
Typology of programming languages
e An overview of Go E

Typology of programming languages An overview of Go 1 / 61



Table of Contents

1 Overview

2 Language Syntax

3 Closure

4 Typed functional programming and Polymorphism

5 Co-routines

6 Even More Features

Typology of programming languages An overview of Go 2 / 61



Go (also referred as Golang)

First appeared in November 2009

Some Unix/C-stars:
I Ken Thompson (Multics, Unix, B,

Plan 9, ed, UTF-8, etc. – Turing
Award)

I Rob Pike (Plan 9, Inferno, Limbo,
UTF-8, Squeak, etc.)

I Russ Cox (Plan 9, R2E etc.)

Derived from C and Pascal

Open-source

Garbage Collected, compiled,
CSP-style concurrent programming

Typology of programming languages An overview of Go 3 / 61



Go (also referred as Golang)

“ Go is an attempt to combine the
safety and performance of stat-
ically typed languages with the
convenience and fun of dynam-
ically typed interpretative lan-
guages.

–
Rob Pike

Typology of programming languages An overview of Go 4 / 61



Some compagnies using Go
Google
CoreOS
Dropbox
Netflix
MongoDB
SoundMusic
Uber
Twitter
Dell
Docker
Github
Intel
Lyft
…

Typology of programming languages An overview of Go 5 / 61



Table of Contents

1 Overview

2 Language Syntax

3 Closure

4 Typed functional programming and Polymorphism

5 Co-routines

6 Even More Features

Typology of programming languages An overview of Go 6 / 61



Hello World (1/2)

package main

import (
"fmt"
"os"

)

func main() {
fmt.Println("Hello ",

os.Args[1])
}

Typology of programming languages An overview of Go 7 / 61



Hello World (2/2)

Compile and run with:

go run hello.go exec

Documentation:

godoc -http=":6060"
http://localhost:6060/pkg/

Typology of programming languages An overview of Go 8 / 61



Packages
Every Go program is made up of
packages.

Programs start running in package
main

package main

import "fmt"
import "math/rand"

func main() {
fmt.Println("My favorite",

" number is",
rand.Intn(10))

}

Typology of programming languages An overview of Go 9 / 61



Exported Names

Every name that begins with a
capital letter is exported

”unexported” names are not
accessible from outside the package

package main

import "fmt"
import "math"

func main() {
fmt.Println(math.Pi)

}

Typology of programming languages An overview of Go 10 / 61



Declaring variables

Types come after the name

Variables are introduced via var
A var declaration can include
initializers =
Implicit type declaration can be
done using :=

func main() {
var i = 51
j := 42
var k int = 51
l, m := 12, 18
var n, o int = 12, 18

}

Typology of programming languages An overview of Go 11 / 61



Functions
The return type comes after the
declaration, and before the body

Shared types can be omitted from all
but the last parameter

Return any number of results

func add1(x int, y int) int {
return x + y

}
func add2(x, y int) int {
return x + y

}
func swap(x, y string)

(string, string) {
return y, x

}

Typology of programming languages An overview of Go 12 / 61



Named return values & Naked return

return values may be named

A return statement without
arguments returns the named return
values. This is called naked returns.

func split(input int)
(x, y int) {

x = input * 4 / 9
y = input - x
return

}
func main() {
fmt.Println(split(42))

}

Typology of programming languages An overview of Go 13 / 61



Types
bool string int int8 int16 int32 int64
uint uint8 uint16 uint32 uint64 uintptr byte
rune float32 float64 complex64 complex128

Variables declared without an explicit initial value are given their zero value (for
string ””, for bool false, …)
The expression T(v) converts the value v to the type T

func main() {
var i int = 42
var f float64 = float64(i)
var b bool
var s string
fmt.Printf("%v %v %v %q\n", i, f, b, s)

}

Typology of programming languages An overview of Go 14 / 61



Constants
Numeric constants are
high-precision values.

An untyped constant takes the type
needed by its context.

Constants, like imports, can be
grouped.

const (
Big = 1 << 100
Small = Big >> 99

)

func main() {
fmt.Println(Small)
fmt.Println(Small*2.01)

}

Typology of programming languages An overview of Go 15 / 61



For init;condition; loop { body }

No parentheses surrounding the
three components of the for
statement

The braces are always required.

The loop will stop iterating once the
boolean condition evaluates to false.

The init and post statement are
optional (while loop)

Omit the loop condition to get a
forever loop

for i := 0; i < 9; i++ {
...

}

Typology of programming languages An overview of Go 16 / 61



Conditional testing

Variables declared by the statement
are only in scope until the end of the
if

No parentheses surrounding the
declaration plus the condition

func main() {
if v := 42; v < 51 {
fmt.Println(v)

}
else {
fmt.Println("Ohoh")

}
}

Typology of programming languages An overview of Go 17 / 61



Switch

A case body breaks automatically,
unless it ends with a fallthrough
statement

Switch cases evaluate cases from
top to bottom, stopping when a case
succeeds.

switch os := runtime.GOOS; os {
case "darwin": //...
case test(): //...
case "linux": //...
default: //...

}

Typology of programming languages An overview of Go 18 / 61



Pointers

* allows dereferences

& generates a pointer to its operand

No pointer arithmetic

func main() {
var i int = 21
var p* int = &i
fmt.Println(*p)
*p = *p + 2
fmt.Println(i)

}

Typology of programming languages An overview of Go 19 / 61



Structures
Struct fields can be accessed
through a struct pointer (*p).X or p.X

type FooBar struct {
X int
Y int

}
func main() {
v := FooBar{1, 2}
v.X = 4
fmt.Println(v.X)
p := &v
p.X = 18
fmt.Println(v.X)

}

Typology of programming languages An overview of Go 20 / 61



Anonymous Structures
Structs can be anonymous

Structs can be ’raw’ compared

package main
import "fmt"
func main() {
a := struct {
i int
b bool

}{51, false}
b := struct {
i int
b bool

}{51, false}
fmt.Println(a == b)

}

Typology of programming languages An overview of Go 21 / 61



Arrays
An array has a fixed size
A slice, on the other hand, is a dynamically-sized, flexible view into the elements
of an array
Slices are like references to arrays
Lower and/or upper bounds can be omitted for slices
Slices can be increased/decrease. Use len or cap to know length or capacity of a
slice.

package main
import "fmt"
func main() {
primes := [/*size*/]int{2, 3, 5, 7, 11, 13}
var s []int = primes[1:4]
fmt.Println(s)
var s2 []int = primes[:4]
fmt.Println(s2)

}
Typology of programming languages An overview of Go 22 / 61



Dynamic Arrays

Dynamic arrays are built over slices

May ise the built-in make function to specify length and capacity

Use append to add new elements

package main
import "fmt"
func main() {
d := make([]int, 0/*length*/, 0 /*capacity*/)
// Previous equivalent to d := []int {}
d = append(d, 42, 51)
fmt.Printf("%s len=%d cap=%d %v\n",

"d", len(d), cap(d), d)
}

Typology of programming languages An overview of Go 23 / 61



Range
Ranges allow Iteration
Two values per iteration:

I the index
I the referenced element

Skip the index or value by assigning
it to _

var array = []int{1, 2, 4, 8,
16, 32, 64,
128}

func main() {
for i, v := range array {
fmt.Println("%d,%d", i, v)

}
}

Typology of programming languages An overview of Go 24 / 61



Map
make function returns a map of the given type, initialized and ready for use.
The zero value of a map is nil
A nil map has no keys, nor can keys be added
Test that a key is present with a two-value assignment

package main; import "fmt"
var m map[string] int
func main() {
m = make(map[string]int)
m["EPITA"] = 42
fmt.Print(m["EPITA"])
delete(m, "EPITA")
elem, ok := m["EPITA"]
fmt.Print(elem, ok)

}
// 42 0 false

Typology of programming languages An overview of Go 25 / 61



Package Debug

Package debug contains facilities for
programs to debug themselves while
they are running.

FreeOSMemory: force Garbage
Collection

PrintStack: print stack
ReadGCStats: grab stats on
Garbage collection

SetMaxStack: set maximum stack
size

SetMaxThreads: fix maximum
number of threads

…

Typology of programming languages An overview of Go 26 / 61



Table of Contents

1 Overview

2 Language Syntax

3 Closure

4 Typed functional programming and Polymorphism

5 Co-routines

6 Even More Features

Typology of programming languages An overview of Go 27 / 61



A word on fonctionnal programming
Functional programming characteristics:

First-class functions.
Functions/methods are first-class
citizens, i.e. they can be:

1 named by a variable
2 passed to a function as an

argument
3 returned from a function as a

result
4 stored in any kind of data

structure.

Closure. Function/method
definitions are associated to
some/all of the environment when
they are defined.

Typology of programming languages An overview of Go 28 / 61



Go Functions are 1st Class
Functions can be declared at any
levels

Functions can be passed as
arguments/return of functions

func compute(fn func(int) int,
value int) int {

return 42*fn(value)
}
func main() {
myfun := func(x int) int{
myfun2 :=
func(y int) int{ return y*y }

return myfun2(x)
}
fmt.Print(myfun(5), " ",

compute(myfun, 5))
} // 25 1050

Typology of programming languages An overview of Go 29 / 61



Functions closure
A closure is a function value that
references variables from outside its
body.

The function is ”bound” to the
variables.

func adder() func(int) int {
sum := 0
return func(x int) int {

sum += x
return sum

}
}
func main() {
cumul := adder()
for i := 0; i < 10; i++ {

fmt.Println(cumul(i))
}

}
Typology of programming languages An overview of Go 30 / 61



Closures are Weak in Go

Go closures are not as strong as required
by pure Fonctionnal Programming

func main () {
counter := 0;
f1 := func (x int) int {
counter += x; return counter

}
f2 := func (y int) int{
counter += y; return counter

}
fmt.Printf(" %d \n", f1(1))
fmt.Printf(" %d \n", f2(1))
fmt.Printf(" %d \n", f1(1))

}

Typology of programming languages An overview of Go 31 / 61



Table of Contents

1 Overview

2 Language Syntax

3 Closure

4 Typed functional programming and Polymorphism

5 Co-routines

6 Even More Features

Typology of programming languages An overview of Go 32 / 61



Functions associated to a type 1/3

No classes, but you can define
functions on types

A function with a special receiver
argument

type MyType struct {
X, Y float64

}
func (v MyType) Abs() float64 {
return math.Sqrt(v.X*v.X +

v.Y*v.Y)
}
func main() {
v := MyType{3, 4}
fmt.Println(v.Abs())

}

Typology of programming languages An overview of Go 33 / 61



Functions associated to a type 2/3
The receiver is passed by copy unless a
pointer is passed as receiver

You do not need to dereference the
receiver in this case

type My struct {
X, Y float64

}
func (v* My) SetX(x float64) {
v.X = x

}
func main() {
v := My{3, 4}
v.SetX(18)

}

Typology of programming languages An overview of Go 34 / 61



Functions associated to a type 3/3
We can declare a function on
non-struct types

Possible, only for function with a
receiver whose type is defined in the
same package as the function

type My float64
func (f My) Abs() float64 {
if f < 0 {
return float64(-f)

}
return float64(f)

}
func main() {
f := My(-math.Sqrt2)
fmt.Println(f.Abs())

}

Typology of programming languages An overview of Go 35 / 61



Interface
An interface type is defined as a set
of method signature

A value of interface type can hold
any value that implements it

type Runner interface {
Run() int

}
type MyType struct {
X int

}
func (v MyType) Run() int {
return 42

}
func main() {
var a Runner; v := MyType{3}
a = v; fmt.Println(a.Run())

}

Typology of programming languages An overview of Go 36 / 61



Stringer Interface

Useful to print types

type Person struct {
Name string
Age int

}
func (p Person) String()

string {
return
fmt.Sprintf("%v (%v years)",

p.Name, p.Age)
}

//...
fmt.Println(Person{"John Doe", 42})

Typology of programming languages An overview of Go 37 / 61



Runtime Polymorphism
package main; import "fmt"

type Runner interface { Run() int }
type MyType1 struct { X int }
type MyType2 struct { X,Y int }

func (v MyType1) Run() int {return 42 }
func (v MyType2) Run() int {return v.X + v.Y }
func run(v Runner) int { return v.Run()}

func main() {
v1 := MyType1{3}
v2 := MyType2{3, 4}
fmt.Println(v1.Run(), v2.Run())
fmt.Println(run(v1),run(v2))

}

Typology of programming languages An overview of Go 38 / 61



Maximum Polymorphism and Reflection

maximum polymorphism through
the empty interface: ”interface {}”

For example, the printing functions
in fmt use it

Need for some reflection
mechanisms, i.e. ways to check at
runtime that instances satisfy types,
or are associated to functions.

For instance, to check that x0
satisfies the interface I

x1, ok := x0.(I);

(ok is a boolean, and if true, x1 is x0
with type I)

Typology of programming languages An overview of Go 39 / 61



Type Dispatch

Dynamic Dispatch can easily be
done

func dispatch(i interface{}) {
switch v := i.(type) {

case int:
//...
case string:
//...
default:
//...

}
}

Typology of programming languages An overview of Go 40 / 61



Duck Typing (1/2)

Go functional polymorphism is a
type-safe realization of “duck
typing”.

Implicit Rule: If something can do
this, then it can be used here.

I Opportunistic behavior of the type
instances.

I Dynamic OO languages like CLOS
or Groovy include duck typing in a
natural way

Typology of programming languages An overview of Go 41 / 61



Duck Typing (2/2)

In static languages: duck typing is
realized as a structural typing
mechanism (instead of nominal in which
all type compatibilities should be made
explicit – see e.g., implements, extends in
Java).

Duck typing uses mechanisms similar to
the one we have with C++ Generic
Programming.

Typology of programming languages An overview of Go 42 / 61



Go Interfaces and Structuration Levels
Go interfaces: A type-safe overloading
mechanism where sets of overloaded
functions make type instances
compatible or not to the available types
(interfaces).

The effect of an expression like: x.F(..)
depends on all the available definitions
of F, on the type of x, and on the set of
available interfaces where F occurs

Dilemma between the functional and
modular levels: Go votes for the
functional level, but less than CLOS, a
little more than Haskell, and definitely
more than Java/C# (where almost every
type is implemented as an
encapsulating class)…

Typology of programming languages An overview of Go 43 / 61



Summary about polymorphism & interface

Go interface-based mechanism is
not new, neither very powerful..

Haskell offers type inference with
constrained genericity, and
inheritance

Go structural-oriented type system
is not new, neither very powerful…

OCaml offers type and interface
inference with constrained
genericity, and inheritance

Typology of programming languages An overview of Go 44 / 61



Summary about polymorphism & interface
In Go, no explicit inheritance mechanism. The closest mechanism: some implicit
behavior inheritance through interface unions (called “embedding”):

type Foo interface {
F1() int;

type Bar interface {
F2() int;

}
type FooBar interface {
Foo // inclusion
Bar // inclusion

}

Rule
If type T is compatible with FooBar, it is compatible with Foo and Bar too

Typology of programming languages An overview of Go 45 / 61



Table of Contents

1 Overview

2 Language Syntax

3 Closure

4 Typed functional programming and Polymorphism

5 Co-routines

6 Even More Features

Typology of programming languages An overview of Go 46 / 61



Concurrency
The idea
Impose a sharing model where processes
do not share anything implictly (see
Hoare’s Communicating Sequential
Processes 1978)

Motto
Do not communicate by sharing
memory; instead, share memory by
communicating.

Objectives
Reduce the synchronization problems
(sometimes at the expense of
performance)

Typology of programming languages An overview of Go 47 / 61



Three basic constructs

Goroutines are similar to threads,
coroutines, processes, (Googlers
claimed they are sufficiently
different to give them a new name)

I Goroutines are then automatically
mapped to the OS host
concurrency primitives (e.g. POSIX
threads)

I A goroutine does not return
anything (side-effects are needed)

Channels: a typed FIFO-based
mechanism to make goroutines
communicate and synchronize

Segmented stacks make co-routines
usables

Typology of programming languages An overview of Go 48 / 61



Go Routine
A goroutine is a lightweight thread
managed by the Go runtime

starts a new goroutine running go
Goroutines run in the same address
space

access to shared memory must be
synchronized (see sync package)

func say(s string) {
for i := 0; i < 5; i++ {
time.Sleep(100 * time.Millisecond)
fmt.Println(s)

}
}
func main() {
go say("world")
say("hello")

}
Typology of programming languages An overview of Go 49 / 61



Channels 1/3

Channels are a typed conduits

Send to channel using ch < −42

Receive from channel using
v :=< −ch

Channels can be buffered: blocking
when the buffer is full or empty

func main() {
ch := make(chan int, 2)
ch <- 1
ch <- 2
fmt.Println(<-ch)
fmt.Println(<-ch)

}

Typology of programming languages An overview of Go 50 / 61



Channels 2/3
A sender can close a channel to indicate that no more values will be sent.

Receivers can test whether a channel has been closed v , ok :=< −ch

Sending on a closed channel will cause a panic.

Channels aren’t like files; you don’t usually need to close them

package main; import "fmt"
func compute(n int, c chan int) {
for i := 0; i < n; i++ { c <- i }
close(c)

}
func main() {
c := make(chan int, 10)
go compute(cap(c), c)
for i := range c { fmt.Println(i) }

}

Typology of programming languages An overview of Go 51 / 61



Channels 3/3
Select lets a goroutine wait on multiple communication operations

func main() {
c1 := make(chan string); c2 := make(chan string)
go func() { time.Sleep(time.Second * 5)

c1 <- "one"
}()

go func() { time.Sleep(time.Second * 5);
c2 <- "two"

}()
for i := 0; i < 2; i++ {
select {
case msg1 := <-c1:
fmt.Println("received", msg1)

case msg2 := <-c2:
fmt.Println("received", msg2)

}
}

}
Typology of programming languages An overview of Go 52 / 61



PingPong Time

Demo.

Typology of programming languages An overview of Go 53 / 61



Table of Contents

1 Overview

2 Language Syntax

3 Closure

4 Typed functional programming and Polymorphism

5 Co-routines

6 Even More Features

Typology of programming languages An overview of Go 54 / 61



Reflection & Tags 1/2
Reflection is the ability of program to introspect, and modify its own structure and
behavior at runtime

package main

import (
"fmt"
"reflect"
)

type Foo struct {
FirstName string `tag_name:"tag 1"`
LastName string `tag_name:"tag 2"`
Age int `tag_name:"tag 3"`

}

Typology of programming languages An overview of Go 55 / 61



Reflection & Tags 2/2
func (f *Foo) reflect() {
val := reflect.ValueOf(f).Elem()
for i := 0; i < val.NumField(); i++ {
valueField := val.Field(i)
typeField := val.Type().Field(i)
tag := typeField.Tag
fmt.Printf("Field Name: %s,\t Field Value: %v,\t Tag Value: %s\n",

typeField.Name,
valueField.Interface(),
tag.Get("tag_name"))

}
}
func main() {
f := &Foo{FirstName: "John", LastName: "Doe",

Age: 30}
f.reflect()

}
Typology of programming languages An overview of Go 56 / 61



Defer
Defers the execution of a function
until the surrounding function
returns

The deferred call’s arguments are
evaluated immediately but the
function call is not executed until
the surrounding function returns.

Defer is commonly used to simplify
functions that perform various
clean-up actions (closing file for
instance)

func main() {
defer fmt.Println("world")
fmt.Println("hello")

}

Typology of programming languages An overview of Go 57 / 61



Stacking Defer
Deferred function calls are pushed
onto a stack

When a function returns, its
deferred calls are executed in
last-in-first-out order

package main

import "fmt"
func main() {
fmt.Println("counting")
for i := 0; i < 10; i++ {
defer fmt.Println(i)

}
fmt.Println("done")

} // counting done 9 8 7 6 5 4 3 2 1 0

Typology of programming languages An overview of Go 58 / 61



Panic and Recover 1/2
Panic is a built-in function that
stops the ordinary flow of control
and begins panicking.

Recover is a built-in function that
regains control of a panicking
goroutine. Recover is only useful
inside deferred functions.

package main
import "fmt"

func g(i int) {
fmt.Println("Enter g.")
panic(i)
fmt.Println("Exit g.")

}

Typology of programming languages An overview of Go 59 / 61



Panic and Recover 2/2
func f() {
defer func() {
if r := recover(); r != nil {
fmt.Println("Recovered in f", r)

}
}()
fmt.Println("Calling g.")
g(42)
fmt.Println("Returned normally from g.")

}

func main() {
f()
fmt.Println("Returned normally from f.")

}

Typology of programming languages An overview of Go 60 / 61



Summary

Simple and scalable multithreaded
and concurrent programming

All is type

Tooling and API

Performance is on the order of C

Includes a lot of paradigms

Weak type system

GC (tricolor concurrent
mark-and-sweep algorithm) causes
runtime overhead

Not thread-safe

No generics

Typology of programming languages An overview of Go 61 / 61


	Overview
	Language Syntax
	Closure
	Typed functional programming and Polymorphism
	Co-routines
	Even More Features

