mapping the Dahu distance on the tree

With

- t_{x} the node that corresponds to $x \in \mathbb{Z}^{n}$
- $\pi_{\mathfrak{S}(u)}\left(t_{x}, t_{x^{\prime}}\right)$ the path in $\mathfrak{S}(u)$ between the nodes t_{x} and $t_{x^{\prime}}$
- $\mu_{u}(t)$ the corresponding gray level of node t in the image u
the definition of the Dahu distance becomes:

$$
D_{u}\left(x, x^{\prime}\right)=\max _{t \in \pi_{\mathfrak{S}(u)}\left(t_{x}, t_{x^{\prime}}\right)} \mu_{u}(t)-\min _{t \in \pi_{\mathfrak{S}(u)}\left(t_{x}, t_{x^{\prime}}\right)} \mu_{u}(t)
$$

The how-to:

1. pre-compute the ToS (...)
2. then get distances very efficiently for many couples $\left(x, x^{\prime}\right)$.

Computing the Dahu distance on the tree

start from the deepest node

Computing the Dahu distance on the tree

go up until to reach the same depth for both points

Computing the Dahu distance on the tree

go up until to reach the same node (Ica)

$\min =0, \max =2$

Computing the Dahu distance on the tree

done!

$\rightsquigarrow \quad$ distance $=2$

A quick quiz

Red zone: region where every path between the red dots is minimal.

Quiz:

discuss / compare the different methods that compute the distance...

A quick test

For 1M couples of points (x, x^{\prime}) taken randomly:

lena size	256×256	512×512	1024×1024	\ldots	pixels		
average $\left\|\pi_{\mathfrak{S}(u)}\left(t_{x}, t_{x^{\prime}}\right)\right\|$	90	90	90	90	nodes		
average $\left\\|x^{\prime}-x\right\\|_{1}$	170	340	680	\ldots	pixels		

$\approx 1 \mathrm{M}$ Dahu distance computations per sec.

Conclusion / Take-home messages

Reminder:

- the MB distance is great for computer vision!

Conclusion / Take-home messages

Reminder:

- the MB distance is great for computer vision!

What we have done:

- introduce a new distance, that fits with a continuous (yet discrete) representation of images
- formalize it, and relate it to the morphological tree of shapes
- provide an efficient solution to compute distances.

Conclusion / Take-home messages

Reminder:

- the MB distance is great for computer vision!

What we have done:

- introduce a new distance, that fits with a continuous (yet discrete) representation of images
- formalize it, and relate it to the morphological tree of shapes
- provide an efficient solution to compute distances.

What we have skipped:

- actually many things...

A perspective:

- adapt the distance to color images

Using the multivariate tree of shapes (MToS)...

E. Carlinet and T. Géraud, "MToS: A tree of shapes for multivariate images," IEEE Transactions on Image Processing, vol. 24, num. 12, pp. 5330-5342, 2015. [PDF]

That's all folks!

Thanks for your attention. Any questions?

Dahu descentius frontalis (La Pointe Perce, 1895)

Dahu ascentius frontalis (Le Charvin, 1901)

Dahu dextrogyre (Col de la Colombire, 1904)

Young dahu lévogyre (La Tournette, 1910)

the next slides are not part of the core presentation!

[вackup slide] Apps based on the ToS

Grain filter.

Shaping (filtering in shape space).
Y. Xu, T. Géraud, and L. Najman, "Connected filtering on tree-based shape-spaces," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, num. 6, pp. 1126-1140, 2016. [PDF]

[backup slide] Apps based on the ToS

Object detection.

Simplification / segmentation.
Y. Xu, E. Carlinet, T. Géraud, and L. Najman, "Hierarchical segmentation using tree-based shape spaces," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, num. 3, pp. 457-469, 2017. [PDF]

[Backup slide] Apps based on the ToS

Markers

Color ToS Computation

Object picking from very few scribbles.
E. Carlinet and T. Géraud, "MToS: A tree of shapes for multivariate images," IEEE Transactions on Image Processing, vol. 24, num. 12, pp. 5330-5342, 2015. [PDF]

[Backup slide] Cubical complex

The $n \mathrm{D}$ space of cubical complexes:

$$
\begin{array}{ll}
H_{0}^{1}=\{\{a\} ; a \in \mathbb{Z}\} & H_{1}^{1}=\{\{a, a+1\} ; a \in \mathbb{Z}\} \\
\mathbb{H}^{1}=H_{0}^{1} \cup H_{1}^{1} & \mathbb{H}^{n}=\times_{n} H^{1}
\end{array}
$$

$h \in \mathbb{H}^{n}: \times$ product of d elements of H_{1}^{1} and $n-d$ elements of H_{0}^{1}

- we have $h \subset \mathbb{Z}^{n}$
- h is a d-face
- d is the dimension of h

Three faces of \mathbb{H}^{2} :

$$
\begin{array}{lll}
a=\{0\} \times\{1\} & 0 \text {-face } & \text { closed } \\
b=\{0,1\} \times\{0,1\} & 2 \text {-face } & \text { open } \\
c=\{1\} \times\{0,1\} & 1 \text {-face } & \text { clopen }
\end{array}
$$

[backup slide] Cubical complex

With $h^{\uparrow}=\left\{h^{\prime} \in \mathbb{H}^{n} \mid h \subseteq h^{\prime}\right\}$ and $h^{\downarrow}=\left\{h^{\prime} \in \mathbb{H}^{n} \mid h^{\prime} \subseteq h\right\}$:

- ($\left.\mathbb{H}^{n}, \subseteq\right)$
is a poset,
- $\mathcal{U}=\left\{U \subseteq \mathbb{H}^{n} \mid \forall h \in U, h^{\uparrow} \subseteq U\right\}$
is a T0-Alexandroff topology on \mathbb{H}^{n}.

Topological operators:

[backup slide] Set-valued analysis

A set-valued map $U: X \rightarrow \mathcal{P}(Y)$ is characterized by its graph:

$$
\operatorname{Gra}(U)=\{(x, y) \in X \times Y \mid y \in U(x)\} .
$$

[backup slide] Set-valued analysis

Continuity:

- when $U(x)$ is compact, U is USC at x if
$\forall \varepsilon>0, \exists \eta>0$ such that $\forall x^{\prime} \in B_{X}(x, \eta), U\left(x^{\prime}\right) \subset B_{Y}(U(x), \varepsilon)$.
- U is USC iif $\forall x \in X, U$ is USC at x
- this is the "natural" extension of the continuity of a scalar function.

Inverse:
the core of $M \subset Y$ by U is $U^{\ominus}(M)=\{x \in X \mid U(x) \subset M\}$
A continuity characterization:
U is USC iff the core of any open subset is open.

We have a continuous-like definition of the MB distance and it can be computed efficiently thanks to the tree of shapes
$\rightsquigarrow \quad$ but we have to fix a digital topology issue and to re-express the distance on the tree...

[Backup slide] About digital topology

Digital topology implies:

- use of dual connectivities for object/background
- dual connectivities for lower/upper level sets \Rightarrow the ToS exists

[Backup slide] About digital topology

Digital topology implies:

- use of dual connectivities for object/background
- dual connectivities for lower/upper level sets \Rightarrow the ToS exists

Issues with two connectivities:

- it would be painful to consider paths [...]
- we would have some inconsistent results in distance computation [...]

[Backup slide] About digital topology

Digital topology implies:

- use of dual connectivities for object/background
- dual connectivities for lower/upper level sets \Rightarrow the ToS exists

Issues with two connectivities:

- it would be painful to consider paths [...]
- we would have some inconsistent results in distance computation [...]
let's see that...

[backup slide] The issue with Digital Topology

this saddle case in 2D is a symptom of a discrete topology issue with \widetilde{u}

level lines $\lambda=0.5$ level lines $\lambda=3.5$

[Backup slide] About digital topology

Digital topology implies:

- use of dual connectivities for object/background
- dual connectivities for lower/upper level sets \Rightarrow the ToS exists

Issues with two connectivities:

- it would be painful to consider paths [...]
- we would have some inconsistent results in distance computation [...]

[Backup slide] About digital topology

Digital topology implies:

- use of dual connectivities for object/background
- dual connectivities for lower/upper level sets \Rightarrow the ToS exists

Issues with two connectivities:

- it would be painful to consider paths [...]
- we would have some inconsistent results in distance computation [...]

An important class of images: digitally well-composed (DWC) images

- connectivities are equivalent for all components of level sets
- boundaries of level sets do not have pinches
- if an image is DWC \Rightarrow its ToS and the level lines are well defined
T. Géraud, E. Carlinet, S. Crozet, "Self-Duality and Discrete Topology: Links Between the Morphological Tree of Shapes and

Well-Composed Gray-Level Images," in: Proc. of ISMM, LNCS, vol. 9082, pp. 573-584, Springer, 2015. [PDF]

[backup slide] DWC images

nD blocks:

Antagonists in 3D:

[backup slide] DWC images

Critical configurations:

- A digital set $S \subset \mathbb{Z}^{n}$ is digitally well-composed (DWC) iff it does not contain any critical configuration
- A digital image $u: \mathbb{Z}^{n} \rightarrow Y$ is DWC iff its levels sets are DWC

[Backup slide] About digital topology

An image can be made DWC by subdivision + interpolation:

- using the median operator in 2D,
- using a non-local process in $n \mathrm{D}$.
N. Boutry, T. Géraud, and L. Najman, "How to make nD functions well-composed in a self-dual way," in: Proc. of ISMM, LNCS, vol. 9082, pp. 561-572, Springer, 2015. [PDF]

[Backup slide] About digital topology

An image can be made DWC by subdivision + interpolation:

- using the median operator in 2D,
- using a non-local process in nD.

[^1]
[Backup slide] About digital topology

An image can be made DWC by subdivision + interpolation:

- using the median operator in 2D,
- using a non-local process in nD.

$u_{\text {med }}$ is DWC \Rightarrow there is only one way to arrange level lines (thus shapes) into an inclusion tree :-)
N. Boutry, T. Géraud, and L. Najman, "How to make nD functions well-composed in a self-dual way," in: Proc. of ISMM, LNCS, vol. 9082, pp. 561-572, Springer, 2015. [PDF]

[Backup slide] Some well-composed representations

NAIVE definition of the Dahu distance:

$$
D_{u}\left(x, x^{\prime}\right)=\min _{\bar{u}<\widetilde{u}} d_{\bar{u}}^{\mathrm{MB}}\left(h_{x}, h_{x^{\prime}}\right)
$$

scalar image
$\left(u: \mathbb{Z}^{n} \rightarrow Y\right) \quad \xrightarrow{\text { step } 1} \quad\left(u_{\square}:\left(\frac{\mathbb{Z}}{2}\right)^{n} \rightarrow Y^{\prime}\right) \quad \xrightarrow{\text { step 2 }} \quad\left(\widetilde{u_{\square}}:\left(\frac{\mathbb{H}}{2}\right)^{n} \rightarrow \mathbb{I}_{Y^{\prime}}\right)$

NAIVE definition of the Dahu distance:

$$
D_{u}\left(x, x^{\prime}\right)=\min _{\bar{u}<\widetilde{u}} d_{\bar{u}}^{\mathrm{NB}}\left(h_{x}, h_{x^{\prime}}\right)
$$

scalar image
$\left(u: \mathbb{Z}^{n} \rightarrow Y\right) \xrightarrow{\text { step } 1} \quad\left(u_{\square}:\left(\frac{\mathbb{Z}}{2}\right)^{n} \rightarrow Y^{\prime}\right) \quad \xrightarrow{\text { step 2 }} \quad\left(\widetilde{u_{\square}}:\left(\frac{\mathbb{H}}{2}\right)^{n} \rightarrow \mathbb{I}_{Y^{\prime}}\right)$

NEW definition of the Dahu distance:

$$
D_{u}\left(x, x^{\prime}\right)=\min _{\bar{u}<\overline{u_{\square}}} d_{\bar{u}}^{\mathrm{MB}}\left(h_{x}, h_{x^{\prime}}\right)
$$

scalar image

$$
\left(u: \mathbb{Z}^{n} \rightarrow Y\right) \quad \xrightarrow{\text { step 1 }} \quad\left(u_{\square}:\left(\frac{\mathbb{Z}}{2}\right)^{n} \rightarrow Y^{\prime}\right) \quad \xrightarrow{\text { step 2 }} \quad\left(\widetilde{u_{\square}}:\left(\frac{\mathbb{H}}{2}\right)^{n} \rightarrow \mathbb{I}_{Y^{\prime}}\right)
$$

interval-valued

NEW definition of the Dahu distance:

$$
D_{u}\left(x, x^{\prime}\right)=\min _{\bar{u} \leqslant \widetilde{u_{\square}}} d_{\bar{u}}^{\mathrm{MB}}\left(h_{x}, h_{x^{\prime}}\right)
$$

actually, the interpolation does not introduce a bias in the distance values; it just makes their definition and computation sound and consistent :-)

[Backup slide] This new combinatorial layer =a requirement

$$
D_{u}\left(x, x^{\prime}\right)=\min _{\bar{u}<\tilde{u}} d_{\bar{u}}^{\mathrm{MB}}\left(h_{x}, h_{x^{\prime}}\right)
$$

We have:
$D_{u}\left(x_{1}, x_{1}^{\prime}\right)=d_{\bar{u}_{1}}^{\mathrm{MB}}\left(h_{x_{1}}, h_{x_{1}^{\prime}}\right)=0$ and $D_{u}\left(x_{2}, x_{2}^{\prime}\right)=d_{\bar{u}_{2}}^{\mathrm{MB}}\left(h_{x_{2}}, h_{x_{2}}\right)=0$ but:

$$
\nexists \bar{u}<\widetilde{u}, \quad d_{\bar{u}}^{\mathrm{MB}}\left(h_{x_{1}}, h_{x_{1}^{\prime}}\right)=d_{\bar{u}}^{\mathrm{MB}}\left(h_{x_{2}}, h_{x_{2}^{\prime}}\right)=0 .
$$

so we do not have a unique $\bar{u}<\widetilde{u}$ that "works" for all different (x, x^{\prime})

[^0]: T. Géraud, E. Carlinet, S. Crozet, and L. Najman, "A quasi-linear algorithm to compute the tree of shapes of $n-\mathrm{D}$ images," in: Proc. of ISMM, LNCS, vol. 7883, pp. 98-110, Springer, 2013. [PDF]
 L. Najman and T. Géraud, "Discrete set-valued continuity and interpolation," in: Proc. of ISMM, LNCS, vol. 7883, pp. 37-48, Springer, 2013. [PDF]

[^1]: N. Boutry, T. Géraud, and L. Najman, "How to make nD functions well-composed in a self-dual way," in: Proc. of ISMM, LNCS, vol. 9082, pp. 561-572, Springer, 2015. [PDF]

