
Presentation of TC-5

Assistants 2009

May 6, 2014



Overview of the tarball
C++ notions

Presentation of TC-5

1 Overview of the tarball

2 C++ notions

YAKA Presentation of TC-5 2 / 22



Overview of the tarball

1 Overview of the tarball

2 C++ notions



Overview of the tarball
C++ notions

The tree structure of TC-5

New directories:

‘src/frame’: Definition of classes representing frames.
‘src/temp’: Classes representing labels, temporaries, . . .
‘src/tree’: Intermediate representation (the second AST).
‘src/translate’: Translation to intermediate code.

YAKA Presentation of TC-5 4 / 22



Overview of the tarball
C++ notions

The tree structure of TC-5

New directories:

‘src/frame’: Definition of classes representing frames.
‘src/temp’: Classes representing labels, temporaries, . . .
‘src/tree’: Intermediate representation (the second AST).
‘src/translate’: Translation to intermediate code.

YAKA Presentation of TC-5 4 / 22



Overview of the tarball
C++ notions

The tree structure of TC-5

New directories:

‘src/frame’: Definition of classes representing frames.
‘src/temp’: Classes representing labels, temporaries, . . .
‘src/tree’: Intermediate representation (the second AST).
‘src/translate’: Translation to intermediate code.

YAKA Presentation of TC-5 4 / 22



Overview of the tarball
C++ notions

The tree structure of TC-5

New directories:

‘src/frame’: Definition of classes representing frames.
‘src/temp’: Classes representing labels, temporaries, . . .
‘src/tree’: Intermediate representation (the second AST).
‘src/translate’: Translation to intermediate code.

YAKA Presentation of TC-5 4 / 22



Overview of the tarball
C++ notions

The tree structure of TC-5

New directories:

‘src/frame’: Definition of classes representing frames.
‘src/temp’: Classes representing labels, temporaries, . . .
‘src/tree’: Intermediate representation (the second AST).
‘src/translate’: Translation to intermediate code.

YAKA Presentation of TC-5 4 / 22



Overview of the tarball
C++ notions

Code to write

‘src/temp/*’: Complete identifier and factory classes.

‘src/frame/*’: Some code to do.

‘src/translate/fragment.hh’: Finish the class.

Translator: The core of TC-5.

YAKA Presentation of TC-5 5 / 22



C++ notions

1 Overview of the tarball

2 C++ notions
Memory management
Variant types
Tiger implementation



Memory management

1 Overview of the tarball

2 C++ notions
Memory management
Variant types
Tiger implementation



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Problematics

How to handle an object deallocation?

In the class destructor: well suited for simple cases, but is a
nightmare when several pointers reference the same object.
Reference counting.
Garbage collection.

YAKA Presentation of TC-5 8 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Problematics

How to handle an object deallocation?

In the class destructor: well suited for simple cases, but is a
nightmare when several pointers reference the same object.
Reference counting.
Garbage collection.

YAKA Presentation of TC-5 8 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Problematics

How to handle an object deallocation?

In the class destructor: well suited for simple cases, but is a
nightmare when several pointers reference the same object.
Reference counting.
Garbage collection.

YAKA Presentation of TC-5 8 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Problematics

How to handle an object deallocation?

In the class destructor: well suited for simple cases, but is a
nightmare when several pointers reference the same object.
Reference counting.
Garbage collection.

YAKA Presentation of TC-5 8 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Reference counting

Each object knows how many pointers reference it.

A pointer informs the object when it reference it, so that the
counter can be incremented, and when it stops reference it, so
that the counter can be decremented.

When the counter reaches 0, the object can be deallocated.

YAKA Presentation of TC-5 9 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Reference counting

Each object knows how many pointers reference it.

A pointer informs the object when it reference it, so that the
counter can be incremented, and when it stops reference it, so
that the counter can be decremented.

When the counter reaches 0, the object can be deallocated.

YAKA Presentation of TC-5 9 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Reference counting

Each object knows how many pointers reference it.

A pointer informs the object when it reference it, so that the
counter can be incremented, and when it stops reference it, so
that the counter can be decremented.

When the counter reaches 0, the object can be deallocated.

YAKA Presentation of TC-5 9 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Advantages and drawbacks

Easy to implement.

Low memory footprint.

Do not use much CPU.

But cannot handle all cases: circular references.

Figure: Numbers are the reference counter of each object

YAKA Presentation of TC-5 10 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Advantages and drawbacks

Easy to implement.

Low memory footprint.

Do not use much CPU.

But cannot handle all cases: circular references.

Figure: Numbers are the reference counter of each object

YAKA Presentation of TC-5 10 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Advantages and drawbacks

Easy to implement.

Low memory footprint.

Do not use much CPU.

But cannot handle all cases: circular references.

Figure: Numbers are the reference counter of each object

YAKA Presentation of TC-5 10 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Advantages and drawbacks

Easy to implement.

Low memory footprint.

Do not use much CPU.

But cannot handle all cases: circular references.

Figure: Numbers are the reference counter of each object

YAKA Presentation of TC-5 10 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Common implementation in C++

Reference counting is implemented using a Proxy design
pattern.

The proxy behaves like a pointer, by overloading operator*

and operator->.

YAKA Presentation of TC-5 11 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Common implementation in C++

Reference counting is implemented using a Proxy design
pattern.

The proxy behaves like a pointer, by overloading operator*

and operator->.

YAKA Presentation of TC-5 11 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Garbage collecting

Aims at determining which objects can be used by the
program at any moment.

Builds a graph of objects, where nodes represent objects and
edges represent references.

Accessible objects are those whose nodes can be reached from
root nodes:

Global variables.
Objects stored in the stack.

YAKA Presentation of TC-5 12 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Garbage collecting

Aims at determining which objects can be used by the
program at any moment.

Builds a graph of objects, where nodes represent objects and
edges represent references.

Accessible objects are those whose nodes can be reached from
root nodes:

Global variables.
Objects stored in the stack.

YAKA Presentation of TC-5 12 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Garbage collecting

Aims at determining which objects can be used by the
program at any moment.

Builds a graph of objects, where nodes represent objects and
edges represent references.

Accessible objects are those whose nodes can be reached from
root nodes:

Global variables.
Objects stored in the stack.

YAKA Presentation of TC-5 12 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Garbage collecting

Aims at determining which objects can be used by the
program at any moment.

Builds a graph of objects, where nodes represent objects and
edges represent references.

Accessible objects are those whose nodes can be reached from
root nodes:

Global variables.
Objects stored in the stack.

YAKA Presentation of TC-5 12 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Garbage collecting

Aims at determining which objects can be used by the
program at any moment.

Builds a graph of objects, where nodes represent objects and
edges represent references.

Accessible objects are those whose nodes can be reached from
root nodes:

Global variables.
Objects stored in the stack.

YAKA Presentation of TC-5 12 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Garbage collecting

Numerous languages integrate a garbage collecting:

Java

C#

Caml

Ruby

Python

Eiffel

D

Lisp

. . .

YAKA Presentation of TC-5 13 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Advantages and drawbacks

Perfect handling of deallocation.

Slow.

Complex implementation.

YAKA Presentation of TC-5 14 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Advantages and drawbacks

Perfect handling of deallocation.

Slow.

Complex implementation.

YAKA Presentation of TC-5 14 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Advantages and drawbacks

Perfect handling of deallocation.

Slow.

Complex implementation.

YAKA Presentation of TC-5 14 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

What about TC?

Nodes of the Tree structure will be created then destroyed.

We want to handle it with little effort thanks to
boost::shared ptr and misc::ref.

Quite like the Smptr you did during the C++ Workshop.

Pay special attention to implicit calls to the constructor.

YAKA Presentation of TC-5 15 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

What about TC?

Nodes of the Tree structure will be created then destroyed.

We want to handle it with little effort thanks to
boost::shared ptr and misc::ref.

Quite like the Smptr you did during the C++ Workshop.

Pay special attention to implicit calls to the constructor.

YAKA Presentation of TC-5 15 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

What about TC?

Nodes of the Tree structure will be created then destroyed.

We want to handle it with little effort thanks to
boost::shared ptr and misc::ref.

Quite like the Smptr you did during the C++ Workshop.

Pay special attention to implicit calls to the constructor.

YAKA Presentation of TC-5 15 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

What about TC?

Nodes of the Tree structure will be created then destroyed.

We want to handle it with little effort thanks to
boost::shared ptr and misc::ref.

Quite like the Smptr you did during the C++ Workshop.

Pay special attention to implicit calls to the constructor.

YAKA Presentation of TC-5 15 / 22



Variant types

1 Overview of the tarball

2 C++ notions
Memory management
Variant types
Tiger implementation



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Variants

Remember boost::variant.

And the famous boost::bad get.

We need a compile-time type verification.

YAKA Presentation of TC-5 17 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Visiting Variant: Visitor

Design pattern Visitor aims at executing an action on an
object.

Prevent dispatching of the action code in many classes
definitions.

Well suited for working on Variant.
#include ”boost/variant.hpp”
#include <iostream>

typedef boost::variant<ast::IntExp, ast::StringExp> scalar type;

struct my visitor : public boost::static visitor<void> {
void operator() (const ast::IntExp&) const {
std::cout << ”IntExp”;

}
void operator() (const ast::StringExp&) const {
std::cout << ”StringExp”;

}

};
int main() {
scalar type value = ”a string”;
boost::apply visitor (my visitor (), value);

}

YAKA Presentation of TC-5 18 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Visiting Variant: Visitor

Design pattern Visitor aims at executing an action on an
object.

Prevent dispatching of the action code in many classes
definitions.

Well suited for working on Variant.
#include ”boost/variant.hpp”
#include <iostream>

typedef boost::variant<ast::IntExp, ast::StringExp> scalar type;

struct my visitor : public boost::static visitor<void> {
void operator() (const ast::IntExp&) const {
std::cout << ”IntExp”;

}
void operator() (const ast::StringExp&) const {
std::cout << ”StringExp”;

}

};
int main() {
scalar type value = ”a string”;
boost::apply visitor (my visitor (), value);

}

YAKA Presentation of TC-5 18 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

Visiting Variant: Visitor

Design pattern Visitor aims at executing an action on an
object.

Prevent dispatching of the action code in many classes
definitions.

Well suited for working on Variant.
#include ”boost/variant.hpp”
#include <iostream>

typedef boost::variant<ast::IntExp, ast::StringExp> scalar type;

struct my visitor : public boost::static visitor<void> {
void operator() (const ast::IntExp&) const {
std::cout << ”IntExp”;

}
void operator() (const ast::StringExp&) const {
std::cout << ”StringExp”;

}

};
int main() {
scalar type value = ”a string”;
boost::apply visitor (my visitor (), value);

}

YAKA Presentation of TC-5 18 / 22



Tiger implementation

1 Overview of the tarball

2 C++ notions
Memory management
Variant types
Tiger implementation



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

The second AST

Intermediate representation is a different language than Tiger.

Hence, has its own AST.

YAKA Presentation of TC-5 20 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

The second AST

Intermediate representation is a different language than Tiger.

Hence, has its own AST.

YAKA Presentation of TC-5 20 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

The second AST

Different implementation than the first AST.

Base class Tree has an enum indicating the kind of the object.

Prevent numerous dynamic cast in TC-6 and TC-7.

YAKA Presentation of TC-5 21 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

The second AST

Different implementation than the first AST.

Base class Tree has an enum indicating the kind of the object.

Prevent numerous dynamic cast in TC-6 and TC-7.

YAKA Presentation of TC-5 21 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

The second AST

Different implementation than the first AST.

Base class Tree has an enum indicating the kind of the object.

Prevent numerous dynamic cast in TC-6 and TC-7.

YAKA Presentation of TC-5 21 / 22



Overview of the tarball
C++ notions

Memory management
Variant types
Tiger implementation

The second AST

/Tree/

/Exp/

Const (int value)

Name (const temp::Label &label)

Temp (const temp::Temp &temp)

Binop (Oper oper, Exp &left, Exp &right)

Mem (Exp &exp)

Call (Exp &func, std::list<Exp *> &args)

Eseq (Stm &stm, Exp &exp)

/Stm/

Move (Exp &dst, Exp &src)

Sxp (Exp &exp)

Jump (Exp &exp, std::list<temp::Label> &targets)

CJump (Relop relop, Exp &left, Exp &right,

Label &iftrue, Label &iffalse)

Seq (std::list<Stm *>)

Label (temp::Label &label)

YAKA Presentation of TC-5 22 / 22


	Overview of the tarball
	C++ notions
	Memory management
	Variant types
	Tiger implementation


