
Un algorithme de complexité linéaire pour le
calcul de l’arbre des formes

E. Carlinet, S. Crozet, T. Géraud
firstname.lastname@lrde.epita.fr

EPITA Research & Development Laboratory (LRDE)

2018/06/27 — RFIAP — Marne-la-Vallée, France

1 / 27

Forewords

2 / 27

What is the Tree of Shapes (def 1)?

◮ Definition 1: The tree of inclusion of the image level lines

3 / 27

What is the Tree of Shapes (def 1)?

◮ Definition 1: The tree of inclusion of the image level lines

The organization of the level lines is:

◮ invariant by a global contrast change (increasing function)
◮ invariant by gray-level inversion
◮ robust to local changes of illumination

3 / 27

Applications

From general simple filters. . .

◮ Grain filter (= tree pruning)

16

6

3 2

1 8

7

4 1 1
λ < 4

16

6

3 2

1 8

7

4 1 1

Tree pruning

This is a connected operator: no contours are shifted
(some contours are removed, based on the component size).

4 / 27

Applications

From general simple filters, or general advanced filters. . .

◮ Shapings (= filetring in the space of shapes)

Image u

Tree
T

Tree
T T

Image ũ

Tree
T ′

Tree
T T

′

Tree

construction

Tree

construction

Image

restitution

Tree

restitution

Tree

filtering

Tree

pruning

Shape space

10

1

6 3

4 7

2

5 9 8

T

10

6

3

1

9

8

7

5

2

4

T T

Xu, Géraud, and Najman. Connected filtering on

tree-based shape-spaces. PAMI 2016

5 / 27

Applications

From general simple filters, or general advanced filters, to
app-specific methods. . .

◮ Interactive segmentation

MToS
Computation

Markers
(User Input)

Markers on
the tree

Tree Node
Classification

Image
Classification

Carlinet and Géraud. Morphological object picking based on the color ToS. IPTA 2015 6 / 27

Applications

From general simple filters, or general advanced filters, to
app-specific methods. . .

◮ Interactive segmentation

MToS
Computation

Markers
(User Input)

Markers on
the tree

Tree Node
Classification

Image
Classification

Carlinet and Géraud. Morphological object picking based on the color ToS. IPTA 2015 7 / 27

Applications

From general simple filters, or general advanced filters, to app-specific

methods, passing by general-purpose CV methods

◮ Object detection / Image simplification

Xu, Géraud, and Najman. Context-based energy estimator: Application to object

segmentation on the ToS. ICIP 2012

8 / 27

Applications

From general simple filters, or general advanced filters, to app-specific

methods, passing by general-purpose CV methods

◮ Hierarchy of Segmentations

Xu, Carlinet, Géraud, and Najman. Hierarchical segmentation using tree-based shape

spaces. PAMI 2017

9 / 27

What is the Tree of Shapes (def 2)?

◮ Definition 2:
The tree of inclusion T of the hole-filled connected components

10 / 27

What is the Tree of Shapes (def 2)?

◮ Definition 2:
The tree of inclusion T of the hole-filled connected components

◮ Lower level sets and min-tree

[u < λ] = {x ∈ X | u(x) < λ}

T<(u) = {Γ ∈ CC([u < λ])}

A

B

D

E

C

F

(a) u

D

E
F

B C

A

(b) [u < λ]

< 0

< 1

< 2 Ω

B, D, E

D E

C, F

F

(c) T<(u)

Upper level sets and max-tree defined dually.

10 / 27

What is the Tree of Shapes (def 2 cont.)?

◮ Definition 2:
The tree of inclusion T of the hole-filled connected
components from min and max-trees:

T = Sat(T<(u)) ∪ Sat(T>(u))

O

A
B

D

E

C

F

≤ 3

≤ 2

≤ 1

≤ 0

Ω

CDE

A

B

F

(a) Min-Tree

≥ 3

≥ 2

≥ 1

≥ 0B

AF

O

C D E

(b) Max-Tree

Ω
≥ 0

< 4

A < 2

B < 1

D
≥ 2

E
≥ 2

C ≥ 2

F
< 2

(c) ToS
11 / 27

Computing the ToS

12 / 27

How to

Actually, few algorithms. . .

1. The FLLT: Monasse & Guichard, Fast Computation of a Contrast Invariant

Image Representation. TIP 2000.

2. The FLST: Caselles & Monasse, Geometric Description of Images as

Topographic Maps. LNCS 1984, 2009.

3. Song, A Topdown Algorithm for Computation of Level Lines. TIP 2007.

4. Géraud et al, A Quasi-Linear Algorithm to Compute the Tree of Shapes of nD

Images. ISMM 2013.

13 / 27

How to

Actually, few algorithms. . .

1. The FLLT: Monasse & Guichard, Fast Computation of a Contrast Invariant

Image Representation. TIP 2000.

2. The FLST: Caselles & Monasse, Geometric Description of Images as

Topographic Maps. LNCS 1984, 2009.

3. Song, A Topdown Algorithm for Computation of Level Lines. TIP 2007.

4. Géraud et al, A Quasi-Linear Algorithm to Compute the Tree of Shapes of nD

Images. ISMM 2013.

. . . but many issues:

◮ (1,2,3) worst time complexity is O(N2)

◮ (1,2,3) are hard to implement

◮ (2,3) are limited to 2D images
and (1) might be untractable in 3D. . .

◮ (4) is quasi-linear but has a high constant multiplier

13 / 27

The idea

◮ There is much more literature about min/maxtrees

◮ Thus, more research about efficient algorithms:

◮ Moschini et al. A hybrid shared-memory parallel max-tree algorithm

for extreme dynamic-range images. PAMI 2018.

◮ Götz et al. Parallel computation of component trees on distributed

memory machines. TPDS 2018.

14 / 27

The idea

◮ There is much more literature about min/maxtrees

◮ Thus, more research about efficient algorithms:

◮ Moschini et al. A hybrid shared-memory parallel max-tree algorithm

for extreme dynamic-range images. PAMI 2018.

◮ Götz et al. Parallel computation of component trees on distributed

memory machines. TPDS 2018.

Idea

◮ Turn the ToS computation into a max-tree computation

14 / 27

A new ToS algorithm

15 / 27

ToS algorithm

A two steps algorithm:

1. Turn the image into a depth map

2. Compute the max-tree of the depth map

Algorithm properties

◮ O(n) for low-quantized data and non-degenerated cases

◮ Worst cases:
◮ quasi-linear for low quantized data

◮ O(n log n) for high-quantized data

16 / 27

Step #2: max-tree computation

ToS() = maxtree()

17 / 27

Step #2: max-tree computation

ToS() = maxtree()

Explanations

255
O

80
A 0

B

150
D

150
E

150
C

80
F

u

O
0

A
1

B
4

D
5

E
5

C
2

F
3

T

0

1
4

5

5

2
3

ũ

ToS

Maxtree

Reconstruction

Q: how to get ũ without T ?

17 / 27

Step #1: turning the image into a depth map

Slight modification of a step from Géraud et al., ISMM 2013:

◮ Sort the pixels in the descending tree order

sorting the pixels means progress continuously

both in image space1 and in value space2

(starting from the image boundary, i.e., the root node)

1through a spatially consistent growing
2jumping from a gray level to the next one (either upper or lower)

18 / 27

Step #1: turning the image into a depth map

O

A
B

D

E

C
F

Current

λ ∂O

19 / 27

Step #1: turning the image into a depth map

O

A
B

D

E

C
F

0

Current

λ ∂A

19 / 27

Step #1: turning the image into a depth map

O

A
B

D

E

C
F

0

1

Current

λ ∂B

∂C

19 / 27

Step #1: turning the image into a depth map

O

A
B

D

E

C
F

0

1
2

Current

λ ∂C ∂D ∂E

19 / 27

Step #1: turning the image into a depth map

O

A
B

D

E

C
F

0

1
2

3

3

3

Current

λ ∂F

19 / 27

Step #1: turning the image into a depth map

O

A
B

D

E

C
F

0

1
2

3

3

3
4

Current

19 / 27

Problem(s) & solution(s)

Problem #1

A

A'
B C A, A'

B C

1 1 1 1 1 1

1 1 1 1 1 1

1

1

1

1

1

1

1 1

0

0

0 0

0 3 3

3

33

1

0
1

2

9

0
1, 2, 3...

We need to pass between pixels and with intermediate values

20 / 27

Problem(s) & solution(s)

Problem #1

A

A'
B C A, A'

B C

1 1 1 1 1 1

1 1 1 1 1 1

1

1

1

1

1

1

1 1

0

0

0 0

0 3 3

3

33

1

0
1

2

9

0
1, 2, 3...

We need to pass between pixels and with intermediate values

Solution #1 (not presented in this talk)

Interval-valued set on the Khalimsky grid (see Géraud et al., ISMM 2013)

⇒ Problem #2

It requires to double twice the size of the image: x16 in 2D, x64 in 3D

20 / 27

Problem(s) & solution(s)

Problem #1

A

A'
B C A, A'

B C

1 1 1 1 1 1

1 1 1 1 1 1

1

1

1

1

1

1

1 1

0

0

0 0

0 3 3

3

33

1

0
1

2

9

0
1, 2, 3...

We need to pass between pixels and with intermediate values

Solution #1 (not presented in this talk)

Interval-valued set on the Khalimsky grid (see Géraud et al., ISMM 2013)

⇒ Problem #2

It requires to double twice the size of the image: x16 in 2D, x64 in 3D

Solution to the problem #2 of the pb #1’s soluce (in the paper)

A way to reduce memory space usage: only x4 in 2D, x8 in 3D
20 / 27

Results

21 / 27

Performances

Protocol

◮ Competitors:
◮ Song, 2007

◮ Géraud et al., 2013

◮ FLST: Caselles & Monasse, 2009

◮ 20-MPix natural images (cropped from 1M to 16M)

◮ Intel Core i7 7500U, 2.7Ghz, 8Gb of RAM

22 / 27

Performances

1 2 4 8 16
Size (MPix)

0.5

1.0

1.5

2.0

2.5

3.0

M
Pi

x/
s

FLST [11]
Song [31]
Géraud et al. [20]
Our's

◮ Most algorithms are (quite) linear in practice
(O(n2) worst case not reached)

23 / 27

Performances

1 2 4 8 16
Size (MPix)

0.5

1.0

1.5

2.0

2.5

3.0

M
Pi

x/
s

FLST [11]
Song [31]
Géraud et al. [20]
Our's

◮ Our algorithm is:
◮ 4X faster than Géraud et al.
◮ 2.5X faster than the FLST
◮ more stable than Song’s

24 / 27

Conclusion

What we have proposed:

◮ an idea: turning the ToS into a MaxTree computation
◮ an optimization (not presented here)

Why?

To use any blasting maxtree algorithm you need, e.g.

◮ for distributed sytems
◮ for parallel shared-memory systems
◮ for embedded systems (i.e. low memory constraints)

25 / 27

Conclusion

What we have proposed:

◮ an idea: turning the ToS into a MaxTree computation
◮ an optimization (not presented here)

Why?

To use any blasting maxtree algorithm you need, e.g.

◮ for distributed sytems
◮ for parallel shared-memory systems
◮ for embedded systems (i.e. low memory constraints)

What’s next?

◮ Improving the step 1 (in terms of efficiency/concurrency. . .)
◮ Optimization generalized to n-D (described only in 2D for now)

25 / 27

Reproductible Research

◮ Implemented with our library

https://gitlab.lrde.epita.fr/olena/pylene

◮ Source code available

https://gitlab.lrde.epita.fr/olena/pylene-apps

26 / 27

https://gitlab.lrde.epita.fr/olena/pylene
https://gitlab.lrde.epita.fr/olena/pylene-apps

Thanks for your attention. Any questions?

27 / 27

	Forewords
	Computing the ToS
	A new ToS algorithm
	Results

