SELF-DUALITY AND DISCRETE TOPOLOGY: Links between the morphological tree of shapes and well-composed gray-level images

Thierry Géraud; joint work with Edwin Carlinet and Sébastien Crozet

theo@lrde.epita.fr

EPITA Research and Development Laboratory (LRDE)

GT GéoDis, June 2013

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 1 / 50

THIS TALK IS ABOUT...

OBJECTIVE

a self-dual representation of gray-level images without topological issues

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 2 / 50

Э

SQA

OBJECTIVE

a self-dual representation of gray-level images without topological issues

MOTIVATION

- get very strong topological properties
- ensure a "pure" self-duality
- process gray-level images easily and without trouble

OBJECTIVE

a self-dual representation of gray-level images without topological issues

MOTIVATION

- get very strong topological properties
- ensure a "pure" self-duality
- process gray-level images easily and without trouble

KEYPOINT

- one connectedness relationship
- i.e., a unique topological structure

REMINDER

Let's start by reviewing some basic things about:

- digital topology
- self-duality
- mathematical morphology

JORDAN CURVE THEOREM

A simple closed curve divides the plane into two regions ("interior" and "exterior").

nac

イロト イロト イヨト イ

JORDAN CURVE THEOREM

A simple closed curve divides the plane into two regions ("interior" and "exterior").

in discrete topology, a "Jordan pair" of connectivities (c_{α}, c_{β}) are required: one for the interior, the other for the exterior

for instance: (c_4, c_8) in 2D, (c_6, c_{18}) or (c_6, c_{26}) in 3D, (c_{2n}, c_{3^n-1}) in *n*D.

Practially, given a set X:

- choose either c_{α} or c_{β} for the "object" X
- choose the other one for the "background", i.e., CX
- so there is no topological paradox

Practially, given a set X:

- choose either c_{α} or c_{β} for the "object" X
- choose the other one for the "background", i.e., CX
- so there is no topological paradox

in this talk:

- $X \subset \mathbb{Z}^n$
- so we follows the path of Bhattacharya, Eckart, Latecki, Rosenfeld, and Wang ...

DQA

Imagine that you process an image *u*:

$$\iota \xrightarrow{\text{processing}} \varphi(u)$$

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 6 / 50

Э

DQC

ヘロト ヘ週ト ヘヨト ヘヨト

Imagine that you apply the same processing to Cu:

Э

Dac

You may want a self-dual behavior:

Э

Dac

You may want a self-dual behavior:

that is, you process the same way the image contents whatever the contrast

(i.e., light objects over dark background versus dark objects over light background)

Э

You may want a self-dual behavior:

that is, you process the same way the image contents whatever the contrast

(i.e., light objects over dark background versus dark objects over light background)

sometimes:

- we cannot make an assumption about contrast
- we <u>do not want</u> to make such an assumption because "object" ≠ "subject" ~→

• • • • • • • • • • •

A VERY PARTICULAR WAY TO DEFINE MM

- a gray-scale image is considered as a landscape; gray values are elevations
- to process an image is to modify the landscape, i.e., its topography

• we transform the shape of the landscape

イロト イロト イヨト

A VERY PARTICULAR WAY TO DEFINE MM

- a gray-scale image is considered as a landscape; gray values are elevations
- to process an image is to modify the landscape, i.e., its topography

• we transform the shape of the landscape

A VERY PARTICULAR WAY TO DEFINE MM

- a gray-scale image is considered as a landscape; gray values are elevations
- to process an image is to modify the landscape, i.e., its topography
- we transform the shape of the landscape

A VERY PARTICULAR WAY TO DEFINE MM

- a gray-scale image is considered as a landscape; gray values are elevations
- to process an image is to modify the landscape, i.e., its topography
- we transform the shape of the landscape

A possible taxonomy of MM:

- with a structuring element or without s.e.
- on sets (binary images) or on functions (gray-level images)
- dual operators or self-dual operators
- connected operators or not

A VERY PARTICULAR WAY TO DEFINE MM

- a gray-scale image is considered as a landscape; gray values are elevations
- to process an image is to modify the landscape, i.e., its topography
- we transform the shape of the landscape

A possible taxonomy of MM:

- with a structuring element or without s.e.
- on sets (binary images) or on functions (gray-level images)
- dual operators or self-dual operators
- connected operators or not

The context of this work;

- the powerful subset of MM emphasized above
- this subset relies on component trees

Given a *n*D image $u : \mathbb{Z}^n \to \mathbb{Z}$, lower level sets: $[u < \lambda] = \{x \in X \mid u(x) < \lambda\}$ upper level sets: $[u \ge \lambda] = \{x \in X \mid u(x) \ge \lambda\}$

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 8 / 50

イロト イポト イヨト イヨト 二日

Dac

Given a *n*D image $u : \mathbb{Z}^n \to \mathbb{Z}$, lower level sets: $[u < \lambda] = \{x \in X \mid u(x) < \lambda\}$ upper level sets: $[u \ge \lambda] = \{x \in X \mid u(x) \ge \lambda\}$

a lower level set

и

a upper level set

ヘロト ヘアト ヘビト ヘビト

Sac

Given a *n*D image $u : \mathbb{Z}^n \to \mathbb{Z}$, lower level sets: $[u < \lambda] = \{x \in X \mid u(x) < \lambda\}$ upper level sets: $[u \ge \lambda] = \{x \in X \mid u(x) \ge \lambda\}$

a lower level set

и

a upper level set

イロト イポト イヨト イヨト 一日

→ we focus on the <u>connected component</u> of the lower and upper level sets

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 8 / 50

Given a *n*D image $u : \mathbb{Z}^n \to \mathbb{Z}$, lower level sets: $[u < \lambda] = \{x \in X \mid u(x) < \lambda\}$ upper level sets: $[u \ge \lambda] = \{x \in X \mid u(x) \ge \lambda\}$

A COUPLE OF DUAL TREES

DQA

イロト 不得 トイヨト イヨト 二日

Given a *n*D image $u : \mathbb{Z}^n \to \mathbb{Z}$, lower level sets: $[u < \lambda] = \{x \in X \mid u(x) < \lambda\}$ upper level sets: $[u \ge \lambda] = \{x \in X \mid u(x) \ge \lambda\}$

A COUPLE OF DUAL TREES

DQA

イロト 不得 トイヨト イヨト 二日

... AND A SELF-DUAL TREE

SHAPES

With the cavity-fill-in operator Sat:

lower shapes:
$$S_{<}(u) = \{ \operatorname{Sat}(\Gamma); \Gamma \in \mathcal{T}_{<}(u) \}$$

upper shapes: $S_{\geq}(u) = \{ \operatorname{Sat}(\Gamma); \Gamma \in \mathcal{T}_{\geq}(u) \}$

THIERRY GÉRAUD, LRDE

Э

DQC

ヘロト ヘ回ト ヘヨト ヘヨト

SHAPES

With the cavity-fill-in operator Sat:

lower shapes:
$$S_{<}(u) = \{ \operatorname{Sat}(\Gamma); \Gamma \in \mathcal{T}_{<}(u) \}$$

upper shapes: $S_{\geq}(u) = \{ \operatorname{Sat}(\Gamma); \Gamma \in \mathcal{T}_{\geq}(u) \}$

A SELF-DUAL TREE

$$\rightsquigarrow$$
 tree of shapes: $\mathfrak{S}(u) = \mathcal{S}_{\leq}(u) \cup \mathcal{S}_{\geq}(u)$

Э

Sac

SHAPES

With the cavity-fill-in operator Sat:

lower shapes:
$$S_{<}(u) = \{ \operatorname{Sat}(\Gamma); \Gamma \in \mathcal{T}_{<}(u) \}$$

upper shapes: $S_{\geq}(u) = \{ \operatorname{Sat}(\Gamma); \Gamma \in \mathcal{T}_{\geq}(u) \}$

A SELF-DUAL TREE

$$\rightsquigarrow$$
 tree of shapes: $\mathfrak{S}(u) = \mathcal{S}_{<}(u) \cup \mathcal{S}_{\geq}(u)$

PROPERTY = SELF-DUALITY

we "almost" have:
$$\mathfrak{S}(\mathfrak{C}u) = \mathfrak{S}(u)$$

—that contrats with the duality of the min- and max- trees: $T_{\geq}(c_u) = T_{<}(u)$ —

Dac

イロト 不得 とくほ とくほう

SHAPES

With the cavity-fill-in operator Sat:

lower shapes:
$$S_{<}(u) = \{ \operatorname{Sat}(\Gamma); \Gamma \in \mathcal{T}_{<}(u) \}$$

upper shapes: $S_{\geq}(u) = \{ \operatorname{Sat}(\Gamma); \Gamma \in \mathcal{T}_{\geq}(u) \}$

A SELF-DUAL TREE

$$\rightsquigarrow$$
 tree of shapes: $\mathfrak{S}(u) = \mathcal{S}_{<}(u) \cup \mathcal{S}_{\geq}(u)$

PROPERTY = SELF-DUALITY

we "almost" have: $\mathfrak{S}(\mathfrak{C}u) = \mathfrak{S}(u)$

—that contrats with the duality of the min- and max- trees: $T_{\geq}(Cu) = T_{\leq}(u)$

SCHEMATIC EXAMPLE

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 11 / 50

Э

990

SCHEMATIC EXAMPLE

ALT. DEFINITIONS OF SHAPES

the shapes are

- the cavities of upper and lower level sets
- the interior regions of level lines.

イロト イポト イヨト

Dac

A SELF-DUAL TOPOGRAPHIC TREE-BASED REPRESENTATION

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

Dac

A SELF-DUAL TOPOGRAPHIC TREE-BASED REPRESENTATION

excerpt

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 12 / 50

Jac.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

grain filter

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

3 GT GÉODIS, JUNE 2013 13/50

DQC

ヘロト ヘ週ト ヘヨト ヘヨト

object detection

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 13 / 50

Э

DQC

ヘロト ヘ週ト ヘヨト ヘヨト

input \rightsquigarrow contour saliency

extinction ~~ (hierarchical) segmentation

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 13 / 50

Э

DQC

ヘロト ヘ回ト ヘヨト ヘヨト

image simplification

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 13 / 50

Э

-

DQC

・ロト ・ 日 ・ ・ ヨ ・ ・
SOME APPLICATIONS

morphological shapings

ъ

Э

DQC

ヘロト ヘロト ヘヨト ヘ

SOME APPLICATIONS

local feature detection

SELF-DUALITY AND DISCRETE TOPOLOGY

< □ > < 個 > < 注 > < 注 > … 注

whatever a connectivity c (with -c denoting its "dual"), and a relation \mathcal{R}

from a set of components, we can have a set of shapes:

 $\mathcal{T}_{(\mathcal{R},c)} = \{ \Gamma \in \mathcal{CC}_c([u \,\mathcal{R} \,\lambda]) \}_{\lambda} \longrightarrow \mathcal{S}_{(\mathcal{R},c)}(u) = \{ \operatorname{Sat}_{-c}(\Gamma); \ \Gamma \in \mathcal{T}_{(\mathcal{R},c)}(u) \}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

whatever a connectivity c (with -c denoting its "dual"), and a relation \mathcal{R}

from a set of components, we can have a set of shapes:

$$\mathcal{T}_{(\mathcal{R},c)} = \{ \Gamma \in \mathcal{CC}_c([u \,\mathcal{R} \,\lambda]) \}_{\lambda} \longrightarrow \mathcal{S}_{(\mathcal{R},c)}(u) = \{ \operatorname{Sat}_{-c}(\Gamma); \ \Gamma \in \mathcal{T}_{(\mathcal{R},c)}(u) \}$$

and derive a "properly" defined tree of shapes:

$$\mathfrak{S}_{(\mathcal{R},c)}(u) = \mathcal{S}_{(\mathcal{R},c)}(u) \cup \mathcal{S}_{(\neg \mathcal{R},-c)}(u)$$

whatever a connectivity c (with -c denoting its "dual"), and a relation \mathcal{R}

from a set of components, we can have a set of shapes:

$$\mathcal{T}_{(\mathcal{R},c)} = \{ \Gamma \in \mathcal{CC}_c([u \,\mathcal{R} \,\lambda]) \}_{\lambda} \longrightarrow \mathcal{S}_{(\mathcal{R},c)}(u) = \{ \operatorname{Sat}_{-c}(\Gamma); \ \Gamma \in \mathcal{T}_{(\mathcal{R},c)}(u) \}$$

and derive a "properly" defined tree of shapes:

$$\mathfrak{S}_{(\mathcal{R},c)}(u) = \mathcal{S}_{(\mathcal{R},c)}(u) \cup \mathcal{S}_{(\neg \mathcal{R},-c)}(u)$$

yet, the tree of shapes is **not purely** self-dual:

$$\mathfrak{S}_{(\mathcal{R},c)}(\mathfrak{L} u) = \mathfrak{S}_{(\mathcal{R}^{-1},c)}(u) = \mathfrak{S}_{(\neg \mathcal{R}^{-1},-c)}(u)$$

whatever a connectivity c (with -c denoting its "dual"), and a relation \mathcal{R}

from a set of components, we can have a set of shapes:

$$\mathcal{T}_{(\mathcal{R},c)} = \{ \Gamma \in \mathcal{CC}_c([u \,\mathcal{R} \,\lambda]) \}_{\lambda} \longrightarrow \mathcal{S}_{(\mathcal{R},c)}(u) = \{ \operatorname{Sat}_{-c}(\Gamma); \ \Gamma \in \mathcal{T}_{(\mathcal{R},c)}(u) \}$$

and derive a "properly" defined tree of shapes:

$$\mathfrak{S}_{(\mathcal{R},c)}(u) = \mathcal{S}_{(\mathcal{R},c)}(u) \cup \mathcal{S}_{(\neg \mathcal{R},-c)}(u)$$

yet, the tree of shapes is **not purely** self-dual:

$$\mathfrak{S}_{(\mathcal{R},c)}(\mathfrak{L} u) = \mathfrak{S}_{(\mathcal{R}^{-1},c)}(u) = \mathfrak{S}_{(\neg \mathcal{R}^{-1},-c)}(u)$$

whatever a connectivity c (with -c denoting its "dual"), and a relation \mathcal{R}

from a set of components, we can have a set of shapes:

$$\mathcal{T}_{(\mathcal{R},c)} = \{ \Gamma \in \mathcal{CC}_c([u \,\mathcal{R} \,\lambda]) \}_{\lambda} \longrightarrow \mathcal{S}_{(\mathcal{R},c)}(u) = \{ \operatorname{Sat}_{-c}(\Gamma); \ \Gamma \in \mathcal{T}_{(\mathcal{R},c)}(u) \}$$

and derive a "properly" defined tree of shapes:

$$\mathfrak{S}_{(\mathcal{R},c)}(u) = \mathcal{S}_{(\mathcal{R},c)}(u) \cup \mathcal{S}_{(\neg \mathcal{R},-c)}(u)$$

yet, the tree of shapes is **not purely** self-dual:

$$\mathfrak{S}_{(\mathcal{R},c)}(\mathfrak{C} u) = \mathfrak{S}_{(\mathcal{R}^{-1},c)}(u) = \mathfrak{S}_{(\neg \mathcal{R}^{-1},-c)}(u)$$

For instance:

$$\mathfrak{S}_{(<, c_4)}(\mathfrak{C} u) = \mathfrak{S}_{(\leq, c_8)}(u)$$

We have an <u>arbitrary</u> choice between $\mathfrak{S}_{(<, c_{\alpha})}(u)$ and $\mathfrak{S}_{(>, c_{\alpha})}(u)$:

$$u = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \longrightarrow$$
 two possible trees: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

We have an <u>arbitrary</u> choice between $\mathfrak{S}_{(<, c_{\alpha})}(u)$ and $\mathfrak{S}_{(>, c_{\alpha})}(u)$:

$$u = \begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \longrightarrow \text{ two possible trees:} \begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \begin{array}{c} 1 & 0 \\ 0 & 1 \end{array}$$

When choosing $\mathfrak{S}_{(<,c_{\alpha})}(u)$, lower and upper shapes are resp. c_{α} and c_{β} :

DQC

If *u* is <u>continuous</u> (or discrete with some continuity property[†]):

the different types of shapes do not have the same topology!

for instance:

in $\mathfrak{S}_{(<, c_{\alpha})}(u)$, lower shapes are open sets v. upper shapes are closed sets.

[†] T. Géraud, E. Carlinet, S. Crozet, L. Najman. A quasi-linear algorithm to compute the tree of shapes of nD images. In Proc. of the 11th Intl. Symp. on Mathematical Morphology (ISMM), 2013.

L. Najman, T. Géraud. *Discrete set-valued continuity and interpolation*. In Proc. of the 11th Intl. Symp. on Mathematical Morphology (ISMM), 2013.

200

we want:

A PURELY SELF-DUAL TREE

 $\mathfrak{S}(\mathfrak{C}u) = \mathfrak{S}(u)$

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 17 / 50

590

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > < Ξ > = Ξ

we want:

A PURELY SELF-DUAL TREE

 $\mathfrak{S}(\mathfrak{C}u) = \mathfrak{S}(u)$

that starts with:

A FIRST REQUIREMENT

a single connectivity relation for both lower and upper shapes

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

3 GT GÉODIS, JUNE 2013 17/50

Dac

DUMMY EXAMPLES

with c_4 for both types of shapes (so Sat_{c_8}), we have those two shapes:

2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 18 / 50

3

Dac

ヘロト ヘ週ト ヘヨト ヘヨト

DUMMY EXAMPLES

with c_4 for both types of shapes (so Sat_{c_8}), we have those two shapes:

2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

with c_8 for both types of shapes (so Sat_{c_4}), we have those two shapes:

1	1	1	1	1	1
1	1	2	0	1	1
1	2	0	2	0	1
1	1	2	0	1	1
1	1	1	1	1	1

1	1	1	1	1	1
1	1	2	0	1	1
1	2	0	2	0	1
1	1	2	0	1	1
1	1	1	1	1	1

1	1	1	1	1	1
1	1	2	0	1	1
1	2	0	2	0	1
1	1	2	0	1	1
1	1	1	1	1	1

ヘロト ヘアト ヘビト ヘビト

3

SQA

DUMMY EXAMPLES

with c_4 for both types of shapes (so Sat_{c_8}), we have those two shapes:

2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

	2	2	2	2	2	2
	2	2	0	0	0	2
	2	0	1	2	0	2
Ī	2	2	0	0	2	2
	2	2	2	2	2	2

2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

with c_8 for both types of shapes (so Sat_{c_4}), we have those two shapes:

1	1	1	1	1	1		1	1	1	1	1	1	1	1	1
1	1	2	0	1	1		1	1	2	0	1	1	1	1	2
1	2	0	2	0	1		1	2	0	2	0	1	1	2	0
1	1	2	0	1	1		1	1	2	0	1	1	1	1	2
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

in both cases, we do **not** have: $S_1 \cap S_2 \neq \emptyset \Rightarrow (S_1 \subset S_2 \text{ or } S_2 \subset S_1)$

 \rightsquigarrow the set of shapes is **not** a tree / it is a lattice since $(\mathfrak{S}_c, \subset)$ is a poset

200

The SLIDE!

given any gray-level image u

• $\mathfrak{S}_c(u)$ is a lattice

• taking $c = c_{\alpha}$ or $c = c_{\beta}$ is equivalent when an image is *well-composed* (...)

• we can have an interpolation $\Im(u)$ of u that is a well-composed image

• we expect $\mathfrak{S}_{c_{\alpha}}(\mathfrak{I}(u))$ to be a perfectly self-dual tree of shapes

under constraints

- the interpolation \Im has to be self-dual, i.e., $\Im(\mathbb{C}u) = \mathbb{C}\Im(u)$
- $\mathfrak{I}(u)$ can be considered as a rasterization equivalent to u
- we shall stick to the "morphological way":

A D > A B > A B
 A

The SLIDE!

given any gray-level image u

- $\mathfrak{S}_c(u)$ is a lattice
- taking $c = c_{\alpha}$ or $c = c_{\beta}$ is equivalent when an image is *well-composed* (...)
- we can have an interpolation $\Im(u)$ of u that is a well-composed image
- we expect $\mathfrak{S}_{c_{\alpha}}(\mathfrak{I}(u))$ to be a perfectly self-dual tree of shapes

under constraints

- the interpolation \Im has to be self-dual, i.e., $\Im(Cu) = C\Im(u)$
- $\mathfrak{I}(u)$ can be considered as a rasterization equivalent to u
- we shall stick to the "morphological way":

A D > A B > A B
 A

The SLIDE!

given any gray-level image u

- $\mathfrak{S}_c(u)$ is a lattice
- taking $c = c_{\alpha}$ or $c = c_{\beta}$ is equivalent when an image is *well-composed* (...)
- we can have an interpolation $\Im(u)$ of u that is a well-composed image
- we expect $\mathfrak{S}_{c_{\alpha}}(\mathfrak{I}(u))$ to be a perfectly self-dual tree of shapes

under constraints

- the interpolation \Im has to be self-dual, i.e., $\Im(Cu) = C\Im(u)$
- $\mathfrak{I}(u)$ can be considered as a rasterization equivalent to u
- we shall stick to the "morphological way":

- $\mathfrak{S}_c(u)$ is a lattice
- taking $c = c_{\alpha}$ or $c = c_{\beta}$ is equivalent when an image is *well-composed* (...)
- we can have an interpolation $\Im(u)$ of u that is a well-composed image

• we expect $\mathfrak{S}_{c_{\alpha}}(\mathfrak{I}(u))$ to be a perfectly self-dual tree of shapes

under constraints

- the interpolation \Im has to be self-dual, i.e., $\Im(Cu) = C\Im(u)$
- $\mathfrak{I}(u)$ can be considered as a rasterization equivalent to u
- we shall stick to the "morphological way":

イロトイポトイラトイラ

- $\mathfrak{S}_c(u)$ is a lattice
- taking $c = c_{\alpha}$ or $c = c_{\beta}$ is equivalent when an image is *well-composed* (...)
- we can have an interpolation $\Im(u)$ of u that is a well-composed image
- we expect $\mathfrak{S}_{c_{\alpha}}(\mathfrak{I}(u))$ to be a perfectly self-dual tree of shapes

under constraints

- the interpolation \Im has to be self-dual, i.e., $\Im(Cu) = C\Im(u)$
- $\mathfrak{I}(u)$ can be considered as a rasterization equivalent to u
- we shall stick to the "morphological way":

- $\mathfrak{S}_c(u)$ is a lattice
- taking $c = c_{\alpha}$ or $c = c_{\beta}$ is equivalent when an image is *well-composed* (...)
- we can have an interpolation $\Im(u)$ of u that is a well-composed image
- we expect $\mathfrak{S}_{c_{\alpha}}(\mathfrak{I}(u))$ to be a perfectly self-dual tree of shapes

under constraints

- the interpolation \Im has to be self-dual, i.e., $\Im(Cu) = C\Im(u)$
- $\Im(u)$ can be considered as a rasterization equivalent to u
- we shall stick to the "morphological way":

- $\mathfrak{S}_c(u)$ is a lattice
- taking $c = c_{\alpha}$ or $c = c_{\beta}$ is equivalent when an image is *well-composed* (...)
- we can have an interpolation $\Im(u)$ of u that is a well-composed image
- we expect $\mathfrak{S}_{c_{\alpha}}(\mathfrak{I}(u))$ to be a perfectly self-dual tree of shapes

under constraints

• the interpolation \Im has to be self-dual, i.e., $\Im(\complement u) = \complement \Im(u)$

• $\mathfrak{I}(u)$ can be considered as a rasterization equivalent to u

• we shall stick to the "morphological way":

- $\mathfrak{S}_c(u)$ is a lattice
- taking $c = c_{\alpha}$ or $c = c_{\beta}$ is equivalent when an image is *well-composed* (...)
- we can have an interpolation $\Im(u)$ of u that is a well-composed image
- we expect $\mathfrak{S}_{c_{\alpha}}(\mathfrak{I}(u))$ to be a perfectly self-dual tree of shapes

under constraints

- the interpolation \Im has to be self-dual, i.e., $\Im(\complement u) = \complement \Im(u)$
- $\Im(u)$ can be considered as a rasterization equivalent to u
- we shall stick to the "morphological way":

- $\mathfrak{S}_c(u)$ is a lattice
- taking $c = c_{\alpha}$ or $c = c_{\beta}$ is equivalent when an image is *well-composed* (...)
- we can have an interpolation $\Im(u)$ of u that is a well-composed image
- we expect $\mathfrak{S}_{c_{\alpha}}(\mathfrak{I}(u))$ to be a perfectly self-dual tree of shapes

under constraints

- the interpolation \Im has to be self-dual, i.e., $\Im(\complement u) = \complement \Im(u)$
- $\Im(u)$ can be considered as a rasterization equivalent to u
- we shall stick to the "morphological way":
 - having operators on sets of values
 - ensuring invariance axioms (contrast changes, geometrical ones...)

- $\mathfrak{S}_c(u)$ is a lattice
- taking $c = c_{\alpha}$ or $c = c_{\beta}$ is equivalent when an image is *well-composed* (...)
- we can have an interpolation $\Im(u)$ of u that is a well-composed image
- we expect $\mathfrak{S}_{c_{\alpha}}(\mathfrak{I}(u))$ to be a perfectly self-dual tree of shapes

under constraints

- the interpolation \Im has to be self-dual, i.e., $\Im(\complement u) = \complement \Im(u)$
- $\Im(u)$ can be considered as a rasterization equivalent to u
- we shall stick to the "morphological way":
 - having operators on sets of values
 - ensuring invariance axioms (contrast changes, geometrical ones...)

- $\mathfrak{S}_c(u)$ is a lattice
- taking $c = c_{\alpha}$ or $c = c_{\beta}$ is equivalent when an image is *well-composed* (...)
- we can have an interpolation $\Im(u)$ of u that is a well-composed image
- we expect $\mathfrak{S}_{c_{\alpha}}(\mathfrak{I}(u))$ to be a perfectly self-dual tree of shapes

under constraints

- the interpolation \Im has to be self-dual, i.e., $\Im(\complement u) = \complement \Im(u)$
- $\Im(u)$ can be considered as a rasterization equivalent to u
- we shall stick to the "morphological way":
 - having operators on sets of values
 - ensuring invariance axioms (contrast changes, geometrical ones...)

Sac

extend the notion of "well-composedness" to *n*D images on a cubical grid
prove that:

if a gray-level *n*D image *v* is WC then S_c(*v*) is a tree

study how to make a 2D image well-composed, that is:

• see if we can do it the same way for \mathfrak{I}^{3L}

• deal with the *n*D case

- extend the notion of "well-composedness" to nD images on a cubical grid
- prove that:

if a gray-level *n*D image *v* is WC then $\mathfrak{S}_c(v)$ is a tree

• study how to make a 2D image well-composed, that is:

- see if we can do it the same way for \mathfrak{I}^{3l}
- deal with the *n*D case

- extend the notion of "well-composedness" to nD images on a cubical grid
- prove that:

- study how to make a 2D image well-composed, that is:
 - turn an image u (*a priori* not WC) into a WC image $v = \Im^{2D}(u)$
 - find \mathfrak{I}^{2D} with the appropriate properties (under reasonable constraints)

• see if we can do it the same way for \mathfrak{I}^{3l}

• deal with the *n*D case

- extend the notion of "well-composedness" to nD images on a cubical grid
- prove that:

- study how to make a 2D image well-composed, that is:
 - ► turn an image u (*a priori* not WC) into a WC image $v = \Im^{2D}(u)$
 - find \mathfrak{I}^{2D} with the appropriate properties (under reasonable constraints)

• see if we can do it the same way for \mathfrak{I}^{3L}

• deal with the *n*D case

- extend the notion of "well-composedness" to nD images on a cubical grid
- prove that:

- study how to make a 2D image well-composed, that is:
 - ► turn an image u (*a priori* not WC) into a WC image $v = \Im^{2D}(u)$
 - find \mathfrak{I}^{2D} with the appropriate properties (under reasonable constraints)

• see if we can do it the same way for \mathfrak{I}^{31}

• deal with the *n*D case

- extend the notion of "well-composedness" to nD images on a cubical grid
- prove that:

- study how to make a 2D image well-composed, that is:
 - ► turn an image u (*a priori* not WC) into a WC image $v = \Im^{2D}(u)$
 - find \mathfrak{I}^{2D} with the appropriate properties (under reasonable constraints)
- see if we can do it the same way for \mathfrak{I}^{3D}

• deal with the *n*D case

化口压 化塑料 化医医子管体

- extend the notion of "well-composedness" to nD images on a cubical grid
- prove that:

- study how to make a 2D image well-composed, that is:
 - ► turn an image u (*a priori* not WC) into a WC image $v = \Im^{2D}(u)$
 - find \mathfrak{I}^{2D} with the appropriate properties (under reasonable constraints)
- see if we can do it the same way for \mathfrak{I}^{3D}
- deal with the *n*D case

500

化口压 化塑料 化医医子管体

2D WELL-COMPOSED (WC) SETS (LATECKI, CVIU, 1995)

WCNESS FOR 2D SETS

Definitions:

- a set is weakly well-composed if any 8-component of this set is a 4-component
- a set is well-composed if both this set and its complement are weakly WC

2D WELL-COMPOSED (WC) SETS (LATECKI, CVIU, 1995)

WCNESS FOR 2D SETS

Definitions:

- a set is weakly well-composed if any 8-component of this set is a 4-component
- a set is well-composed if both this set and its complement are weakly WC

LOCAL CHARACTERIZATION

- a set X is <u>locally 4-connected</u> if $\forall p \in X, \mathcal{N}_8(p) \cap X$ is 4-connected
- X is locally 4-connected \Leftrightarrow X is well-composed

2D WELL-COMPOSED (WC) SETS (LATECKI, CVIU, 1995)

WCNESS FOR 2D SETS

Definitions:

- a set is weakly well-composed if any 8-component of this set is a 4-component
- a set is well-composed if both this set and its complement are weakly WC

LOCAL CHARACTERIZATION

- a set X is <u>locally 4-connected</u> if $\forall p \in X, \mathcal{N}_8(p) \cap X$ is 4-connected
- X is locally 4-connected \Leftrightarrow X is well-composed

EXTENSION TO GRAY-LEVELS

A gray-level image *u* is well-composed if any set $[u \ge \lambda]$ is well-composed.

Example of an image (left) whose interpolation (right) is well-composed:

$$\stackrel{\text{or every blocks}}{\boxed{\begin{array}{c}a & d\\c & b\end{array}}} \text{ we should have: } \operatorname{intvl}(a,b) \cap \operatorname{intvl}(c,d) \neq \emptyset$$

where $\operatorname{intvl}(v,w) = [[\min(v,w), \max(v,w)]]$

イロト イポト イヨト イヨト

a set X is well-composed if ∂X is a 2D manifold in the continuous analog

Sac

イロト イ理ト イヨト イヨト

a set X is well-composed if ∂X is a 2D manifold in the continuous analog

A D N A B N A B N A

a set X is well-composed if ∂X is a 2D manifold in the continuous analog

ABOUT JORDAN-BOUWER THEOREM

if X is WC, then, $\forall S \in CC(\partial X)$, $\mathbb{R}^3 \setminus S$ has precisely 2 connected components of which S is the common boundary

イロト イポト イヨト イヨト

2, 3, ... then n

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 24 / 50

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

WCNESS IN *n*D **NEW**!

DEFINITION

a *n*D set X is well-composed if ∂X is a *n*D manifold *in the continuous analog*

THIERRY GÉRAUD, LRDE

Э

SQA

イロト イポト イヨト イヨト

a *n*D set X is well-composed if ∂X is a *n*D manifold in the continuous analog

LOGICAL EQUIVALENCES

It is equivalent to:

- X is locally c_{2n} -connected, i.e., $\forall p \in X, \ \mathcal{N}_{c_{3^n-1}}(p) \cap X$ is c_{2n} -connected
- ∂X is a discrete *n*-surface in the cellular complex
- the restriction of *X* to any hyperplane of \mathbb{Z}^n is well-composed (in \mathbb{Z}^{n-1}) and the critical configuration based on c_{3^n-1} does not appear

イロト イポト イヨト イヨト

a *n*D set X is well-composed if ∂X is a *n*D manifold in the continuous analog

LOGICAL EQUIVALENCES

It is equivalent to:

- X is locally c_{2n} -connected, i.e., $\forall p \in X, \ \mathcal{N}_{c_{3^n-1}}(p) \cap X$ is c_{2n} -connected
- ∂X is a discrete *n*-surface in the cellular complex
- the restriction of *X* to any hyperplane of \mathbb{Z}^n is well-composed (in \mathbb{Z}^{n-1}) and the critical configuration based on c_{3^n-1} does not appear

SAME EXTENSION TO GRAY-LEVELS

A gray-level *n*D image *u* is well-composed if any set $[u \ge \lambda]$ is well-composed.

イロト 不得 トイヨト イヨト 二日

LINK BETWEEN WC AND TOS NEW!

THE RETURN OF THE TREE OF SHAPES

if a gray-level *n*D image *u* is well-composed, then $\mathfrak{S}(u)$ is a tree

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 26 / 50

イロト イヨト イヨト イ

THE RETURN OF THE TREE OF SHAPES

if a gray-level *n*D image *u* is well-composed, then $\mathfrak{S}(u)$ is a tree

it is a sufficient condition (not a necessary one):

with
$$u = \frac{\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 2 & 1 \\ \hline 1 & 2 & 0 & 1 \\ \hline 1 & 1 & 1 & 1 \end{vmatrix}$$
, $\mathfrak{S}(u)$ is a tree, while u is not well-composed.

イロト イポト イヨト イヨ

With $\mathfrak{T}(u) = \mathcal{T}_{\leq}(u) \cup \mathcal{T}_{\geq}(u)$, consider $A \in \mathfrak{T}(u)$ and $B \in \mathfrak{T}(u)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

With $\mathfrak{T}(u) = \mathcal{T}_{\leq}(u) \cup \mathcal{T}_{\geq}(u)$, consider $A \in \mathfrak{T}(u)$ and $B \in \mathfrak{T}(u)$. we want to proof that $\operatorname{Sat}(A) \cap \operatorname{Sat}(B) = \emptyset$ or $\operatorname{Sat}(A) \subseteq \operatorname{Sat}(B)$ or $\operatorname{Sat}(B) \subseteq \operatorname{Sat}(A)$

▲□▶▲□▶▲□▶▲□▶ = のQの

With $\mathfrak{T}(u) = \mathcal{T}_{\leq}(u) \cup \mathcal{T}_{\geq}(u)$, consider $A \in \mathfrak{T}(u)$ and $B \in \mathfrak{T}(u)$. we want to proof that $\operatorname{Sat}(A) \cap \operatorname{Sat}(B) = \emptyset$ or $\operatorname{Sat}(A) \subseteq \operatorname{Sat}(B)$ or $\operatorname{Sat}(B) \subseteq \operatorname{Sat}(A)$ so that $\mathfrak{S}(u) = \{\operatorname{Sat}(\Gamma), \Gamma \in \mathfrak{T}(u)\}$ is a tree *(purely self-dual and with c_{2n} only)*

▲□▶▲□▶▲□▶▲□▶ = のQの

With $\mathfrak{T}(u) = \mathcal{T}_{\leq}(u) \cup \mathcal{T}_{\geq}(u)$, consider $A \in \mathfrak{T}(u)$ and $B \in \mathfrak{T}(u)$. we want to proof that $\operatorname{Sat}(A) \cap \operatorname{Sat}(B) = \emptyset$ or $\operatorname{Sat}(A) \subseteq \operatorname{Sat}(B)$ or $\operatorname{Sat}(B) \subseteq \operatorname{Sat}(A)$ so that $\mathfrak{S}(u) = \{\operatorname{Sat}(\Gamma), \Gamma \in \mathfrak{T}(u)\}$ is a tree *(purely self-dual and with c_{2n} only)*

- if $A \cap B = \emptyset$
 - ► Sat(A) and Sat(B) are either nested or disjoint this Lemma is proven in the book from Caselles & Monasse (LNCS vol. 1984, 2009)

▲□▶▲□▶▲□▶▲□▶ = のQの

With $\mathfrak{T}(u) = \mathcal{T}_{\leq}(u) \cup \mathcal{T}_{\geq}(u)$, consider $A \in \mathfrak{T}(u)$ and $B \in \mathfrak{T}(u)$. we want to proof that $\operatorname{Sat}(A) \cap \operatorname{Sat}(B) = \emptyset$ or $\operatorname{Sat}(A) \subseteq \operatorname{Sat}(B)$ or $\operatorname{Sat}(B) \subseteq \operatorname{Sat}(A)$ so that $\mathfrak{S}(u) = \{\operatorname{Sat}(\Gamma), \Gamma \in \mathfrak{T}(u)\}$ is a tree *(purely self-dual and with c_{2n} only)*

- if $A \cap B = \emptyset$
 - Sat(A) and Sat(B) are either nested or disjoint this Lemma is proven in the book from Caselles & Monasse (LNCS vol. 1984, 2009)
- otherwise $A \cap B \neq \emptyset$
 - ► case "A and B with the same type" (e.g., $A \in CC([u < \lambda])$ and $B \in CC([u < \mu])$: since $A \cap B \neq \emptyset$, we have either $A \subseteq B$ or $B \subseteq A$ since Sat is increasing, Sat(A) and Sat(B) are nested
 - ► case "*A* and *B* with different types" (e.g., $A \in CC([u \ge \lambda])$ and $B \in CC([u < \mu])$: with $x \in A \cap B$, $\lambda \le u(x) < \mu \Rightarrow \lambda < \mu$ let $\Delta B = \{q \in \mathcal{N}_{c_{2n}}(p) \mid p \in B, q \notin B\}$, so we have $\Delta B \subseteq [u \ge \mu] \subseteq [u \ge \lambda]$ \rightsquigarrow cont'd next slide

we can split $\Delta B = E \cup C$ where

- C is the part of ΔB included in cavities of B
- *E* is the other part (\approx *E* is the "external" boundary of *B* w.r.t. c_{2n})

we have:

unicoherency <u>and</u> well-composedness $\Rightarrow E$ is a connected component

$$\begin{array}{c|c} b & e \\ \hline e' & ? \end{array} \Rightarrow \begin{array}{c} b & e \\ \hline e' & e'' \end{array}$$

which is crucial for the following!

look there \downarrow

イロト 不得 トイヨト イヨト 二日

we can split $\Delta B = E \cup C$ where

- C is the part of ΔB included in cavities of B
- *E* is the other part (\approx *E* is the "external" boundary of *B* w.r.t. c_{2n})

we have:

unicoherency <u>and</u> well-composedness $\Rightarrow E$ is a connected component

$$\begin{array}{c|c} b & e \\ \hline e' & ? \end{array} \Rightarrow \begin{array}{c} b & e \\ \hline e' & e'' \end{array}$$

which is crucial for the following! look there \downarrow

we have:

- $\operatorname{Sat}(\Delta B) = \operatorname{Sat}(E)$
- a component $F \in CC([u \ge \lambda])$ exists such as $E \subseteq F \leftarrow$ here!

so:

- either $F \cap A = \emptyset$ then $A \subseteq \operatorname{Sat}(B)$ so $\operatorname{Sat}(A) \subseteq \operatorname{Sat}(B)$
- or $F \cap A \neq \emptyset$ then $F \subseteq A$ thus $\operatorname{Sat}(B) \subseteq \operatorname{Sat}(\Delta B) = \operatorname{Sat}(E) \subseteq \operatorname{Sat}(F) \subseteq \operatorname{Sat}(A)$

we can split $\Delta B = E \cup C$ where

- C is the part of ΔB included in cavities of B
- *E* is the other part (\approx *E* is the "external" boundary of *B* w.r.t. c_{2n})

we have:

unicoherency <u>and</u> well-composedness $\Rightarrow E$ is a connected component

$$\begin{array}{c|c} b & e \\ e^{\prime} & ? \end{array} \Rightarrow \begin{array}{c} b & e \\ e^{\prime} & e^{\prime\prime} \end{array}$$

which is crucial for the following! look there \downarrow

we have:

- $\operatorname{Sat}(\Delta B) = \operatorname{Sat}(E)$
- a component $F \in CC([u \ge \lambda])$ exists such as $E \subseteq F \leftarrow$ here!

so:

- either $F \cap A = \emptyset$ then $A \subseteq \operatorname{Sat}(B)$ so $\operatorname{Sat}(A) \subseteq \operatorname{Sat}(B)$
- or $F \cap A \neq \emptyset$ then $F \subseteq A$ thus $\operatorname{Sat}(B) \subseteq \operatorname{Sat}(\Delta B) = \operatorname{Sat}(E) \subseteq \operatorname{Sat}(F) \subseteq \operatorname{Sat}(A)$

KEY-POINT OF THE PROOF

we expect *B* to be included in the saturation of a component such as *A*:

 $rac{u}{2|2|2|}$

2

2 2 2 2

2

2 | 2

2

2 | 2 | 2

2

0

2 | 2

2

2

2

B					
2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

	E					
2	2	2	2	2	2	
2	2	0	0	0	2	
2	0	1	2	0	2	
2	2	0	0	2	2	
2	2	2	2	2	2	

Э

Sac

イロト イヨト イヨト イ

Key-Point of the Proof

we expect *B* to be included in the saturation of a component such as *A*:

 $\frac{u}{2}$

2

2 | 2 | 2 | 2

2

2

2

2 2 2 2 2 2	B					
	2					
	2					
2 0 1 2 0 2	2					
2 2 0 0 2 2	2					
2 2 2 2 2 2	2					

E						
2	2	2	2	2	2	
2	2	0	0	0	2	
2	0	1	2	0	2	
2	2	0	0	2	2	
2	2	2	2	2	2	

yet

- *E* may **not** be a connected component if the image is not WC
- so we may **not** have a component $F \in \mathfrak{T}$ such as B is in a cavity of F
- here the candidate is A and we don't have $Sat(B) \subseteq Sat(A)$

THIERRY GÉRAUD, LRDE

イロト 不得 とくほ とくほう

a gray-level image v is well-composed $\Rightarrow \mathfrak{S}(v)$ is a purely self-dual tree

596

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

a gray-level image v is well-composed $\Rightarrow \mathfrak{S}(v)$ is a purely self-dual tree any gray-level image u is not a priori well-composed

Dac

イロト イポト イヨト イヨト 一日

a gray-level image v is well-composed $\Rightarrow \mathfrak{S}(v)$ is a purely self-dual tree any gray-level image u is not *a priori* well-composed

we can try to get an interpolation $v = \Im(u)$ that is well-composed

a gray-level image v is well-composed $\Rightarrow \mathfrak{S}(v)$ is a purely self-dual tree any gray-level image u is not a priori well-composed we can try to get an interpolation $v = \mathfrak{I}(u)$ that is well-composed when done, $\mathfrak{I}(u)$ is a self-dual representation of u with a perfect tree of shapes

a gray-level image v is well-composed $\Rightarrow \mathfrak{S}(v)$ is a purely self-dual tree any gray-level image u is not a priori well-composed we can try to get an interpolation $v = \mathfrak{I}(u)$ that is well-composed when done, $\mathfrak{I}(u)$ is a self-dual representation of u with a perfect tree of shapes we thus have to find \mathfrak{I} ... let's start with the 2D case!

$$u = \boxed{\begin{array}{ccc} a & d \\ \hline c & b \end{array}} \longrightarrow \Im_{2D} = \boxed{\begin{array}{ccc} a & ? & d \\ \hline ? & ? & ? \\ \hline c & ? & b \end{array}}$$

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 31 / 50

Jac.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$u = \boxed{\begin{array}{c|c} a & d \\ \hline c & b \end{array}} \longrightarrow \Im_{2D} = \boxed{\begin{array}{c|c} a & ad & d \\ \hline ac & m & bd \\ \hline c & bc & b \end{array}}$$

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 31 / 50

Sac

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$u = \boxed{\begin{array}{c|c} a & d \\ \hline c & b \end{array}} \longrightarrow \Im_{2D} = \boxed{\begin{array}{c|c} a & ad & d \\ \hline ac & m & bd \\ \hline c & bc & b \end{array}}$$

Constraints:

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 31 / 50

- 3

Dac

イロト イロト イヨト イヨト

$$u = \begin{bmatrix} a & d \\ c & b \end{bmatrix} \longrightarrow \mathfrak{I}_{2D} = \begin{bmatrix} a & ad & d \\ ac & m & bd \\ c & bc & b \end{bmatrix}$$

Constraints:

- determinism
 - ▶ an increasing function f exists such as ad = f(a, d), ac = f(a, c), and so on
 - m = g(a, b, c, d) with g increasing w.r.t. all arguments

イロト イ理ト イヨト イヨト

$$u = \begin{bmatrix} a & d \\ c & b \end{bmatrix} \longrightarrow \mathfrak{I}_{2D} = \begin{bmatrix} a & ad & d \\ ac & m & bd \\ c & bc & b \end{bmatrix}$$

Constraints:

- determinism
 - ▶ an increasing function f exists such as ad = f(a, d), ac = f(a, c), and so on
 - m = g(a, b, c, d) with g increasing w.r.t. all arguments
- geometrical invariance
 - f(v,w) = f(w,v)
 - g(a, b, c, d) = g(a, b, d, c), and the other symmetries
 - g(a, b, c, d) = g(c, d, b, a), and the other rotations

イロト イポト イヨト イヨト 二日

$$u = \begin{bmatrix} a & d \\ c & b \end{bmatrix} \longrightarrow \mathfrak{I}_{2D} = \begin{bmatrix} a & ad & d \\ ac & m & bd \\ c & bc & b \end{bmatrix}$$

Constraints:

- determinism
 - ▶ an increasing function f exists such as ad = f(a, d), ac = f(a, c), and so on
 - m = g(a, b, c, d) with g increasing w.r.t. all arguments
- geometrical invariance
 - f(v,w) = f(w,v)
 - g(a, b, c, d) = g(a, b, d, c), and the other symmetries
 - g(a, b, c, d) = g(c, d, b, a), and the other rotations
- no new extremum
 - $f(v, w) \in intvl(v, w)$
 - $m \in intvl(ac, bd)$ and $m \in intvl(ad, bc)$

イロト 不得 トイヨト イヨト 二日

$$u = \boxed{\begin{array}{c|c} a & d \\ \hline c & b \end{array}} \longrightarrow \Im_{2D} = \boxed{\begin{array}{c|c} a & ad & d \\ \hline ac & m & bd \\ \hline c & bc & b \end{array}}$$

Other constraints:

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 32 / 50

- 32

Dac

イロト イポト イヨト イヨト

$$u = \boxed{\begin{array}{c|c} a & d \\ \hline c & b \end{array}} \longrightarrow \Im_{2D} = \boxed{\begin{array}{c|c} a & ad & d \\ \hline ac & m & bd \\ \hline c & bc & b \end{array}}$$

Other constraints:

- well-composedness
 - $intvl(a, m) \cap intvl(ac, ad) \neq \emptyset$ (top left)
 - likewise for the 3 other 2×2 parts

ヘロト ヘロト ヘヨト ヘヨト

$$u = \boxed{\begin{array}{c|c} a & d \\ \hline c & b \end{array}} \longrightarrow \Im_{2D} = \boxed{\begin{array}{c|c} a & ad & d \\ \hline ac & m & bd \\ \hline c & bc & b \end{array}}$$

Other constraints:

- well-composedness
 - $\operatorname{intvl}(a,m) \cap \operatorname{intvl}(ac,ad) \neq \emptyset$ (top left)
 - likewise for the 3 other 2×2 parts
- self-duality

•
$$f(\mathbf{C}v, \mathbf{C}w) = \mathbf{C}f(v, w)$$

• $g(\complement v_1, \complement v_2, \complement v_3, \complement v_4) = \complement g(v_1, v_2, v_3, v_4)$

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

naa

$$u = \boxed{\begin{array}{c|c} a & d \\ \hline c & b \end{array}} \longrightarrow \Im_{2D} = \boxed{\begin{array}{c|c} a & ad & d \\ \hline ac & m & bd \\ \hline c & bc & b \end{array}}$$

Other constraints:

- well-composedness
 - $\operatorname{intvl}(a,m) \cap \operatorname{intvl}(ac,ad) \neq \emptyset$ (top left)
 - likewise for the 3 other 2×2 parts
- self-duality
 - $f(\complement v, \complement w) = \complement f(v, w)$ $g(\complement v_1, \complement v_2, \complement v_3, \complement v_4) = \complement g(v_1, v_2, v_3, v_4)$
- extra and optional
 - ► h exists such as g(a, b, c, d) = h(f(a, c), f(b, d)) = h(f(a, d), f(b, c))
 - so we have $h(\complement v, \complement w) = \complement h(v, w)$
 - and $h(v, w) = h(w, v) \in intvl(v, w)$

イロト イポト イヨト イヨト

MAKING A 2D IMAGE WC: FIRST ATTEMPTS

$$u = \begin{bmatrix} a & d \\ c & b \end{bmatrix} \longrightarrow \mathfrak{I}_{2D} = \begin{bmatrix} a & f(a,d) & d \\ \hline f(a,c) & g(a,b,c,d) & f(b,d) \\ \hline c & f(b,c) & b \end{bmatrix}$$

Nota bene: if *f* is <u>bisymmetrical</u>, i.e., f(f(a,c), f(b,d)) = f(f(a,d), f(b,c))then *g* is just applying *f* twice (like in the bilinear interpolation)

nac

イロト イポト イヨト イヨト
MAKING A 2D IMAGE WC: FIRST ATTEMPTS

$$u = \begin{bmatrix} a & d \\ c & b \end{bmatrix} \longrightarrow \mathfrak{I}_{2D} = \begin{bmatrix} a & f(a,d) & d \\ f(a,c) & g(a,b,c,d) & f(b,d) \\ \hline c & f(b,c) & b \end{bmatrix}$$

Nota bene: if *f* is bisymmetrical, i.e., f(f(a,c), f(b,d)) = f(f(a,d), f(b,c))then *g* is just applying *f* twice (like in the bilinear interpolation)

Idea #1: *f* is either min or max

- bisymmetrical
- satisfy all constraints except self-duality, since $\min(cv, cw) = c \max(v, w)$

MAKING A 2D IMAGE WC: FIRST ATTEMPTS

$$u = \begin{bmatrix} a & d \\ c & b \end{bmatrix} \longrightarrow \mathfrak{I}_{2D} = \begin{bmatrix} a & f(a,d) & d \\ \hline f(a,c) & g(a,b,c,d) & f(b,d) \\ \hline c & f(b,c) & b \end{bmatrix}$$

Nota bene: if *f* is bisymmetrical, i.e., f(f(a,c), f(b,d)) = f(f(a,d), f(b,c))then *g* is just applying *f* twice (like in the bilinear interpolation)

Idea #1: f is either min or max

- bisymmetrical
- satisfy all constraints <u>except self-duality</u>, since $\min(Cv, Cw) = C \max(v, w)$

Idea #2: f is a mean (i.e., $\min \le f \le \max, f \ne \min, f \ne \max, f(v, w) = f(w, v), f$ increasing)

- some well-known bisymmetrical means: 2xy/(x+y), (x+y)/2, \sqrt{xy} , $\sqrt{(x^2+y^2)/2}$
- yet they fail with self-duality and/or WCness!

Sac

イロトイポトイラトイラト・ラ

- consider a 3x3 part of $\Im(u)$ and a threshold set X
- notation: $\in X$, $\in CX$, and \circ when we do not know
- it yields to 4 cases (modulo symmetries, rotations, and Cation)
- using only the "no new extremum" constraint, we have:

Sar

イロトス得たくまたくまた

- consider a 3x3 part of $\Im(u)$ and a threshold set X
- notation: $\in X$, $\in CX$, and \circ when we do not know
- it yields to 4 cases (modulo symmetries, rotations, and Cation)
- using only the "no new extremum" constraint, we have:

4 日 ト 4 間 ト 4 三 ト 4 三

- consider a 3x3 part of $\Im(u)$ and a threshold set X
- notation: $\in X$, $\in CX$, and \circ when we do not know
- it yields to 4 cases (modulo symmetries, rotations, and Cation)
- using only the "no new extremum" constraint, we have:

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- consider a 3x3 part of $\Im(u)$ and a threshold set X
- notation: $\in X$, $\in CX$, and \circ when we do not know
- it yields to 4 cases (modulo symmetries, rotations, and Cation)
- using only the "no new extremum" constraint, we have:

- consider a 3x3 part of $\Im(u)$ and a threshold set X
- notation: $\in X$, $\in CX$, and \circ when we do not know
- it yields to 4 cases (modulo symmetries, rotations, and Cation)
- using only the "no new extremum" constraint, we have:

THE SADDLE-POINT CASE

let us <u>assume</u> that a < b < c < d, *nota bene*: below abcd = mjust remark that $v < w \Rightarrow v < vw < w$ (the "no new extr." constraint) so we have the following Hasse diagram (left) and depicted with 4-adjacencies (right):

A D b 4 A b

THE SADDLE-POINT CASE

Assume that the point of value *ac* is in *X* (so depicted in green)

we thus have:

The same goes when assuming that the point of value bd is in CX (red).

A D b 4 A b

The remaining case is therefore:

WC iff m = bc i.e., iff g(a, b, c, d) = f(b, c)

Sac

THE CONCLUSION FOR 2D

in the morphology setting, we want an operator so:

 $(WC \text{ iff } op(\{a, b, c, d\}) = op(\{b, c\})) \Rightarrow op \text{ is } \underline{a} \text{ median}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

THE CONCLUSION FOR 2D

in the morphology setting, we want an operator so:

$$(WC \text{ iff } op(\{a, b, c, d\}) = op(\{b, c\})) \Rightarrow op \text{ is } \underline{a} \text{ median}$$

the only bisymmetrical median is such that

$$\mathrm{med}(\{v,w\}) = \frac{v+w}{2}$$

Э

Sac

イロト イポト イヨト イヨト

in the morphology setting, we want an operator so:

$$(WC \text{ iff } op(\{a, b, c, d\}) = op(\{b, c\})) \Rightarrow op \text{ is } \underline{a} \text{ median}$$

the only bisymmetrical median is such that

$$\mathrm{med}(\{v,w\}) = \frac{v+w}{2}$$

→ the only *self-dual* interpolation operator that makes a 2D image WC is <u>the</u> median operator

イロト イポト イヨト イヨ

in the morphology setting, we want an operator so:

$$(WC \text{ iff } op(\{a, b, c, d\}) = op(\{b, c\})) \Rightarrow op \text{ is } \underline{a} \text{ median}$$

the only bisymmetrical median is such that

$$\mathrm{med}(\{v,w\}) = \frac{v+w}{2}$$

 \rightsquigarrow the only *self-dual* interpolation operator that makes a 2D image WC is the median operator

...what about in 3D?

イロト イポト イヨト イヨ

WHAT ABOUT 3D?

consider
$$X = [u \le 4]$$
 with $u =$

one median subdivision with a critical configuration, so: $\mathfrak{I}_{med}^{3D} \neq WC$

consider
$$X = [u' \le 4]$$
 with $u' =$

a first subdivision gives the blue cube above, so: $\mathfrak{I}_{med}^{3D} \circ \mathfrak{I}_{med}^{3D} \not\Rightarrow WC$

イロト イ理ト イヨト イヨト

Sac

CONJECTURE

for n > 2

there is no self-dual *n*D interpolation *operator* (i.e., writable without "if") that makes well-composed an gray-level image defined on \mathbb{Z}^n

whatever the number of subdivisions of the space

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 40 / 50

イロト イヨト イヨト イ

• we can get rid of topological paradoxes thanks to

- a single connectivity relationship and/or self-duality
- ▶ the notion of well-composedness of *n*D gray-level images
- the how-to in 2D: a local interpolation with the median operator

• eventually we have

THIERRY GÉRAUD, LRDE

nac

イロト イポト イヨト イヨ

- we can get rid of topological paradoxes thanks to
 - ► a single connectivity relationship *and/or* self-duality
 - ▶ the notion of well-composedness of *n*D gray-level images
 - the how-to in 2D: a local interpolation with the median operator

• eventually we have

nac

イロト イポト イヨト イヨ

- we can get rid of topological paradoxes thanks to
 - ► a single connectivity relationship *and/or* self-duality
 - ► the notion of well-composedness of *n*D gray-level images
 - ▶ the how-to in 2D: a local interpolation with the median operator

• eventually we have

イロト イポト イヨト イヨト

- we can get rid of topological paradoxes thanks to
 - ► a single connectivity relationship *and/or* self-duality
 - ► the notion of well-composedness of *n*D gray-level images
 - ► the how-to in 2D: a local interpolation with the median operator

• eventually we have

strong topological properties with X any threshold set, components of ΔX are *n*D manifold

イロト イ理ト イヨト イヨト

- we can get rid of topological paradoxes thanks to
 - ► a single connectivity relationship *and/or* self-duality
 - ► the notion of well-composedness of *n*D gray-level images
 - ► the how-to in 2D: a local interpolation with the median operator

• eventually we have

- strong topological properties
 - with X any threshold set, components of ΔX are *n*D manifolds!
- a purely self-dual representation of 2D images, that is, the tree of shapes
- nice invariance properties and no arbitrary choice (forget c_6)
- many applications of the tree of shapes and... that tree is very easy to deal with

イロト 不得 とくほ とくほう

- we can get rid of topological paradoxes thanks to
 - ► a single connectivity relationship *and/or* self-duality
 - ► the notion of well-composedness of *n*D gray-level images
 - ► the how-to in 2D: a local interpolation with the median operator
- eventually we have
 - strong topological properties
 - with X any threshold set, components of ΔX are *n*D manifolds!
 - a purely self-dual representation of 2D images, that is, the tree of shapes
 - nice invariance properties and no arbitrary choice (forget c_6)
 - many applications of the tree of shapes and... that tree is very easy to deal with

イロト イポト イヨト イヨト

- we can get rid of topological paradoxes thanks to
 - ► a single connectivity relationship *and/or* self-duality
 - ► the notion of well-composedness of *n*D gray-level images
 - ► the how-to in 2D: a local interpolation with the median operator
- eventually we have
 - strong topological properties
 - with X any threshold set, components of ΔX are *n*D manifolds!
 - ► a purely self-dual representation of 2D images, that is, the tree of shapes
 - nice invariance properties and no arbitrary choice (forget c_6)
 - ▶ many applications of the tree of shapes and... that tree is very easy to deal with

イロト イポト イヨト イヨト

- we can get rid of topological paradoxes thanks to
 - ► a single connectivity relationship *and/or* self-duality
 - ► the notion of well-composedness of *n*D gray-level images
 - ► the how-to in 2D: a local interpolation with the median operator
- eventually we have
 - strong topological properties
 - with X any threshold set, components of ΔX are *n*D manifolds!
 - ► a purely self-dual representation of 2D images, that is, the tree of shapes
 - nice invariance properties and no arbitrary choice (forget c_6)
 - ▶ many applications of the tree of shapes and... that tree is very easy to deal with

イロト 不得 トイヨト イヨト 二日

- we can get rid of topological paradoxes thanks to
 - ► a single connectivity relationship *and/or* self-duality
 - ► the notion of well-composedness of *n*D gray-level images
 - ► the how-to in 2D: a local interpolation with the median operator
- eventually we have
 - strong topological properties
 - with X any threshold set, components of ΔX are *n*D manifolds!
 - ► a purely self-dual representation of 2D images, that is, the tree of shapes
 - nice invariance properties and no arbitrary choice (forget c_6)
 - ► many applications of the tree of shapes and... that tree is very easy to deal with

化白豆 化塑胶 化医胶 化医胶合 医

- we can get rid of topological paradoxes thanks to
 - ► a single connectivity relationship *and/or* self-duality
 - ► the notion of well-composedness of *n*D gray-level images
 - ► the how-to in 2D: a local interpolation with the median operator
- eventually we have
 - strong topological properties
 - with X any threshold set, components of ΔX are *n*D manifolds!
 - ► a purely self-dual representation of 2D images, that is, the tree of shapes
 - nice invariance properties and no arbitrary choice (forget c_6)
 - ► many applications of the tree of shapes and... that tree is very easy to deal with

化白豆 化塑胶 化医胶 化医胶合 医

Actually:

the self-duality of threshold sets \Rightarrow a unique connectivity relationship

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 42 / 50

SQA

イロト イポト イヨト イヨト 一日

Actually:

the self-duality of threshold sets \Rightarrow a unique connectivity relationship

What we have done:

we have explored the links between the notion of well-composedness and the morphological tree of shapes

イロト イポト イヨト イヨト

Actually:

the self-duality of threshold sets \Rightarrow a unique connectivity relationship

What we have done:

we have explored the links between the notion of well-composedness and the morphological tree of shapes

we have some new (interesting?) results and proofs

イロト イポト イヨト イヨト

QUASI-LINEAR ALGORITHM

A quasi-linear algorithm to compute the tree of shapes of nD images. T. Géraud, E. Carlinet, S. Crozet, and L. Najman. ISMM, 2013.

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

Sac

ヘロト ヘアト ヘビト ヘビト

QUASI-LINEAR ALGORITHM

A quasi-linear algorithm to compute the tree of shapes of nD images. T. Géraud, E. Carlinet, S. Crozet, and L. Najman. ISMM, 2013.

A DISCRETE yet CONTINUOUS REPRESENTATION

Discrete set-valued continuity and interpolation. L. Najman and T. Géraud. ISMM, 2013.

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 43 / 50

nac

イロト イ理ト イヨト イヨト

remember that slide:

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣へで

SELF-DUALITY AND DISCRETE TOPOLOGY

THIERRY GÉRAUD, LRDE

LEFT AS AN EXERCISE TO THE READER...

draw the level lines of respective levels 1 and 3 for this image:

6	6	6	6	6
6	4	4	2	6
6	4	0	4	6
6	0	4	4	6
6	6	6	6	6

so what !?

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 45 / 50

Sac

◆□▶ ◆圖▶ ◆注▶ ◆注▶

some "past-the-end" slides

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 46 / 50

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

TO BE INTERPOLATED

и

24	24	24	24	24	24
24	24	0	0	0	24
24	0	6	8	0	24
24	24	0	0	24	24
24	24	24	24	24	24

THIERRY GÉRAUD, LRDE

GT GÉODIS, JUNE 2013 47 / 50

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

MEAN INTERPOLATION

 $\mathfrak{I}_{\text{mean}}(u) \rightsquigarrow \text{poset}(\mathfrak{S}_c(u), \subset)$

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 48 / 50

Sac

イロト 不得 トイヨト イヨト 二日
DUAL INTERPOLATIONS

$$\mathfrak{I}_{\min}(u) \rightsquigarrow \mathfrak{S}_{(>, c_{\alpha})}(u)$$
 and $\mathfrak{I}_{\max}(u) \rightsquigarrow \mathfrak{S}_{(<, c_{\alpha})}(u)$

SELF-DUAL INTERPOLATION

 $\mathfrak{I}_{\mathrm{med}}(u) \rightsquigarrow \mathfrak{S}(u)$

THIERRY GÉRAUD, LRDE

SELF-DUALITY AND DISCRETE TOPOLOGY

GT GÉODIS, JUNE 2013 50 / 50

Sac

イロト 不得 トイヨト イヨト 二日