An equivalence relation between morphological dynamics and persistent homology in 1*D*

Nicolas Boutry^{1,2} Thierry Géraud¹ Laurent Najman²

→ nicolas.boutry@lrde.epita.fr

¹ EPITA Research and Development Laboratory (LRDE), France

² Université Paris-Est, LIGM, Équipe A3SI, ESIEE, France

ISMM 2019

Outline

Outline

N. Boutry, T. Géraud, L. Najman (LRDE/LIGM)

An equivalence between PH and MM in 1D

< 🗗 > <

э.

Motivation

Outline

Pairing by dynamics implies pairing by persistence

airing by persistence implies pairing by dynamics

N. Boutry, T. Géraud, L. Najman (LRDE/LIGM)

ъ

Dynamics vs. persistence

Domains:

- Dynamics ∈ Mathematical Morphology
- Topological persistence \in Persistent Homology.

Practical uses:

- dynamics → markers → watersheds → segmentation → image analysis,
- persistence \rightarrow pairings \rightarrow cancelations \rightarrow simplification \rightarrow image visualisation

Differences:

- dynamics → correspond to regional minima,
- persistence \sim is related to gradient vector fields (Morse-Smale complexes).

Both encode topological information of functions.

Motivation

An example

→ same pairings but different definitions!

э

Outline

ъ

Morse functions

Morse functions (general definition):

- $f \in C^2(\mathcal{D})$ and the Hessian matrix is not degenerated at the critical points,
- is does not have any plateau,
- for pairings, we need critical values to be unique.

Dynamics I

- $f : \mathbb{R} \to \mathbb{R}$ continuous, and x_{\min} a local minimum of f,
- γ a path following the graph of f from $\gamma(0) := x_{\min}$ to $\gamma(1)$ s.t. $f(\gamma(1)) < f(x_{\min})$,

$$dyn(x_{\min}) := \min_{\forall \gamma} \max_{s \in [0,1]} f(\gamma(s)) - f(x_{\min}), \quad \text{[Grimaud (1992)]}$$

Equivalently, $dyn(x_{min}) = f(x_{max}) - f(x_{min})$ with x_{max} the local max of *f* corresponding to the minimal effort.

Dynamics II

An interesting relation in MM:

Topological persistence I

Pairing by persistence

- $f : \mathbb{R} \to \mathbb{R}$ a Morse function,
- x_{\max} a local maximum of f,
- $x_{\max}^{-}, x_{\max}^{+}$ s.t. $[x_{\max}^{-}, x_{\max}^{+}] = CC([f \le f(x_{\max})], x_{\max}),$
- $CC_1 := [x_{\max}^-, x_{\max}]$ and $CC_2 := [x_{\max}, x_{\max}^+]$,

•
$$\operatorname{rep}_i := \operatorname{arg\,min}_{x \in CC_i} f(x), \ \forall i \in \{1, 2\},$$

• $x_{\min} := \arg \max_{x \in \{rep_1, rep_2\}} f(x)$,

Then, x_{max} is paired with x_{min} by persistence.

$$\Rightarrow$$
 Topological persistence := $f(x_{\max}) - f(x_{\min})$.

Topological persistence II

Example of topological simplification in 1D:

We remove critical points but keep the main topological information.

Topological persistence III

Procedure: we remove pairs of points by increasing persistence.

Nested relationship of intervals (pairing by persistence) \Rightarrow hierarchy of simplifications.

Outline

N. Boutry, T. Géraud, L. Najman (LRDE/LIGM)

ъ

Hypothesis

- $f : \mathbb{R} \to \mathbb{R}$ a Morse function,
- x_{min} a local minimum of f,
- x_{min} paired with x_{max} by dynamics,
- $X_{\max} > X_{\min}$,
- $[x_{\max}^-, x_{\max}^+] = CC([f \leq f(x_{\max})], x_{\max}).$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Property (P1)

$$x_{\min} = \arg\min_{x \in [x_{\max}^-, x_{\max}]} f(x)$$

Property (P2)

Under some constraints,
$$x'_{\min} := \arg \min_{x \in [x_{\max}, x^+_{\max}]} f(x)$$
 satisfies $f(x'_{\min}) < f(x_{\min})$.

Theorem

 x_{\max} is paired with x_{\min} by persistence.

N. Boutry, T. Géraud, L. Najman (LRDE/LIGM)

Property (P1)

$$x_{\min} = \arg\min_{x \in [x_{\max}^-, x_{\max}]} f(x)$$

Intuition: if there exists $x^* \in [x_{\max}^-, x_{\max}]$ s.t. $f(x^*)$ is lower than $f(x_{\min})$, $dyn(x_{\min}) < f(x_{\max}) - f(x_{\min}) \rightsquigarrow$ contradiction.

Property (P2)

When we have:

- $[x_{\max}^{-}, x_{\max}^{+}] = CC([f \le f(x_{\max}), x_{\max}]),$
- x⁺_{max} is finite,

Then $x'_{\min} := \arg \min_{x \in [x_{\max}, x^+_{\max}]} f(x)$ satisfies $f(x'_{\min}) < f(x_{\min})$.

Intuition: if we increase $f(x'_{\min})$ enough, $dyn(x_{\min})$ increases too \rightarrow contradiction.

N. Boutry, T. Géraud, L. Najman (LRDE/LIGM)

First main result of this paper:

Theorem

When f is a 1D Morse function and x_{min} and x_{max} are paired by dynamics, then x_{max} and x_{min} are paired by persistence too.

We have proved that pairing by dynamics implies pairing by persistence. Let us prove the converse.

< 6 >

Outline

э

Pairing by persistence implies pairing by dynamics I

Hypothesis

- $f : \mathbb{R} \to \mathbb{R}$ a Morse function with x_{max} a local maximum of f,
- x_{max} and x_{min} are paired by persistence with $x_{\text{min}} < x_{\text{max}}$.
- $[x_{\max}^{-}, x_{\max}^{+}] = CC([f \le f(x_{\max})], x_{\max}),$
- $x'_{\min} := \operatorname{arg\,min}_{x \in [x_{\max}, x^+_{\max}]} f(x)$

Property

- 1 $\exists \gamma$ from x_{\min} to x'_{\min} following the graph of f corresponding to an "effort" of $f(x_{\max}) f(x_{\min})$,
- 2 then dyn $(x_{\min}) \leq f(x_{\max}) f(x_{\min})$,

Pairing by persistence implies pairing by dynamics II

Pairing by persistence implies pairing by dynamics III

Second main result of this paper:

Theorem

When f is a 1D Morse function and x_{min} and x_{max} are paired by persistence, then x_{max} and x_{\min} are paired by dynamics too.

Conclusion

Outline

Pairing by persistence implies pairing by dynamics

N. Boutry, T. Géraud, L. Najman (LRDE/LIGM)

- on Morse functions, pairings by persistence and by dynamics are equivalent,
- persistence and dynamics values are then equal,
- another relation between MM and MT:

 $WS(f) \cup WS(-f) = MS(f),$

• finally, we reinforced the relation between MM and MT!

- 2D extension of dynamics ⇔ persistence,
- extension to discrete Morse functions (Forman),
- investigate if algorithms of MM can be used in PH and conversely,

Conclusion

Questions

Is this a Morse function?

N. Boutry, T. Géraud, L. Najman (LRDE/LIGM)

< < >> < <</>