Presentation of TC-7

Assistants 2009

May 6, 2014

Presentation of TC-7

@ Overview of the tarball
© Monoburg

© Instruction representation

YAKA Presentation of TC-7 2 /17

Overview of the tarball

@ Overview of the tarball

Overview of the tarball

The tree structure of TC-7

@ New directories:

YAKA Presentation of TC-7 4 /17

Overview of the tarball

The tree structure of TC-7

o New directories:
e 'src/assem’: Yet another intermediate language (last one!).

YAKA Presentation of TC-7 4 /17

Overview of the tarball

The tree structure of TC-7

@ New directories:

e 'src/assem’: Yet another intermediate language (last one!).
e 'src/target’: Classes describing the target architecture
(Mips and Ia32). Given in full.

YAKA Presentation of TC-7 4 /17

Overview of the tarball

The tree structure of TC-7

@ New directories:

e 'src/assem’: Yet another intermediate language (last one!).

e 'src/target’: Classes describing the target architecture
(Mips and Ia32). Given in full.

e ‘src/target’: Instruction selection.

YAKA Presentation of TC-7 4 /17

© Monoburg
@ Introduction
@ Presentation

Introduction

© Monoburg
@ Introduction

Introduction

Monoburg
° Presentation

What is Monoburg?

@ Implementation of IBURG, developed in the context of Mono
Novell (2004)

YAKA Presentation of TC-7 7/17

Introduction

Monoburg
° Presentation

What is Monoburg?

@ Implementation of IBURG, developed in the context of Mono
Novell (2004)

@ Created in order to generate the code-generator for the Mono
Virtual Machine, which uses JIT (Just-In-Time) compilation.

YAKA Presentation of TC-7 7/17

Introduction

Monoburg
° Presentation

What is Monoburg?

@ Implementation of IBURG, developed in the context of Mono
Novell (2004)

@ Created in order to generate the code-generator for the Mono
Virtual Machine, which uses JIT (Just-In-Time) compilation.

@ Simple, and maintainable compared to the older
‘codegen.cc’ of Tiger.

YAKA Presentation of TC-7 7/17

© Monoburg

@ Presentation

Introduction

Monoburg 3
° Presentation

Principle

@ Give all nodes of the tree.

YAKA Presentation of T

Introduction

Monoburg 3
° Presentation

Principle

@ Give all nodes of the tree.

@ Do pattern matching on tree to select the best rewrite:
bottom up algorithm (BURG: Bottom Up Rewrite System).

YAKA Presentation of TC-7 9 /17

Introduction

Monoburg 3
° Presentation

Principle

@ Give all nodes of the tree.

@ Do pattern matching on tree to select the best rewrite:
bottom up algorithm (BURG: Bottom Up Rewrite System).

@ Each rewrite can have an associated cost.

YAKA Presentation of TC-7 9 /17

Introduction

Monoburg 3
° Presentation

Example (Excerpt from move.brg)

move: Move(Mem(el : exp), Mem(e2 : exp))
{

temp: :Temp rval;

rExp exp = e2.cast<Exp> ();
assertion (exp);
EMIT (MIPS_ASSEMBLY.load_build (exp->asm_get (), rval));

exp = el.cast<Exp> ();

assertion (exp);
EMIT (MIPS_ASSEMBLY.store_build (rval, exp->asm_get ()));

YAKA Presentation of

10 /17

Instruction representation

© Instruction representation
@ Runtime

Runtime
Instruction representation

Constraints

@ Represent a final assembly instruction: a label, an instruction
or a move.

YAKA Presentation of T 12 / 17

Runtime
Instruction representation

Constraints

@ Represent a final assembly instruction: a label, an instruction
or a move.

@ Used for intermediate language and final assembly: different
registers depending on register allocation.

YAKA Presentation of T 12 / 17

Runtime
Instruction representation

Implementation

@ Labels and instructions are represented by a printf-style string.

YAKA Presentation of 13 /17

Runtime
Instruction representation

Implementation

@ Labels and instructions are represented by a printf-style string.

@ Registers and labels are stored in separated lists.

YAKA Presentation of TC-7 13 /17

Runtime
Instruction representation

Implementation

@ Labels and instructions are represented by a printf-style string.
@ Registers and labels are stored in separated lists.

@ Replacement is done at display of asm.

YAKA Presentation of TC-7 13 /17

Runtime
Instruction representation

Example

// First list: used temporaries list.

// Second list: defined temporaries list.

// Third list: labels list.

res.push_back (new assem::Oper ("j\t’j", L O, L (), jump_list));

YAKA Presentation of T 14 / 17

© Instruction representation
@ Runtime

Runtime
Instruction representation

Principle

@ The Tiger language provides primitives.

YAKA Presentation of 16 / 17

Runtime
Instruction representation

Principle

@ The Tiger language provides primitives.

@ Primitives can't be written in Tiger!

YAKA Presentation of T 16 / 17

Runtime
Instruction representation

Principle

@ The Tiger language provides primitives.
@ Primitives can't be written in Tiger!

@ Primitives are written in assembly language, then included in
the output.

YAKA Presentation of T

16 / 17

Runtime
Instruction representation

Example (Excerpt from the runtime.s)

Routine: print -------——-----—-———---———————
Print the string $a0

.text

tc_print:

1w $a2, ($a0)

addi $al, $a0, 4

1i $a0, 1

1i $v0, 0x03

syscall ; write

Content of $vO is undetermined
jr $ra

YAKA Presentation of T 17 / 17

	Overview of the tarball
	Monoburg
	Introduction
	Presentation

	Instruction representation
	Runtime

