
Presentation of TC-3

Assistants 2009

May 6, 2014



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Presentation of TC-3

1 Overview of the tarball

2 Task module

3 Method pointer

4 Templates

5 Interfaces

YAKA Presentation of TC-3 2 / 33



Overview of the tarball

1 Overview of the tarball

2 Task module

3 Method pointer

4 Templates

5 Interfaces



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

The tree structure of TC-3

Only ‘src/bind’ directory has been added.

That is where the Binder lays.

Implement it entirely.

Pay attention to ’break’: it must be used in a loop only. If
not, exit with a bind error code (4).

echo break | _build/src/tc -B -A --prelude= -

=> standard input:1.0-4: ‘break’ outside any loop

echo \$?

=> 4

YAKA Presentation of TC-3 4 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

The tree structure of TC-3

Only ‘src/bind’ directory has been added.

That is where the Binder lays.

Implement it entirely.

Pay attention to ’break’: it must be used in a loop only. If
not, exit with a bind error code (4).

echo break | _build/src/tc -B -A --prelude= -

=> standard input:1.0-4: ‘break’ outside any loop

echo \$?

=> 4

YAKA Presentation of TC-3 4 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

The tree structure of TC-3

Only ‘src/bind’ directory has been added.

That is where the Binder lays.

Implement it entirely.

Pay attention to ’break’: it must be used in a loop only. If
not, exit with a bind error code (4).

echo break | _build/src/tc -B -A --prelude= -

=> standard input:1.0-4: ‘break’ outside any loop

echo \$?

=> 4

YAKA Presentation of TC-3 4 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

The tree structure of TC-3

Only ‘src/bind’ directory has been added.

That is where the Binder lays.

Implement it entirely.

Pay attention to ’break’: it must be used in a loop only. If
not, exit with a bind error code (4).

echo break | _build/src/tc -B -A --prelude= -

=> standard input:1.0-4: ‘break’ outside any loop

echo \$?

=> 4

YAKA Presentation of TC-3 4 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

misc::ScopedMap

Implement it entirely.

There is more than one way to do it:

Functionnal approach
Imperative approach

YAKA Presentation of TC-3 5 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

misc::ScopedMap

Implement it entirely.

There is more than one way to do it:

Functionnal approach
Imperative approach

YAKA Presentation of TC-3 5 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

misc::ScopedMap

Implement it entirely.

There is more than one way to do it:

Functionnal approach
Imperative approach

YAKA Presentation of TC-3 5 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

misc::ScopedMap

Implement it entirely.

There is more than one way to do it:

Functionnal approach
Imperative approach

YAKA Presentation of TC-3 5 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Simple stack

A simple stack with markers for scope delimiters.

Advantages:

Easy to implement.

Drawbacks:

Slow: You have to walk through the stack each time you want
to check if an element exists. If it does not exist you have to
walk the entire stack.

YAKA Presentation of TC-3 6 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Simple stack

A simple stack with markers for scope delimiters.

Advantages:

Easy to implement.

Drawbacks:

Slow: You have to walk through the stack each time you want
to check if an element exists. If it does not exist you have to
walk the entire stack.

YAKA Presentation of TC-3 6 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Simple stack

A simple stack with markers for scope delimiters.

Advantages:

Easy to implement.

Drawbacks:

Slow: You have to walk through the stack each time you want
to check if an element exists. If it does not exist you have to
walk the entire stack.

YAKA Presentation of TC-3 6 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Simple stack

A simple stack with markers for scope delimiters.

Advantages:

Easy to implement.

Drawbacks:

Slow: You have to walk through the stack each time you want
to check if an element exists. If it does not exist you have to
walk the entire stack.

YAKA Presentation of TC-3 6 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Simple stack

A simple stack with markers for scope delimiters.

Advantages:

Easy to implement.

Drawbacks:

Slow: You have to walk through the stack each time you want
to check if an element exists. If it does not exist you have to
walk the entire stack.

YAKA Presentation of TC-3 6 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Stack of maps

Each level in the stack represents a scope.

Within each level, a symbol can be found immediately since it
is a hash map.

Advantages:

Faster than the previous solution

Drawbacks:

Harder to implement.
You still have to walk through the whole stack if a symbol
does not exist.

YAKA Presentation of TC-3 7 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Stack of maps

Each level in the stack represents a scope.

Within each level, a symbol can be found immediately since it
is a hash map.

Advantages:

Faster than the previous solution

Drawbacks:

Harder to implement.
You still have to walk through the whole stack if a symbol
does not exist.

YAKA Presentation of TC-3 7 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Stack of maps

Each level in the stack represents a scope.

Within each level, a symbol can be found immediately since it
is a hash map.

Advantages:

Faster than the previous solution

Drawbacks:

Harder to implement.
You still have to walk through the whole stack if a symbol
does not exist.

YAKA Presentation of TC-3 7 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Stack of maps

Each level in the stack represents a scope.

Within each level, a symbol can be found immediately since it
is a hash map.

Advantages:

Faster than the previous solution

Drawbacks:

Harder to implement.
You still have to walk through the whole stack if a symbol
does not exist.

YAKA Presentation of TC-3 7 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Stack of maps

Each level in the stack represents a scope.

Within each level, a symbol can be found immediately since it
is a hash map.

Advantages:

Faster than the previous solution

Drawbacks:

Harder to implement.
You still have to walk through the whole stack if a symbol
does not exist.

YAKA Presentation of TC-3 7 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Stack of maps

Each level in the stack represents a scope.

Within each level, a symbol can be found immediately since it
is a hash map.

Advantages:

Faster than the previous solution

Drawbacks:

Harder to implement.
You still have to walk through the whole stack if a symbol
does not exist.

YAKA Presentation of TC-3 7 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Stack of maps

Each level in the stack represents a scope.

Within each level, a symbol can be found immediately since it
is a hash map.

Advantages:

Faster than the previous solution

Drawbacks:

Harder to implement.
You still have to walk through the whole stack if a symbol
does not exist.

YAKA Presentation of TC-3 7 / 33



Task module

1 Overview of the tarball

2 Task module

3 Method pointer

4 Templates

5 Interfaces



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

The tasks module

The design pattern command:
Encapsulate a request as an object, thereby letting you parameterize
clients with different requests, queue or log requests, and support
undoable operations.

YAKA Presentation of TC-3 9 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

The tasks module

Clients are defined in the tasks module and instantiated in
each ‘<module>/tasks.*’.

enable action will be called from argp (command-line
parser): it is the invoker.

register action will play the role of the client.

YAKA Presentation of TC-3 10 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

The tasks module

Clients are defined in the tasks module and instantiated in
each ‘<module>/tasks.*’.

enable action will be called from argp (command-line
parser): it is the invoker.

register action will play the role of the client.

YAKA Presentation of TC-3 10 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

The tasks module

Clients are defined in the tasks module and instantiated in
each ‘<module>/tasks.*’.

enable action will be called from argp (command-line
parser): it is the invoker.

register action will play the role of the client.

YAKA Presentation of TC-3 10 / 33



Method pointer

1 Overview of the tarball

2 Task module

3 Method pointer

4 Templates

5 Interfaces



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Method pointer

C and C++ offer function pointer.

C++ introduces a new sort of function: function members.

Pointers to those function members are called function
member pointers.

YAKA Presentation of TC-3 12 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Method pointer

C and C++ offer function pointer.

C++ introduces a new sort of function: function members.

Pointers to those function members are called function
member pointers.

YAKA Presentation of TC-3 12 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Method pointer

C and C++ offer function pointer.

C++ introduces a new sort of function: function members.

Pointers to those function members are called function
member pointers.

YAKA Presentation of TC-3 12 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Syntax of function member pointers: declaration

/// Member manipulator signature.

typedef void (Error::*member_manip_type) ();

/// Hook for member manipulators.

Error& operator<< (member_manip_type f);

YAKA Presentation of TC-3 13 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Syntax of method pointer: usage

// Calling a function member using a function member pointer.

inline Error&

Error::operator<< (member_manip_type f)

{

(this->*f) ();

return *this;

}

// Passing a function member pointer as argument

// (excerpt from scantiger.ll).

error_ << misc::Error::failure

<< program_name

<< ": cannot open ‘" << filename_ << "’: "

<< strerror (errno) << std::endl

<< &misc::Error::exit;

YAKA Presentation of TC-3 14 / 33



Templates

1 Overview of the tarball

2 Task module

3 Method pointer

4 Templates
Traits
Template Methods

5 Interfaces



Traits

1 Overview of the tarball

2 Task module

3 Method pointer

4 Templates
Traits
Template Methods

5 Interfaces



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Traits
Template Methods

Template parameterized by templates

Templates can be parameterized by a scalar value, a type, ...

... and another template :)!

Example [1]:
template <class T, template <class> class C>

class Xrefd

{

C<T> mems;

C<T*> refs;

};

// This instanciates a vector of "Entries"

// and a vector of "Entries*"

Xrefd<Entry, std::vector> x1;

YAKA Presentation of TC-3 17 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Traits
Template Methods

Template parameterized by templates

Templates can be parameterized by a scalar value, a type, ...

... and another template :)!

Example [1]:
template <class T, template <class> class C>

class Xrefd

{

C<T> mems;

C<T*> refs;

};

// This instanciates a vector of "Entries"

// and a vector of "Entries*"

Xrefd<Entry, std::vector> x1;

YAKA Presentation of TC-3 17 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Traits
Template Methods

Template parameterized by templates

Templates can be parameterized by a scalar value, a type, ...

... and another template :)!

Example [1]:
template <class T, template <class> class C>

class Xrefd

{

C<T> mems;

C<T*> refs;

};

// This instanciates a vector of "Entries"

// and a vector of "Entries*"

Xrefd<Entry, std::vector> x1;

YAKA Presentation of TC-3 17 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Traits
Template Methods

Traits

Traits are classes that encapsulate properties of types.

Example: is a type a pointer type?

First define default value (Excerpt from
‘lib/misc/traits.hxx’).
/// Use is_pointer<T>::value.

template<typename T>

struct is_pointer

{

static const bool value = false;

};

Then use template specialization for pointers:
template<typename T>

struct is_pointer<T*>

{

static const bool value = true;

};

YAKA Presentation of TC-3 18 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Traits
Template Methods

Traits

Traits are classes that encapsulate properties of types.

Example: is a type a pointer type?

First define default value (Excerpt from
‘lib/misc/traits.hxx’).
/// Use is_pointer<T>::value.

template<typename T>

struct is_pointer

{

static const bool value = false;

};

Then use template specialization for pointers:
template<typename T>

struct is_pointer<T*>

{

static const bool value = true;

};

YAKA Presentation of TC-3 18 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Traits
Template Methods

Traits

Traits are classes that encapsulate properties of types.

Example: is a type a pointer type?

First define default value (Excerpt from
‘lib/misc/traits.hxx’).
/// Use is_pointer<T>::value.

template<typename T>

struct is_pointer

{

static const bool value = false;

};

Then use template specialization for pointers:
template<typename T>

struct is_pointer<T*>

{

static const bool value = true;

};

YAKA Presentation of TC-3 18 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Traits
Template Methods

Traits

Traits are classes that encapsulate properties of types.

Example: is a type a pointer type?

First define default value (Excerpt from
‘lib/misc/traits.hxx’).
/// Use is_pointer<T>::value.

template<typename T>

struct is_pointer

{

static const bool value = false;

};

Then use template specialization for pointers:
template<typename T>

struct is_pointer<T*>

{

static const bool value = true;

};

YAKA Presentation of TC-3 18 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Traits
Template Methods

Traits: another example

Traits can compute a type from another type. Here is a
sample of ‘misc/select-const.hh’

/// The iterator over a non const structure

/// is plain iterator.

template<typename T>

struct select_iterator

{

typedef typename T::iterator type;

};

/// The iterator over a const structure

/// is a const_iterator.

template<typename T>

struct select_iterator<const T>

{

typedef typename T::const_iterator type;

};

YAKA Presentation of TC-3 19 / 33



Template Methods

1 Overview of the tarball

2 Task module

3 Method pointer

4 Templates
Traits
Template Methods

5 Interfaces



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Traits
Template Methods

The design pattern Template Method

The design pattern Template Method:
Define the skeleton of an algorithm in an operation, deferring some
steps to subclasses. Template Method lets subclasses redefine certain
steps of an algorithm without changing the algorithm’s structure.

YAKA Presentation of TC-3 21 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Traits
Template Methods

The design pattern Template Method

In the Tiger project it is used to visit the chunks.

Visiting a chunk of types or functions is basically the same:

Declare type or function prototypes.
Process their definitions.

warning: Implemented thanks to template, and not class
inheritance as usual in C++.

warning: Do not mix up template method and method
template. (Hint: the last word is the noun and the other is
the adjective).

Likewise, ”class template” is correct but ”template class” is
not.

YAKA Presentation of TC-3 22 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Traits
Template Methods

The design pattern Template Method

In the Tiger project it is used to visit the chunks.

Visiting a chunk of types or functions is basically the same:

Declare type or function prototypes.
Process their definitions.

warning: Implemented thanks to template, and not class
inheritance as usual in C++.

warning: Do not mix up template method and method
template. (Hint: the last word is the noun and the other is
the adjective).

Likewise, ”class template” is correct but ”template class” is
not.

YAKA Presentation of TC-3 22 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Traits
Template Methods

The design pattern Template Method

In the Tiger project it is used to visit the chunks.

Visiting a chunk of types or functions is basically the same:

Declare type or function prototypes.
Process their definitions.

warning: Implemented thanks to template, and not class
inheritance as usual in C++.

warning: Do not mix up template method and method
template. (Hint: the last word is the noun and the other is
the adjective).

Likewise, ”class template” is correct but ”template class” is
not.

YAKA Presentation of TC-3 22 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Traits
Template Methods

The design pattern Template Method

In the Tiger project it is used to visit the chunks.

Visiting a chunk of types or functions is basically the same:

Declare type or function prototypes.
Process their definitions.

warning: Implemented thanks to template, and not class
inheritance as usual in C++.

warning: Do not mix up template method and method
template. (Hint: the last word is the noun and the other is
the adjective).

Likewise, ”class template” is correct but ”template class” is
not.

YAKA Presentation of TC-3 22 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Traits
Template Methods

The design pattern Template Method

In the Tiger project it is used to visit the chunks.

Visiting a chunk of types or functions is basically the same:

Declare type or function prototypes.
Process their definitions.

warning: Implemented thanks to template, and not class
inheritance as usual in C++.

warning: Do not mix up template method and method
template. (Hint: the last word is the noun and the other is
the adjective).

Likewise, ”class template” is correct but ”template class” is
not.

YAKA Presentation of TC-3 22 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Traits
Template Methods

The design pattern Template Method

In the Tiger project it is used to visit the chunks.

Visiting a chunk of types or functions is basically the same:

Declare type or function prototypes.
Process their definitions.

warning: Implemented thanks to template, and not class
inheritance as usual in C++.

warning: Do not mix up template method and method
template. (Hint: the last word is the noun and the other is
the adjective).

Likewise, ”class template” is correct but ”template class” is
not.

YAKA Presentation of TC-3 22 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Traits
Template Methods

The design pattern Template Method

In the Tiger project it is used to visit the chunks.

Visiting a chunk of types or functions is basically the same:

Declare type or function prototypes.
Process their definitions.

warning: Implemented thanks to template, and not class
inheritance as usual in C++.

warning: Do not mix up template method and method
template. (Hint: the last word is the noun and the other is
the adjective).

Likewise, ”class template” is correct but ”template class” is
not.

YAKA Presentation of TC-3 22 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Traits
Template Methods

Implementation

decsvisit: the skeleton that performs the double traversal.

visitDecHeader: visit the declaration to register in the current
environment.

visitDecBody: visits the body.

YAKA Presentation of TC-3 23 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Traits
Template Methods

Implementation

decsvisit: the skeleton that performs the double traversal.

visitDecHeader: visit the declaration to register in the current
environment.

visitDecBody: visits the body.

YAKA Presentation of TC-3 23 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Traits
Template Methods

Implementation

decsvisit: the skeleton that performs the double traversal.

visitDecHeader: visit the declaration to register in the current
environment.

visitDecBody: visits the body.

YAKA Presentation of TC-3 23 / 33



Interfaces

1 Overview of the tarball

2 Task module

3 Method pointer

4 Templates

5 Interfaces



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Interfaces

Abstract classes

Contain only pure function members.

Used for:

defining a protocol of behavior used by two entities for
interacting.
hiding implementation of the class to its client.
gathering several unrelated classes which expose similar
behaviors.

Examples:

Printable
Cloneable

YAKA Presentation of TC-3 25 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Interfaces

Abstract classes

Contain only pure function members.

Used for:

defining a protocol of behavior used by two entities for
interacting.
hiding implementation of the class to its client.
gathering several unrelated classes which expose similar
behaviors.

Examples:

Printable
Cloneable

YAKA Presentation of TC-3 25 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Interfaces

Abstract classes

Contain only pure function members.

Used for:

defining a protocol of behavior used by two entities for
interacting.
hiding implementation of the class to its client.
gathering several unrelated classes which expose similar
behaviors.

Examples:

Printable
Cloneable

YAKA Presentation of TC-3 25 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Interfaces

Abstract classes

Contain only pure function members.

Used for:

defining a protocol of behavior used by two entities for
interacting.
hiding implementation of the class to its client.
gathering several unrelated classes which expose similar
behaviors.

Examples:

Printable
Cloneable

YAKA Presentation of TC-3 25 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Interfaces

Abstract classes

Contain only pure function members.

Used for:

defining a protocol of behavior used by two entities for
interacting.
hiding implementation of the class to its client.
gathering several unrelated classes which expose similar
behaviors.

Examples:

Printable
Cloneable

YAKA Presentation of TC-3 25 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Interfaces

Abstract classes

Contain only pure function members.

Used for:

defining a protocol of behavior used by two entities for
interacting.
hiding implementation of the class to its client.
gathering several unrelated classes which expose similar
behaviors.

Examples:

Printable
Cloneable

YAKA Presentation of TC-3 25 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Interfaces

Abstract classes

Contain only pure function members.

Used for:

defining a protocol of behavior used by two entities for
interacting.
hiding implementation of the class to its client.
gathering several unrelated classes which expose similar
behaviors.

Examples:

Printable
Cloneable

YAKA Presentation of TC-3 25 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Interfaces

Abstract classes

Contain only pure function members.

Used for:

defining a protocol of behavior used by two entities for
interacting.
hiding implementation of the class to its client.
gathering several unrelated classes which expose similar
behaviors.

Examples:

Printable
Cloneable

YAKA Presentation of TC-3 25 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Interfaces

Abstract classes

Contain only pure function members.

Used for:

defining a protocol of behavior used by two entities for
interacting.
hiding implementation of the class to its client.
gathering several unrelated classes which expose similar
behaviors.

Examples:

Printable
Cloneable

YAKA Presentation of TC-3 25 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Interfaces

Some languages offer interfaces (Java, C#), others let the
user do the job (C++).

In Java:
public interface Serializable

{

public string serialize ();

}

In C++:
/// Interface.

class Serializable

{

public:

std::string serialize () const = 0;

}

YAKA Presentation of TC-3 26 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Interfaces

Some languages offer interfaces (Java, C#), others let the
user do the job (C++).

In Java:
public interface Serializable

{

public string serialize ();

}

In C++:
/// Interface.

class Serializable

{

public:

std::string serialize () const = 0;

}

YAKA Presentation of TC-3 26 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Interfaces

Some languages offer interfaces (Java, C#), others let the
user do the job (C++).

In Java:
public interface Serializable

{

public string serialize ();

}

In C++:
/// Interface.

class Serializable

{

public:

std::string serialize () const = 0;

}

YAKA Presentation of TC-3 26 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Multiple inheritance

Classes can derive from several classes.

They inherit members and function members from all classes.

In fact, in languages that do not support multiple inheritance,
developers emulate it with interfaces.

As we wish to factor code, we do not always follow the
interface concept.

YAKA Presentation of TC-3 27 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Multiple inheritance

Classes can derive from several classes.

They inherit members and function members from all classes.

In fact, in languages that do not support multiple inheritance,
developers emulate it with interfaces.

As we wish to factor code, we do not always follow the
interface concept.

YAKA Presentation of TC-3 27 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Multiple inheritance

Classes can derive from several classes.

They inherit members and function members from all classes.

In fact, in languages that do not support multiple inheritance,
developers emulate it with interfaces.

As we wish to factor code, we do not always follow the
interface concept.

YAKA Presentation of TC-3 27 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Multiple inheritance

Classes can derive from several classes.

They inherit members and function members from all classes.

In fact, in languages that do not support multiple inheritance,
developers emulate it with interfaces.

As we wish to factor code, we do not always follow the
interface concept.

YAKA Presentation of TC-3 27 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable

To implement bindings in the ast, attributes and accessors
must be created.

Problems:

Several classes must have those attributes.
Their closest common ancestor is Ast.
Some nodes that derive from Ast do not need bindings.
Strong type checking is required.

As a consequence, use an interface: Bindable.

YAKA Presentation of TC-3 28 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable

To implement bindings in the ast, attributes and accessors
must be created.

Problems:

Several classes must have those attributes.
Their closest common ancestor is Ast.
Some nodes that derive from Ast do not need bindings.
Strong type checking is required.

As a consequence, use an interface: Bindable.

YAKA Presentation of TC-3 28 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable

To implement bindings in the ast, attributes and accessors
must be created.

Problems:

Several classes must have those attributes.
Their closest common ancestor is Ast.
Some nodes that derive from Ast do not need bindings.
Strong type checking is required.

As a consequence, use an interface: Bindable.

YAKA Presentation of TC-3 28 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable

To implement bindings in the ast, attributes and accessors
must be created.

Problems:

Several classes must have those attributes.
Their closest common ancestor is Ast.
Some nodes that derive from Ast do not need bindings.
Strong type checking is required.

As a consequence, use an interface: Bindable.

YAKA Presentation of TC-3 28 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable

To implement bindings in the ast, attributes and accessors
must be created.

Problems:

Several classes must have those attributes.
Their closest common ancestor is Ast.
Some nodes that derive from Ast do not need bindings.
Strong type checking is required.

As a consequence, use an interface: Bindable.

YAKA Presentation of TC-3 28 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable

To implement bindings in the ast, attributes and accessors
must be created.

Problems:

Several classes must have those attributes.
Their closest common ancestor is Ast.
Some nodes that derive from Ast do not need bindings.
Strong type checking is required.

As a consequence, use an interface: Bindable.

YAKA Presentation of TC-3 28 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable

To implement bindings in the ast, attributes and accessors
must be created.

Problems:

Several classes must have those attributes.
Their closest common ancestor is Ast.
Some nodes that derive from Ast do not need bindings.
Strong type checking is required.

As a consequence, use an interface: Bindable.

YAKA Presentation of TC-3 28 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable: one interface?

Each node referring to a type, function or variable implements
Bindable.

Pros:

Easy to implement.
Code is completely factorized.

Cons:

No strong type checking, the definitions must be generic Dec,
not FunctionDec, TypeDec or VarDec.

YAKA Presentation of TC-3 29 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable: one interface?

Each node referring to a type, function or variable implements
Bindable.

Pros:

Easy to implement.
Code is completely factorized.

Cons:

No strong type checking, the definitions must be generic Dec,
not FunctionDec, TypeDec or VarDec.

YAKA Presentation of TC-3 29 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable: one interface?

Each node referring to a type, function or variable implements
Bindable.

Pros:

Easy to implement.
Code is completely factorized.

Cons:

No strong type checking, the definitions must be generic Dec,
not FunctionDec, TypeDec or VarDec.

YAKA Presentation of TC-3 29 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable: one interface?

Each node referring to a type, function or variable implements
Bindable.

Pros:

Easy to implement.
Code is completely factorized.

Cons:

No strong type checking, the definitions must be generic Dec,
not FunctionDec, TypeDec or VarDec.

YAKA Presentation of TC-3 29 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable: one interface?

Each node referring to a type, function or variable implements
Bindable.

Pros:

Easy to implement.
Code is completely factorized.

Cons:

No strong type checking, the definitions must be generic Dec,
not FunctionDec, TypeDec or VarDec.

YAKA Presentation of TC-3 29 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable: one interface?

Each node referring to a type, function or variable implements
Bindable.

Pros:

Easy to implement.
Code is completely factorized.

Cons:

No strong type checking, the definitions must be generic Dec,
not FunctionDec, TypeDec or VarDec.

YAKA Presentation of TC-3 29 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable: three interfaces?

Each node referring to a type, function or variable implements
respectively TypeBindable, FunctionBindable and
VariableBindable.

Pros:

Easy to implement.
Strong type checking.

Cons:

Code is duplicated three times, the only difference being types.

YAKA Presentation of TC-3 30 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable: three interfaces?

Each node referring to a type, function or variable implements
respectively TypeBindable, FunctionBindable and
VariableBindable.

Pros:

Easy to implement.
Strong type checking.

Cons:

Code is duplicated three times, the only difference being types.

YAKA Presentation of TC-3 30 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable: three interfaces?

Each node referring to a type, function or variable implements
respectively TypeBindable, FunctionBindable and
VariableBindable.

Pros:

Easy to implement.
Strong type checking.

Cons:

Code is duplicated three times, the only difference being types.

YAKA Presentation of TC-3 30 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable: three interfaces?

Each node referring to a type, function or variable implements
respectively TypeBindable, FunctionBindable and
VariableBindable.

Pros:

Easy to implement.
Strong type checking.

Cons:

Code is duplicated three times, the only difference being types.

YAKA Presentation of TC-3 30 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable: three interfaces?

Each node referring to a type, function or variable implements
respectively TypeBindable, FunctionBindable and
VariableBindable.

Pros:

Easy to implement.
Strong type checking.

Cons:

Code is duplicated three times, the only difference being types.

YAKA Presentation of TC-3 30 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable: three interfaces?

Each node referring to a type, function or variable implements
respectively TypeBindable, FunctionBindable and
VariableBindable.

Pros:

Easy to implement.
Strong type checking.

Cons:

Code is duplicated three times, the only difference being types.

YAKA Presentation of TC-3 30 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable: one template interface!

Each node referring to a type, function or variable implement
respectively TypeBindable, FunctionBindable and
VariableBindable, but those classes are written using a
template.

Pros:

Strong type checking.
Code is completely factorized.

Cons:

A bit harder to implement.

YAKA Presentation of TC-3 31 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable: one template interface!

Each node referring to a type, function or variable implement
respectively TypeBindable, FunctionBindable and
VariableBindable, but those classes are written using a
template.

Pros:

Strong type checking.
Code is completely factorized.

Cons:

A bit harder to implement.

YAKA Presentation of TC-3 31 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable: one template interface!

Each node referring to a type, function or variable implement
respectively TypeBindable, FunctionBindable and
VariableBindable, but those classes are written using a
template.

Pros:

Strong type checking.
Code is completely factorized.

Cons:

A bit harder to implement.

YAKA Presentation of TC-3 31 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable: one template interface!

Each node referring to a type, function or variable implement
respectively TypeBindable, FunctionBindable and
VariableBindable, but those classes are written using a
template.

Pros:

Strong type checking.
Code is completely factorized.

Cons:

A bit harder to implement.

YAKA Presentation of TC-3 31 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable: one template interface!

Each node referring to a type, function or variable implement
respectively TypeBindable, FunctionBindable and
VariableBindable, but those classes are written using a
template.

Pros:

Strong type checking.
Code is completely factorized.

Cons:

A bit harder to implement.

YAKA Presentation of TC-3 31 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable: one template interface!

Each node referring to a type, function or variable implement
respectively TypeBindable, FunctionBindable and
VariableBindable, but those classes are written using a
template.

Pros:

Strong type checking.
Code is completely factorized.

Cons:

A bit harder to implement.

YAKA Presentation of TC-3 31 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bindable: one template interface!

Same kind of declaration than for DefaultVisitor and
DefaultConstVisitor.
template <class DefinitionClassType>

class Bindable

{

// FIXME.

}

// Aliases for template classes.

typedef Bindable<FunctionDec> FunctionBindable;

YAKA Presentation of TC-3 32 / 33



Overview of the tarball
Task module

Method pointer
Templates
Interfaces

Bibliography I

Bjarne Stroustrup.
The C++ programming language third edition, 1997.

YAKA Presentation of TC-3 33 / 33


	Overview of the tarball
	Task module
	Method pointer
	Templates
	Traits
	Template Methods

	Interfaces

