Introducing the Dahu Pseudo-Distance

 Que la montagne de pixels est belle. Jean Serrat.Thierry Géraud, Yongchao Xu, Edwin Carlinet, and Nicolas Boutry

EPITA Research and Development Laboratory (LRDE), France theo@lrde.epita.fr

ISS, École des Mines, France, 2017

About image representations

1	3	2
0	0	0

L. Najman and J. Cousty, "A graph-based mathematical morphology reader," Pattern Recognition Letters, vol. 47, pp. 3-17, Oct. 2014. [PDF]

The Minimum Barriere (MB) Distance

MB distance

minimal interval of gray-level values
in an image along a path between two points, where the image is considered as a vertex-valued graph

The Minimum Barriere (MB) Distance

MB distance

minimal interval of gray-level values
in an image along a path between two points, where the image is considered as a vertex-valued graph

pink path values $=\langle 1,3,0,0,2\rangle \rightsquigarrow$ interval $=[0,3] \rightsquigarrow$ barrier $=3$

The Minimum Barriere (MB) Distance

MB distance

minimal interval of gray-level values
in an image along a path between two points, where the image is considered as a vertex-valued graph

blue path values $=\langle 1,0,0,0,2\rangle \rightsquigarrow$ interval $=[0,2] \rightsquigarrow$ barrier $=2$

The Minimum Barriere (MB) Distance

MB distance

minimal interval of gray-level values
in an image along a path between two points, where the image is considered as a vertex-valued graph

blue path values $=\langle 1,0,0,0,2\rangle \rightsquigarrow$ interval $=[0,2] \rightsquigarrow$ barrier $=2$
\rightsquigarrow distance $d^{\mathrm{MB}}=2$

Formally

MB distance

Barrier of a path π in a gray-level image u :

$$
\tau_{u}(\pi)=\max _{\pi_{i} \in \pi} u\left(\pi_{i}\right)-\min _{\pi_{i} \in \pi} u\left(\pi_{i}\right)
$$

Minimum barrier distance between x and x^{\prime} in u :

$$
d_{u}^{\mathrm{MB}}\left(x, x^{\prime}\right)=\min _{\pi \in \Pi\left(x, x^{\prime}\right)} \tau_{u}(\pi) .
$$

This is a pseudo-distance:

- $d_{u}^{\mathrm{MB}}(x) \geq 0$ (non-negativity)
- $d_{u}^{\mathrm{MB}}(x, x)=0$ (identity)
- $d_{u}^{\mathrm{MB}}\left(x, x^{\prime}\right)=d_{u}^{\mathrm{MB}}\left(x^{\prime}, x\right)$ (symmetry)
- $d_{u}^{\mathrm{MB}}\left(x, x^{\prime \prime}\right) \leq d_{u}^{\mathrm{MB}}\left(x, x^{\prime}\right)+d_{u}^{\mathrm{MB}}\left(x^{\prime}, x^{\prime \prime}\right)$ (subadditivity)
- $x^{\prime} \neq x \Rightarrow d_{U}^{\mathrm{MB}}\left(x, x^{\prime}\right)>0$ (positivity)

An important distance

- relying on function dynamics (so not a "classical" path-length distance)
- related to mathematical morphology!

An important distance

- relying on function dynamics (so not a "classical" path-length distance)
- related to mathematical morphology!
- effective for segmentation tasks...

Distance maps from the image border

R. Strand, K.C. Ciesielski, F. Malmberg, and P.K. Saha, "The minimum barrier distance," Computer Vision and Image Understanding, vol. 117, pp. 429-437, 2013. [PDF]
K.C. Ciesielski, R. Strand, F. Malmberg, and P.K. Saha, "Efficient Algorithm for Finding the Exact Minimum Barrier Distance," Computer Vision and Image Understanding, vol. 123, pp. 53-64, 2014. [PDF]
J. Zhang, S. Sclaroff, Z. Lin, X. Shen, B. Price, and R. Mech, "Minimum barrier salient object detection at 80 FPS," in: Proc. of ICCV, pp. 1404-1412, 2015. [PDF]
W.C. Tu, S. He, Q. Yang, and S.Y. Chien, "Real-time salient object detection with a minimum spanning tree," in: Proc. of IEEE CVPR, pp. 2334-2342, 2016. [PDF]
J. Zhang, S. Sclaroff, "Exploiting Surroundedness for Saliency Detection: A Boolean Map Approach," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, num. 5, pp. 889-902, 2016. [PDF]

In the graph world:

the MB distance is 2

In the graph world:

In the continuous world:

the MB distance is $\mathbf{2}$

In the graph world:

the MB distance is 2

In the continuous world:

the MB distance should be 1!

In the graph world:

the MB distance is $\mathbf{2}$

In the continuous world:

the MB distance should be 1!
\Rightarrow we need a new definition...

In the graph world:

the MB distance is $\mathbf{2}$

In the continuous world:

the MB distance should be 1!
\Rightarrow we need a new definition...

This talk is only about this definition and about its computation.

$A \approx$ new representation...

Given a scalar image $u: \mathbb{Z}^{n} \rightarrow Y$, we use two tools:

- cubical complexes: \mathbb{Z}^{n} is replaced by \mathbb{H}^{n}
- set-valued maps: $\quad Y$ is replaced by \mathbb{I}_{Y}

$A \approx$ new representation...

Given a scalar image $u: \mathbb{Z}^{n} \rightarrow Y$, we use two tools:

- cubical complexes: \mathbb{Z}^{n} is replaced by \mathbb{H}^{n}
- set-valued maps: $\quad Y$ is replaced by \mathbb{I}_{Y}
\Rightarrow a continuous (and discrete!) representation of images
T. Géraud, E. Carlinet, S. Crozet, and L. Najman, "A quasi-linear algorithm to compute the tree of shapes of n-D images," in: Proc. of ISMM, LNCS, vol. 7883, pp. 98-110, Springer, 2013. [PDF]
L. Najman and T. Géraud, "Discrete set-valued continuity and interpolation," in: Proc. of ISMM, LNCS, vol. 7883, pp. 37-48, Springer, 2013. [PDF]

A both discrete and continuous representation

$$
\begin{array}{rll}
\text { discrete point } x \in \mathbb{Z}^{n} & \rightsquigarrow & n \text {-face } h_{x} \in \mathbb{H}^{n} \\
\text { domain } \mathcal{D} \subset \mathbb{Z}^{n} & \rightsquigarrow & \mathcal{D}_{H}=\operatorname{cl}\left(\left\{h_{x} ; x \in \mathcal{D}\right\}\right) \subset \mathbb{H}^{n}
\end{array}
$$

from a scalar image $u \ldots$

A both discrete and continuous representation

$$
\begin{array}{rll}
\text { discrete point } x \in \mathbb{Z}^{n} & \rightsquigarrow & n \text {-face } h_{x} \in \mathbb{H}^{n} \\
\text { domain } \mathcal{D} \subset \mathbb{Z}^{n} & \rightsquigarrow & \mathcal{D}_{H}=\operatorname{cl}\left(\left\{h_{x} ; x \in \mathcal{D}\right\}\right) \subset \mathbb{H}^{n}
\end{array}
$$

scalar image $u: \mathcal{D} \subset \mathbb{Z}^{n} \rightarrow Y \rightsquigarrow \quad$ interval-valued map $\widetilde{u}: \mathcal{D}_{H} \subset \mathbb{H}^{n} \rightarrow \mathbb{I}_{Y}$

1	3	2
0	0	0

from a scalar image $u \ldots$

A both discrete and continuous representation

$$
\begin{array}{rll}
\text { discrete point } x \in \mathbb{Z}^{n} & \rightsquigarrow & n \text {-face } h_{x} \in \mathbb{H}^{n} \\
\text { domain } \mathcal{D} \subset \mathbb{Z}^{n} & \rightsquigarrow & \mathcal{D}_{H}=\operatorname{cl}\left(\left\{h_{x} ; x \in \mathcal{D}\right\}\right) \subset \mathbb{H}^{n}
\end{array}
$$

scalar image $u: \mathcal{D} \subset \mathbb{Z}^{n} \rightarrow Y \leadsto \quad$ interval－valued map $\widetilde{u}: \mathcal{D}_{H} \subset \mathbb{H}^{n} \rightarrow \mathbb{I}_{Y}$

1	3	2
0	0	0

from a scalar image $u \ldots$

乪 41$\}$	23 \square［2］圂
（11）$\{1\}$	23］$\{2\}$
國 $\sqrt{(0,1)}$	［05［0，
$\text { (0) }\{\hat{\{0\}}, \overrightarrow{t 0}, \overrightarrow{\{0\}}$	（0）$\{0\}$
［0］$\{0\}$［0］ 00	［0］$\{0\}$

We set：

$$
\forall h \in \mathcal{D}_{H}, \widetilde{u}(h)=\operatorname{span}\left\{u(x) ; x \in \mathcal{D} \text { and } h \subset h_{x}\right\}
$$

A both discrete and continuous representation

zoomed in:

A both discrete and continuous representation

1	3	2
0	0	0

image u

A both discrete and continuous representation

1	3	2
0	0	0

image u

§

A both discrete and continuous representation

1	3	2
0	0	0

image u

介

A both discrete and continuous representation

we have a representation for the image surface
$\rightsquigarrow \quad$ we want to express the "continuous" distance...

Notation

Inclusion

with u a scalar image, and U a set-valued image:

$$
u<U \Leftrightarrow \forall x \in X, u(x) \in U(x)
$$

Inclusion

with u a scalar image, and U a set-valued image:

$$
u<U \Leftrightarrow \forall x \in X, u(x) \in U(x)
$$

Finding the continuous MB distance

［1］
［13）$\{1\}$ 成 $\{3\}$ 成 23$\}$
國
［0\}
回
terval－valued imag

Finding the continuous MB distance

［1］
［13）$\{1\}$ 成 $\{3\}$ 成 23$\}$
國
［0\}
回
terval－valued imag

Finding the continuous MB distance

The naive Dahu distance

The "naive" Dahu distance:

The naive Dahu distance

The "naive" Dahu distance:

it looks like we have added an extra combinatorial complexity w.r.t. the original MB distance...

The naive Dahu distance

The "naive" Dahu distance:

it looks like we have added an extra combinatorial complexity w.r.t. the original MB distance...
...actually it can be computed exactly and efficiently with: the morphological tree of shapes!!!

The morphological tree of shapes (ToS)

this is a morphological representation of an image based on the components of its level sets

The morphological tree of shapes (ToS)

let us consider a couple of points of the image: each point belongs to a particular ToS node

The morphological tree of shapes (ToS)

finding a minimal path in the image is straightforward: all paths have to go through regions A and C .

The morphological tree of shapes (ToS)

\rightsquigarrow a minimal path in the image only goes through the minimal set of regions and it can be "read" on the ToS!

The morphological tree of shapes (ToS)

and this minimal path crosses the image level lines (so they have to be well formed...)

We have a continuous-like definition of the MB distance and it can be computed efficiently thanks to the tree of shapes
$\rightsquigarrow \quad$ but we have to fix a digital topology issue and to re-express the distance on the tree...

About digital topology

Digital topology implies:

- use of dual connectivities for object/background
- dual connectivities for lower/upper level sets \Rightarrow the ToS exists

About digital topology

Digital topology implies:

- use of dual connectivities for object/background
- dual connectivities for lower/upper level sets \Rightarrow the ToS exists

Issues with two connectivities:

- it would be painful to consider paths [...]
- we would have some inconsistent results in distance computation [...]

About digital topology

Digital topology implies:

- use of dual connectivities for object/background
- dual connectivities for lower/upper level sets \Rightarrow the ToS exists

Issues with two connectivities:

- it would be painful to consider paths [...]
- we would have some inconsistent results in distance computation [...]

An important class of images: digitally well-composed (DWC) images

- connectivities are equivalent for all components of level sets
- boundaries of level sets do not have pinches
- if an image is DWC \Rightarrow its ToS and the level lines are well defined

[^0]
About digital topology

An image can be made DWC by subdivision + interpolation:

- using the median operator in 2D,
- using a non-local process in nD.
N. Boutry, T. Géraud, and L. Najman, "How to make nD functions well-composed in a self-dual way," in: Proc. of ISMM, LNCS, vol. 9082, pp. 561-572, Springer, 2015. [PDF]

About digital topology

An image can be made DWC by subdivision + interpolation:

- using the median operator in 2D,
- using a non-local process in nD.

level lines of $\widetilde{u_{\text {med }}}$
what are the level lines?
(make the chunks connect...)
N. Boutry, T. Géraud, and L. Najman, "How to make nD functions well-composed in a self-dual way," in: Proc. of ISMM, LNCS, vol. 9082, pp. 561-572, Springer, 2015. [PDF]

About digital topology

An image can be made DWC by subdivision + interpolation:

- using the median operator in 2D,
- using a non-local process in nD.

$u_{\text {med }}$ is DWC \Rightarrow there is only one way to arrange level lines (thus shapes) into an inclusion tree :-)
N. Boutry, T. Géraud, and L. Najman, "How to make nD functions well-composed in a self-dual way," in: Proc. of ISMM, LNCS, vol. 9082, pp. 561-572, Springer, 2015. [PDF]

A flawless definition

NAIVE definition of the Dahu distance:

$$
D_{u}\left(x, x^{\prime}\right)=\min _{\bar{u}<\widetilde{u}} d_{\bar{u}}^{\mathrm{MB}}\left(h_{x}, h_{x^{\prime}}\right)
$$

A flawless definition

scalar image
$\left(u: \mathbb{Z}^{n} \rightarrow Y\right) \quad \xrightarrow{\text { step } 1} \quad\left(u_{\square}:\left(\frac{\mathbb{Z}}{2}\right)^{n} \rightarrow Y^{\prime}\right) \quad \xrightarrow{\text { step 2 }} \quad\left(\widetilde{u_{\square}}:\left(\frac{\mathbb{H}}{2}\right)^{n} \rightarrow \mathbb{I}_{Y^{\prime}}\right)$

NAIVE definition of the Dahu distance:

$$
D_{u}\left(x, x^{\prime}\right)=\min _{\bar{u}<\widetilde{u}} d_{\bar{u}}^{\mathrm{MB}}\left(h_{x}, h_{x^{\prime}}\right)
$$

A flawless definition

scalar image
$\left(u: \mathbb{Z}^{n} \rightarrow Y\right) \quad \xrightarrow{\text { step 1 }}$

DWC interpolated
interval-valued

$$
\left(u_{\square}:\left(\frac{\mathbb{Z}}{2}\right)^{n} \rightarrow Y^{\prime}\right) \quad \xrightarrow{\text { step 2 }} \quad\left(\widetilde{u_{\square}}:\left(\frac{\mathbb{H}}{2}\right)^{n} \rightarrow \mathbb{I}_{Y^{\prime}}\right)
$$

NEW definition of the Dahu distance:

$$
D_{u}\left(x, x^{\prime}\right)=\min _{\bar{u}<\widetilde{u_{\square}}} d_{\bar{u}}^{\mathrm{MB}}\left(h_{x}, h_{x^{\prime}}\right)
$$

A flawless definition

scalar image
$\left(u: \mathbb{Z}^{n} \rightarrow Y\right) \xrightarrow{\text { step } 1}$

DWC interpolated
$\left(u_{\square}:\left(\frac{\mathbb{Z}}{2}\right)^{n} \rightarrow Y^{\prime}\right) \quad \xrightarrow{\text { step 2 }} \quad\left(\widetilde{u_{\square}}:\left(\frac{\mathbb{H}}{2}\right)^{n} \rightarrow \mathbb{I}_{Y^{\prime}}\right)$

NEW definition of the Dahu distance:

$$
D_{u}\left(x, x^{\prime}\right)=\min _{\bar{u}<\widetilde{u_{\square}}} d_{\bar{u}}^{\mathrm{MB}}\left(h_{x}, h_{x^{\prime}}\right)
$$

actually, the interpolation does not introduce a bias in the distance values;
it just makes their definition and computation sound and consistent :-)

A flawless definition

we have a sound definition for a continuous-like distance
$\rightsquigarrow \quad$ we now want to compute distances on $\mathfrak{S}\left(\widetilde{u_{\square}}\right) \ldots$

Mapping the Dahu distance on the tree

Notations:
t
node of a tree
$t_{x} \quad$ node that corresponds to $x \in \mathbb{Z}^{n}$
parent $(t) \quad$ the parent node of t in the tree
$\mathrm{lca}\left(t, t^{\prime}\right) \quad$ the lowest common ancestor of the nodes t and t^{\prime}
$\mu(t)$ gray level of the node in the image

We have:

- $t_{\mathrm{A}}=\operatorname{lca}\left(t_{\mathrm{B}}, t_{\mathrm{F}}\right)$
- $\left\langle t_{\mathrm{B}}, t_{\mathrm{A}}, t_{\mathrm{C}}, t_{\mathrm{F}}\right\rangle$ is the "minimal" path on the tree for the two red points

Mapping the Dahu distance on the tree

The NEW definition of the Dahu distance becomes:

$$
D_{u}\left(x, x^{\prime}\right)=\max _{t \in \pi_{\mathcal{S}(u)}\left(t_{x}, t_{x^{\prime}}\right)} \mu(t)-\min _{t \in \pi_{\mathfrak{S}(u)}\left(t_{x}, t_{x^{\prime}}\right)} \mu(t)
$$

Mapping the Dahu distance on the tree

The NEW definition of the Dahu distance becomes:

$$
D_{u}\left(x, x^{\prime}\right)=\max _{t \in \pi_{\mathfrak{S}(u)}\left(t_{x}, t_{x^{\prime}}\right)} \mu(t)-\min _{t \in \pi_{\mathfrak{S}(u)}\left(t_{x}, t_{x^{\prime}}\right)} \mu(t)
$$

The how-to:

1. pre-compute the ToS (...)
2. then get distances very efficiently for many couples $\left(x, x^{\prime}\right)$.
E. Carlinet and T. Géraud, "A Comparative Review of Component Tree Computation Algorithms," IEEE Transactions on Image Processing, vol. 23, num. 9, pp. 3885-3895, 2014. [PDF]

Conclusion / Take-home messages

Reminder:

- the MB distance is great for computer vision!

Conclusion / Take-home messages

Reminder:

- the MB distance is great for computer vision!

What we have done:

- introduce a new distance, that fits with a continuous (yet discrete) representation of images
- formalize it, and relate it to the morphological tree of shapes
- provide an efficient solution to compute distances.

Conclusion / Take-home messages

Reminder:

- the MB distance is great for computer vision!

What we have done:

- introduce a new distance, that fits with a continuous (yet discrete) representation of images
- formalize it, and relate it to the morphological tree of shapes
- provide an efficient solution to compute distances.

What we have skipped:

- actually many things...

A perspective:

- adapt the distance to color images

using the multivariate tree of shapes (MToS)...

E. Carlinet and T. Géraud, "MToS: A tree of shapes for multivariate images," IEEE Transactions on Image Processing, vol. 24, num. 12, pp. 5330-5342, 2015. [PDF]

That's all folks!

Thanks for your attention. Any questions?

Dahu descentius frontalis (La Pointe Perce, 1895)

Dahu ascentius frontalis (Le Charvin, 1901)

Dahu dextrogyre (Col de la Colombire, 1904)

Young dahu lévogyre (La Tournette, 1910)

T. Géraud et al.
 Introducing the Dahu Pseudo-Distance

[backup slide] The issue with Digital Topology

this saddle case in 2D is a symptom of a discrete topology issue with \widetilde{u}

level lines $\lambda=0.5$ level lines $\lambda=3.5$

The morphological tree of shapes (ToS)

image u

its tree of shapes $\mathfrak{S}(u)$

- lowel level sets: $[u<\lambda]=\{x \in X ; u(x)<\lambda\}$
- upper level sets: $[u \geq \lambda]=\{x \in X ; u(x) \geq \lambda\}$
- tree of shapes: $\mathfrak{S}(u)=\{\operatorname{Sat}(\Gamma) ; \Gamma \in \mathcal{C C}([u<\lambda]) \cup \mathcal{C C}([u \geq \lambda])\}_{\lambda}$
an element of $\mathfrak{S}(u)$ is a shape of u
- level lines: $\{\partial \Gamma ; \Gamma \in \mathfrak{S}(u)\}$
if u is a well-composed image, level lines are Jordan curves
- level of a line: μ indicated on the tree, for every node

[Backup slide] Cubical complex

The $n \mathrm{D}$ space of cubical complexes:

$$
\begin{array}{ll}
H_{0}^{1}=\{\{a\} ; a \in \mathbb{Z}\} & H_{1}^{1}=\{\{a, a+1\} ; a \in \mathbb{Z}\} \\
\mathbb{H}^{1}=H_{0}^{1} \cup H_{1}^{1} & \mathbb{H}^{n}=\times_{n} H^{1}
\end{array}
$$

$h \in \mathbb{H}^{n}: \times$ product of d elements of H_{1}^{1} and $n-d$ elements of H_{0}^{1}

- we have $h \subset \mathbb{Z}^{n}$
- h is a d-face
- d is the dimension of h

Three faces of \mathbb{H}^{2} :

$$
\begin{array}{lll}
a=\{0\} \times\{1\} & 0 \text {-face } & \text { closed } \\
b=\{0,1\} \times\{0,1\} & 2 \text {-face } & \text { open } \\
c=\{1\} \times\{0,1\} & \text { 1-face } & \text { clopen }
\end{array}
$$

[backup slide] Cubical complex

With $h^{\uparrow}=\left\{h^{\prime} \in \mathbb{H}^{n} \mid h \subseteq h^{\prime}\right\}$ and $h^{\downarrow}=\left\{h^{\prime} \in \mathbb{H}^{n} \mid h^{\prime} \subseteq h\right\}$:

- ($\left.\mathbb{H}^{n}, \subseteq\right)$
is a poset,
- $\mathcal{U}=\left\{U \subseteq \mathbb{H}^{n} \mid \forall h \in U, h^{\uparrow} \subseteq U\right\}$
is a T0-Alexandroff topology on \mathbb{H}^{n}.

Topological operators:

$E=\{a, b, c\}$

star: E^{\uparrow}

closure: E^{\downarrow}

[backup slide] DWC images

n D blocks:

Antagonists in 3D:

[backup slide] DWC images

Critical configurations:

- A digital set $S \subset \mathbb{Z}^{n}$ is digitally well-composed (DWC) iff it does not contain any critical configuration
- A digital image $u: \mathbb{Z}^{n} \rightarrow Y$ is DWC iff its levels sets are DWC

[backup slide] Set-valued analysis

A set-valued map $U: X \rightarrow \mathcal{P}(Y)$ is characterized by its graph:

$$
\operatorname{Gra}(U)=\{(x, y) \in X \times Y \mid y \in U(x)\} .
$$

[backup slide] Set-valued analysis

Continuity:

- when $U(x)$ is compact, U is USC at x if
$\forall \varepsilon>0, \exists \eta>0$ such that $\forall x^{\prime} \in B_{X}(x, \eta), U\left(x^{\prime}\right) \subset B_{Y}(U(x), \varepsilon)$.
- U is USC iif $\forall x \in X, U$ is USC at x
- this is the "natural" extension of the continuity of a scalar function.

Inverse:
the core of $M \subset Y$ by U is $U^{\ominus}(M)=\{x \in X \mid U(x) \subset M\}$
A continuity characterization:
U is USC iff the core of any open subset is open.

[backup slide] Set-valued thresholds

Threshold sets:

$$
\begin{aligned}
& {[U \triangleleft \lambda]=\{x \in X \mid \forall \mu \in U(x), \mu<\lambda\}} \\
& {[U \triangleright \lambda]=\{x \in X \mid \forall \mu \in U(x), \mu>\lambda\}}
\end{aligned}
$$

The "large" versions:

$$
\begin{aligned}
{[U \unlhd \lambda] } & =X \backslash[U \triangleright \lambda] \\
& =\{x \in X \mid \exists \mu \in U(x), \mu \leq \lambda\} \\
{[U \unrhd \lambda] } & =X \backslash[U \triangleleft \lambda] \\
& =\{x \in X \mid \exists \mu \in U(x), \mu \geq \lambda\}
\end{aligned}
$$

Iso-set:

$$
\begin{aligned}
{[U \square \lambda] } & =[U \unlhd \lambda] \cap[U \unrhd \lambda] \\
& =\{x \in X \mid \lambda \in U(x)\}
\end{aligned}
$$

T. Géraud, E. Carlinet, S. Crozet, and L. Najman, "A quasi-linear algorithm to compute the tree of shapes of n-D images," in: Proc. of ISMM, LNCS, vol. 7883, pp. 98-110, Springer, 2013. [PDF]

[backup slide] Set-valued thresholds

[Backup sLlde] ToS of set-valued maps

dual trees:

$$
\begin{array}{ll}
\mathcal{T}_{\triangleleft}(U)=\{\Gamma \in \mathcal{C C}([U \triangleleft \lambda])\}_{\lambda} & (\text { min-tree }) \\
\mathcal{T}_{\triangleright}(U)=\{\Gamma \in \mathcal{C C}([U \triangleright \lambda])\}_{\lambda} & \text { (max-tree) }
\end{array}
$$

shapes:

$$
\begin{array}{ll}
\mathcal{S}_{\triangleleft}(U)=\left\{\operatorname{Sat}(\Gamma) ; \Gamma \in \mathcal{T}_{\triangleleft}(U)\right\} & \text { (lower) } \\
\mathcal{S}_{\triangleright}(U)=\left\{\operatorname{Sat}(\Gamma) ; \Gamma \in \mathcal{T}_{\triangleright}(U)\right\} & \text { (upper) }
\end{array}
$$

tree of shapes:

$$
\mathfrak{S}(U)=\mathcal{S}_{\triangleleft}(U) \cup \mathcal{S}_{\triangleright}(U)
$$

If u_{\square} is DWC then $\mathfrak{S}\left(u_{\square}\right)$ is well defined.

New definition of the ToS of scalar functions

$$
\mathfrak{S}^{\text {New }}(u):=\left.\left.\mathfrak{S}\left(u_{\square}\right)\right|_{\mathbb{Z}^{n}} \subset \mathfrak{S}\left(\widetilde{u_{\square}}\right)\right|_{\mathbb{H}_{n}^{n}}
$$

$$
\text { where } \mathbb{H}_{n}^{n}=x_{n} H_{1}^{1} \subset \mathbb{H}^{n} \text { is the set of } n \text {-faces }
$$

A consequence:

- CCs of shape boundaries are continuous discrete manifold
- in 2D, they are Jordan curves.

[Backup slide] Some well-composed representations

[backup slide] Some extra references

S. Crozet and T. Géraud, "A first parallel algorithm to compute the morphological tree of shapes of nD images," in: Proc. of ICIP, pp. 2933-2937, 2014. [PDF]
Y. Xu, T. Géraud, and L. Najman, "Connected filtering on tree-based shape-spaces," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, num. 6, pp. 1126-1140, 2016. [PDF]

[^0]: T. Géraud, E. Carlinet, S. Crozet, "Self-Duality and Discrete Topology: Links Between the Morphological Tree of Shapes and Well-Composed Gray-Level Images," in: Proc. of ISMM, LNCS, vol. 9082, pp. 573-584, Springer, 2015. [PDF]

