SELF-DUALITY AND DISCRETE TOPOLOGY:

Links between the morphological tree of shapes

AND WELL-COMPOSED GRAY-LEVEL IMAGES

Thierry Géraud; joint work with Edwin Carlinet and Sébastien Crozet

```
theo@lrde.epita.fr
```


EPITA Research and Development Laboratory (LRDE)

GT GéoDis, June 2013

This talk is about...

Objective

a self-dual representation of gray-level images without topological issues

This talk is about...

Objective
 a self-dual representation of gray-level images without topological issues

Motivation

- get very strong topological properties
- ensure a "pure" self-duality
- process gray-level images easily and without trouble

This talk is about...

Objective
 a self-dual representation of gray-level images without topological issues

Motivation

- get very strong topological properties
- ensure a "pure" self-duality
- process gray-level images easily and without trouble

KEypoint

- one connectedness relationship
- i.e., a unique topological structure

REMINDER

Let's start by reviewing some basic things about:

- digital topology
- self-duality
- mathematical morphology

Digital Topology and Connectivities

Jordan Curve Theorem

A simple closed curve divides the plane into two regions ("interior" and "exterior").

Digital Topology and Connectivities

Jordan Curve Theorem

A simple closed curve divides the plane into two regions ("interior" and "exterior").

in discrete topology, a "Jordan pair" of connectivities $\left(c_{\alpha}, c_{\beta}\right)$ are required: one for the interior, the other for the exterior
for instance: $\left(c_{4}, c_{8}\right)$ in $2 \mathrm{D},\left(c_{6}, c_{18}\right)$ or $\left(c_{6}, c_{26}\right)$ in $3 \mathrm{D},\left(c_{2 n}, c_{3^{n}-1}\right)$ in $n \mathrm{D}$.

Connectivities and Sets

Practially, given a set X :

- choose either c_{α} or c_{β} for the "object" X
- choose the other one for the "background", i.e., $\subset X$
- so there is no topological paradox

Connectivities and Sets

Practially, given a set X :

- choose either c_{α} or c_{β} for the "object" X
- choose the other one for the "background", i.e., $\subset X$
- so there is no topological paradox
in this talk:
- $X \subset \mathbb{Z}^{n}$
- so we follows the path of Bhattacharya, Eckart, Latecki, Rosenfeld, and Wang...

SELF-DUALITY

Imagine that you process an image u :

$$
u \stackrel{\text { processing }}{ } \varphi(u)
$$

SELF-DUALITY

Imagine that you apply the same processing to $\complement u$:

$$
\begin{aligned}
& u \xrightarrow{\text { processing }} \varphi(u) \\
& \text { complementation } \downarrow \\
& C u \xrightarrow{\text { processing }} \varphi(\complement u)
\end{aligned}
$$

SELF-DUALITY

You may want a self-dual behavior:

SELF-DUALITY

You may want a self-dual behavior:

that is, you process the same way the image contents whatever the contrast
(i.e., light objects over dark background versus dark objects over light background)

SELF-DUALITY

You may want a self-dual behavior:

that is, you process the same way the image contents whatever the contrast
(i.e., light objects over dark background versus dark objects over light background)

sometimes:

- we cannot make an assumption about contrast
- we do not want to make such an assumption because "object" \neq "subject"

Mathematical Morphology (MM)

A VERY PARTICULAR WAY TO DEFINE MM

- a gray-scale image is considered as a landscape; gray values are elevations

Mathematical Morphology (MM)

A VERY PARTICULAR WAY TO DEFINE MM

- a gray-scale image is considered as a landscape; gray values are elevations
- to process an image is to modify the landscape, i.e., its topography

Mathematical Morphology (MM)

A VERY PARTICULAR WAY TO DEFINE MM

- a gray-scale image is considered as a landscape; gray values are elevations
- to process an image is to modify the landscape, i.e., its topography
- we transform the shape of the landscape

Mathematical Morphology (MM)

A VERY PARTICULAR WAY TO DEFINE MM

- a gray-scale image is considered as a landscape; gray values are elevations
- to process an image is to modify the landscape, i.e., its topography
- we transform the shape of the landscape

A possible taxonomy of MM:

- with a structuring element or without s.e.
- on sets (binary images) or on functions (gray-level images)
- dual operators or self-dual operators
- connected operators or not

Mathematical Morphology (MM)

A VERY PARTICULAR WAY TO DEFINE MM

- a gray-scale image is considered as a landscape; gray values are elevations
- to process an image is to modify the landscape, i.e., its topography
- we transform the shape of the landscape

A possible taxonomy of MM:

- with a structuring element or without s.e.
- on sets (binary images) or on functions (gray-level images)
- dual operators or self-dual operators
- connected operators or not

The context of this work;

- the powerful subset of MM emphasized above
- this subset relies on component trees

Two Morphological Dual Trees...

A Couple of Dual Sets

Given a n D image $u: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$,
lower level sets: $\quad[u<\lambda]=\{x \in X \mid u(x)<\lambda\}$
upper level sets: $\quad[u \geq \lambda]=\{x \in X \mid u(x) \geq \lambda\}$

Two Morphological Dual Trees...

A Couple of Dual Sets

Given a $n \mathrm{D}$ image $u: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$,
lower level sets: $\quad[u<\lambda]=\{x \in X \mid u(x)<\lambda\}$
upper level sets: $[u \geq \lambda]=\{x \in X \mid u(x) \geq \lambda\}$

a lower level set

u

a upper level set

Two Morphological Dual Trees...

A Couple of Dual Sets

Given a $n \mathrm{D}$ image $u: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$,
lower level sets: $[u<\lambda]=\{x \in X \mid u(x)<\lambda\}$
upper level sets: $[u \geq \lambda]=\{x \in X \mid u(x) \geq \lambda\}$

a lower level set

u

a upper level set
$\rightsquigarrow \quad$ we focus on the connected component of the lower and upper level sets

Two Morphological Dual Trees...

A Couple of Dual Sets

Given a $n \mathrm{D}$ image $u: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$,
lower level sets: $\quad[u<\lambda]=\{x \in X \mid u(x)<\lambda\}$ upper level sets: $\quad[u \geq \lambda]=\{x \in X \mid u(x) \geq \lambda\}$

A Couple of Dual Trees

$$
\begin{array}{ll}
\rightsquigarrow \text { min-tree: } & \mathcal{T}_{<}(u)=\{\Gamma \in \mathcal{C C}([u<\lambda])\}_{\lambda} \\
\rightsquigarrow \text { max-tree: } & \mathcal{T}_{\geq}(u)=\{\Gamma \in \mathcal{C C}([u \geq \lambda])\}_{\lambda}
\end{array}
$$

Two Morphological Dual Trees...

A Couple of Dual Sets

Given a $n \mathrm{D}$ image $u: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$,
lower level sets: $\quad[u<\lambda]=\{x \in X \mid u(x)<\lambda\}$
upper level sets: $[u \geq \lambda]=\{x \in X \mid u(x) \geq \lambda\}$

A Couple of Dual Trees

$$
\begin{array}{ll}
\rightsquigarrow \text { min-tree: } & \mathcal{T}_{<}(u)=\{\Gamma \in \mathcal{C C}([u<\lambda])\}_{\lambda} \\
\rightsquigarrow \text { max-tree: } & \mathcal{T}_{\geq}(u)=\{\Gamma \in \mathcal{C C}([u \geq \lambda])\}_{\lambda}
\end{array}
$$

..and a Self-Dual Tree

Shapes

With the cavity-fill-in operator Sat:

$$
\begin{array}{ll}
\text { lower shapes: } & \mathcal{S}_{<}(u)=\left\{\operatorname{Sat}(\Gamma) ; \Gamma \in \mathcal{T}_{<}(u)\right\} \\
\text { upper shapes: } & \mathcal{S}_{\geq}(u)=\left\{\operatorname{Sat}(\Gamma) ; \Gamma \in \mathcal{T}_{\geq}(u)\right\}
\end{array}
$$

...And a SELF-DUAL Tree

Shapes

With the cavity-fill-in operator Sat:

$$
\begin{array}{ll}
\text { lower shapes: } & \mathcal{S}_{<}(u)=\left\{\operatorname{Sat}(\Gamma) ; \Gamma \in \mathcal{T}_{<}(u)\right\} \\
\text { upper shapes: } & \mathcal{S}_{\geq}(u)=\left\{\operatorname{Sat}(\Gamma) ; \Gamma \in \mathcal{T}_{\geq}(u)\right\}
\end{array}
$$

A SELF-DUAL TREE

\rightsquigarrow tree of shapes: $\quad \mathfrak{S}(u)=\mathcal{S}_{<}(u) \cup \mathcal{S}_{\geq}(u)$

...And a SELF-Dual Tree

SHAPES

With the cavity-fill-in operator Sat:

$$
\begin{array}{ll}
\text { lower shapes: } & \mathcal{S}_{<}(u)=\left\{\operatorname{Sat}(\Gamma) ; \Gamma \in \mathcal{T}_{<}(u)\right\} \\
\text { upper shapes: } & \mathcal{S}_{\geq}(u)=\left\{\operatorname{Sat}(\Gamma) ; \Gamma \in \mathcal{T}_{\geq}(u)\right\}
\end{array}
$$

A SELF-DUAL TREE
\rightsquigarrow tree of shapes: $\quad \mathfrak{S}(u)=\mathcal{S}_{<}(u) \cup \mathcal{S}_{\geq}(u)$

Property = SELF-DUALITY

$$
\text { we "almost" have: } \mathfrak{S}(\complement u)=\mathfrak{S}(u)
$$

-that contrats with the duality of the min- and max- trees: $\quad \mathcal{T}_{\geq}(\mathrm{Cu})=\mathcal{T}_{<}(u)$ -

...And a SELF-Dual Tree

SHAPES

With the cavity-fill-in operator Sat:

$$
\begin{array}{ll}
\text { lower shapes: } & \mathcal{S}_{<}(u)=\left\{\operatorname{Sat}(\Gamma) ; \Gamma \in \mathcal{T}_{<}(u)\right\} \\
\text { upper shapes: } & \mathcal{S}_{\geq}(u)=\left\{\operatorname{Sat}(\Gamma) ; \Gamma \in \mathcal{T}_{\geq}(u)\right\}
\end{array}
$$

A SELF-DUAL TREE
\rightsquigarrow tree of shapes: $\quad \mathfrak{S}(u)=\mathcal{S}_{<}(u) \cup \mathcal{S}_{\geq}(u)$

Property = SELF-DUALITY

$$
\text { we "almost" have: } \mathfrak{S}(\complement u)=\mathfrak{S}(u)
$$

-that contrats with the duality of the min- and max- trees: $\mathcal{T}_{\geq}(\mathrm{Cu})=\mathcal{T}_{<}(u)$ -

Schematic Example

image

tree of shapes

Schematic Example

image

tree of shapes

Alt. DEFINITIONS OF SHAPES

the shapes are

- the cavities of upper and lower level sets
- the interior regions of level lines.

A Self-Dual Topographic Tree-Based Representation

A Self-Dual Topographic Tree-Based REPRESENTATION

Some Applications

grain filter

Some Applications

object detection

Some Applications

Some Applications

image simplification

Some Applications

morphological shapings

Some Applications

local feature detection

Dealing with Dual Connectivities

whatever a connectivity c (with $-c$ denoting its "dual"), and a relation \mathcal{R}
from a set of components, we can have a set of shapes:

$$
\mathcal{T}_{(\mathcal{R}, c)}=\left\{\Gamma \in \mathcal{C} \mathcal{C}_{c}([u \mathcal{R} \lambda])\right\}_{\lambda} \longrightarrow \mathcal{S}_{(\mathcal{R}, c)}(u)=\left\{\operatorname{Sat}_{-c}(\Gamma) ; \Gamma \in \mathcal{T}_{(\mathcal{R}, c)}(u)\right\}
$$

Dealing with Dual Connectivities

whatever a connectivity c (with $-c$ denoting its "dual"), and a relation \mathcal{R}
from a set of components, we can have a set of shapes:

$$
\mathcal{T}_{(\mathcal{R}, c)}=\left\{\Gamma \in \mathcal{C} \mathcal{C}_{c}([u \mathcal{R} \lambda])\right\}_{\lambda} \longrightarrow \mathcal{S}_{(\mathcal{R}, c)}(u)=\left\{\operatorname{Sat}_{-c}(\Gamma) ; \Gamma \in \mathcal{T}_{(\mathcal{R}, c)}(u)\right\}
$$

and derive a "properly" defined tree of shapes:

$$
\mathfrak{S}_{(\mathcal{R}, c)}(u)=\mathcal{S}_{(\mathcal{R}, c)}(u) \cup \mathcal{S}_{(\neg \mathcal{R},-c)}(u)
$$

Dealing with Dual Connectivities

whatever a connectivity c (with $-c$ denoting its "dual"), and a relation \mathcal{R}
from a set of components, we can have a set of shapes:

$$
\mathcal{T}_{(\mathcal{R}, c)}=\left\{\Gamma \in \mathcal{C C}_{c}([u \mathcal{R} \lambda])\right\}_{\lambda} \longrightarrow \mathcal{S}_{(\mathcal{R}, c)}(u)=\left\{\operatorname{Sat}_{-c}(\Gamma) ; \Gamma \in \mathcal{T}_{(\mathcal{R}, c)}(u)\right\}
$$

and derive a "properly" defined tree of shapes:

$$
\mathfrak{S}_{(\mathcal{R}, c)}(u)=\mathcal{S}_{(\mathcal{R}, c)}(u) \cup \mathcal{S}_{(\neg \mathcal{R},-c)}(u)
$$

yet, the tree of shapes is not purely self-dual:

$$
\mathfrak{S}_{(\mathcal{R}, c)}(\complement u)=\mathfrak{S}_{\left(\mathcal{R}^{-1}, c\right)}(u)=\mathfrak{S}_{\left(\neg \mathcal{R}^{-1},-c\right)}(u)
$$

Dealing with Dual Connectivities

whatever a connectivity c (with $-c$ denoting its "dual"), and a relation \mathcal{R}
from a set of components, we can have a set of shapes:

$$
\mathcal{T}_{(\mathcal{R}, c)}=\left\{\Gamma \in \mathcal{C C}_{c}([u \mathcal{R} \lambda])\right\}_{\lambda} \longrightarrow \mathcal{S}_{(\mathcal{R}, c)}(u)=\left\{\operatorname{Sat}_{-c}(\Gamma) ; \Gamma \in \mathcal{T}_{(\mathcal{R}, c)}(u)\right\}
$$

and derive a "properly" defined tree of shapes:

$$
\mathfrak{S}_{(\mathcal{R}, c)}(u)=\mathcal{S}_{(\mathcal{R}, c)}(u) \cup \mathcal{S}_{(\neg \mathcal{R},-c)}(u)
$$

yet, the tree of shapes is not purely self-dual:

$$
\mathfrak{S}_{(\mathcal{R}, c)}(\complement u)=\mathfrak{S}_{\left(\mathcal{R}^{-1}, c\right)}(u)=\mathfrak{S}_{\left(\neg \mathcal{R}^{-1},-c\right)}(u)
$$

Dealing with Dual Connectivities

whatever a connectivity c (with $-c$ denoting its "dual"), and a relation \mathcal{R}
from a set of components, we can have a set of shapes:

$$
\mathcal{T}_{(\mathcal{R}, c)}=\left\{\Gamma \in \mathcal{C C}_{c}([u \mathcal{R} \lambda])\right\}_{\lambda} \longrightarrow \mathcal{S}_{(\mathcal{R}, c)}(u)=\left\{\operatorname{Sat}_{-c}(\Gamma) ; \Gamma \in \mathcal{T}_{(\mathcal{R}, c)}(u)\right\}
$$

and derive a "properly" defined tree of shapes:

$$
\mathfrak{S}_{(\mathcal{R}, c)}(u)=\mathcal{S}_{(\mathcal{R}, c)}(u) \cup \mathcal{S}_{(\neg \mathcal{R},-c)}(u)
$$

yet, the tree of shapes is not purely self-dual:

$$
\mathfrak{S}_{(\mathcal{R}, c)}(\complement u)=\mathfrak{S}_{\left(\mathcal{R}^{-1}, c\right)}(u)=\mathfrak{S}_{\left(\neg \mathcal{R}^{-1},-c\right)}(u)
$$

For instance:

$$
\mathfrak{S}_{\left(<, c_{4}\right)}(\complement u)=\mathfrak{S}_{\left(\leq, c_{8}\right)}(u)
$$

CONSEQUENCES $1 / 2$

We have an arbitrary choice between $\mathfrak{S}_{\left(<, c_{\alpha}\right)}(u)$ and $\mathfrak{S}_{\left(>, c_{\alpha}\right)}(u)$:

$$
u=\begin{array}{|l|l|}
\hline 1 & 0 \\
\hline 0 & 1 \\
\hline
\end{array} \longrightarrow \text { two possible trees: } \begin{array}{|ll|}
\hline 1 & 0 \\
0 & 1 \\
\hline
\end{array} \begin{array}{|ll|}
\hline 1 & 0 \\
0 & 1 \\
\hline
\end{array}
$$

CONSEQUENCES $1 / 2$

We have an arbitrary choice between $\mathfrak{S}_{\left(<, c_{\alpha}\right)}(u)$ and $\mathfrak{S}_{\left(>, c_{\alpha}\right)}(u)$:

$$
u=\begin{array}{|l|l|}
\hline 1 & 0 \\
\hline 0 & 1 \\
\hline
\end{array} \longrightarrow \quad \text { two possible trees: } \begin{array}{|ll|}
\hline 1 & 0 \\
0 & 1 \\
\hline
\end{array} \begin{array}{|ll|}
\hline 1 & 0 \\
0 & 1 \\
\hline
\end{array}
$$

When choosing $\mathfrak{S}_{\left(<, c_{\alpha}\right)}(u)$, lower and upper shapes are resp. c_{α} and c_{β} :

CONSEQUENCES $2 / 2$

If u is continuous (or discrete with some continuity property ${ }^{\dagger}$):
the different types of shapes do not have the same topology!
for instance:
in $\mathfrak{S}_{\left(<, c_{\alpha}\right)}(u)$, lower shapes are open sets v. upper shapes are closed sets.
\dagger T. Géraud, E. Carlinet, S. Crozet, L. Najman. A quasi-linear algorithm to compute the tree of shapes of $n D$ images. In Proc. of the 11th Intl. Symp. on Mathematical Morphology (ISMM), 2013.
L. Najman, T. Géraud. Discrete set-valued continuity and interpolation. In Proc. of the 11th Intl. Symp. on Mathematical Morphology (ISMM), 2013.

The Grafl

we want:

A PURELY SELF-DUAL TREE

$$
\mathfrak{S}(\complement u)=\mathfrak{S}(u)
$$

The Grafl

we want:

A PURELY SELF-DUAL TREE

$$
\mathfrak{S}(\complement u)=\mathfrak{S}(u)
$$

that starts with:

A FIRST REQUIREMENT
 a single connectivity relation for both lower and upper shapes

Dummy Examples

with c_{4} for both types of shapes (so $\mathrm{Sat}_{c_{8}}$), we have those two shapes:

2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

Dummy Examples

with c_{4} for both types of shapes (so $\mathrm{Sat}_{c_{8}}$), we have those two shapes:

2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

with c_{8} for both types of shapes (so $\mathrm{Sat}_{c_{4}}$), we have those two shapes:

1	1	1	1	1	1
1	1	2	0	1	1
1	2	0	2	0	1
1	1	2	0	1	1
1	1	1	1	1	1

1	1	1	1	1	1
1	1	2	0	1	1
1	2	0	2	0	1
1	1	2	0	1	1
1	1	1	1	1	1

1	1	1	1	1	1
1	1	2	0	1	1
1	2	0	2	0	1
1	1	2	0	1	1
1	1	1	1	1	1

Dummy Examples

with c_{4} for both types of shapes (so $\mathrm{Sat}_{c_{8}}$), we have those two shapes:

2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

with c_{8} for both types of shapes (so $\mathrm{Sat}_{c_{4}}$), we have those two shapes:

1	1	1	1	1	1
1	1	2	0	1	1
1	2	0	2	0	1
1	1	2	0	1	1
1	1	1	1	1	1

1	1	1	1	1	1
1	1	2	0	1	1
1	2	0	2	0	1
1	1	2	0	1	1
1	1	1	1	1	1

1	1	1	1	1	1
1	1	2	0	1	1
1	2	0	2	0	1
1	1	2	0	1	1
1	1	1	1	1	1

in both cases, we do not have: $S_{1} \cap S_{2} \neq \emptyset \Rightarrow\left(S_{1} \subset S_{2}\right.$ or $\left.S_{2} \subset S_{1}\right)$
\rightsquigarrow the set of shapes is not a tree $/$ it is a lattice since $\left(\mathfrak{S}_{c}, \subset\right)$ is a poset

The SLIDE!

given any gray-level image u

- $\mathfrak{S}_{c}(u)$ is a lattice
- taking $c=c_{\alpha}$ or $c=c_{\beta}$ is equivalent when an image is well-composed (...)

The SLIDE!

given any gray-level image u

- $\mathfrak{S}_{c}(u)$ is a lattice
- taking $c=c_{\alpha}$ or $c=c_{\beta}$ is equivalent when an image is well-composed (...)
- we can have an interpolation $\Im(u)$ of u that is a well-composed image

The SLide!

given any gray-level image u

- $\mathfrak{S}_{c}(u)$ is a lattice
- taking $c=c_{\alpha}$ or $c=c_{\beta}$ is equivalent when an image is well-composed (...)
- we can have an interpolation $\mathfrak{I}(u)$ of u that is a well-composed image
- we expect $\mathfrak{S}_{c_{\alpha}}(\Im(u))$ to be a perfectly self-dual tree of shapes

The SLIDE!

given any gray-level image u

- $\mathfrak{S}_{c}(u)$ is a lattice
- taking $c=c_{\alpha}$ or $c=c_{\beta}$ is equivalent when an image is well-composed (...)
- we can have an interpolation $\mathfrak{I}(u)$ of u that is a well-composed image

under constraints

The SLide!

given any gray-level image u

- $\mathfrak{S}_{c}(u)$ is a lattice
- taking $c=c_{\alpha}$ or $c=c_{\beta}$ is equivalent when an image is well-composed (...)
- we can have an interpolation $\mathfrak{I}(u)$ of u that is a well-composed image
- we expect $\mathfrak{S}_{c_{\alpha}}(\Im(u))$ to be a perfectly self-dual tree of shapes

under constraints

The SLIDE!

given any gray-level image u

- $\mathfrak{S}_{c}(u)$ is a lattice
- taking $c=c_{\alpha}$ or $c=c_{\beta}$ is equivalent when an image is well-composed (...)
- we can have an interpolation $\mathfrak{I}(u)$ of u that is a well-composed image
- we expect $\mathfrak{S}_{c_{\alpha}}(\Im(u))$ to be a perfectly self-dual tree of shapes

under constraints

- $\mathfrak{J}(u)$ can be considered as a rasterization equivalent to u

The SLIDE!

given any gray-level image u

- $\mathfrak{S}_{c}(u)$ is a lattice
- taking $c=c_{\alpha}$ or $c=c_{\beta}$ is equivalent when an image is well-composed (...)
- we can have an interpolation $\Im(u)$ of u that is a well-composed image
- we expect $\mathfrak{S}_{c_{\alpha}}(\Im(u))$ to be a perfectly self-dual tree of shapes

under constraints

- the interpolation \mathfrak{I} has to be self-dual, i.e., $\mathfrak{\Im}(\complement u)=\lceil\mathfrak{I}(u)$

The SLIDE!

given any gray-level image u

- $\mathfrak{S}_{c}(u)$ is a lattice
- taking $c=c_{\alpha}$ or $c=c_{\beta}$ is equivalent when an image is well-composed (...)
- we can have an interpolation $\Im(u)$ of u that is a well-composed image
- we expect $\mathfrak{S}_{c_{\alpha}}(\Im(u))$ to be a perfectly self-dual tree of shapes

under constraints

- the interpolation \mathfrak{I} has to be self-dual, i.e., $\mathfrak{I}(\mathrm{Cu})=\lceil\mathfrak{I}(u)$
- $\mathfrak{I}(u)$ can be considered as a rasterization equivalent to u

The SLIDE!

given any gray-level image u

- $\mathfrak{S}_{c}(u)$ is a lattice
- taking $c=c_{\alpha}$ or $c=c_{\beta}$ is equivalent when an image is well-composed (...)
- we can have an interpolation $\Im(u)$ of u that is a well-composed image
- we expect $\mathfrak{S}_{c_{\alpha}}(\Im(u))$ to be a perfectly self-dual tree of shapes

under constraints

- the interpolation \mathfrak{I} has to be self-dual, i.e., $\mathfrak{J}(\complement u)=\lceil\mathfrak{I}(u)$
- $\mathfrak{I}(u)$ can be considered as a rasterization equivalent to u
- we shall stick to the "morphological way":

The SLIDE!

given any gray-level image u

- $\mathfrak{S}_{c}(u)$ is a lattice
- taking $c=c_{\alpha}$ or $c=c_{\beta}$ is equivalent when an image is well-composed (...)
- we can have an interpolation $\Im(u)$ of u that is a well-composed image
- we expect $\mathfrak{S}_{c_{\alpha}}(\Im(u))$ to be a perfectly self-dual tree of shapes

under constraints

- the interpolation \mathfrak{I} has to be self-dual, i.e., $\mathfrak{\Im}(\complement u)=\lceil\Im(u)$
- $\mathfrak{I}(u)$ can be considered as a rasterization equivalent to u
- we shall stick to the "morphological way":
- having operators on sets of values

The SLIDE!

given any gray-level image u

- $\mathfrak{S}_{c}(u)$ is a lattice
- taking $c=c_{\alpha}$ or $c=c_{\beta}$ is equivalent when an image is well-composed (...)
- we can have an interpolation $\mathfrak{I}(u)$ of u that is a well-composed image
- we expect $\mathfrak{S}_{c_{\alpha}}(\Im(u))$ to be a perfectly self-dual tree of shapes

under constraints

- the interpolation \mathfrak{I} has to be self-dual, i.e., $\Im(C u)=\lceil\Im(u)$
- $\mathfrak{I}(u)$ can be considered as a rasterization equivalent to u
- we shall stick to the "morphological way":
- having operators on sets of values
- ensuring invariance axioms (contrast changes, geometrical ones...)

What's Up Now...

- extend the notion of "well-composedness" to $n \mathrm{D}$ images on a cubical grid
- prove that: if a gray-level $n \mathrm{D}$ image v is WC then $\mathfrak{S}_{c}(v)$ is a tree
- study how to make a 2D image well-composed, that is:

What's Up Now...

- extend the notion of "well-composedness" to $n \mathrm{D}$ images on a cubical grid
- prove that:
if a gray-level $n \mathrm{D}$ image v is WC then $\mathfrak{S}_{c}(v)$ is a tree
- study how to make a 2D image well-composed, that is:

What's Up Now...

- extend the notion of "well-composedness" to $n \mathrm{D}$ images on a cubical grid
- prove that:
if a gray-level $n \mathrm{D}$ image v is WC then $\mathfrak{S}_{c}(v)$ is a tree
- study how to make a 2D image well-composed, that is:

What's Up Now...

- extend the notion of "well-composedness" to $n \mathrm{D}$ images on a cubical grid
- prove that:
if a gray-level $n \mathrm{D}$ image v is WC then $\mathfrak{S}_{c}(v)$ is a tree
- study how to make a 2D image well-composed, that is:
- turn an image u (a priori not WC) into a WC image $v=\mathfrak{I}^{2 D}(u)$

What's Up Now...

- extend the notion of "well-composedness" to $n \mathrm{D}$ images on a cubical grid
- prove that:
if a gray-level $n \mathrm{D}$ image v is WC then $\mathfrak{S}_{c}(v)$ is a tree
- study how to make a 2 D image well-composed, that is:
- turn an image u (a priori not WC) into a WC image $v=\mathfrak{I}^{2 D}(u)$
- find $\mathfrak{J}^{2 D}$ with the appropriate properties (under reasonable constraints)

What's Up Now...

- extend the notion of "well-composedness" to $n \mathrm{D}$ images on a cubical grid
- prove that:
if a gray-level $n \mathrm{D}$ image v is WC then $\mathfrak{S}_{c}(v)$ is a tree
- study how to make a 2D image well-composed, that is:
- turn an image u (a priori not WC) into a WC image $v=\mathfrak{I}^{2 D}(u)$
- find $\mathfrak{J}^{2 D}$ with the appropriate properties (under reasonable constraints)
- see if we can do it the same way for $\mathfrak{I}^{3 D}$

What's Up Now...

- extend the notion of "well-composedness" to $n \mathrm{D}$ images on a cubical grid
- prove that:
if a gray-level $n \mathrm{D}$ image v is WC then $\mathfrak{S}_{c}(v)$ is a tree
- study how to make a 2 D image well-composed, that is:
- turn an image u (a priori not WC) into a WC image $v=\mathfrak{I}^{2 D}(u)$
- find $\mathfrak{J}^{2 D}$ with the appropriate properties (under reasonable constraints)
- see if we can do it the same way for $\mathfrak{I}^{3 D}$
- deal with the $n \mathrm{D}$ case

2D Well-Composed (WC) Sets (Latecki, cviu, 1995)

WCNESS FOR 2D SETS

Definitions:

- a set is weakly well-composed if any 8-component of this set is a 4-component
- a set is well-composed if both this set and its complement are weakly WC

2D Well-Composed (WC) Sets (Latecki, cviu, 1995)

WCNESS FOR 2D SETS

Definitions:

- a set is weakly well-composed if any 8-component of this set is a 4-component
- a set is well-composed if both this set and its complement are weakly WC

Local Characterization

- a set X is locally 4-connected if $\forall p \in X, \mathcal{N}_{8}(p) \cap X$ is 4-connected
- X is locally 4-connected $\Leftrightarrow X$ is well-composed

2D Well-Composed (WC) Sets (Latecki, cviu, 1995)

WCNESS FOR 2D Sets

Definitions:

- a set is weakly well-composed if any 8-component of this set is a 4-component
- a set is well-composed if both this set and its complement are weakly WC

Local Characterization

- a set X is locally 4-connected if $\forall p \in X, \mathcal{N}_{8}(p) \cap X$ is 4-connected
- X is locally 4-connected $\Leftrightarrow X$ is well-composed

Critical Configurations

It is equivalent to:
a set is WC if the configurations

do not appear

WC FOR GRAY-LEVEL PICTURES (Latecki, CVIU, 1995)

Extension to Gray-Levels

A gray-level image u is well-composed if any set $[u \geq \lambda]$ is well-composed.

Example of an image (left) whose interpolation (right) is well-composed:

3	2
1	8

3	2	2
2	2	5
1	4	8°

\rightsquigarrow for every blocks | a | d |
| :--- | :--- |
| | c |
| | b |
| | we should have: $\operatorname{intvl}(a, b) \cap \operatorname{intvl}(c, d) \neq \emptyset$ |
| where $\operatorname{intvl}(v, w)=\llbracket \min (v, w), \max (v, w) \rrbracket$ | |

WC FOR 3D SETS (Latecki, GMIP, 1997)

DEFINITION

a set X is well-composed if ∂X is a 2D manifold in the continuous analog

WC FOR 3D SETS (Latecki, GMIP, 1997)

DEFINITION

a set X is well-composed if ∂X is a 2D manifold in the continuous analog

Logical EQUivalences

- the configurations
 do not appear in X
- every component of ∂X is a simple closed surface

WC FOR 3D SETS (Latecki, GMIP, 1997)

DEFINITION

a set X is well-composed if ∂X is a 2D manifold in the continuous analog

Logical EQUIVALENCES

- the configurations
 do not appear in X
- every component of ∂X is a simple closed surface

About Jordan-Bouwer Theorem

if X is WC, then, $\forall S \in \mathcal{C C}(\partial X), \mathbb{R}^{3} \backslash S$ has precisely 2 connected components of which S is the common boundary

Breathe!

$2,3, \ldots$ then n

WCNESS IN $n \mathrm{D}$ NEW!

DEFINITION

a $n \mathrm{D}$ set X is well-composed if ∂X is a $n \mathrm{D}$ manifold in the continuous analog

WCNESS IN $n \mathrm{D}$ NEW!

DEFInition

a $n \mathrm{D}$ set X is well-composed if ∂X is a $n \mathrm{D}$ manifold in the continuous analog

Logical EQUIVALENCES

It is equivalent to:

- X is locally $c_{2 n^{2}}$-connected, i.e., $\forall p \in X, \mathcal{N}_{c_{3^{n}-1}}(p) \cap X$ is $c_{2 n^{2}}$-connected
- ∂X is a discrete n-surface in the cellular complex
- the restriction of X to any hyperplane of \mathbb{Z}^{n} is well-composed (in \mathbb{Z}^{n-1}) and the critical configuration based on $c_{3^{n}-1}$ does not appear

WCNESS IN $n \mathrm{D}$ NEW!

DEFInition

a $n \mathrm{D}$ set X is well-composed if ∂X is a $n \mathrm{D}$ manifold in the continuous analog

Logical EQuivalences

It is equivalent to:

- X is locally $c_{2 n^{n}}$-connected, i.e., $\forall p \in X, \mathcal{N}_{c_{3^{n}-1}}(p) \cap X$ is $c_{2 n^{n}}$-connected
- ∂X is a discrete n-surface in the cellular complex
- the restriction of X to any hyperplane of \mathbb{Z}^{n} is well-composed (in \mathbb{Z}^{n-1}) and the critical configuration based on $c_{3^{n}-1}$ does not appear

Same Extension to Gray-Levels

A gray-level n D image u is well-composed if any set $[u \geq \lambda]$ is well-composed.

Link Between WC and ToS NEW!

The Return of the Tree of Shapes

if a gray-level $n \mathrm{D}$ image u is well-composed, then $\mathfrak{S}(u)$ is a tree

Link Between WC and ToS NEW!

The Return of the Tree of Shapes

if a gray-level $n \mathrm{D}$ image u is well-composed, then $\mathfrak{S}(u)$ is a tree
it is a sufficient condition (not a necessary one):

with $u=$| 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 2 | 1 |
| 1 | 2 | 0 | 1 |
| 1 | 1 | 1 | 1 |,

$\mathfrak{S}(u)$ is a tree, while u is not well-composed.

Sketch of the Proof

With $\mathfrak{T}(u)=\mathcal{T}_{<}(u) \cup \mathcal{T}_{\geq}(u)$, consider $A \in \mathfrak{T}(u)$ and $B \in \mathfrak{T}(u)$.

Sketch of the Proof

> With $\mathfrak{T}(u)=\mathcal{T}_{<}(u) \cup \mathcal{T}_{\geq}(u)$, consider $A \in \mathfrak{T}(u)$ and $B \in \mathfrak{T}(u)$.
> we want to proof that $\operatorname{Sat}(A) \cap \operatorname{Sat}(B)=\emptyset$ or $\operatorname{Sat}(A) \subseteq \operatorname{Sat}(B)$ or $\operatorname{Sat}(B) \subseteq \operatorname{Sat}(A)$

Sketch of the Proof

With $\mathfrak{T}(u)=\mathcal{T}_{<}(u) \cup \mathcal{T}_{\geq}(u)$, consider $A \in \mathfrak{T}(u)$ and $B \in \mathfrak{T}(u)$.
we want to proof that $\operatorname{Sat}(A) \cap \operatorname{Sat}(B)=\emptyset$ or $\operatorname{Sat}(A) \subseteq \operatorname{Sat}(B)$ or $\operatorname{Sat}(B) \subseteq \operatorname{Sat}(A)$
so that $\mathfrak{S}(u)=\{\operatorname{Sat}(\Gamma), \Gamma \in \mathfrak{T}(u)\}$ is a tree (purely self-dual and with $c_{2 n}$ only)

Sketch of the Proof

With $\mathfrak{T}(u)=\mathcal{T}_{<}(u) \cup \mathcal{T}_{\geq}(u)$, consider $A \in \mathfrak{T}(u)$ and $B \in \mathfrak{T}(u)$.
we want to proof that $\operatorname{Sat}(A) \cap \operatorname{Sat}(B)=\emptyset$ or $\operatorname{Sat}(A) \subseteq \operatorname{Sat}(B)$ or $\operatorname{Sat}(B) \subseteq \operatorname{Sat}(A)$
so that $\mathfrak{S}(u)=\{\operatorname{Sat}(\Gamma), \Gamma \in \mathfrak{T}(u)\}$ is a tree (purely self-dual and with $c_{2 n}$ only)

- if $A \cap B=\emptyset$
- $\operatorname{Sat}(A)$ and $\operatorname{Sat}(B)$ are either nested or disjoint this Lemma is proven in the book from Caselles \& Monasse (LNCS vol. 1984, 2009)

Sketch of the Proof

With $\mathfrak{T}(u)=\mathcal{T}_{<}(u) \cup \mathcal{T}_{\geq}(u)$, consider $A \in \mathfrak{T}(u)$ and $B \in \mathfrak{T}(u)$.
we want to proof that $\operatorname{Sat}(A) \cap \operatorname{Sat}(B)=\emptyset$ or $\operatorname{Sat}(A) \subseteq \operatorname{Sat}(B)$ or $\operatorname{Sat}(B) \subseteq \operatorname{Sat}(A)$ so that $\mathfrak{S}(u)=\{\operatorname{Sat}(\Gamma), \Gamma \in \mathfrak{T}(u)\}$ is a tree (purely self-dual and with $c_{2 n}$ only)

- if $A \cap B=\emptyset$
- $\operatorname{Sat}(A)$ and $\operatorname{Sat}(B)$ are either nested or disjoint this Lemma is proven in the book from Caselles \& Monasse (LNCS vol. 1984, 2009)
- otherwise $A \cap B \neq \emptyset$
- case " A and B with the same type" (e.g., $A \in \mathcal{C C}([u<\lambda])$ and $B \in \mathcal{C C}([u<\mu])$: since $A \cap B \neq \emptyset$, we have either $A \subseteq B$ or $B \subseteq A$ since Sat is increasing, $\operatorname{Sat}(A)$ and $\operatorname{Sat}(B)$ are nested
- case " A and B with different types" (e.g., $A \in \mathcal{C C}([u \geq \lambda])$ and $B \in \mathcal{C C}([u<\mu])$: with $x \in A \cap B, \lambda \leq u(x)<\mu \Rightarrow \lambda<\mu$
let $\Delta B=\left\{q \in \mathcal{N}_{c_{2 n}}(p) \mid p \in B, q \notin B\right\}$, so we have $\Delta B \subseteq[u \geq \mu] \subseteq[u \geq \lambda]$ \rightsquigarrow cont'd next slide

Sketch of the Proof

we can split $\Delta B=E \cup C$ where

- C is the part of ΔB included in cavities of B
- E is the other part $\left(\approx E\right.$ is the "external" boundary of B w.r.t. $\left.c_{2 n}\right)$
we have:
unicoherency and well-composedness $\Rightarrow E$ is a connected component

b	e			
e^{\prime}	$?$	\Rightarrow	b	e
:---	:---			
e^{\prime}	$\mathrm{e}^{\prime \prime}$	\quad	which is crucial for the following!	
:---				
look there \downarrow				

Sketch of the Proof

we can split $\Delta B=E \cup C$ where

- C is the part of ΔB included in cavities of B
- E is the other part $\left(\approx E\right.$ is the "external" boundary of B w.r.t. $\left.c_{2 n}\right)$
we have:
unicoherency and well-composedness $\Rightarrow E$ is a connected component

b	e			
e^{\prime}	$?$	\Rightarrow	b	e
:---	:---			
e^{\prime}	$\mathrm{e}^{\prime \prime}$	\quad	which is crucial for the following!	
:---				
look there \downarrow				

we have:

- $\operatorname{Sat}(\Delta B)=\operatorname{Sat}(E)$
- a component $F \in \mathcal{C C}([u \geq \lambda])$ exists such as $E \subseteq F \leftarrow$ here!
so:
- either $F \cap A=\emptyset$ then $A \subseteq \operatorname{Sat}(B)$ so $\operatorname{Sat}(A) \subseteq \operatorname{Sat}(B)$
- or $F \cap A \neq \emptyset$ then $F \subseteq A$ thus $\operatorname{Sat}(B) \subseteq \operatorname{Sat}(\Delta B)=\operatorname{Sat}(E) \subseteq \operatorname{Sat}(F) \subseteq \operatorname{Sat}(A)$

Sketch of the Proof

we can split $\Delta B=E \cup C$ where

- C is the part of ΔB included in cavities of B
- E is the other part $\left(\approx E\right.$ is the "external" boundary of B w.r.t. $\left.c_{2 n}\right)$
we have:
unicoherency and well-composedness $\Rightarrow E$ is a connected component

b	e			
e^{\prime}	$?$	\Rightarrow	b	e
:---	:---			
e^{\prime}	$\mathrm{e}^{\prime \prime}$	\quad	which is crucial for the following!	
:---				
look there \downarrow				

we have:

- $\operatorname{Sat}(\Delta B)=\operatorname{Sat}(E)$
- a component $F \in \mathcal{C C}([u \geq \lambda])$ exists such as $E \subseteq F \leftarrow$ here!
so:
- either $F \cap A=\emptyset$ then $A \subseteq \operatorname{Sat}(B)$ so $\operatorname{Sat}(A) \subseteq \operatorname{Sat}(B)$
- or $F \cap A \neq \emptyset$ then $F \subseteq A$ thus $\operatorname{Sat}(B) \subseteq \operatorname{Sat}(\Delta B)=\operatorname{Sat}(E) \subseteq \operatorname{Sat}(F) \subseteq \operatorname{Sat}(A)$

Key-Point of the Proof

we expect B to be included in the saturation of a component such as A :

u					
2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

B					
2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

A					
2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

E					
2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

Key-Point of the Proof

we expect B to be included in the saturation of a component such as A :

u					
2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

B					
2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

A					
2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

yet

- E may not be a connected component if the image is not WC
- so we may not have a component $F \in \mathfrak{T}$ such as B is in a cavity of F
- here the candidate is A and we don't have $\operatorname{Sat}(B) \subseteq \operatorname{Sat}(A)$

RECAP

a gray-level image v is well-composed $\Rightarrow \mathfrak{S}(v)$ is a purely self-dual tree

RECAP

a gray-level image v is well-composed $\Rightarrow \mathfrak{S}(v)$ is a purely self-dual tree any gray-level image u is not a priori well-composed

RECAP

a gray-level image v is well-composed $\Rightarrow \mathfrak{S}(v)$ is a purely self-dual tree any gray-level image u is not a priori well-composed
we can try to get an interpolation $v=\Im(u)$ that is well-composed

RECAP

a gray-level image v is well-composed $\Rightarrow \mathfrak{S}(v)$ is a purely self-dual tree any gray-level image u is not a priori well-composed
we can try to get an interpolation $v=\Im(u)$ that is well-composed
when done, $\mathfrak{I}(u)$ is a self-dual representation of u with a perfect tree of shapes

RECAP

a gray-level image v is well-composed $\Rightarrow \mathfrak{S}(v)$ is a purely self-dual tree any gray-level image u is not a priori well-composed we can try to get an interpolation $v=\Im(u)$ that is well-composed when done, $\mathfrak{I}(u)$ is a self-dual representation of u with a perfect tree of shapes we thus have to find \mathfrak{I}... let's start with the 2D case!

Making a 2D Image WC: The Constraints (1/2)

$$
u=\begin{array}{|l|l|}
\hline a & d \\
\hline c & b \\
\hline
\end{array} \quad \rightarrow \quad \Im_{2 D}=\begin{array}{|c|c|c|}
\hline a & ? & d \\
\hline ? & ? & ? \\
\hline c & ? & b \\
\hline
\end{array}
$$

Making a 2D Image WC: The Constraints (1/2)

$$
u=\begin{array}{|c|c|}
\hline a & d \\
\hline c & b \\
\hline
\end{array} \quad \rightarrow \quad \mathfrak{I}_{2 D}=\begin{array}{|c|c|c|}
\hline a & a d & d \\
\hline a c & m & b d \\
\hline c & b c & b \\
\hline
\end{array}
$$

Making a 2D Image WC: The Constraints (1/2)

$$
u=\begin{array}{|c|c|}
\hline a & d \\
\hline c & b \\
\hline
\end{array} \quad \rightarrow \quad \mathfrak{I}_{2 D}=\begin{array}{|c|c|c|}
\hline a & a d & d \\
\hline a c & m & b d \\
\hline c & b c & b \\
\hline
\end{array}
$$

Constraints:

Making a 2D Image WC: The Constraints (1/2)

$$
u=\begin{array}{|l|l|}
\hline a & d \\
\hline c & b \\
\hline
\end{array} \quad \rightarrow \quad \mathfrak{I}_{2 D}=\begin{array}{|c|c|c|}
\hline a & a d & d \\
\hline a c & m & b d \\
\hline c & b c & b \\
\hline
\end{array}
$$

Constraints:

- determinism
- an increasing function f exists such as $a d=f(a, d), a c=f(a, c)$, and so on
- $m=g(a, b, c, d)$ with g increasing w.r.t. all arguments

Making a 2D Image WC: The Constraints (1/2)

$$
u=\begin{array}{|l|l|}
\hline a & d \\
\hline c & b \\
\hline
\end{array} \quad \rightarrow \quad \Im_{2 D}=\begin{array}{|c|c|c|}
\hline a & a d & d \\
\hline a c & m & b d \\
\hline c & b c & b \\
\hline
\end{array}
$$

Constraints:

- determinism
- an increasing function f exists such as $a d=f(a, d), a c=f(a, c)$, and so on
- $m=g(a, b, c, d)$ with g increasing w.r.t. all arguments
- geometrical invariance
- $f(v, w)=f(w, v)$
- $g(a, b, c, d)=g(a, b, d, c)$, and the other symmetries
- $g(a, b, c, d)=g(c, d, b, a)$, and the other rotations

Making a 2D Image WC: The Constraints (1/2)

$$
u=\begin{array}{|l|l|}
\hline a & d \\
\hline c & b \\
\hline
\end{array} \quad \longrightarrow \quad \mathfrak{I}_{2 D}=\begin{array}{|c|c|c|}
\hline a & a d & d \\
\hline a c & m & b d \\
\hline c & b c & b \\
\hline
\end{array}
$$

Constraints:

- determinism
- an increasing function f exists such as $a d=f(a, d), a c=f(a, c)$, and so on
- $m=g(a, b, c, d)$ with g increasing w.r.t. all arguments
- geometrical invariance
- $f(v, w)=f(w, v)$
- $g(a, b, c, d)=g(a, b, d, c)$, and the other symmetries
- $g(a, b, c, d)=g(c, d, b, a)$, and the other rotations
- no new extremum
- $f(v, w) \in \operatorname{intvl}(v, w)$
- $m \in \operatorname{intvl}(a c, b d)$ and $m \in \operatorname{intvl}(a d, b c)$

Making a 2D Image WC: The Constraints (2/2)

$$
u=\begin{array}{|l|l|}
\hline a & d \\
\hline c & b \\
\hline
\end{array} \quad \rightarrow \quad \mathfrak{I}_{2 D}=\begin{array}{|c|c|c|}
\hline a & a d & d \\
\hline a c & m & b d \\
\hline c & b c & b \\
\hline
\end{array}
$$

Other constraints:

Making a 2D Image WC: The Constraints (2/2)

$$
u=\begin{array}{|l|l|}
\hline a & d \\
\hline c & b \\
\hline
\end{array} \quad \rightarrow \quad \mathfrak{I}_{2 D}=\begin{array}{|c|c|c|}
\hline a & a d & d \\
\hline a c & m & b d \\
\hline c & b c & b \\
\hline
\end{array}
$$

Other constraints:

- well-composedness
- $\operatorname{intvl}(a, m) \cap \operatorname{intvl}(a c, a d) \neq \emptyset \quad$ (top left)
- likewise for the 3 other 2×2 parts

Making a 2D Image WC: The Constraints (2/2)

$$
u=\begin{array}{|l|l|}
\hline a & d \\
\hline c & b \\
\hline
\end{array} \quad \rightarrow \quad \Im_{2 D}=\begin{array}{|c|c|c|}
\hline a & a d & d \\
\hline a c & m & b d \\
\hline c & b c & b \\
\hline
\end{array}
$$

Other constraints:

- well-composedness
- $\operatorname{intvl}(a, m) \cap \operatorname{intvl}(a c, a d) \neq \emptyset \quad$ (top left)
- likewise for the 3 other 2×2 parts
- self-duality
- $f\left(\complement v, \complement_{w}\right)=\complement f(v, w)$
- $g\left(\complement v_{1}, C v_{2}, \complement v_{3}, C v_{4}\right)=\complement g\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$

Making a 2D Image WC: The Constraints (2/2)

$$
u=\begin{array}{|l|l|}
\hline a & d \\
\hline c & b \\
\hline
\end{array} \quad \rightarrow \quad \Im_{2 D}=\begin{array}{|c|c|c|}
\hline a & a d & d \\
\hline a c & m & b d \\
\hline c & b c & b \\
\hline
\end{array}
$$

Other constraints:

- well-composedness
- $\operatorname{intvl}(a, m) \cap \operatorname{intvl}(a c, a d) \neq \emptyset \quad$ (top left)
- likewise for the 3 other 2×2 parts
- self-duality
- $f(\complement v, \complement w)=\complement f(v, w)$
- $g\left(C v_{1}, C v_{2}, C v_{3}, C v_{4}\right)=\complement g\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$
- extra and optional
- h exists such as $g(a, b, c, d)=h(f(a, c), f(b, d))=h(f(a, d), f(b, c))$
- so we have $h(\complement v, \complement w)=\complement h(v, w)$
- and $h(v, w)=h(w, v) \in \operatorname{intvl}(v, w)$

Making a 2D Image WC: First Attempts

$$
u=\begin{array}{|l|l|}
\hline a & d \\
\hline c & b \\
\hline
\end{array} \quad \rightarrow \quad \Im_{2 D}=\begin{array}{|c|c|c|}
\hline a & f(a, d) & d \\
\hline f(a, c) & g(a, b, c, d) & f(b, d) \\
\hline c & f(b, c) & b \\
\hline
\end{array}
$$

Nota bene: if f is bisymmetrical, i.e., $f(f(a, c), f(b, d))=f(f(a, d), f(b, c))$ then g is just applying f twice (like in the bilinear interpolation)

Making a 2D Image WC: First Attempts

$$
u=\begin{array}{|l|l|}
\hline a & d \\
\hline c & b \\
\hline
\end{array} \quad \longrightarrow \quad \Im_{2 D}=\begin{array}{|c|c|c|}
\hline a & f(a, d) & d \\
\hline f(a, c) & g(a, b, c, d) & f(b, d) \\
\hline c & f(b, c) & b \\
\hline
\end{array}
$$

Nota bene: if f is bisymmetrical, i.e., $f(f(a, c), f(b, d))=f(f(a, d), f(b, c))$ then g is just applying f twice (like in the bilinear interpolation)

Idea \#1: f is either min or max

- bisymmetrical
- satisfy all constraints except self-duality, since $\min (\complement v, \complement w)=\complement \max (v, w)$

Making a 2D Image WC: First Attempts

$$
u=\begin{array}{|l|l|}
\hline a & d \\
\hline c & b \\
\hline
\end{array} \quad \rightarrow \quad \Im_{2 D}=\begin{array}{|c|c|c|}
\hline a & f(a, d) & d \\
\hline f(a, c) & g(a, b, c, d) & f(b, d) \\
\hline c & f(b, c) & b \\
\hline
\end{array}
$$

Nota bene: if f is bisymmetrical, i.e., $f(f(a, c), f(b, d))=f(f(a, d), f(b, c))$ then g is just applying f twice (like in the bilinear interpolation)

Idea \#1: f is either min or max

- bisymmetrical
- satisfy all constraints except self-duality, since $\min (\complement v, \complement w)=\complement \max (v, w)$

Idea \#2: f is a mean (i.e., $\min \leq f \leq \max , f \neq \min , f \neq \max , f(v, w)=f(w, v), f$ increasing)

- some well-known bisymmetrical means: $2 x y /(x+y),(x+y) / 2, \sqrt{x y}, \sqrt{\left(x^{2}+y^{2}\right) / 2}$
- yet they fail with self-duality and/or WCness!

Making a 2D Image WC: An How-To

- consider a 3×3 part of $\mathfrak{I}(u)$ and a threshold set X
- notation: $\bullet \in X, \bullet \in C X$, and \circ when we do not know
- it yields to 4 cases (modulo symmetries, rotations, and Cation)
- using only the "no new extremum" constraint, we have:

Making a 2D Image WC: An How-To

- consider a 3×3 part of $\mathfrak{I}(u)$ and a threshold set X
- notation: $\bullet \in X, \bullet \in C X$, and \circ when we do not know
- it yields to 4 cases (modulo symmetries, rotations, and Cation)
- using only the "no new extremum" constraint, we have:

\bullet	0	\bullet
0	0	0
\bullet	0	\bullet

\Rightarrow| \bullet | \bullet | \bullet |
| :---: | :---: | :---: |
| \bullet | \bullet | \bullet |
| \bullet | \bullet | \bullet |$\Rightarrow \mathrm{WC}$

Making a 2D Image WC: An How-To

- consider a 3×3 part of $\Im(u)$ and a threshold set X
- notation: $\bullet \in X, \bullet \in C X$, and \circ when we do not know
- it yields to 4 cases (modulo symmetries, rotations, and Cation)
- using only the "no new extremum" constraint, we have:

\bullet	0	\bullet
0	0	0
\bullet	0	\bullet

\bullet	0	\bullet
0	0	0
\bullet	0	\bullet

\Rightarrow| \bullet | \bullet | \bullet |
| :--- | :--- | :--- |
| \bullet | \circ | \circ |
| \bullet | \circ | \bullet |\Rightarrow WC \quad (since we cannot have | \bullet | \bullet | \bullet |
| :---: | :---: | :---: |
| \bullet | \bullet | \bullet |
| | \bullet | \bullet |

Making a 2D Image WC: An How-To

- consider a 3×3 part of $\mathfrak{I}(u)$ and a threshold set X
- notation: $\bullet \in X, \bullet \in \complement X$, and \circ when we do not know
- it yields to 4 cases (modulo symmetries, rotations, and Cation)
- using only the "no new extremum" constraint, we have:

\bullet	0	\bullet
0	0	0
\bullet	0	\bullet

\bullet	0	\bullet
0	0	0
\bullet	0	\bullet

(since we cannot have

\bullet	0	\bullet
0	0	0
\bullet	0	\bullet

Making a 2D Image WC: An How-To

- consider a 3×3 part of $\Im(u)$ and a threshold set X
- notation: $\bullet \in X, \bullet \in \complement X$, and \circ when we do not know
- it yields to 4 cases (modulo symmetries, rotations, and Cation)
- using only the "no new extremum" constraint, we have:

\bullet	0	\bullet
0	0	0
\bullet	0	\bullet

\bullet	0	\bullet
0	0	0
\bullet	0	\bullet

\bullet	0	\bullet
0	0	0
\bullet	0	\bullet

$$
\Rightarrow \begin{array}{|c|c|c|}
\hline \bullet & \bullet & \bullet \\
\hline \circ & \circ & \circ \\
\hline \bullet & \bullet & \bullet \\
\hline
\end{array} \Rightarrow \mathrm{WC}
$$

\bullet	0	\bullet
0	0	0
\bullet	0	\bullet

$$
\Rightarrow \text { ? }
$$

so we have to study this case...

The Saddle-Point Case

a	$a d$	d				
$a c$	m	$b d$				
c	$b c$	b	\leadsto	\bullet	\circ	\bullet
:---:	:---:	:---:				
\circ	\circ	\circ				
\bullet	\circ	\bullet				

let us assume that $a<b<c<d$, nota bene: below abcd $=m$ just remark that $v<w \Rightarrow v<v w<w$ (the "no new extr." constraint)
so we have the following Hasse diagram (left) and depicted with 4-adjacencies (right):

The Saddle-Point Case

Assume that the point of value $a c$ is in X (so depicted in green) we thus have:

so: \begin{tabular}{|c|c|c|}
\hlinea \& $a d$ \& d

\hline$a c$ \& m \& $b d$

\hlinec \& $b c$ \& b

\hline

\leadsto

\hline\bullet \& \circ \& \bullet

\hline\bullet \& \bullet \& \bullet

\hline\bullet \& \circ \& \bullet

\hline
\end{tabular}$\Rightarrow \mathrm{WC}$

The same goes when assuming that the point of value $b d$ is in $C X$ (red).

The Saddle-Point Case

The remaining case is therefore:

WC iff $m=b c$ i.e., iff $g(a, b, c, d)=f(b, c)$

The Conclusion for 2D

in the morphology setting, we want an operator so:
(WC iff $\operatorname{op}(\{a, b, c, d\})=\operatorname{op}(\{b, c\})) \Rightarrow$ op is a median

The Conclusion for 2D

in the morphology setting, we want an operator so:
(WC iff $\operatorname{op}(\{a, b, c, d\})=\operatorname{op}(\{b, c\})) \Rightarrow$ op is a median
the only bisymmetrical median is such that

$$
\operatorname{med}(\{v, w\})=\frac{v+w}{2}
$$

The Conclusion for 2D

in the morphology setting, we want an operator so:

$$
(\text { WC iff } \operatorname{op}(\{a, b, c, d\})=\mathrm{op}(\{b, c\})) \Rightarrow \text { op is a median }
$$

the only bisymmetrical median is such that

$$
\operatorname{med}(\{v, w\})=\frac{v+w}{2}
$$

$\rightsquigarrow \quad$ the only self-dual interpolation operator that makes a 2D image WC is the median operator

The Conclusion for 2D

in the morphology setting, we want an operator so:

$$
(\text { WC iff } \operatorname{op}(\{a, b, c, d\})=\mathrm{op}(\{b, c\})) \Rightarrow \text { op is a median }
$$

the only bisymmetrical median is such that

$$
\operatorname{med}(\{v, w\})=\frac{v+w}{2}
$$

$\rightsquigarrow \quad$ the only self-dual interpolation operator that makes a 2D image WC is the median operator
...what about in 3D?

What About 3D?

consider $X=[u \leq 4]$ with $u=$
one median subdivision with a critical configuration, so: $\mathfrak{I}_{\text {med }}^{3 D} \nRightarrow \mathrm{WC}$

$$
\text { consider } X=\left[u^{\prime} \leq 4\right] \text { with } u^{\prime}=
$$

a first subdivision gives the blue cube above, so: $\mathfrak{I}_{\text {med }}^{3 D} \circ \mathfrak{I}_{\text {med }}^{3 D} \nRightarrow \mathrm{WC}$

The Conclusion for 3D and $n \mathrm{D}$

Conjecture

$$
\text { for } n>2
$$

there is no self-dual $n \mathrm{D}$ interpolation operator (i.e., writable without "if") that makes well-composed an gray-level image defined on \mathbb{Z}^{n}
whatever the number of subdivisions of the space

CONCLUSION (1/2)

- we can get rid of topological paradoxes thanks to
- a single connectivity relationship and/or self-duality
- the notion of well-composedness of $n \mathrm{D}$ gray-level images

CONCLUSION (1/2)

- we can get rid of topological paradoxes thanks to
- a single connectivity relationship and/or self-duality
- the notion of well-composedness of $n \mathrm{D}$ gray-level images
- the how-to in 2D: a local interpolation with the median operator

CONCLUSION (1/2)

- we can get rid of topological paradoxes thanks to
- a single connectivity relationship and/or self-duality
- the notion of well-composedness of $n \mathrm{D}$ gray-level images
- the how-to in 2D: a local interpolation with the median operator

CONCLUSION (1/2)

- we can get rid of topological paradoxes thanks to
- a single connectivity relationship and/or self-duality
- the notion of well-composedness of $n \mathrm{D}$ gray-level images
- the how-to in 2D: a local interpolation with the median operator

CONCLUSION (1/2)

- we can get rid of topological paradoxes thanks to
- a single connectivity relationship and/or self-duality
- the notion of well-composedness of $n \mathrm{D}$ gray-level images
- the how-to in 2D: a local interpolation with the median operator
- eventually we have
- strong topological properties
- a purely self-dual representation of 2 D images, that is, the tree of shapes

CONCLUSION (1/2)

- we can get rid of topological paradoxes thanks to
- a single connectivity relationship and/or self-duality
- the notion of well-composedness of $n \mathrm{D}$ gray-level images
- the how-to in 2D: a local interpolation with the median operator
- eventually we have
- strong topological properties with X any threshold set, components of ΔX are $n \mathrm{D}$ manifolds!
- nice invariance properties and no arbitrary choice (forget c_{6})

CONCLUSION (1/2)

- we can get rid of topological paradoxes thanks to
- a single connectivity relationship and/or self-duality
- the notion of well-composedness of $n \mathrm{D}$ gray-level images
- the how-to in 2D: a local interpolation with the median operator
- eventually we have
- strong topological properties with X any threshold set, components of ΔX are $n \mathrm{D}$ manifolds!
- a purely self-dual representation of 2D images, that is, the tree of shapes
- nice invariance properties and no arbitrary choice (forget \mathbb{C}_{6}) - many applications of the tree of shapes and... that tree is very easy to deal with

CONCLUSION (1/2)

- we can get rid of topological paradoxes thanks to
- a single connectivity relationship and/or self-duality
- the notion of well-composedness of $n \mathrm{D}$ gray-level images
- the how-to in 2D: a local interpolation with the median operator
- eventually we have
- strong topological properties with X any threshold set, components of ΔX are $n \mathrm{D}$ manifolds!
- a purely self-dual representation of 2D images, that is, the tree of shapes
- nice invariance properties and no arbitrary choice (forget c_{6})

CONCLUSION (1/2)

- we can get rid of topological paradoxes thanks to
- a single connectivity relationship and/or self-duality
- the notion of well-composedness of $n \mathrm{D}$ gray-level images
- the how-to in 2D: a local interpolation with the median operator
- eventually we have
- strong topological properties with X any threshold set, components of ΔX are $n \mathrm{D}$ manifolds!
- a purely self-dual representation of 2D images, that is, the tree of shapes
- nice invariance properties and no arbitrary choice (forget c_{6})
- many applications of the tree of shapes and... that tree is very easy to deal with

CONCLUSION (1/2)

- we can get rid of topological paradoxes thanks to
- a single connectivity relationship and/or self-duality
- the notion of well-composedness of $n \mathrm{D}$ gray-level images
- the how-to in 2D: a local interpolation with the median operator
- eventually we have
- strong topological properties with X any threshold set, components of ΔX are $n \mathrm{D}$ manifolds!
- a purely self-dual representation of 2D images, that is, the tree of shapes
- nice invariance properties and no arbitrary choice (forget c_{6})
- many applications of the tree of shapes and... that tree is very easy to deal with

CONCLUSION (2/2)

Actually:
the self-duality of threshold sets \Rightarrow a unique connectivity relationship

CONCLUSION (2/2)

Actually:
the self-duality of threshold sets \Rightarrow a unique connectivity relationship

What we have done:
we have explored the links between the notion of well-composedness and the morphological tree of shapes

CONCLUSION (2/2)

Actually:
the self-duality of threshold sets \Rightarrow a unique connectivity relationship

What we have done:
we have explored the links between the notion of well-composedness and the morphological tree of shapes
we have some new (interesting?) results and proofs

ADVERTISEMENT!

Quasi-Linear Algorithm

A quasi-linear algorithm to compute the tree of shapes of $n D$ images.
T. Géraud, E. Carlinet, S. Crozet, and L. Najman.

ISMM, 2013.

ADVERTISEMENT!

Quasi-Linear Algorithm

A quasi-linear algorithm to compute the tree of shapes of $n D$ images.
T. Géraud, E. Carlinet, S. Crozet, and L. Najman.

ISMM, 2013.

A Discrete yet Continuous Representation

Discrete set-valued continuity and interpolation.
L. Najman and T. Géraud.

ISMM, 2013.

remember that slide:

A Self-Dual Topographic Tree-Based REPRESENTATION

excerpt

Left as an Exercise to the Reader...

draw the level lines of respective levels 1 and 3 for this image:

6	6	6	6	6
6	4	4	2	6
6	4	0	4	6
6	0	4	4	6
6	6	6	6	6

so what!?

some "past-the-end" slides

To be Interpolated

u					
24 24 24 24 24 24 24 24 0 0 0 24 24 0 6 8 0 24 24 24 0 0 24 24 24 24 24 24 24 24					

MEAN InTERPOLATION

$$
\mathfrak{I}_{\text {mean }}(u) \rightsquigarrow \operatorname{poset}\left(\mathfrak{S}_{c}(u), \subset\right)
$$

DUAL Interpolations

$$
\mathfrak{I}_{\min }(u) \rightsquigarrow \mathfrak{S}_{\left(>, c_{\alpha}\right)}(u) \quad \text { and } \quad \mathfrak{I}_{\max }(u) \rightsquigarrow \mathfrak{S}_{\left(<, c_{\alpha}\right)}(u)
$$

Self-Dual Interpolation

$$
\mathfrak{I}_{\text {med }}(u) \rightsquigarrow \mathfrak{S}(u)
$$

