
Presentation of LC-4

Assistants 2009

May 6, 2014

Overview of the tarball
Implementation details

Presentation of LC-4

1 Overview of the tarball

2 Implementation details

YAKA Presentation of LC-4 2 / 31

Overview of the tarball

1 Overview of the tarball

2 Implementation details

Overview of the tarball
Implementation details

The tree structure of TC-4

Only ‘src/type’ directory has been added.

That is where the TypeChecker lays.

YAKA Presentation of LC-4 4 / 31

Overview of the tarball
Implementation details

The tree structure of TC-4

Only ‘src/type’ directory has been added.

That is where the TypeChecker lays.

YAKA Presentation of LC-4 4 / 31

Overview of the tarball
Implementation details

Code to write

Types classes.

type::TypeChecker

ast::Typeable and ast::TypeConstructor (Update the
ast accordingly).

YAKA Presentation of LC-4 5 / 31

Implementation details

1 Overview of the tarball

2 Implementation details
Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Template Method

1 Overview of the tarball

2 Implementation details
Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Template Method: the return

Do you recall the template method vs method template mess?

. . . well you really should :)

. . . because it is useful for TC-4.

Otherwise, check TC-3 presentation.

YAKA Presentation of LC-4 8 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Template Method: the return

Do you recall the template method vs method template mess?

. . . well you really should :)

. . . because it is useful for TC-4.

Otherwise, check TC-3 presentation.

YAKA Presentation of LC-4 8 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Template Method: the return

Do you recall the template method vs method template mess?

. . . well you really should :)

. . . because it is useful for TC-4.

Otherwise, check TC-3 presentation.

YAKA Presentation of LC-4 8 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Template Method: the return

Do you recall the template method vs method template mess?

. . . well you really should :)

. . . because it is useful for TC-4.

Otherwise, check TC-3 presentation.

YAKA Presentation of LC-4 8 / 31

Design Pattern Proxy

1 Overview of the tarball

2 Implementation details
Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

The design pattern Proxy

The design pattern Proxy
Provide a surrogate or placeholder for another object
to control access to it.

YAKA Presentation of LC-4 10 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Usage

Access control.

Hiding informations about the real object (Example: image).

YAKA Presentation of LC-4 11 / 31

Stack unwinding

1 Overview of the tarball

2 Implementation details
Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Exception handling and stack unwinding

What does happen when throwing an exception?

Construction of the thrown object.
“Stack unwinding”.
Execution of the first catch code found.

YAKA Presentation of LC-4 13 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Exception handling and stack unwinding

What does happen when throwing an exception?

Construction of the thrown object.
“Stack unwinding”.
Execution of the first catch code found.

YAKA Presentation of LC-4 13 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Exception handling and stack unwinding

What does happen when throwing an exception?

Construction of the thrown object.
“Stack unwinding”.
Execution of the first catch code found.

YAKA Presentation of LC-4 13 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Exception handling and stack unwinding

What does happen when throwing an exception?

Construction of the thrown object.
“Stack unwinding”.
Execution of the first catch code found.

YAKA Presentation of LC-4 13 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Stack unwinding

Until a catch block is found, exit the current function, which
means that:

All automatic variables are deallocated.

If an automatic variable is an object, its destructor is
automatically called.

Stack is popped.

warning: If a pointer on an allocated memory block is present
in the function, this memory block will leak.

YAKA Presentation of LC-4 14 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Stack unwinding

Until a catch block is found, exit the current function, which
means that:

All automatic variables are deallocated.

If an automatic variable is an object, its destructor is
automatically called.

Stack is popped.

warning: If a pointer on an allocated memory block is present
in the function, this memory block will leak.

YAKA Presentation of LC-4 14 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Stack unwinding

Until a catch block is found, exit the current function, which
means that:

All automatic variables are deallocated.

If an automatic variable is an object, its destructor is
automatically called.

Stack is popped.

warning: If a pointer on an allocated memory block is present
in the function, this memory block will leak.

YAKA Presentation of LC-4 14 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Stack unwinding

Until a catch block is found, exit the current function, which
means that:

All automatic variables are deallocated.

If an automatic variable is an object, its destructor is
automatically called.

Stack is popped.

warning: If a pointer on an allocated memory block is present
in the function, this memory block will leak.

YAKA Presentation of LC-4 14 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Stack unwinding: Example

void throwing_function () {

// huge_get delegates the deallocating

// of the object to the caller.

HugeObject* huge = huge_get ();

throw("Your program leaks a lot :(.");

delete huge;

}

void function_catcher () {

try

{ throwing_function(); }

catch (std::string str)

{ std::cerr << str << std::endl; }

}

int main() {

function_catcher();

}

YAKA Presentation of LC-4 15 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

A solution to the memory leak: auto ptr

auto ptr implements the design pattern Proxy.

Included in STL.

Behave like a pointer but automatically free object at the end
of the scope.

Alert: Copies of auto ptr are not equivalent. Only one of
them has the ownership of the object.

YAKA Presentation of LC-4 16 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

A solution to the memory leak: auto ptr

auto ptr implements the design pattern Proxy.

Included in STL.

Behave like a pointer but automatically free object at the end
of the scope.

Alert: Copies of auto ptr are not equivalent. Only one of
them has the ownership of the object.

YAKA Presentation of LC-4 16 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

A solution to the memory leak: auto ptr

auto ptr implements the design pattern Proxy.

Included in STL.

Behave like a pointer but automatically free object at the end
of the scope.

Alert: Copies of auto ptr are not equivalent. Only one of
them has the ownership of the object.

YAKA Presentation of LC-4 16 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

A solution to the memory leak: auto ptr

auto ptr implements the design pattern Proxy.

Included in STL.

Behave like a pointer but automatically free object at the end
of the scope.

Alert: Copies of auto ptr are not equivalent. Only one of
them has the ownership of the object.

YAKA Presentation of LC-4 16 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Stack unwinding: a leak-free example

void throwing_function() {

// huge_get delegates the deallocating

// of the object to the caller.

std::auto_ptr<HugeObject> huge = huge_get ();

throw("Your program does not leak :).");

// huge is automatically freed.

}

void function_catcher() {

try

{ throwing_function(); }

catch (std::string str)

{ std::cerr << str << std::endl; }

}

int main() {

function_catcher();

}

YAKA Presentation of LC-4 17 / 31

Vtables

1 Overview of the tarball

2 Implementation details
Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Why vtables?

struct A {

virtual void test() {std::cout << "Finished :)" << std::endl};

};

struct B : public A {

virtual void test() {

while (1) std::cout << "You loose :(" << std::endl

};

};

int main() {

A* a = (rand() % 2) ? new A() : new B();

a->test();

}

How to resolve the good call to test?

Vtables are a solution.

YAKA Presentation of LC-4 19 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Why vtables?

struct A {

virtual void test() {std::cout << "Finished :)" << std::endl};

};

struct B : public A {

virtual void test() {

while (1) std::cout << "You loose :(" << std::endl

};

};

int main() {

A* a = (rand() % 2) ? new A() : new B();

a->test();

}

How to resolve the good call to test?

Vtables are a solution.

YAKA Presentation of LC-4 19 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

vtables

Vtables are used to resolve virtual function member calls.

A vtable is an array of function member pointers. Each
function member has an unique entry in the vtable.

Each class that owns a virtual member function has a vtable.

Each instance of a class has a pointer on that vtable.

YAKA Presentation of LC-4 20 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

vtables

Vtables are used to resolve virtual function member calls.

A vtable is an array of function member pointers. Each
function member has an unique entry in the vtable.

Each class that owns a virtual member function has a vtable.

Each instance of a class has a pointer on that vtable.

YAKA Presentation of LC-4 20 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

vtables

Vtables are used to resolve virtual function member calls.

A vtable is an array of function member pointers. Each
function member has an unique entry in the vtable.

Each class that owns a virtual member function has a vtable.

Each instance of a class has a pointer on that vtable.

YAKA Presentation of LC-4 20 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

vtables

Vtables are used to resolve virtual function member calls.

A vtable is an array of function member pointers. Each
function member has an unique entry in the vtable.

Each class that owns a virtual member function has a vtable.

Each instance of a class has a pointer on that vtable.

YAKA Presentation of LC-4 20 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

A small reminder on templates

Code is not generated upon definition but only when the
template is used.
// No code is generated.

template <class T>

T max (T a, T b);

// max<int> is generated.

max (1, 2);

// max<float> is generated.

max (1f, 2f);

YAKA Presentation of LC-4 21 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Virtual template method

‘problem.hh’
struct A {
template<class T>
virtual void test (T& t) {std::cout << ”A” << std::endl};
};

‘lib.cc’
#include ”problem.hh”
int fun () {
A∗ a = new A ();
a−>test(3f);
}

‘main.cc’
#include ”problem.hh”
int main () {
A∗ a = new A ();
a−>test(3);
}

This is not valid in C++.

YAKA Presentation of LC-4 22 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Virtual template method

‘problem.hh’
struct A {
template<class T>
virtual void test (T& t) {std::cout << ”A” << std::endl};
};

‘lib.cc’
#include ”problem.hh”
int fun () {
A∗ a = new A ();
a−>test(3f);
}

‘main.cc’
#include ”problem.hh”
int main () {
A∗ a = new A ();
a−>test(3);
}

This is not valid in C++.

YAKA Presentation of LC-4 22 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Virtual template method

‘problem.hh’
struct A {
template<class T>
virtual void test (T& t) {std::cout << ”A” << std::endl};
};

‘lib.cc’
#include ”problem.hh”
int fun () {
A∗ a = new A ();
a−>test(3f);
}

‘main.cc’
#include ”problem.hh”
int main () {
A∗ a = new A ();
a−>test(3);
}

This is not valid in C++.

YAKA Presentation of LC-4 22 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Virtual template method

‘problem.hh’
struct A {
template<class T>
virtual void test (T& t) {std::cout << ”A” << std::endl};
};

‘lib.cc’
#include ”problem.hh”
int fun () {
A∗ a = new A ();
a−>test(3f);
}

‘main.cc’
#include ”problem.hh”
int main () {
A∗ a = new A ();
a−>test(3);
}

This is not valid in C++.

YAKA Presentation of LC-4 22 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Why virtual template methods are invalid?

When compiling main.cc, g++ does not know all the uses of
the templates (here: int, float), hence it does not know how
many virtual function members exist in a class.

Vtable sizes cannot be known.

Since it cannot work, it is not valid.

YAKA Presentation of LC-4 23 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Why virtual template methods are invalid?

When compiling main.cc, g++ does not know all the uses of
the templates (here: int, float), hence it does not know how
many virtual function members exist in a class.

Vtable sizes cannot be known.

Since it cannot work, it is not valid.

YAKA Presentation of LC-4 23 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Why virtual template methods are invalid?

When compiling main.cc, g++ does not know all the uses of
the templates (here: int, float), hence it does not know how
many virtual function members exist in a class.

Vtable sizes cannot be known.

Since it cannot work, it is not valid.

YAKA Presentation of LC-4 23 / 31

Singleton

1 Overview of the tarball

2 Implementation details
Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

The design pattern: singleton

Ensure a class has only one instance and
provide a global point of access to it.

Save space.

In Tiger, it is used for built-in types (nil,
void, int and string).

Example:
class Nil : public Type

{

public:

/// Return the unique instance of Nil.

static const Nil& instance ();

private:

Nil ();

};

YAKA Presentation of LC-4 25 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

The design pattern: singleton

Ensure a class has only one instance and
provide a global point of access to it.

Save space.

In Tiger, it is used for built-in types (nil,
void, int and string).

Example:
class Nil : public Type

{

public:

/// Return the unique instance of Nil.

static const Nil& instance ();

private:

Nil ();

};

YAKA Presentation of LC-4 25 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

The design pattern: singleton

Ensure a class has only one instance and
provide a global point of access to it.

Save space.

In Tiger, it is used for built-in types (nil,
void, int and string).

Example:
class Nil : public Type

{

public:

/// Return the unique instance of Nil.

static const Nil& instance ();

private:

Nil ();

};

YAKA Presentation of LC-4 25 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

The design pattern: singleton

Ensure a class has only one instance and
provide a global point of access to it.

Save space.

In Tiger, it is used for built-in types (nil,
void, int and string).

Example:
class Nil : public Type

{

public:

/// Return the unique instance of Nil.

static const Nil& instance ();

private:

Nil ();

};

YAKA Presentation of LC-4 25 / 31

Architecture of TC-4

1 Overview of the tarball

2 Implementation details
Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Typeable

Interface for all nodes related to a type.

It is used in two cases:

Nodes that have a type.
Nodes that define a type

YAKA Presentation of LC-4 27 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Typeable

Interface for all nodes related to a type.

It is used in two cases:

Nodes that have a type.
Nodes that define a type

YAKA Presentation of LC-4 27 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Typeable

Interface for all nodes related to a type.

It is used in two cases:

Nodes that have a type.
Nodes that define a type

YAKA Presentation of LC-4 27 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Typeable

Interface for all nodes related to a type.

It is used in two cases:

Nodes that have a type.
Nodes that define a type

YAKA Presentation of LC-4 27 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

TypeConstructor

In the ast some nodes construct types.

All other nodes just reference them, hence must not free them.

TypeConstructor is a class that factors the deallocation of
type objects.

Only nodes that create types derive from TypeConstructor.

YAKA Presentation of LC-4 28 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

TypeConstructor

In the ast some nodes construct types.

All other nodes just reference them, hence must not free them.

TypeConstructor is a class that factors the deallocation of
type objects.

Only nodes that create types derive from TypeConstructor.

YAKA Presentation of LC-4 28 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

TypeConstructor

In the ast some nodes construct types.

All other nodes just reference them, hence must not free them.

TypeConstructor is a class that factors the deallocation of
type objects.

Only nodes that create types derive from TypeConstructor.

YAKA Presentation of LC-4 28 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

TypeConstructor

In the ast some nodes construct types.

All other nodes just reference them, hence must not free them.

TypeConstructor is a class that factors the deallocation of
type objects.

Only nodes that create types derive from TypeConstructor.

YAKA Presentation of LC-4 28 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

The Type hierarchy

Grammar of type:
<Type > ::=

Int | String | Void | Nil

| Array <Type> | Record (Id<Type>)+ | Name <Type>

| Function (Id<Type>)+ : <Type>

;

Functions create a type, then it must be part of the hierarchy.

nil and void are anonymous types that cannot be used
directly.

YAKA Presentation of LC-4 29 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

The Type hierarchy

Grammar of type:
<Type > ::=

Int | String | Void | Nil

| Array <Type> | Record (Id<Type>)+ | Name <Type>

| Function (Id<Type>)+ : <Type>

;

Functions create a type, then it must be part of the hierarchy.

nil and void are anonymous types that cannot be used
directly.

YAKA Presentation of LC-4 29 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

The Type hierarchy

Grammar of type:
<Type > ::=

Int | String | Void | Nil

| Array <Type> | Record (Id<Type>)+ | Name <Type>

| Function (Id<Type>)+ : <Type>

;

Functions create a type, then it must be part of the hierarchy.

nil and void are anonymous types that cannot be used
directly.

YAKA Presentation of LC-4 29 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Strange constructs with defined types

Those types use only defined type, but are either invalid or
unusable.

Recursive aliased types. Example:
let

type a = b

type b = a

in

end

is not valid.
Recursive arrays. Example:
let

type my_array = array of my_array

in

end

cannot be used (but is valid).

YAKA Presentation of LC-4 30 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Strange constructs with defined types

Those types use only defined type, but are either invalid or
unusable.

Recursive aliased types. Example:
let

type a = b

type b = a

in

end

is not valid.
Recursive arrays. Example:
let

type my_array = array of my_array

in

end

cannot be used (but is valid).

YAKA Presentation of LC-4 30 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

Strange constructs with defined types

Those types use only defined type, but are either invalid or
unusable.

Recursive aliased types. Example:
let

type a = b

type b = a

in

end

is not valid.
Recursive arrays. Example:
let

type my_array = array of my_array

in

end

cannot be used (but is valid).

YAKA Presentation of LC-4 30 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

The sound method

Implement it in ‘type/named.cc’

Check that a type is not a recursive aliased type.

YAKA Presentation of LC-4 31 / 31

Overview of the tarball
Implementation details

Template Method
Design Pattern Proxy
Stack unwinding
Vtables
Singleton
Architecture of TC-4

The sound method

Implement it in ‘type/named.cc’

Check that a type is not a recursive aliased type.

YAKA Presentation of LC-4 31 / 31

	Overview of the tarball
	Implementation details
	Template Method
	Design Pattern Proxy
	Stack unwinding
	Vtables
	Singleton
	Architecture of TC-4

