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GT GéoDis, June 2013
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THIS TALK IS ABOUT...

OBJECTIVE

a self-dual representation of gray-level images without topological issues
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get very strong topological properties
ensure a “pure” self-duality
process gray-level images easily and without trouble

KEYPOINT

one connectedness relationship
i.e., a unique topological structure
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REMINDER

Let’s start by reviewing some basic things about:

digital topology

self-duality

mathematical morphology
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DIGITAL TOPOLOGY AND CONNECTIVITIES

JORDAN CURVE THEOREM

A simple closed curve divides the plane into two regions (“interior” and “exterior”).

in discrete topology, a “Jordan pair” of connectivities (cα, cβ) are required:
one for the interior, the other for the exterior

for instance: (c4, c8) in 2D, (c6, c18) or (c6, c26) in 3D, (c2n, c3n−1) in nD.
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CONNECTIVITIES AND SETS

Practially, given a set X:

choose either cα or cβ for the “object” X

choose the other one for the “background”, i.e., {X

so there is no topological paradox

in this talk:

X ⊂ Zn

so we follows the path of Bhattacharya, Eckart, Latecki, Rosenfeld, and Wang...
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THIERRY GÉRAUD, LRDE SELF-DUALITY AND DISCRETE TOPOLOGY GT GÉODIS, JUNE 2013 5 / 50



SELF-DUALITY

Imagine that you process an image u:

u
processing−−−−−−−→ ϕ(u)

complementation

y y complementation

{u
processing−−−−−−−→ ϕ({u) = {ϕ(u)

that is, you process the same way the image contents whatever the contrast
(i.e., light objects over dark background versus dark objects over light background)

sometimes:

we cannot make an assumption about contrast
we do not want to make such an assumption
because “object” 6= “subject”  
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MATHEMATICAL MORPHOLOGY (MM)

A VERY PARTICULAR WAY TO DEFINE MM
a gray-scale image is considered as a landscape; gray values are elevations
to process an image is to modify the landscape, i.e., its topography
we transform the shape of the landscape

A possible taxonomy of MM:
with a structuring element or without s.e.

on sets (binary images) or on functions (gray-level images)

dual operators or self-dual operators

connected operators or not

The context of this work;
the powerful subset of MM emphasized above

this subset relies on component trees
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TWO MORPHOLOGICAL DUAL TREES...

A COUPLE OF DUAL SETS

Given a nD image u : Zn → Z,
lower level sets: [ u < λ ] = { x ∈ X | u(x) < λ }
upper level sets: [ u ≥ λ ] = { x ∈ X | u(x) ≥ λ }

D

E

B
A

C

F

O

A U B F
D

E

A U O U C U F 

a lower level set u a upper level set

 we focus on the connected component of the lower and upper level sets
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...AND A SELF-DUAL TREE

SHAPES

With the cavity-fill-in operator Sat:
lower shapes: S<(u) = {Sat(Γ); Γ ∈ T<(u) }
upper shapes: S≥(u) = {Sat(Γ); Γ ∈ T≥(u) }

A SELF-DUAL TREE

 tree of shapes: S(u) = S<(u) ∪ S≥(u)

PROPERTY = SELF-DUALITY

we “almost” have: S({u) = S(u)

—that contrats with the duality of the min- and max- trees: T≥({u) = T<(u) —
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SCHEMATIC EXAMPLE

D

E

B
A

C

F

O

A

O

F

B C

D E

image tree of shapes

ALT. DEFINITIONS OF SHAPES

the shapes are
the cavities of upper and lower level sets
the interior regions of level lines.

THIERRY GÉRAUD, LRDE SELF-DUALITY AND DISCRETE TOPOLOGY GT GÉODIS, JUNE 2013 11 / 50
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A SELF-DUAL TOPOGRAPHIC TREE-BASED

REPRESENTATION
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A SELF-DUAL TOPOGRAPHIC TREE-BASED

REPRESENTATION

excerpt
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SOME APPLICATIONS

grain filter
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SOME APPLICATIONS

object detection
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SOME APPLICATIONS

input  contour saliency

extinction  (hierarchical) segmentation
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SOME APPLICATIONS

image simplification
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SOME APPLICATIONS

morphological shapings
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SOME APPLICATIONS

local feature detection
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DEALING WITH DUAL CONNECTIVITIES

whatever a connectivity c (with −c denoting its “dual”), and a relationR

from a set of components, we can have a set of shapes:

T(R,c) = {Γ ∈ CCc([uRλ]) }λ −→ S(R,c)(u) = {Sat−c(Γ); Γ ∈ T(R,c)(u) }

and derive a “properly” defined tree of shapes:

S(R, c)(u) = S(R,c)(u) ∪ S(¬R,−c)(u)

yet, the tree of shapes is not purely self-dual:

S(R, c)({u) = S(R−1, c)(u) = S(¬R−1,−c)(u)

For instance:
S(<, c4)({u) = S(≤, c8)(u)
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CONSEQUENCES 1/2

We have an arbitrary choice between S(<, cα)(u) and S(>, cα)(u):

u =

1 0

0 1 −→ two possible trees:

1 0

0 1

1 0

0 1

When choosing S(<,cα)(u), lower and upper shapes are resp. cα and cβ :

u =

1 0 0 0 1 2

1 1 1 1 1 1 1 1

2 2

1 0

1 0

1 0

0 1

1 2

1 1

1 2

2 2

1 1 1 1 1 1 1 1

1

1

1

1

1 −→ S(<, cα)(u) =

0 2

1

1 1
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CONSEQUENCES 2/2

If u is continuous (or discrete with some continuity property†):

the different types of shapes do not have the same topology!

for instance:
in S(<, cα)(u), lower shapes are open sets v. upper shapes are closed sets.

† T. Géraud, E. Carlinet, S. Crozet, L. Najman. A quasi-linear
algorithm to compute the tree of shapes of nD images. In Proc. of
the 11th Intl. Symp. on Mathematical Morphology (ISMM), 2013.

L. Najman, T. Géraud. Discrete set-valued continuity and
interpolation. In Proc. of the 11th Intl. Symp. on Mathematical
Morphology (ISMM), 2013.
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THE GRAAL

we want:

A PURELY SELF-DUAL TREE

S({u) = S(u)

that starts with:

A FIRST REQUIREMENT

a single connectivity relation for both lower and upper shapes
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DUMMY EXAMPLES

with c4 for both types of shapes (so Satc8 ), we have those two shapes:

2 2 0 0 0

2 2 2 2 2 2

2

2

2

0 1

2 0

2 0

0 2

2

2

2 2 2 2 2 2

2 2 0 0 0

2 2 2 2 2 2

2

2

2

0 1

2 0

2 0

0 2

2

2

2 2 2 2 2 2

2 2 0 0 0

2 2 2 2 2 2

2

2

2

0 1

2 0

2 0

0 2

2

2

2 2 2 2 2 2

with c8 for both types of shapes (so Satc4 ), we have those two shapes:
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The SLIDE!

given any gray-level image u

Sc(u) is a lattice

taking c = cα or c = cβ is equivalent when an image is well-composed (...)

we can have an interpolation I(u) of u that is a well-composed image

we expect Scα(I(u)) to be a perfectly self-dual tree of shapes

under constraints

the interpolation I has to be self-dual, i.e., I({u) = {I(u)

I(u) can be considered as a rasterization equivalent to u

we shall stick to the “morphological way”:
I having operators on sets of values
I ensuring invariance axioms (contrast changes, geometrical ones...)
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THIERRY GÉRAUD, LRDE SELF-DUALITY AND DISCRETE TOPOLOGY GT GÉODIS, JUNE 2013 19 / 50
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The SLIDE!

given any gray-level image u

Sc(u) is a lattice

taking c = cα or c = cβ is equivalent when an image is well-composed (...)

we can have an interpolation I(u) of u that is a well-composed image

we expect Scα(I(u)) to be a perfectly self-dual tree of shapes

under constraints

the interpolation I has to be self-dual, i.e., I({u) = {I(u)

I(u) can be considered as a rasterization equivalent to u

we shall stick to the “morphological way”:
I having operators on sets of values
I ensuring invariance axioms (contrast changes, geometrical ones...)
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WHAT’S UP NOW...

extend the notion of “well-composedness” to nD images on a cubical grid

prove that:
if a gray-level nD image v is WC then Sc(v) is a tree

study how to make a 2D image well-composed, that is:
I turn an image u (a priori not WC) into a WC image v = I2D(u)
I find I2D with the appropriate properties (under reasonable constraints)

see if we can do it the same way for I3D

deal with the nD case
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WHAT’S UP NOW...

extend the notion of “well-composedness” to nD images on a cubical grid

prove that:
if a gray-level nD image v is WC then Sc(v) is a tree

study how to make a 2D image well-composed, that is:
I turn an image u (a priori not WC) into a WC image v = I2D(u)
I find I2D with the appropriate properties (under reasonable constraints)

see if we can do it the same way for I3D

deal with the nD case
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2D WELL-COMPOSED (WC) SETS (LATECKI, CVIU, 1995)

WCNESS FOR 2D SETS

Definitions:
a set is weakly well-composed if any 8-component of this set is a 4-component
a set is well-composed if both this set and its complement are weakly WC

LOCAL CHARACTERIZATION

a set X is locally 4-connected if ∀ p ∈ X, N8(p) ∩ X is 4-connected
X is locally 4-connected ⇔ X is well-composed

CRITICAL CONFIGURATIONS

It is equivalent to:
a set is WC if the configurations and do not appear
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WC FOR GRAY-LEVEL PICTURES (LATECKI, CVIU, 1995)

EXTENSION TO GRAY-LEVELS

A gray-level image u is well-composed if any set [u ≥ λ] is well-composed.

Example of an image (left) whose interpolation (right) is well-composed:

3 2

1 8
1

3 2

8

2 5

2

2

4

 for every blocks
a d
c b

we should have: intvl(a, b) ∩ intvl(c, d) 6= ∅
where intvl(v,w) = Jmin(v,w),max(v,w)K
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WC FOR 3D SETS (LATECKI, GMIP, 1997)

DEFINITION

a set X is well-composed if ∂X is a 2D manifold in the continuous analog

LOGICAL EQUIVALENCES

the configurations do not appear in X

every component of ∂X is a simple closed surface

ABOUT JORDAN-BOUWER THEOREM

if X is WC, then, ∀ S ∈ CC(∂X), R3\S has precisely 2 connected components
of which S is the common boundary
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WC FOR 3D SETS (LATECKI, GMIP, 1997)

DEFINITION

a set X is well-composed if ∂X is a 2D manifold in the continuous analog

LOGICAL EQUIVALENCES

the configurations do not appear in X

every component of ∂X is a simple closed surface

ABOUT JORDAN-BOUWER THEOREM

if X is WC, then, ∀ S ∈ CC(∂X), R3\S has precisely 2 connected components
of which S is the common boundary
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BREATHE!

2, 3, ... then n
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WCNESS IN nD NEW!

DEFINITION

a nD set X is well-composed if ∂X is a nD manifold in the continuous analog

LOGICAL EQUIVALENCES

It is equivalent to:
X is locally c2n-connected, i.e., ∀ p ∈ X, Nc3n−1(p) ∩ X is c2n-connected
∂X is a discrete n-surface in the cellular complex

the restriction of X to any hyperplane of Zn is well-composed (in Zn−1)
and the critical configuration based on c3n−1 does not appear

SAME EXTENSION TO GRAY-LEVELS

A gray-level nD image u is well-composed if any set [u ≥ λ] is well-composed.
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WCNESS IN nD NEW!

DEFINITION

a nD set X is well-composed if ∂X is a nD manifold in the continuous analog

LOGICAL EQUIVALENCES

It is equivalent to:
X is locally c2n-connected, i.e., ∀ p ∈ X, Nc3n−1(p) ∩ X is c2n-connected
∂X is a discrete n-surface in the cellular complex

the restriction of X to any hyperplane of Zn is well-composed (in Zn−1)
and the critical configuration based on c3n−1 does not appear

SAME EXTENSION TO GRAY-LEVELS

A gray-level nD image u is well-composed if any set [u ≥ λ] is well-composed.
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LINK BETWEEN WC AND TOS NEW!

THE RETURN OF THE TREE OF SHAPES

if a gray-level nD image u is well-composed, then S(u) is a tree

it is a sufficient condition (not a necessary one):

with u =

1 1 1 1
1 0 2 1
1 2 0 1
1 1 1 1

, S(u) is a tree, while u is not well-composed.
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SKETCH OF THE PROOF

With T(u) = T<(u) ∪ T≥(u), consider A ∈ T(u) and B ∈ T(u).

we want to proof that Sat(A)∩Sat(B) = ∅ or Sat(A) ⊆ Sat(B) or Sat(B) ⊆ Sat(A)

so that S(u) = {Sat(Γ), Γ ∈ T(u) } is a tree (purely self-dual and with c2n only)

if A ∩ B = ∅
I Sat(A) and Sat(B) are either nested or disjoint

this Lemma is proven in the book from Caselles & Monasse (LNCS vol. 1984, 2009)

otherwise A ∩ B 6= ∅
I case “A and B with the same type” (e.g., A ∈ CC([u < λ]) and B ∈ CC([u < µ]):

since A ∩ B 6= ∅, we have either A ⊆ B or B ⊆ A
since Sat is increasing, Sat(A) and Sat(B) are nested

I case “A and B with different types” (e.g., A ∈ CC([u ≥ λ]) and B ∈ CC([u < µ]):
with x ∈ A ∩ B, λ ≤ u(x) < µ⇒ λ < µ
let ∆B = { q ∈ Nc2n (p) | p ∈ B, q 6∈ B }, so we have ∆B ⊆ [u ≥ µ] ⊆ [u ≥ λ]
 cont’d next slide
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 cont’d next slide
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SKETCH OF THE PROOF

we can split ∆B = E ∪ C where
I C is the part of ∆B included in cavities of B
I E is the other part (≈ E is the “external” boundary of B w.r.t. c2n)

we have:
unicoherency and well-composedness ⇒ E is a connected component

b e
e’ ?

⇒ b e
e’ e”

which is crucial for the following!

look there ↓

we have:
I Sat(∆B) = Sat(E)
I a component F ∈ CC([u ≥ λ]) exists such as E ⊆ F ← here!

so:
I either F ∩ A = ∅ then A ⊆ Sat(B) so Sat(A) ⊆ Sat(B)
I or F ∩ A 6= ∅ then F ⊆ A thus

Sat(B) ⊆ Sat(∆B) = Sat(E) ⊆ Sat(F) ⊆ Sat(A)
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KEY-POINT OF THE PROOF

we expect B to be included in the saturation of a component such as A:
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E

yet
E may not be a connected component if the image is not WC
so we may not have a component F ∈ T such as B is in a cavity of F

here the candidate is A and we don’t have Sat(B) ⊆ Sat(A)
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RECAP

a gray-level image v is well-composed ⇒ S(v) is a purely self-dual tree

any gray-level image u is not a priori well-composed

we can try to get an interpolation v = I(u) that is well-composed

when done, I(u) is a self-dual representation of u with a perfect tree of shapes

we thus have to find I ... let’s start with the 2D case!

THIERRY GÉRAUD, LRDE SELF-DUALITY AND DISCRETE TOPOLOGY GT GÉODIS, JUNE 2013 30 / 50
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MAKING A 2D IMAGE WC: THE CONSTRAINTS (1/2)

u =
a d
c b

−→ I2D =
a ? d
? ? ?
c ? b

Constraints:
determinism

I an increasing function f exists such as ad = f (a, d), ac = f (a, c), and so on
I m = g(a, b, c, d) with g increasing w.r.t. all arguments

geometrical invariance
I f (v,w) = f (w, v)
I g(a, b, c, d) = g(a, b, d, c), and the other symmetries
I g(a, b, c, d) = g(c, d, b, a), and the other rotations

no new extremum
I f (v,w) ∈ intvl(v,w)
I m ∈ intvl(ac, bd) and m ∈ intvl(ad, bc)
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MAKING A 2D IMAGE WC: THE CONSTRAINTS (1/2)

u =
a d
c b

−→ I2D =
a ad d
ac m bd
c bc b

Constraints:
determinism

I an increasing function f exists such as ad = f (a, d), ac = f (a, c), and so on
I m = g(a, b, c, d) with g increasing w.r.t. all arguments

geometrical invariance
I f (v,w) = f (w, v)
I g(a, b, c, d) = g(a, b, d, c), and the other symmetries
I g(a, b, c, d) = g(c, d, b, a), and the other rotations

no new extremum
I f (v,w) ∈ intvl(v,w)
I m ∈ intvl(ac, bd) and m ∈ intvl(ad, bc)
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MAKING A 2D IMAGE WC: THE CONSTRAINTS (2/2)

u =
a d
c b

−→ I2D =
a ad d
ac m bd
c bc b

Other constraints:

well-composedness
I intvl(a,m) ∩ intvl(ac, ad) 6= ∅ (top left)
I likewise for the 3 other 2× 2 parts

self-duality
I f ({v, {w) = { f (v, w)
I g({v1, {v2, {v3, {v4) = { g(v1, v2, v3, v4)

extra and optional
I h exists such as g(a, b, c, d) = h( f (a, c), f (b, d) ) = h( f (a, d), f (b, c) )
I so we have h({v, {w) = { h(v, w)
I and h(v,w) = h(w, v) ∈ intvl(v,w)
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MAKING A 2D IMAGE WC: FIRST ATTEMPTS

u =
a d
c b

−→ I2D =

a f (a, d) d
f (a, c) g(a, b, c, d) f (b, d)

c f (b, c) b

Nota bene: if f is bisymmetrical, i.e., f ( f (a, c), f (b, d) ) = f ( f (a, d), f (b, c) )
then g is just applying f twice (like in the bilinear interpolation)

Idea #1: f is either min or max

bisymmetrical
satisfy all constraints except self-duality, since min({v, {w) = {max(v,w)

Idea #2: f is a mean (i.e., min ≤ f ≤ max, f 6= min, f 6= max, f (v,w) = f (w, v), f increasing)

some well-known bisymmetrical means: 2 x y/(x + y), (x + y)/2,
√

x y,
√

(x2 + y2)/2

yet they fail with self-duality and/or WCness!
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MAKING A 2D IMAGE WC: AN HOW-TO

consider a 3x3 part of I(u) and a threshold set X
notation: • ∈ X, • ∈ {X, and ◦ when we do not know
it yields to 4 cases (modulo symmetries, rotations, and {ation)
using only the “no new extremum” constraint, we have:

• ◦ •
◦ ◦ ◦
• ◦ •

⇒
• • •
• • •
• • •

⇒ WC

• ◦ •
◦ ◦ ◦
• ◦ •

⇒
• • •
• ◦ ◦
• ◦ •

⇒ WC ( since we cannot have
• • •
• • •
• • •

)

• ◦ •
◦ ◦ ◦
• ◦ •

⇒
• • •
◦ ◦ ◦
• • •

⇒ WC

• ◦ •
◦ ◦ ◦
• ◦ •

⇒ ? so we have to study this case...
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THE SADDLE-POINT CASE

a ad d
ac m bd
c bc b

 
• ◦ •
◦ ◦ ◦
• ◦ •

let us assume that a < b < c < d, nota bene: below abcd = m

just remark that v < w ⇒ v < vw < w (the “no new extr.” constraint)

so we have the following Hasse diagram (left) and depicted with 4-adjacencies (right):

d

c bd

adabcdbc

acb

a

d

c bd

adabcdbc

acb

a
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THE SADDLE-POINT CASE

Assume that the point of value ac is in X (so depicted in green)

we thus have:
d

c bd

adabcdbc

acb

a so:
a ad d
ac m bd
c bc b

 
• ◦ •
• • •
• ◦ •

⇒ WC

The same goes when assuming that the point of value bd is in {X (red).
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THE SADDLE-POINT CASE

The remaining case is therefore:
d

c bd

adabcdbc

acb

a so:
a ad d
ac m bd
c bc b

 
• ◦ •
• • •
• • •

⇒

WC iff m = bc i.e., iff g(a, b, c, d) = f (b, c)
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THE CONCLUSION FOR 2D

in the morphology setting, we want an operator so:

( WC iff op({a, b, c, d}) = op({b, c}) ) ⇒ op is a median

the only bisymmetrical median is such that

med({v,w}) =
v + w

2

 the only self-dual interpolation operator that makes a 2D image WC
is the median operator

...what about in 3D?
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THIERRY GÉRAUD, LRDE SELF-DUALITY AND DISCRETE TOPOLOGY GT GÉODIS, JUNE 2013 38 / 50
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THE CONCLUSION FOR 2D

in the morphology setting, we want an operator so:

( WC iff op({a, b, c, d}) = op({b, c}) ) ⇒ op is a median

the only bisymmetrical median is such that

med({v,w}) =
v + w

2

 the only self-dual interpolation operator that makes a 2D image WC
is the median operator

...what about in 3D?
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WHAT ABOUT 3D?

consider X = [ u ≤ 4 ] with u =

one median subdivision with a critical
configuration, so: I3D

med 6⇒ WC

consider X = [ u′ ≤ 4 ] with u′ =

a first subdivision gives the blue cube
above, so: I3D

med ◦ I3D
med 6⇒ WC

4 4

4

0 8

8

6

2

2

4

4

1

3

5

5

4 4

8

0 16

124

4
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THE CONCLUSION FOR 3D AND nD

CONJECTURE

for n > 2

there is no self-dual nD interpolation operator (i.e., writable without “if”)
that makes well-composed an gray-level image defined on Zn

whatever the number of subdivisions of the space
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CONCLUSION (1/2)

we can get rid of topological paradoxes thanks to

I a single connectivity relationship and/or self-duality

I the notion of well-composedness of nD gray-level images

I the how-to in 2D: a local interpolation with the median operator

eventually we have

I strong topological properties
with X any threshold set, components of ∆X are nD manifolds!

I a purely self-dual representation of 2D images, that is, the tree of shapes

I nice invariance properties and no arbitrary choice (forget c6)

I many applications of the tree of shapes and... that tree is very easy to deal with
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CONCLUSION (2/2)

Actually:

the self-duality of threshold sets ⇒ a unique connectivity relationship

What we have done:

we have explored the links between the notion of well-composedness
and the morphological tree of shapes

we have some new (interesting?) results and proofs
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ADVERTISEMENT!

QUASI-LINEAR ALGORITHM

A quasi-linear algorithm to compute the tree of shapes of nD images.
T. Géraud, E. Carlinet, S. Crozet, and L. Najman.

ISMM, 2013.

A DISCRETE yet CONTINUOUS REPRESENTATION

Discrete set-valued continuity and interpolation.
L. Najman and T. Géraud.

ISMM, 2013.
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T. Géraud, E. Carlinet, S. Crozet, and L. Najman.

ISMM, 2013.

A DISCRETE yet CONTINUOUS REPRESENTATION

Discrete set-valued continuity and interpolation.
L. Najman and T. Géraud.
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...

remember that slide:
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LEFT AS AN EXERCISE TO THE READER...

draw the level lines of respective levels 1 and 3 for this image:

6 6 6 6 6

6 4 4 2 6

6 4 0 4 6

6 0 4 4 6

6 6 6 6 6

so what!?
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some “past-the-end” slides
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TO BE INTERPOLATED

u
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MEAN INTERPOLATION

Imean(u)  poset (Sc(u), ⊂)
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DUAL INTERPOLATIONS

Imin(u)  S(>, cα)(u) and Imax(u)  S(<, cα)(u)
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SELF-DUAL INTERPOLATION

Imed(u)  S(u)
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