
Typology of programming languages
e Routines E

Typology of programming languages Routines 1 / 18



Fundamentals of Subprograms

Each subprogram has a single entry
point

The calling program is suspended
during execution of the called
subprogram

Control always returns to the caller
when the called subprogram’s
execution terminates

Typology of programming languages Routines 2 / 18



Subprograms

At the origin, snippets copied and
pasted from other sources

I Impact on memory management;
I Impact on separated compilation;
I Modular programming: first level

of interface/abstraction.

First impact on Software
Engineering: “top-down”
conception, by refinements.

Generalizations: modules and/or
objects.

Typology of programming languages Routines 3 / 18



Procedures vs. Functions (1/3)

Procedure Collection of statements
that define parameterized
computations.
Subprograms with no return
value.
Procedures have side effects

Function Structurally resemble
procedures but are
semantically modeled on
mathematical functions.
Subprograms that return
something.
(Pure) Functions do not have
side effects

Typology of programming languages Routines 4 / 18



Procedures vs. Functions (2/3)

Ada, Pascal, …have two reserved
keywords procedure and function
BUT functions generally describe

subprograms with return values, while
procedures do not return values

Distinction sometimes blurred by the
language:

(e.g., using void ALGOL, C, Tiger…).

Typology of programming languages Routines 5 / 18



Procedures vs. Functions (3/3)

Function Add(A, B : Integer)
: Integer;

Begin
Add := A + B;
End;

Functions in Pascal

Procedure finish(name: String);
Begin
WriteLn('Goodbye ', name);

End;

Procedures in Pascal

Typology of programming languages Routines 6 / 18



Nested subprograms (1/2)

Organize your programs in a cleaner
fashion

It allows to share state easily in a
controlled fashion, because the nested
subprograms have access to the
parameters, as well as any local variables,
declared in the outer scope

Typology of programming languages Routines 7 / 18



Nested subprograms (2/2)
procedure one is
A, B : Integer;

function two(I : Integer)
return Integer is
function three(I : Integer)
return Integer is
begin

return I;
end three;

begin
return three(I);

end two;
begin

-- main code here
end one;

Nested Procedures in AdaTypology of programming languages Routines 8 / 18



Vocabulary

Formal Argument Arguments of a
subprogram declaration.

let function
sum (x: int, y: int): int

x + y

Effective Argument Arguments of a call
to a subprogram.

sum (40, 12)

Parameter Please reserve it for
templates.

Typology of programming languages Routines 9 / 18



Hybridation: Procedure/Functions

Using functions with side effects is very
dangerous. For instance:

foo = getc () +
getc () *
getc ();

is undefined (6= nondeterministic). On
purpose!

Typology of programming languages Routines 10 / 18



Default arguments

int sum(int a,
int b = 21,
int c = 42,
int d = 42){

return a + b + c + d;
}

Default Arguments in C++

sum(1, 2, 3, 4) is fine

sum(1, 2) is also fine

But what if we want to call sum (b =
1, a = 2) with c’s and d’s default
value?

Typology of programming languages Routines 11 / 18



Named Argument (Some sugar)
In Ada, named arguments and/or default values:

put (number : in float;
before : in integer := 2;
after : in integer := 2;
exponent : in integer := 2) ...

Some Ada function declaration

put (pi, 1, 2, 3);
put (pi, 1);
put (pi, 2, 2, 4);
put (pi, before => 2,

after => 2, exponent => 4);
put (pi, exponent => 4);

Possible invocations

Typology of programming languages Routines 12 / 18



Named Arguments

Named parameters are availables in
many languages: Perl, Python, C#,
Fortran95, Go, Haskell, Lua, Ocaml, Lisp,
Scala, Swift/ObjectiveC (fixed order of
named parameters!), …

No need to remember the order of
parameters

No need to guess specific default’s
values

More Flexible

Clarity

Typology of programming languages Routines 13 / 18



Named Arguments

Can we simulate named arguments in
C++ or Java?

Yes : Named parameter idiom uses a
proxy object for passing the parameters.

Typology of programming languages Routines 14 / 18



Named Parameter Idiom 1/2
class foo_param{
private:
int a = 0, b = 0;
foo_param() = default; // make it private

public:
foo_param& with_a(int provided){
a = provided; return *this;

}
foo_param& with_b(int provided){
b = provided; return *this;

}
static foo_param create(){
return foo_param();

}
};

Typology of programming languages Routines 15 / 18



Named Parameter Idiom 2/2

void foo(foo_param& f)
{
// ...

}

foo(foo_param::create()
.with_b(1)
.with_a(2));

Works … but require one specific class
per function

For C++, Boost::Parameter library also
offer a generic implementation

Typology of programming languages Routines 16 / 18



Easter Egg

def f(list = []):
list.append(1)
print(list)

m = []
f()
f()

Typology of programming languages Routines 17 / 18



Summary

Procedure Function

Nested sub-
functions

Typology of programming languages Routines 18 / 18


