
Presentation of TC-7

Assistants 2009

May 6, 2014

Overview of the tarball
Monoburg

Instruction representation

Presentation of TC-7

1 Overview of the tarball

2 Monoburg

3 Instruction representation

YAKA Presentation of TC-7 2 / 17

Overview of the tarball

1 Overview of the tarball

2 Monoburg

3 Instruction representation

Overview of the tarball
Monoburg

Instruction representation

The tree structure of TC-7

New directories:

‘src/assem’: Yet another intermediate language (last one!).
‘src/target’: Classes describing the target architecture
(Mips and Ia32). Given in full.
‘src/target’: Instruction selection.

YAKA Presentation of TC-7 4 / 17

Overview of the tarball
Monoburg

Instruction representation

The tree structure of TC-7

New directories:

‘src/assem’: Yet another intermediate language (last one!).
‘src/target’: Classes describing the target architecture
(Mips and Ia32). Given in full.
‘src/target’: Instruction selection.

YAKA Presentation of TC-7 4 / 17

Overview of the tarball
Monoburg

Instruction representation

The tree structure of TC-7

New directories:

‘src/assem’: Yet another intermediate language (last one!).
‘src/target’: Classes describing the target architecture
(Mips and Ia32). Given in full.
‘src/target’: Instruction selection.

YAKA Presentation of TC-7 4 / 17

Overview of the tarball
Monoburg

Instruction representation

The tree structure of TC-7

New directories:

‘src/assem’: Yet another intermediate language (last one!).
‘src/target’: Classes describing the target architecture
(Mips and Ia32). Given in full.
‘src/target’: Instruction selection.

YAKA Presentation of TC-7 4 / 17

Monoburg

1 Overview of the tarball

2 Monoburg
Introduction
Presentation

3 Instruction representation

Introduction

1 Overview of the tarball

2 Monoburg
Introduction
Presentation

3 Instruction representation

Overview of the tarball
Monoburg

Instruction representation

Introduction
Presentation

What is Monoburg?

Implementation of IBURG, developed in the context of Mono
Novell (2004)

Created in order to generate the code-generator for the Mono
Virtual Machine, which uses JIT (Just-In-Time) compilation.

Simple, and maintainable compared to the older
‘codegen.cc’ of Tiger.

YAKA Presentation of TC-7 7 / 17

Overview of the tarball
Monoburg

Instruction representation

Introduction
Presentation

What is Monoburg?

Implementation of IBURG, developed in the context of Mono
Novell (2004)

Created in order to generate the code-generator for the Mono
Virtual Machine, which uses JIT (Just-In-Time) compilation.

Simple, and maintainable compared to the older
‘codegen.cc’ of Tiger.

YAKA Presentation of TC-7 7 / 17

Overview of the tarball
Monoburg

Instruction representation

Introduction
Presentation

What is Monoburg?

Implementation of IBURG, developed in the context of Mono
Novell (2004)

Created in order to generate the code-generator for the Mono
Virtual Machine, which uses JIT (Just-In-Time) compilation.

Simple, and maintainable compared to the older
‘codegen.cc’ of Tiger.

YAKA Presentation of TC-7 7 / 17

Presentation

1 Overview of the tarball

2 Monoburg
Introduction
Presentation

3 Instruction representation

Overview of the tarball
Monoburg

Instruction representation

Introduction
Presentation

Principle

Give all nodes of the tree.

Do pattern matching on tree to select the best rewrite:
bottom up algorithm (BURG: Bottom Up Rewrite System).

Each rewrite can have an associated cost.

YAKA Presentation of TC-7 9 / 17

Overview of the tarball
Monoburg

Instruction representation

Introduction
Presentation

Principle

Give all nodes of the tree.

Do pattern matching on tree to select the best rewrite:
bottom up algorithm (BURG: Bottom Up Rewrite System).

Each rewrite can have an associated cost.

YAKA Presentation of TC-7 9 / 17

Overview of the tarball
Monoburg

Instruction representation

Introduction
Presentation

Principle

Give all nodes of the tree.

Do pattern matching on tree to select the best rewrite:
bottom up algorithm (BURG: Bottom Up Rewrite System).

Each rewrite can have an associated cost.

YAKA Presentation of TC-7 9 / 17

Overview of the tarball
Monoburg

Instruction representation

Introduction
Presentation

Example (Excerpt from move.brg)

move: Move(Mem(e1 : exp), Mem(e2 : exp))

{

temp::Temp rval;

rExp exp = e2.cast<Exp> ();

assertion (exp);

EMIT (MIPS_ASSEMBLY.load_build (exp->asm_get (), rval));

exp = e1.cast<Exp> ();

assertion (exp);

EMIT (MIPS_ASSEMBLY.store_build (rval, exp->asm_get ()));

}

YAKA Presentation of TC-7 10 / 17

Instruction representation

1 Overview of the tarball

2 Monoburg

3 Instruction representation
Runtime

Overview of the tarball
Monoburg

Instruction representation
Runtime

Constraints

Represent a final assembly instruction: a label, an instruction
or a move.

Used for intermediate language and final assembly: different
registers depending on register allocation.

YAKA Presentation of TC-7 12 / 17

Overview of the tarball
Monoburg

Instruction representation
Runtime

Constraints

Represent a final assembly instruction: a label, an instruction
or a move.

Used for intermediate language and final assembly: different
registers depending on register allocation.

YAKA Presentation of TC-7 12 / 17

Overview of the tarball
Monoburg

Instruction representation
Runtime

Implementation

Labels and instructions are represented by a printf-style string.

Registers and labels are stored in separated lists.

Replacement is done at display of asm.

YAKA Presentation of TC-7 13 / 17

Overview of the tarball
Monoburg

Instruction representation
Runtime

Implementation

Labels and instructions are represented by a printf-style string.

Registers and labels are stored in separated lists.

Replacement is done at display of asm.

YAKA Presentation of TC-7 13 / 17

Overview of the tarball
Monoburg

Instruction representation
Runtime

Implementation

Labels and instructions are represented by a printf-style string.

Registers and labels are stored in separated lists.

Replacement is done at display of asm.

YAKA Presentation of TC-7 13 / 17

Overview of the tarball
Monoburg

Instruction representation
Runtime

Example

// First list: used temporaries list.

// Second list: defined temporaries list.

// Third list: labels list.

res.push_back (new assem::Oper ("j\t’j", L (), L (), jump_list));

YAKA Presentation of TC-7 14 / 17

Runtime

1 Overview of the tarball

2 Monoburg

3 Instruction representation
Runtime

Overview of the tarball
Monoburg

Instruction representation
Runtime

Principle

The Tiger language provides primitives.

Primitives can’t be written in Tiger!

Primitives are written in assembly language, then included in
the output.

YAKA Presentation of TC-7 16 / 17

Overview of the tarball
Monoburg

Instruction representation
Runtime

Principle

The Tiger language provides primitives.

Primitives can’t be written in Tiger!

Primitives are written in assembly language, then included in
the output.

YAKA Presentation of TC-7 16 / 17

Overview of the tarball
Monoburg

Instruction representation
Runtime

Principle

The Tiger language provides primitives.

Primitives can’t be written in Tiger!

Primitives are written in assembly language, then included in
the output.

YAKA Presentation of TC-7 16 / 17

Overview of the tarball
Monoburg

Instruction representation
Runtime

Example (Excerpt from the runtime.s)

Routine: print --

Print the string $a0

.text

tc_print:

lw $a2, ($a0)

addi $a1, $a0, 4

li $a0, 1

li $v0, 0x03

syscall ; write

Content of $v0 is undetermined

jr $ra

YAKA Presentation of TC-7 17 / 17

	Overview of the tarball
	Monoburg
	Introduction
	Presentation

	Instruction representation
	Runtime

