A New Matching Algorithm between Trees of Shapes and its Application to Brain Tumor Segmentation

Nicolas Daddy Boutry Thierry Géraud

→ nicolas.boutry@lrde.epita.fr

EPITA Research and Development Laboratory (LRDE), France

DGMM 2021

- The *tree of shapes* is a hierarchical representation of connected components (shapes) in an image:
 - this representation is simple and versatile,
 - it features nice invariants,
 - and there are a lot of possible applications.
- We propose a distance on trees,
 - taking into account shapes,
 - with a method able to spot differences between images.
 - Disclaimer: this is clearly a (promising?) preliminary work...

Image = landscape

a topographic map with level lines...

э.

When thresholding *f* at level λ , we get:

- an upper level set: $[f \ge \lambda] = \{x \in \Omega; f(x) \ge \lambda\}$
- a lower level set: $[f < \lambda] = \{x \in \Omega; f(x) < \lambda\}$

Considering the connected components (CC) of threshold sets:

• max-tree:
$$\mathcal{T}_{max}(f) = \{ \Gamma \in CC([f \ge \lambda]) \}_{\lambda}$$

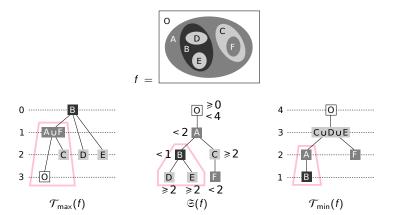
• min-tree: $\mathcal{T}_{\min}(f) = \{ \Gamma \in CC([f < \lambda]) \}_{\lambda}$

We have the duality property: $\mathcal{T}_{\min}(-f) = \mathcal{T}_{\max}(f)$.

Tree of Shapes

The morphological tree of shapes (ToS)

three ways to represent a landscape (so not any hierarchies) with component inclusion

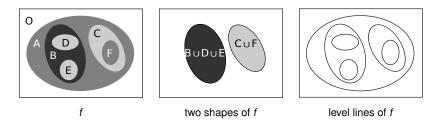


a connected component corresponds to a node = a tree rooted at a node

The morphological tree of shapes (ToS)

Using the cavity-fill-in operator (Sat):

- tree of shapes: $\mathfrak{S}(f) = {\operatorname{Sat}(\Gamma); \Gamma \in \mathcal{T}_{\max}(f) \cup \mathcal{T}_{\min}(f)}$
- it is also the inclusion tree of level lines

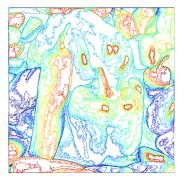


We have the self-duality property: $\mathfrak{S}(-f) = \mathfrak{S}(f)$

Tree of Shapes

The morphological tree of shapes (ToS)

f



Some level lines from $\mathfrak{S}(f)$

Tree of Shapes

The morphological tree of shapes (ToS)

With *g* strictly increasing (i.e., a contrast change):

$$\mathcal{T}_{\max}(g \circ f) = \mathcal{T}_{\max}(f)$$
 and $\mathcal{T}_{\min}(g \circ f) = \mathcal{T}_{\min}(f)$

With *h* strictly monotonic (that includes contrast inversion):

$$\mathfrak{S}(h \circ f) = \mathfrak{S}(f)$$

With ℓ some local illumination changes:

$$\mathfrak{S}(\ell \circ f) = \mathfrak{S}(f)$$



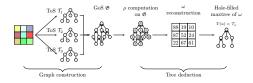
these images have the same tree of shapes / set of level lines

The morphological tree of shapes (ToS)

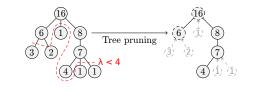
We also have a "tree of shapes" for multi-variate data (so color images) verifying:

$$\mathfrak{S}(\boldsymbol{\ell} \circ \boldsymbol{f}) = \mathfrak{S}(\boldsymbol{f})$$

where $\boldsymbol{\ell} = (\ell_1, .., \ell_N)$ with every ℓ_i being strictly monotonic.



App: grain filtering



attribute ${\mathcal R}$ is the area

э

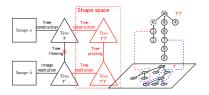
App: grain filtering

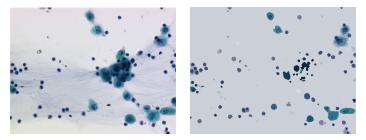
attribute \mathcal{A} is (height, width)

in some cases, taking the residue $|\phi(f) - f|$ can be interesting...

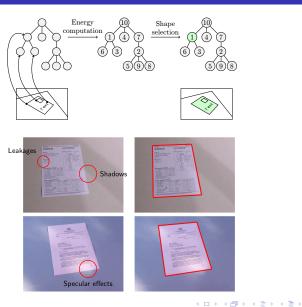
App: shaping

When $\ensuremath{\mathcal{R}}$ is not increasing, it is no more a pruning:



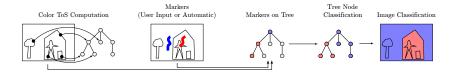


App: Object detection



N. Boutry and T. Géraud (EPITA-LRDE)

App: Object picking

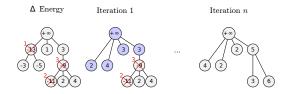


node classification is based on a dummy color distance

э

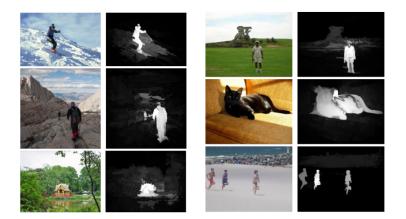
Applications of the Tree of Shapes

App: Simplification / segmentation



with a simple greedy energy minimization process

App: visual saliency



Some references

F. Cao, J.-L. Lisani, J.-M. Morel, P. Musé and F. Sur, "A Theory of Shape Identification," Lecture Notes in Mathematics, vol. 1948, Springer, 2008.

E. Carlinet and TG, "MToS: A tree of shapes for multivariate images," IEEE Transactions on Image Processing, vol. 24, num. 12, pp. 5330–5342, 2015. [PDF]

Y. Xu, E. Carlinet, TG, and L. Najman, "Efficient Computation of Attributes and Saliency Maps on Tree-Based Image Representations," *in: Proc. of ISMM*, pp. 693–704, LNCS 9082? Springer, 2015. [PDF]

Y. Xu, TG, and L. Najman, "Connected filtering on tree-based shape-spaces," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, num. 6, pp. 1126–1140, 2016. [PDF]

Y. Xu, E. Carlinet, TG, and L. Najman, "Hierarchical segmentation using tree-based shape spaces," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, num. 3, pp. 457–469, 2017. [PDF]

B. Esteban and G. Tochon, and TG, "Estimating the Noise Level Function with the Tree of Shapes and Non-Parametric Statistics," in Proc. of CAIP, pp. 377–388, LNCS 11679, Springer, 2019. [PDF]

E. Carlinet and TG, "Introducing Multivariate Connected Openings and Closings," in Proc. of ISMM, pp. 215–227, LNCS 11564, Springer, 2019. [PDF]

L.D. Huỳnh, and N. Boutry, and TG, "Connected Filters on Generalized Shape-Spaces," Pattern Recognition Letters, vol. 128, pp. 348–354, 2019. [PDF]

M. Ôn Vũ Ngọc, N. Boutry, J. Fabrizio, and TG, "A New Minimum Barrier Distance for Multivariate Images with Applications to Salient Object Detection, Shortest Path Finding, and Segmentation," *Computer Vision and Image Understanding*, vol. 197–198, num. 102993, 2020. [PDF]

< ロ > < 同 > < 回 > < 回 > < 回 > <

So what?

- Temporary take-away message: the tree of shapes can rock!
- Can we spot the differences between a couple of images?

e.g., find the tumor in the left image thanks to the right image (it is not the same brain!)

• Our proposition:

- two different images → two different morphological trees, thanks to its invariants, the tree of shapes is a good candidate!
- we can rely on a distance between trees,
- and on a related method that gives the diff...

State-of-the-Art

We have several distances between graphs:

- the tree-edit distance, graph distance, co-spectral distances,
- Reeb graph distances, merge trees distance...

and graph matching methods:

- exact ones: graph isomorphisms, subgraph isomorphisms, mono/homo-morphisms, \rightsquigarrow NP-complete,
- and inexact ones: based on tree search, continuous optimization, spectral methods,
 minimization of a cost associated to the matching.

Yet, these approaches are not "differential":

- dedicated to locate patterns,
- not really for patterns that are unknown.

• Considering that a tree *T* is a *set* of shapes *s*,

it means that we just ignore the tree structure for the moment!

- Given a distance d between shapes...
 - \rightarrow "distance" between a shape s_1 and a tree T_2 : $d(s_1, T_2) = \min_{s_2 \in T_2} d(s_1, s_2)$,
 - \rightsquigarrow "distance" of a tree T_1 from another tree T_2 : $d_T(T_1, T_2) = \max_{s_1 \in T_1} d(s_1, T_2)$, it is not symmetrical—we do **not** have $d_T(T_2, T_1) = d_T(T_1, T_2)$
- then we have the Hausdorff distance D_T between two trees T_1 and T_2 :

$$D_{\mathcal{T}}(T_1, T_2) = \max(d_{\mathcal{T}}(T_1, T_2), d_{\mathcal{T}}(T_2, T_1)).$$

So what? Our main contribution!

Proposition #1

Two trees T_1 and T_2 match if their Hausdorff distance is below a threshold:

 $D_{\mathcal{T}}\big(\,T_1,\,T_2\big) \;\leq\; \lambda.$

Proposition #2

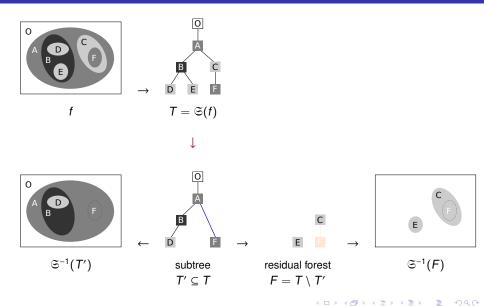
- From two images, we compute their tree of shapes, resp. T₁ and T₂, (there's no away that T₁ and T₂ match...)
- we find two sub-trees $T'_1 \subseteq T_1$ and $T'_2 \subseteq T_2$ that match,

• the differences between images lie in the residual forests $T_1 \setminus T'_1$ and $T_2 \setminus T'_2$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Contribution

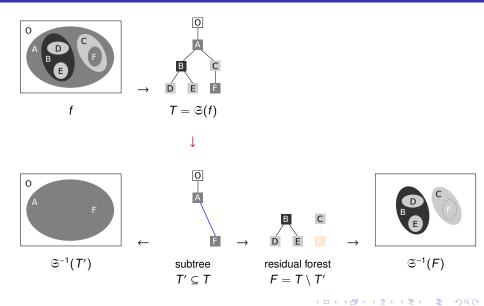
With a tree T: subtrees and residual forests



DGMM 2021 22

Contribution

With a tree T: subtrees and residual forests (another example)



With two trees T_1 and T_2

We want to find two subtrees $T'_1 \subseteq T_1$ and $T'_2 \subseteq T_2$ satisfying $D_{\mathcal{T}}(T'_1, T'_2) \leq \lambda \dots$

Nice result

$$T'_{1|2} = \{ s_1 \in T_1 ; d(s_1, T_2) \le \lambda \}$$

and $T'_{2|1} = \{ s_2 \in T_2 ; d(s_2, T_1) \le \lambda \},$

are such that

$$D_{\mathcal{T}}(T'_{1|2'},T'_{2|1}) \leq \lambda.$$

We have:

 $T'_{1|2}$ is the "part" of T_1 that looks like T_2 (actually its "sub-part" $T'_{2|1}$).

向 ト イヨ ト イヨト

With two trees T_1 and T_2

We want to find two subtrees $T'_1 \subseteq T_1$ and $T'_2 \subseteq T_2$ satisfying $D_{\mathcal{T}}(T'_1, T'_2) \leq \lambda \dots$

Nice result

$$T'_{1|2} = \{ s_1 \in T_1 ; d(s_1, T_2) \le \lambda \}$$

and $T'_{2|1} = \{ s_2 \in T_2 ; d(s_2, T_1) \le \lambda \},$

are such that

$$D_{\mathcal{T}}(T'_{1|2'},T'_{2|1}) \leq \lambda.$$

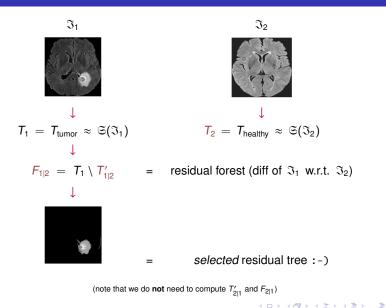
Let us now consider $F_{1|2} = T_1 \setminus T'_{1|2}$ the residual forest of T_1 relatively to T_2 .

We have:

 $F_{1|2}$ gathers the "parts" of T_1 that do **not** look like (any part of) T_2 .

Illustration

Illustration



DGMM 2021 25

Illustration

More details:

- images with tumors are from the MICCAI BraTS database,
- for each \Im_1 , an healthy image \Im_2 is selected in the OASIS-3 dataset with a simple correlation criterion
- we compute their tree of shapes after sub-quantization, then we apply a grain filter to get T_{tumor} and T_{healthy}

→ that drastically reduces the number of nodes!

• we use the Jaccard distance d_{μ} between two shapes:

$$d_{\mu}(s_1,s_2) = 1 - rac{s_1 \cap s_2}{s_1 \cup s_2},$$

- from the residual forest *F*_{1|2}, the residual tree is selected using some prior information
- a quantitative evaluation is given in the paper...

Conclusion and future works

Recap:

- we rely on the Hausdorff distance between morphological trees,
- we provide a differential approach for tree matching,
- we already have an application.
- Disclaimer: this is clearly a (promising?) preliminary work...

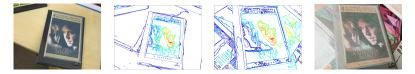
Conclusion and future works

In the future, we plan to:

• optimize the distance-based subtree computation,

(incremental computation, branch and bound...)

• replace the naive Jaccard distance to take benefits from ToS invariants,



- generalize the matching process:
 - with several candidates,
 - with information about sub-shapes,
- experiment with some other applications (e.g., detection of changes).

Thanks for your attention; any questions?

B → < B