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The tree structure of TC-7

New directories:

‘src/assem’: Yet another intermediate language (last one!).
‘src/target’: Classes describing the target architecture
(Mips and Ia32). Given in full.
‘src/target’: Instruction selection.
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What is Monoburg?

Implementation of IBURG, developed in the context of Mono
Novell (2004)

Created in order to generate the code-generator for the Mono
Virtual Machine, which uses JIT (Just-In-Time) compilation.

Simple, and maintainable compared to the older
‘codegen.cc’ of Tiger.
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Principle

Give all nodes of the tree.

Do pattern matching on tree to select the best rewrite:
bottom up algorithm (BURG: Bottom Up Rewrite System).

Each rewrite can have an associated cost.
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Example (Excerpt from move.brg)

move: Move(Mem(e1 : exp), Mem(e2 : exp))

{

temp::Temp rval;

rExp exp = e2.cast<Exp> ();

assertion (exp);

EMIT (MIPS_ASSEMBLY.load_build (exp->asm_get (), rval));

exp = e1.cast<Exp> ();

assertion (exp);

EMIT (MIPS_ASSEMBLY.store_build (rval, exp->asm_get ()));

}
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Constraints

Represent a final assembly instruction: a label, an instruction
or a move.

Used for intermediate language and final assembly: different
registers depending on register allocation.
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Implementation

Labels and instructions are represented by a printf-style string.

Registers and labels are stored in separated lists.

Replacement is done at display of asm.
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Example

// First list: used temporaries list.

// Second list: defined temporaries list.

// Third list: labels list.

res.push_back (new assem::Oper ("j\t’j", L (), L (), jump_list));
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Principle

The Tiger language provides primitives.

Primitives can’t be written in Tiger!

Primitives are written in assembly language, then included in
the output.
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Example (Excerpt from the runtime.s)

## Routine: print ------------------------------------------

# Print the string $a0

.text

tc_print:

lw $a2, ($a0)

addi $a1, $a0, 4

li $a0, 1

li $v0, 0x03

syscall ; write

## Content of $v0 is undetermined

jr $ra
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