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Overview of the tarball

The tree structure of TC-7

@ New directories:

e 'src/assem’: Yet another intermediate language (last one!).

e 'src/target’: Classes describing the target architecture
(Mips and Ia32). Given in full.

e ‘src/target’: Instruction selection.
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Introduction

Monoburg
° Presentation

What is Monoburg?

@ Implementation of IBURG, developed in the context of Mono
Novell (2004)
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Introduction

Monoburg
° Presentation

What is Monoburg?

@ Implementation of IBURG, developed in the context of Mono
Novell (2004)

@ Created in order to generate the code-generator for the Mono
Virtual Machine, which uses JIT (Just-In-Time) compilation.

@ Simple, and maintainable compared to the older
‘codegen.cc’ of Tiger.
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Monoburg 3
° Presentation

Principle

@ Give all nodes of the tree.
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Introduction

Monoburg 3
° Presentation

Principle

@ Give all nodes of the tree.

@ Do pattern matching on tree to select the best rewrite:
bottom up algorithm (BURG: Bottom Up Rewrite System).

@ Each rewrite can have an associated cost.
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Introduction

Monoburg 3
° Presentation

Example (Excerpt from move.brg)

move: Move(Mem(el : exp), Mem(e2 : exp))
{

temp: :Temp rval;

rExp exp = e2.cast<Exp> ();
assertion (exp);
EMIT (MIPS_ASSEMBLY.load_build (exp->asm_get (), rval));

exp = el.cast<Exp> ();

assertion (exp);
EMIT (MIPS_ASSEMBLY.store_build (rval, exp->asm_get ()));
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© Instruction representation
@ Runtime



Runtime
Instruction representation

Constraints

@ Represent a final assembly instruction: a label, an instruction
or a move.
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Runtime
Instruction representation

Constraints

@ Represent a final assembly instruction: a label, an instruction
or a move.

@ Used for intermediate language and final assembly: different
registers depending on register allocation.
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Runtime
Instruction representation

Implementation

@ Labels and instructions are represented by a printf-style string.
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Runtime
Instruction representation

Implementation

@ Labels and instructions are represented by a printf-style string.
@ Registers and labels are stored in separated lists.

@ Replacement is done at display of asm.
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Runtime
Instruction representation

Example

// First list: used temporaries list.

// Second list: defined temporaries list.

// Third list: labels list.

res.push_back (new assem::Oper ("j\t’j", L O, L (), jump_list));
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Runtime
Instruction representation

Principle

@ The Tiger language provides primitives.
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Runtime
Instruction representation

Principle

@ The Tiger language provides primitives.
@ Primitives can't be written in Tiger!

@ Primitives are written in assembly language, then included in
the output.
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Runtime
Instruction representation

Example (Excerpt from the runtime.s)

## Routine: print -------——-----—-———---———————
# Print the string $a0

.text

tc_print:

1w $a2, ($a0)

addi $al, $a0, 4

1i $a0, 1

1i $v0, 0x03

syscall ; write

## Content of $vO is undetermined
jr $ra
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