Le Dahu et la barrière

Que la montagne de pixels est belle. Jean Serrat.

Thierry Géraud, Yongchao Xu, Edwin Carlinet, and Nicolas Boutry

EPITA Research and Development Laboratory (LRDE), France
theo@lrde.epita.fr

J. GDMM, Poitiers, France, 2017

\uparrow next to "Chez Moe" (bar à bière sympa ouvert jusqu'à 21h)

About image representations

 topographical landscape

a surface
\downarrow
L.W. Najman and J. Cousty, "A graph-based mathematical morphology reader," Pattern Recognition Letters, vol. 47, pp. 3-17, Oct. 2014. [PDF]

The Minimum Barriere (MB) Distance

Barrier τ of a path π in an image u

Interval of gray-level values (dynamics of u) along a path:

$$
\tau_{u}(\pi)=\max _{\pi_{i} \in \pi} u\left(\pi_{i}\right)-\min _{\pi_{i} \in \pi} u\left(\pi_{i}\right) .
$$

The Minimum Barriere (MB) Distance

Barrier τ of a path π in an image u

Interval of gray-level values (dynamics of u) along a path:

$$
\tau_{u}(\pi)=\max _{\pi_{i} \in \pi} u\left(\pi_{i}\right)-\min _{\pi_{i} \in \pi} u\left(\pi_{i}\right) .
$$

pink path values $=\langle 1,3,0,0,2\rangle \rightsquigarrow$ interval $=[0,3] \rightsquigarrow$ barrier $=3$

The Minimum Barriere (MB) Distance

Barrier τ of a path π in an image u

Interval of gray-level values (dynamics of u) along a path:

$$
\tau_{u}(\pi)=\max _{\pi_{i} \in \pi} u\left(\pi_{i}\right)-\min _{\pi_{i} \in \pi} u\left(\pi_{i}\right) .
$$

blue path values $=\langle 1,0,0,0,2\rangle \rightsquigarrow$ interval $=[0,2] \rightsquigarrow$ barrier $=2$

The Minimum Barriere (MB) Distance

MB distance (MBD) between two points x and x^{\prime}

MBD = minimum barrier (considering all paths) between 2 points:

$$
d_{u}^{\mathrm{MB}}\left(x, x^{\prime}\right)=\min _{\pi \in \Pi\left(x, x^{\prime}\right)} \tau_{u}(\pi)
$$

\rightsquigarrow smallest barrier $=2$

This is a pseudo-distance:

- $d_{u}^{\mathrm{MB}}(x) \geq 0$ (non-negativity)
- $d_{u}^{\mathrm{MB}}(x, x)=0$ (identity)
- $d_{u}^{\mathrm{MB}}\left(x, x^{\prime}\right)=d_{u}^{\mathrm{MB}}\left(x^{\prime}, x\right)$ (symmetry)
- $d_{u}^{\mathrm{MB}}\left(x, x^{\prime \prime}\right) \leq d_{u}^{\mathrm{MB}}\left(x, x^{\prime}\right)+d_{u}^{\mathrm{MB}}\left(x^{\prime}, x^{\prime \prime}\right)$ (subadditivity)
- $x^{\prime} \neq x \Rightarrow d_{u}^{\mathrm{MB}}\left(x, x^{\prime}\right)>0$ (positivity)
R. Strand, K.C. Ciesielski, F. Malmberg, and P.K. Saha, "The minimum barrier distance," Computer Vision and Image Understanding, vol. 117, pp. 429-437, 2013. [PDF]
K.C. Ciesielski, R. Strand, F. Malmberg, and P.K. Saha, "Efficient Algorithm for Finding the Exact Minimum Barrier Distance," Computer Vision and Image Understanding, vol. 123, pp. 53-64, 2014. [PDF]

An important distance

- relying on function dynamics (so not a "classical" path-length distance)
- related to mathematical morphology!

An important distance

- relying on function dynamics (so not a "classical" path-length distance)
- related to mathematical morphology!
- effective for segmentation tasks...

Distance maps from the image border

J．Zhang，S．Sclaroff，Z．Lin，X．Shen，B．Price，and R．Mech，＂Minimum barrier salient object detection at 80 FPS，＂in：Proc．of ICCV，pp．1404－1412，2015．［PDF］

W．C．Tu，S．He，Q．Yang，and S．Y．Chien，＂Real－time salient object detection with a minimum spanning tree，＂in：Proc．of IEEE CVPR，pp．2334－2342，2016．［PDF］

J．Zhang，S．Sclaroff，＂Exploiting Surroundedness for Saliency Detection：A Boolean Map Approach，＂IEEE Transactions on Pattern Analysis and Machine Intelligence，vol．38，num．5，pp． 889－902，2016．［PDF］

In the graph world:

the MB distance is 2

In the graph world:

the MB distance is $\mathbf{2}$

In the continuous world:

the MB distance should be 1 !

In the graph world:

the MB distance is $\mathbf{2}$

In the continuous world:

the MB distance should be 1 !
\Rightarrow we need a new definition!

This talk is only about this definition and about its computation.
to get a new definition...
a continuous representation of an image / surface is required...

$A \approx$ new representation...

Given a scalar image $u: \mathbb{Z}^{n} \rightarrow Y$, we use two tools:

- cubical complexes: \mathbb{Z}^{n} is replaced by \mathbb{H}^{n}
- set-valued maps: $\quad Y$ is replaced by \mathbb{I}_{Y}

$A \approx$ new representation...

Given a scalar image $u: \mathbb{Z}^{n} \rightarrow Y$, we use two tools:

- cubical complexes: \mathbb{Z}^{n} is replaced by \mathbb{H}^{n}
- set-valued maps: $\quad Y$ is replaced by \mathbb{I}_{Y}
\Rightarrow a continuous (and discrete!) representation of images
T. Géraud, E. Carlinet, S. Crozet, and L.W. Najman, "A quasi-linear algorithm to compute the tree of shapes of n-D images," in: Proc. of ISMM, LNCS, vol. 7883, pp. 98-110, Springer, 2013. [PDF]
L.W. Najman and T. Géraud, "Discrete set-valued continuity and interpolation," in: Proc. of ISMM, LNCS, vol. 7883, pp. 37-48, Springer, 2013. [PDF]

Cubical complex

The $n \mathrm{D}$ space of cubical complexes:

$$
\begin{array}{ll}
H_{0}^{1}=\{\{a\} ; a \in \mathbb{Z}\} & H_{1}^{1}=\{\{a, a+1\} ; a \in \mathbb{Z}\} \\
\mathbb{H}^{1}=H_{0}^{1} \cup H_{1}^{1} & \mathbb{H}^{n}=\times_{n} H^{1}
\end{array}
$$

$h \in \mathbb{H}^{n}: \times$ product of d elements of H_{1}^{1} and $n-d$ elements of H_{0}^{1}

- we have $h \subset \mathbb{Z}^{n}$
- h is a d-face
- d is the dimension of h

Cubical complex

Three faces of \mathbb{H}^{2} :

$$
\begin{array}{lll}
a=\{0\} \times\{1\} & 0 \text {-face } & \text { closed } \\
b=\{0,1\} \times\{0,1\} & 2 \text {-face } & \text { open } \\
c=\{1\} \times\{0,1\} & \text { 1-face } & \text { clopen }
\end{array}
$$

subsets of \mathbb{Z}^{2}

elements of
the cellular complex

geometrical objects (parts of \mathbb{R}^{2})

vertices of the Khalimsky grid

Cubical complex

With $h^{\uparrow}=\left\{h^{\prime} \in \mathbb{H}^{n} \mid h \subseteq h^{\prime}\right\}$ and $h^{\downarrow}=\left\{h^{\prime} \in \mathbb{H}^{n} \mid h^{\prime} \subseteq h\right\}$:

- ($\left.\mathbb{H}^{n}, \subseteq\right)$
is a poset,
- $\mathcal{U}=\left\{U \subseteq \mathbb{H}^{n} \mid \forall h \in U, h^{\uparrow} \subseteq U\right\}$
is a T0-Alexandroff topology on \mathbb{H}^{n}.

Topological operators:

$E=\{a, b, c\}$

star: E^{\uparrow}

closure: E^{\downarrow}

Set-valued analysis

A set-valued map $U: X \rightarrow \mathcal{P}(Y)$ is characterized by its graph:

$$
\operatorname{Gra}(U)=\{(x, y) \in X \times Y \mid y \in U(x)\} .
$$

Set-valued analysis

Continuity:

- when $U(x)$ is compact, U is USC at x if
$\forall \varepsilon>0, \exists \eta>0$ such that $\forall x^{\prime} \in B_{X}(x, \eta), U\left(x^{\prime}\right) \subset B_{Y}(U(x), \varepsilon)$.
- U is USC iif $\forall x \in X, U$ is USC at x
- this is the "natural" extension of the continuity of a scalar function.

Inverse:
the core of $M \subset Y$ by U is $U^{\ominus}(M)=\{x \in X \mid U(x) \subset M\}$
A continuity characterization:
U is USC iff the core of any open subset is open.

A both discrete and continuous representation

$$
\begin{array}{rll}
\text { discrete point } x \in \mathbb{Z}^{n} & \rightsquigarrow & n \text {-face } h_{x} \in \mathbb{H}^{n} \\
\text { domain } \mathcal{D} \subset \mathbb{Z}^{n} & \rightsquigarrow & \mathcal{D}_{H}=\operatorname{cl}\left(\left\{h_{x} ; x \in \mathcal{D}\right\}\right) \subset \mathbb{H}^{n}
\end{array}
$$

from a scalar image $u \ldots$

A both discrete and continuous representation

$$
\begin{aligned}
& \text { discrete point } x \in \mathbb{Z}^{n} \rightsquigarrow n \text {-face } h_{x} \in \mathbb{H}^{n} \\
& \text { domain } \mathcal{D} \subset \mathbb{Z}^{n} \rightsquigarrow \mathcal{D}_{H}=c l\left(\left\{h_{x} ; x \in \mathcal{D}\right\}\right) \subset \mathbb{H}^{n} \\
& \text { scalar image } u: \mathcal{D} \subset \mathbb{Z}^{n} \rightarrow Y \rightsquigarrow \quad \text { interval-valued map } \widetilde{u}: \mathcal{D}_{H} \subset \mathbb{H}^{n} \rightarrow \mathbb{I}_{Y} \\
& \text { from a scalar image } u \ldots
\end{aligned}
$$

A both discrete and continuous representation

$$
\begin{array}{rll}
\text { discrete point } x \in \mathbb{Z}^{n} & \rightsquigarrow & n \text {-face } h_{x} \in \mathbb{H}^{n} \\
\text { domain } \mathcal{D} \subset \mathbb{Z}^{n} & \rightsquigarrow & \mathcal{D}_{H}=\operatorname{cl}\left(\left\{h_{x} ; x \in \mathcal{D}\right\}\right) \subset \mathbb{H}^{n}
\end{array}
$$

scalar image $u: \mathcal{D} \subset \mathbb{Z}^{n} \rightarrow Y \rightsquigarrow \quad$ interval-valued map $\widetilde{u}: \mathcal{D}_{H} \subset \mathbb{H}^{n} \rightarrow \mathbb{I}_{Y}$

1	3	2
0	0	0

from a scalar image $u \ldots$

We set:

$$
\forall h \in \mathcal{D}_{H}, \widetilde{u}(h)=\operatorname{span}\left\{u(x) ; x \in \mathcal{D} \text { and } h \subset h_{x}\right\}
$$

A both discrete and continuous representation

zoomed in:

A both discrete and continuous representation

1	3	2
0	0	0

image u

A both discrete and continuous representation

1	3	2
0	0	0

image u

§

A both discrete and continuous representation

1	3	2
0	0	0

image u

continuity! \qquad

A both discrete and continuous representation

(Reminder: we have the complex $X=\mathbb{H}^{n}$ and the space of intervals \mathbb{I}_{Y})

A short insight about continuity:

- \widetilde{u} is USC because...
- with an open set $M \subset \mathbb{I}_{Y}$, the core $\widetilde{u}^{\ominus}(M)$ can be expressed in terms of...
- these thresholds sets:

$$
\begin{aligned}
& {[\widetilde{u} \triangleleft \lambda]=\{x \in X \mid \forall y \in \widetilde{u}(x), y<\lambda\}} \\
& {[\widetilde{u} \triangleright \lambda]=\{x \in X \mid \forall y \in \widetilde{u}(x), y>\lambda\}}
\end{aligned}
$$

- ...which are open sets of X :

A both discrete and continuous representation

we have a representation for the image surface
$\rightsquigarrow \quad$ we want to express the "continuous" distance...

Notation

Inclusion

with u a scalar image, and U a set-valued image:

$$
u<U \Leftrightarrow \forall x \in X, u(x) \in U(x)
$$

Inclusion

with u a scalar image, and U a set-valued image:

$$
u \in U \Leftrightarrow \forall x \in X, \quad u(x) \in U(x)
$$

$[0,6]$
U

2

$u_{1}<U$

$u_{2}<U$

Finding the continuous MB distance

［1］回［3］
回［an）國
0
［0］［0］
terval－valued imag

$\square 1 \square \square 3 \square^{3}$
1 3 3 2 2
0 0 T 1 T 1
0000000
$0 \square 0 \square \square 0 \square \square 00$
a scalar image $\bar{u}<\widetilde{u}$ ．

Finding the continuous MB distance

...and its 3D version

Finding the continuous MB distance

The Dahu distance

The Dahu distance:

The Dahu distance

The Dahu distance:

it looks like we have added an extra combinatorial complexity w.r.t. the original MB distance...

This new combinatorial layer = a requirement

We have:
$D_{u}\left(x_{1}, x_{1}^{\prime}\right)=d_{\bar{u}_{1}}^{\mathrm{MB}}\left(h_{x_{1}}, h_{x_{1}^{\prime}}\right)=0 \quad$ and $\quad D_{u}\left(x_{2}, x_{2}^{\prime}\right)=d_{u_{2}}^{\mathrm{MB}}\left(h_{x_{2}}, h_{x_{2}^{\prime}}\right)=0$ but:

$$
\nexists \bar{u}<\widetilde{u}, \quad d_{\bar{u}}^{\mathrm{MB}}\left(h_{x_{1}}, h_{x_{1}^{\prime}}\right)=d_{\bar{u}}^{\mathrm{MB}}\left(h_{x_{2}}, h_{x_{2}^{\prime}}\right)=0 .
$$

so we do not have a unique $\bar{u}<\widetilde{u}$ that "works" for all different (x, x^{\prime})

We have a combinatorial continuous-like def. of the MB distance...
...but it can be computed exactly and efficiently with: the morphological tree of shapes!!!

The morphological tree of shapes (ToS)

With $\lambda \in Y$:

- lowel level sets: $[u<\lambda]=\{x \in X ; u(x)<\lambda\}$
- upper level sets: $[u \geq \lambda]=\{x \in X ; u(x) \geq \lambda\}$

a lower level set

u

a upper level set

A Couple of Dual Trees:

- min-tree: $\mathcal{T}_{\min }(u)=\{\Gamma \in \mathcal{C C}([u<\lambda])\}_{\lambda}$
- max-tree: $\mathcal{T}_{\max }(u)=\{\Gamma \in \mathcal{C C}([u \geq \lambda])\}_{\lambda}$

The morphological tree of shapes (ToS)

Tree of shapes:

$$
\mathfrak{S}(u)=\{\operatorname{Sat}(\Gamma) ; \Gamma \in \mathcal{C C}([u<\lambda]) \cup \mathcal{C C}([u \geq \lambda])\}_{\lambda}
$$

A shape:

- an element $\mathcal{S} \in \mathfrak{S}(u)$
- a sub-tree in the representation above

Level lines: $\{\partial \Gamma ; \Gamma \in \mathfrak{S}(u)\}$

A ToS displayed

T. Géraud et al.

Le Dahu et la barrière

Another ToS displayed

every 15 levels only and without grain less than 3 pixels

How to compute the ToS

E. Carlinet and T. Géraud, "A comparative review of component tree computation algorithms," IEEE Transactions on Image Processing, vol. 23, num. 9, pp. 3885-3895, 2014. [PDF]
T. Géraud, E. Carlinet, S. Crozet, and L.W. Najman, "A quasi-linear algorithm to compute the tree of shapes of n-D images," in: Proc. of ISMM, LNCS, vol. 7883, pp. 98-110, Springer, 2013. [PDF]
S. Crozet and T. Géraud, "A first parallel algorithm to compute the morphological tree of shapes of nD images," in: Proc. of ICIP, pp. 2933-2937, 2014. [PDF]

Apps based on the ToS

Grain filter.

Shaping (filtering in shape space).
Y. Xu, T. Géraud, and L. Najman, "Connected filtering on tree-based shape-spaces," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 38, num. 6, pp. 1126-1140, 2016. [PDF]

Apps based on the ToS

Object detection.
Y. Xu, E. Carlinet, T. Géraud, and L. Najman, "Hierarchical segmentation using tree-based shape spaces," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, num. 3, pp. 457-469, 2017. [PDF]

Apps based on the ToS

Color ToS Computation

(User Input or Automatic)

Tree Node
Markers on Tree Classif cation

Image Classif cation

Object picking from very few scribbles.
E. Carlinet and T. Géraud, "MToS: A tree of shapes for multivariate images," IEEE Transactions on Image Processing, vol. 24, num. 12, pp. 5330-5342, 2015. [PDF]

The morphological tree of shapes (ToS)

Let us consider a couple of points of the image: each point belongs to a particular ToS node

The morphological tree of shapes (ToS)

finding a path between the red dots is straightforward: all paths have to go through regions A and C...

The morphological tree of shapes (ToS)

\rightsquigarrow a minimal path in the image only goes through the minimal set of regions and it can be "read" on the ToS!

The morphological tree of shapes (ToS)

and this minimal path crosses the image level lines (so they have to be "well formed" \rightarrow we'll see that later...)

Mapping the Dahu distance on the tree

With

- t_{x} the node that corresponds to $x \in \mathbb{Z}^{n}$
- $\pi_{\mathfrak{S}(u)}\left(t_{x}, t_{x^{\prime}}\right)$ the path in $\mathfrak{S}(u)$ between the nodes t_{x} and $t_{x^{\prime}}$
- $\mu_{u}(t)$ the corresponding gray level of node t in the image u
the definition of the Dahu distance becomes:

$$
D_{u}\left(x, x^{\prime}\right)=\max _{t \in \pi_{\mathfrak{S}(u)}\left(t_{x}, t_{x^{\prime}}\right)} \mu_{u}(t)-\min _{t \in \pi_{\mathfrak{S}(u)}\left(t_{x}, t_{x^{\prime}}\right)} \mu_{u}(t)
$$

The how-to:

1. pre-compute the ToS (...)
2. then get distances very efficiently for many couples $\left(x, x^{\prime}\right)$.

A quick quiz

Red zone: region where every path between red dots is minimal.

Quiz:

discuss / compare the different methods that compute the distance...

We have a continuous-like definition of the MB distance and it can be computed efficiently thanks to the tree of shapes
$\rightsquigarrow \quad$ but we have to fix a digital topology issue and to re-express the distance on the tree...

About digital topology

Digital topology implies:

- use of dual connectivities for object/background
- dual connectivities for lower/upper level sets \Rightarrow the ToS exists

About digital topology

Digital topology implies:

- use of dual connectivities for object/background
- dual connectivities for lower/upper level sets \Rightarrow the ToS exists

Issues with two connectivities:

- it would be painful to consider paths [...]
- we would have some inconsistent results in distance computation [...]

About digital topology

Digital topology implies:

- use of dual connectivities for object/background
- dual connectivities for lower/upper level sets \Rightarrow the ToS exists

Issues with two connectivities:

- it would be painful to consider paths [...]
- we would have some inconsistent results in distance computation [...]
let's see that...

The issue with Digital Topology

$x_{a}-$| -4 0
 0 $6-x_{a}^{\prime}$
 u |
| :--- |
| x_{b}^{\prime} |

this saddle case in 2D is a symptom of a discrete topology issue with \widetilde{u}

level lines $\lambda=0.5$ level lines $\lambda=3.5$

About digital topology

Digital topology implies:

- use of dual connectivities for object/background
- dual connectivities for lower/upper level sets \Rightarrow the ToS exists

Issues with two connectivities:

- it would be painful to consider paths [...]
- we would have some inconsistent results in distance computation [...]

About digital topology

Digital topology implies:

- use of dual connectivities for object/background
- dual connectivities for lower/upper level sets \Rightarrow the ToS exists

Issues with two connectivities:

- it would be painful to consider paths [...]
- we would have some inconsistent results in distance computation [...]

An important class of images: digitally well-composed (DWC) images

- connectivities are equivalent for all components of level sets
- boundaries of level sets do not have pinches
- if an image is DWC \Rightarrow its ToS and the level lines are well defined

[^0]
DWC images

nD blocks:

Antagonists in 3D:

DWC images

Critical configurations:

- A digital set $S \subset \mathbb{Z}^{n}$ is digitally well-composed (DWC) iff it does not contain any critical configuration
- A digital image $u: \mathbb{Z}^{n} \rightarrow Y$ is DWC iff its levels sets are DWC

About digital topology

An image can be made DWC by subdivision + interpolation:

- using the median operator in 2D,
- using a non-local process in nD.
N. Boutry, T. Géraud, and L. Najman, "How to make nD functions well-composed in a self-dual way," in: Proc. of ISMM, LNCS, vol. 9082, pp. 561-572, Springer, 2015. [PDF]

About digital topology

An image can be made DWC by subdivision + interpolation:

- using the median operator in 2D,
- using a non-local process in nD.

N. Boutry, T. Géraud, and L. Najman, "How to make nD functions well-composed in a self-dual way," in: Proc. of ISMM, LNCS, vol. 9082, pp. 561-572, Springer, 2015. [PDF]

About digital topology

An image can be made DWC by subdivision + interpolation:

- using the median operator in 2D,
- using a non-local process in nD.

$u_{\text {med }}$ is DWC \Rightarrow there is only one way to arrange level lines (thus shapes) into an inclusion tree :-)
N. Boutry, T. Géraud, and L. Najman, "How to make nD functions well-composed in a self-dual way," in: Proc. of ISMM, LNCS, vol. 9082, pp. 561-572, Springer, 2015. [PDF]

Some well-composed representations

A flawless definition

NAIVE definition of the Dahu distance:

$$
D_{u}\left(x, x^{\prime}\right)=\min _{\bar{u}<\widetilde{u}} d_{\bar{u}}^{\mathrm{MB}}\left(h_{x}, h_{x^{\prime}}\right)
$$

A flawless definition

scalar image
$\left(u: \mathbb{Z}^{n} \rightarrow Y\right) \quad \xrightarrow{\text { step } 1} \quad\left(u_{\square}:\left(\frac{\mathbb{Z}}{2}\right)^{n} \rightarrow Y^{\prime}\right) \quad \xrightarrow{\text { step 2 }} \quad\left(\widetilde{u_{\square}}:\left(\frac{\mathbb{H}}{2}\right)^{n} \rightarrow \mathbb{I}_{Y^{\prime}}\right)$

NAIVE definition of the Dahu distance:

$$
D_{u}\left(x, x^{\prime}\right)=\min _{\bar{u}<\widetilde{u}} d_{\bar{u}}^{\mathrm{NB}}\left(h_{x}, h_{x^{\prime}}\right)
$$

A flawless definition

scalar image		DWC interpolated			
$\left(u: \mathbb{Z}^{n} \rightarrow Y\right)$	$\xrightarrow{\text { step 1 }}$	$\left(u_{\square}:\left(\frac{\mathbb{Z}}{2}\right)^{n} \rightarrow Y^{\prime}\right)$	$\xrightarrow{\text { step 2 }}$		$\left(\widetilde{u_{\square}}:\left(\frac{\mathbb{H}}{2}\right)^{n} \rightarrow \mathbb{I}_{Y^{\prime}}\right)$
:---:					

NEW definition of the Dahu distance:

$$
D_{u}\left(x, x^{\prime}\right)=\min _{\bar{u} \leqslant \widetilde{u_{\square}}} d_{\bar{u}}^{\mathrm{MB}}\left(h_{x}, h_{x^{\prime}}\right)
$$

A flawless definition

scalar image
$\left(u: \mathbb{Z}^{n} \rightarrow Y\right) \xrightarrow{\text { step } 1}$

DWC interpolated
$\left(u_{\square}:\left(\frac{\mathbb{Z}}{2}\right)^{n} \rightarrow Y^{\prime}\right) \quad \xrightarrow{\text { step } 2} \quad\left(\widetilde{u_{\square}}:\left(\frac{\mathbb{H}}{2}\right)^{n} \rightarrow \mathbb{I}_{Y^{\prime}}\right)$

NEW definition of the Dahu distance:

$$
D_{u}\left(x, x^{\prime}\right)=\min _{\bar{u}<\widetilde{u_{\square}}} d_{\bar{u}}^{\mathrm{MB}}\left(h_{x}, h_{x^{\prime}}\right)
$$

actually, the interpolation does not introduce a bias in the distance values; it just makes their definition and computation sound and consistent :-)

Conclusion / Take-home messages

Reminder:

- the MB distance is great for computer vision!

Conclusion / Take-home messages

Reminder:

- the MB distance is great for computer vision!

What we have done:

- introduce a new distance, that fits with a continuous (yet discrete) representation of images
- formalize it, and relate it to the morphological tree of shapes
- provide an efficient solution to compute distances.

Conclusion / Take-home messages

Reminder:

- the MB distance is great for computer vision!

What we have done:

- introduce a new distance, that fits with a continuous (yet discrete) representation of images
- formalize it, and relate it to the morphological tree of shapes
- provide an efficient solution to compute distances.

What we have skipped:

- actually many things!

A perspective:

- adapt the distance to color images...

That's all folks!

Thanks for your attention. Any questions?

Dahu descentius frontalis (La Pointe Perce, 1895)

Dahu ascentius frontalis (Le Charvin, 1901)

Dahu dextrogyre
(Col de la Colombire, 1904)

Young dahu lévogyre (La Tournette, 1910)

[^0]: T. Géraud, E. Carlinet, S. Crozet, "Self-Duality and Discrete Topology: Links Between the Morphological Tree of Shapes and Well-Composed Gray-Level Images," in: Proc. of ISMM, LNCS, vol. 9082, pp. 573-584, Springer, 2015. [PDF]

