The Tiger Compiler Project

Edition April 16, 2018

Akim Demaille, Roland Levillain and Etienne Renault

This document presents the EPITA version of the Tiger project. This revision, , was last
updated April 16, 2018.

Copyright (© 2000-2009, 2011-2012 Akim Demaille.

Copyright (©) 2005-2014 Roland Levillain.

Copyright (©) 2014-2018 Akim Demaille, Etienne Renault.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover texts and with the no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License.”

Nul n’est censé ignorer la loi.
Everything exposed in this document is expected to be known.

This document, revision of April 16, 2018, details the various tasks EPITA students
must complete. It is available under various forms:

— Assignments in a single urmr file'.
— Assignments in several ML files?.
— Assignments in PDF3.
— Assignments in text?.

— Assignments in Info®.

https://www.lrde.epita.fr/ “tiger/assignments.html.
https://www.lrde.epita.fr/"tiger/assignments.split.
https://www.lrde.epita.fr/ “tiger/assignments.pdf.
https://www.lrde.epita.fr/ tiger/assignments.txt.

Tt W N =

https://www.lrde.epita.fr/ “tiger/assignments.info.

https://www.lrde.epita.fr/~tiger/assignments.html
https://www.lrde.epita.fr/~tiger/assignments.split
https://www.lrde.epita.fr/~tiger/assignments.pdf
https://www.lrde.epita.fr/~tiger/assignments.txt
https://www.lrde.epita.fr/~tiger/assignments.info

Table of Contents

1 Introduction......... 3
1.1 How to Read this Document i 3
1.2 Why the Tiger Projecto e 3
1.3 What the Tiger Project iS not ...t 5
14 HISEOTY .« o e 6

1.4.1 Fair CribiCISIn . . oo oottt e e 6
1.4.2 Tager 2002 ..ot 7
1.4.3 THger 2008 . .o 8
1.4.4 Tiger 2004 . .o oo e 9
1.4.5 THger 2000 10
1.4.6 THZEr 2000ottt e 12
1.4.7 Tager 2000D . .o e 14
1.4.8 THger 2007 ..\ 15
1.4.9 THger 2008 ... 16
1.4.10 Leopard 2009ot e 17
1.4.11 Tiger 2010 . . oo 18
1.4.12 Tiger 200 ..o 18
1.4.13 Tager 2002 .. o e 19
1.4.14 Tiger 2008 ..o 19
1415 Tiger 2004 ..o 20
1416 Tiger 2000 .ottt e 21
1407 Tiger 2016 ..o on et e 22
1418 Tager 2007 .o 23
1.4.19 Tiger 2008 ..o e 24
1.4.20 Tiger 2000 ..o e 25
1.4.21 Tiger 2020 . . o on ettt 26

2 Instructions........... 29
2.1 Inberactionso 29
2.2 Rulesof the Gameo i 29
2.3 GIOUDS « e ettt et 30
2.4 Coding Style.o 32

2.4.1 No Draft Allowed 32
2.4.2 Use of Foreign Features i 32
2.4.3 File Conventionsuuttit e 32
2.4.4 Name Conventionsoiiiiitiiiiiee e, 37
2.4.5 Use of CH+ Features. ...t 39
2.4.6 USE Of STL . oot 43
2.4.7 Matters of Style.o 44
2.4.8 Documentation Style.......o 47
2.0 eSS ot 50
2.5.1 Writing Tests . ..o 50
2.5.2 Generating the Test Driver......... ... i 50
2.6 SUDINISSION . .ottt 51
2.7 Evaluation. 51
2.7.1 Automated Evaluation 51
2.7.2 During the Examination.......... ..o i 52

2.7.3

Human Evaluation 52

ii The Tiger Compiler Project Assignment
2.7.4 Marks Computation.ouiiiiiiiiii 53

3 Source Code 55
3.1 GIVEN COde . .ttt 55
3.2 Project Layout. 55
3.2.1 The Top Levelo 55
3.2.2 The build-aux Directorycoouiiiiii i 56
3.2.3 The 1ib Directory 56
3.2.4 The lib/misc Directoryo 56
3.2.5 The src Directoryooiii e 59
3.2.6 The src/task Directory 59
3.2.7 The src/parse Directory 59
3.2.8 The src/ast Directory. ...t 59
3.2.9 The src/bind Directory 61
3.2.10 The src/escapes Directory........ .o 61
3.2.11 The src/type Directory ..o 61
3.2.12 The src/object Directory........ .o 62
3.2.13 The src/overload Directory..........cooiiiiiiiiiiiiiiiiiiiiii . 62
3.2.14 The src/astclone Directory..........coooiiiiiiiiiiiiiiiii i 62
3.2.15 The src/desugar Directory.............ooiiiiiiiiiiiiiii 62
3.2.16 The src/inlining Directory..........c.ooiiiiiiiiiiiiiiii i, 62
3.2.17 The src/temp Directory 62
3.2.18 The src/tree Directory 63
3.2.19 The src/frame Directory ... 64
3.2.20 The src/translate Directory ... 64
3.2.21 The src/canon Directory ... 64
3.2.22 The src/assem Directoryo.ouiiii i 64
3.2.23 The src/target Directory 65
3.2.24 The src/target/mips Directory ... 66
3.2.25 The src/target/ia32 Directorycooviviiiiii .. 67
3.2.26 The src/target/arm Directory ... 68
3.2.27 The src/liveness Directory...... ..o, 68
3.2.28 The src/llvmtranslate Directory.......... ..o i 69
3.2.29 The src/regalloc Directory.............ooiiiiiiiiii i 70
3.3 GIven Test Cases . ..ottt 70
4 Compiler Stages 71
4.1 Stage Presentationiii i 71
4.2 PTHL (TC-0), Naive Scanner and Parser.................................... 72
4.2.1 PTHL Goalst e e 72
4.2.2 PTHL Samples.uut et e e 72
4.2.3 PTHL Code to Write. .. .ot 78
4.24 PTHL FAQ . .ottt e e 78
4.2.5 PTHL Improvements.t 79
4.3 TC-1, Scanner and Parser......... ..ot 80
4.3. 1 TC-1 Goals . oo e 80
4.3.2 TC-1 Samples.t e 81
4.3.3 TC-1 Given Codeonuiiniii i 86
4.3.4 TC-1Code to Write.o e 86
.35 TC-1T FAQ - ettt 88
4.3.6 TC-1 ImpProvementsttt e 88

4.4 TC-2, Building the Abstract Syntax Tree...........o i .. 89
441 TC-2 Goals . oo e 89
4.4.2 TC-2 Samples. ..ot 90

4.4.2.1 TC-2 Pretty-Printing Samples. ...t ... 90
4.4.2.2 TC-2 Chunksttt e 92
4.4.2.3 TC-2 Error RecOVery 94
4.4.3 TC-2 GIVen Code . ..ot e e 94
4.4.4 TC-2 Code t0 WIite. . oottt e 95
445 TC-2 FAQ « ottt e 96
4.4.6 TC-2 Improvementsttt 98

4.5 TC-3, BINdingso oot 98
4.5 1 TC-3 Goals . oo e 99
4.5.2 TC-3 Samples. . ..ot 99
4.5.3 TC-3 Given Codet 104
4.5.4 TC-3 Code to Write. ...t e 104
5t T X s 20 oo T 105
4.5.6 TC-3 ImpProvements.ttt 105

4.6 TC-R, Unique Identifiers...... ... i e 106
4.6.1 TC-R Sampleso e e e 106
4.6.2 TC-R Given Codeoiiiiiii e e 106
4.6.3 TC-R Code to WIitettt e 106
4.6.4 TC-R FAQ. ..ottt 107

4.7 TC-E, Computing the Escaping Variableso .. 107
471 TC-E Goals. ... 107
4.7.2 TC-E Samplesot 107
4.7.3 TC-E Given Code.ttt e e 108
4.74 TC-E Code t0 WIite . ..o e 109
475 TC-E FAQ. . ot 109
4.7.6 TC-E ImpProvementsuuuutt it 109

4.8 TC-4, Type ChecKingcouoiinii e 109
4.8.1 TC-4 Goals 109
4.8.2 TC-4 Samples. . ..o e 110
4.8.3 TC-4 Given Codeuuiiii e 112
4.84 TC-4 Code t0 Write. ...ttt e 113
4.8.5 TC-4 OpltiOnS . .o vvt ittt ettt 114
4.8.6 T4 FAQ - ettt e e e e e 115
4.8.7 TC-4 ImMpProvementsttt 116

4.9 TC-D, Removing the syntactic sugar from the Abstract Syntax Tree........ 116
4.9.1 TC-D Samplescouu i 117

4.10 TC-I, Function inliningooiutriii i 119
4.10.1 TC-T Samples. ... 119

4.11 TC-B, Array bounds checking......... ... i i 119
4111 TC-B Sampleso 119
4.11.2 TC-B FAQ. ettt ettt 123

4.12 TC-A, Ad Hoc Polymorphism (Function Overloading)..................... 123
4.12.1 TC-A Samplesot 123
4.12.2 TC-A Given Code ... uvint i 126
4.12.3 TC-A Code t0 WIite . .ot 126

4.13 TC-0, Desugaring object constructs, 126
4.13.1 TC-0 SampPIeS . vttt et e e e 127

4.14 'TC-5, Translating to the High Level Intermediate Representation.......... 132

4.14.1 TC-5 Goals ..o 132

iv

The Tiger Compiler Project Assignment

4.14.2 TC-5 SampPles . .o 133
4.14.2.1 TC-5 Primitive Samples. ... 133
4.14.2.2 TC-5 Optimizing Cascading If........o i, 137
4.14.2.3 'TC-5 Builtin Calls Samples ... 140
4.14.2.4 'TC-5 Samples with Variables............o oL, 143
4.14.3 TC-5 Given Code . ..ot e 150
4.14.4 TC-5 Code t0 WIIte . ..ottt e e 150
4.14.5 TC-5 Options. .« oottt e 151
4.14.5.1 TC-5 Bounds Checking.......... ..o 151
4.14.5.2 TC-5 Optimizing Static Links........ 151
4146 TO-5 FAQ ..ttt ettt e e e e e 153
4.14.7 TC-5 ImProvements.ttt 154
4.15 TC-6, Translating to the Low Level Intermediate Representation 154
4.15.1 TC-6 Goals. 155
4.15.2 TC-6 SampPles 155
4.15.2.1 TC-6 Canonicalization Samples ..., 155
4.15.2.2 TC-6 Scheduling Samples ... 164
4.15.3 TC-6 Given Code.t 168
4.15.4 TC-6 Code to WIiteovi e e 168
4.15.5 TC-6 IMpProvements.ouurtrii e 168
4.16 TC-7, Instruction Selection 168
4.16.1 TC-7 GOAlS . .o et it e 168
4.16.2 TC-T Sampleso 169
4.16.3 TC-7 Given Code. ...t e 174
4.16.4 TC-7 Code t0 WIIte . ..ttt 174
4165 TO-7 FAQ .ottt ettt e e e e e 175
4.16.6 TC-7 Improvements.un ittt 175
4.17 TC-8, Liveness Analysisttt e 175
4171 TC-8 Goals. ... 175
4.17.2 TC-8 SAMPIES . .ottt e e e 175
4.17.3 TC-8 Given Code. ...ttt 187
4.17.4 TC-8 Code t0 WIIte . ..ottt e 187
4175 TO-8 FAQ .« oot 187
4.17.6 TC-8 IMProvements.uu et 188
4.18 TC-9, Register Allocation...........c.oiiiiiieiii i 189
4181 TC-9 GOalS ..ottt 189
4.18.2 TC-9 SamPLes . ..ot e 189
4.18.3 TC-9 Given Code. ...t 195
4.18.4 TC-9 Code to WIIte . ..ottt e 195
R T I O T o 195
4.18.6 TC-9 Improvements.t 195
4.19 TC-X,1a-32Back End. ... e 195
4.19.1 TC-X Goals ..o 195
4.19.2 TC-X SampPles . ..o vttt 196
4.19.3 TC-X Given Codettt e 204
4.19.4 TC-X Code t0 WIIte . ..o\ttt e 204
4195 TO-X FAQ « ot et e 204
4.19.6 TC-X IMProvementsouunuet et 204
420 TC-Y,arMm Back End.o 205
4.20.1 TC-Y Goals . ..ot 205
4.20.2 TC-Y Samples . ..o 205

4.20.3 TC-Y Given Codet 211

4.20.4 TC-Y Code t0 WIIte . .ottt e 212
4.20.5 TC-Y FAQ « ettt et e e e e 212
4.20.6 TC-Y Improvementsoouuuutti et 212
4.21 TC-L, LLVM TR . ettt ettt ettt e ettt et e e e e et e e e e 212
4211 TC-L GOalS. ..ot e 213
4.21.2 TC-L Samples . ..ottt 214
4.21.3 TC-L Given Code.ttt e 228
4.21.4 TC-L Code to Writeo e 228
4215 TCO-L FAQ. o ettt e 229
4.21.6 TC-L Improvementsuuu ettt 231

5 Tools ... 233
5.1 Programming Environment 233
5.2 Modern Compiler Implementation................ooii ... 233
5.2.1 First Editions.oooo oo 233
5.2.2 In Java - Second Edition....... ... 235
5.3 Bibliography . ..o e 236
5.4 The aNU Build Systemo.ooii 247
5.4.1 Package Name and Version.............cooiiiiiiiiiiiiiiiiiinin... 247
5.4.2 Bootstrapping the Package........ 247
5.4.3 Making a Tarball 247
5.4.4 Setting site defaults using CONFIG_SITEoitutiiiiieennnneennn. 248
5.5 acc, The aNu Compiler Collection 249
5.6 Clang, A C language family front end for LobvM 250
5.7 DB, The aNU Project Debugger. ... i 250
5.8 Valgrind, The Ultimate Memory Debugger 250
5.9 Flex & BiSOmn 251
D10 HAVM .ttt 252
5.11 MonoBURG 252
9.12 NOHMIPS . oottt e 253
0.1 P IM .o e 253
D14 SWIG . 254
B.15 Pythom ... 254
D.16 DOXYZOI. . oo ettt 255
Appendix A Appendices................ 257
AT GlOSSATY ettt e 257
A.2 GNU Free Documentation Licenseoouiiiiiiiiiiiiiiienninann.. 258
A.2.1 ADDENDUM: How to use this License for your documents............ 264
A3 Colophon 264
Ad List of Files 265
A5 List of EXampleso 267

A6 Index .o 271

1 Introduction

This document presents the Tiger Project as part of the EprTa® curriculum. It aims at the
implementation of a Tiger compiler (see Section 5.2 [Modern Compiler Implementation)],
page 233) in C++.

1.1 How to Read this Document

If you are a newcomer, you might be afraid by its sheer size. Don’t worry, but in any case,
do not give up: as stated in the very beginning of this document,
Nul n’est censé ignorer la loi.

That is to say everything exposed in this document is considered to be known. If it
is written but you didn’t know, you are wrong. If it is not written and was not clearly
reported in the news, we are wrong.

Basically this document contains three kinds of information:

Initial and Permanent
What you must read and know since the very beginning of the project. This
includes most the following chapters: Chapter 1 [Introduction], page 3, (except
the Section 1.4 [History], page 6, section), Chapter 2 [Instructions|, page 29,
and Section 2.7 [Evaluation], page 51.

Incremental
You should read these parts as and when needed. This includes mostly
Chapter 4 [Compiler Stages|, page 71.

Auziliary This information is provided to help you: just go there when you feel the
need, Chapter 5 [Tools|, page 233, and Chapter 3 [Source Code], page 55. If
you want to have a better understanding of the project, if you are about to
criticize something, be sure to read Section 1.4 [History], page 6, beforehand.

There is additional material on the Internet:
— The Wiki page for the Tiger Compiler Project? is the official home page of the project.
It holds related material (e.g., links).
— The packages of the tools that we use (Bison, Autoconf etc.) can be found in the
Tiger download area®.
— The developer documentation of the Tiger Compiler?.

— Most of the provided material (lecture notes, older exams, current tarballs etc.) is in
the Tiger area’.

1.2 Why the Tiger Project

This project is quite different from most other EPITA projects, and has aims at several
different goals, in different areas:

Several iterations
This project is about the only one with which you will live for 4 months (6
months for the brave ones), with the constant needs to fix errors found in
earlier stages.

http://www.epita.fr/.
http://tiger.lrde.epita.fr/.
http://www.lrde.epita.fr/"tiger/download.
https://www.lrde.epita.fr/ tiger/tc-doc/.
https://www.lrde.epita.fr/ tiger/.

http://www.epita.fr/
http://tiger.lrde.epita.fr/
http://www.lrde.epita.fr/~tiger/download
https://www.lrde.epita.fr/~tiger/tc-doc/
https://www.lrde.epita.fr/~tiger/

The Tiger Compiler Project Assignment

Complete Project

While the evaluation of most student projects is based on the code, this project
restores the deserved emphasis on documentation and testing. Because of the
duration of the project, you will value the importance of a good (developer’s)
documentation (why did we write this 4 months ago?), and of a good test
suite (why does TC-2 fails now that we implemented TC-47 When did we
break it?).

This also means that you have to design a test suite, and maintain it through
out the project. The test suite is an integral part of the project.

Team Management

C++

The Tiger Compiler is a long project, running from February to May (and op-
tionally further). Each three person team is likely to experience nasty “human
problems”. This is explicitly a part of the project: the team management is a
task you have to address. That may well include exclusion of lazy members.

C++ is by no means an adequate language to study compilers (C would be
even worse). Languages such as Haskell®, Ocaml”, Stratego® are much better
suited (actually the latter is even designed to this end). But, as already said,
the primary goal is not to learn how to write a compiler: for an EPITA student,
learning C++, Design Patterns, and Object Oriented Design is much more
important.

Note, however, that implementing an industrial strength compiler in C++
makes a lot of sense’. Bjarne Stroustrup’s list of C++ Applications'® men-
tions Section 5.5 [GCC], page 249, Section 5.6 [Clang], page 250, and LLVM,
Metrowerks (CodeWarrior), up, Sun, Intel, M$ as examples.

Understanding Computers

English

Too many students still have a very fuzzy mental picture of what a computer
is, and how a program runs. Studying compilers helps understanding how it
works, and therefore how to perform a good job. Although most students will
never be asked to write a single line of assembly during their whole lives, know-
ing assembly is also of help. See [Bjarne Stroustrup|, page 237, for instance,
says:

Q: What is your opinion, is knowing assembly language useful for

programmers nowadays?

BS: It is useful to understand how machines work and knowing
assembler is almost essential for that.

English is the language for this project, starting with this very document,
written by a French person, for French students. You cannot be a good com-
puter scientist with absolutely no fluency in English. The following quote is
from Bjarne Stroustrup, who is danish ([The Design and Evolution of C++],
page 245, 6.5.3.2 Extended Character Sets):

English has an important role as a common language for pro-
grammers, and I suspect that it would be unwise to abandon that
without serious consideration.

© 0w 9 O

http://www.haskell.org.

http://caml.inria.fr.

http://www.stratego-language.org.

The fact that the compiler compiles C++ is virtually irrelevant.
http://www.stroustrup.com/applications.html.

http://www.haskell.org
http://caml.inria.fr
http://www.stratego-language.org
http://www.stroustrup.com/applications.html

Chapter 1: Introduction 5

Any attempt to break the importance of English is wrong. For instance, do
not translate this document nor any other. Ask support to the Yakas, or to the
English team. By the past, some oral and written examinations were made in
English. It may well be back some day. Some books will help you to improve
your English, see [The Elements of Style], page 246.

Compiler The project aims at the implementation of a compiler, but this is a minor
issue. The field of compilers is a wonderful place where most of computer
science is concentrated, that’s why this topic is extremely convenient as long
term project. But it is not the major goal, the full list of all these items is.

The Tiger project is not unique in these regards, see [Cool - The Classroom Object-
Oriented Compiler]|, page 239, for instance, with many strikingly similar goals, and some
profound differences. See also [Making Compiler Design Relevant for Students who will
(Most Likely) Never Design a Compiler], page 243, for an explanation of why compilation
techniques have a broader influence than they seem.

1.3 What the Tiger Project is not

This section could have been named “What Akim did not say”, or “Common misinterpre-
tations”.

The first and foremost misinterpretation would be “Akim says C sucks and is useless”.
Wrong. C sucks, definitely, but let’s face it: C is mandatory in your education. The fact
that C++ is studied afterward does not mean that learning C is a loss of time, it means
that since C is basically a subset of C++ it makes sense to learn it first, it also means that
(let it be only because it is a superset) C++ provides additional services so it is often a
better choice, but even more often you don’t have the choice.

C++ is becoming a common requirement for programmers, so you also have to learn it,
although it “features” many defects (but heredity was not in its favor...). It’s an industrial
standard, so learn it, and learn it well: know its strengths and weaknesses.

And by the way, of course C++ sucks++.

Another common rumor in EPITA has it that “C/Unix programming does not deserve
attention after the first period”. Wrong again. First of all its words are wrong: it is a
legacy belief that C and Unix require each other: you can implement advanced system
features using other languages than C (starting with C++, of course), and of course C can
be used for other tasks than just system programming. For instance Bjarne Stroustrup’s
list of C++ Applications!! includes:

Apple OS X is written in a mix of language, but a few important parts
are C++. The two most interesting are:
— Finder
— IOKit device drivers. (IOKit is the only place where we use
C++ in the kernel, though.)]...]
Ericsson
— TelORB - Distributed operating system with object oriented
Microsoft Literally everything at Microsoft is built using recent flavors of
Visual C++. The list would include major products like:
— Windows XP
— Windows NT (NT4 and 2000)

1 http://www.stroustrup.com/applications.html.

http://www.stroustrup.com/applications.html

6 The Tiger Compiler Project Assignment

— Windows 9x (95, 98, Me)

— Microsoft Office (Word, Excel, Access, PowerPoint, Out-
look)]...]

— Visual Studio

CDE The cpE desktop (the standard desktop on many UNIX systems)
is written in C++.
Mozilla
— Firefox
— Thunderbird

Adobe Systems
All major applications are developed in C++:

— Photoshop
— TIllustrator
— Acrobat

Know C. Learn when it is adequate, and why you need it.
Know C++. Learn when it is adequate, and why you need it.
Know other languages. Learn when they are adequate, and why you need them.

And then, if you are asked to choose, make an educated choice. If there is no choice to
be made, just deal with Real Life.

1.4 History

The Tiger Compiler Project evolves every year, so as to improve its infrastructure, to
demonstrate more instructional material and so forth. This section tries to keep a list of
these changes, together with the most constructive criticisms from students (or ourselves).

If you have information, including criticisms, that should be mentioned here, please
send it to us.

The years correspond to the class, e.g., Tiger 2005 refers to EPITA class 2005, i.e., the
project ran from October 2002 to July (previously September) 2003.

1.4.1 Fair Criticism

Before diving into the history of the Tiger Compiler Project in EPITA, a whole project
in itself for ourselves, with experimental tries and failures, it might be good to review
some constraints that can explain why things are the way they are. Understanding these
constraints will make it easier to criticize actual flaws, instead of focusing on issues that
are mandated by other factors.

Bear in mind that Tiger is an instructional project, the purpose of which is detailed
above, see Section 1.2 [Why the Tiger Project], page 3. Because the input is a stream
of students with virtually no knowledge whatsoever in C++, and our target is a stream
of students with good fluency in many constructs and understanding of complex matters,
we have to gradually transform them via intermediate forms with increasing skills. In
particular this means that by the end of the project, evolved techniques can and should be
used, but at the beginning only introductory knowledge should be needed. As an example
of a consequence, we cannot have a nice and high-tech AsT.

Because the insight of compilers is not the primary goal, when a choice is to be made
between (i) more interesting work on compiler internals with little C++ novelty, and (ii)

Chapter 1: Introduction 7

providing most of this work and focusing on something else, then we are most likely to
select the second option. This means that the Tiger Project is doomed to be a low-tech
featureless compiler, with no call graph, no default optimization, no debugging support,
no bells, no whistles, and even no etc. Hence, most interested students will sometimes
feel we “stole” the pleasure to write nice pieces of code from them; understand that we
actually provided code to the other students: you are free to rewrite everything if you
wish.

1.4.2 Tiger 2002

This is not standard C++
We used to run the standard compiler from NetBSD: egcs 1.1.2. This was
not standard C++ (e.g., we used to include ‘<iostream.h>’, we could use
members of the std name space unqualified etc.). In addition, we were using
hash_map which is an sar extension that is not available in standard C++. It
was therefore decided to upgrade the compiler in 2003, and to upgrade the
programming style.

Wrapping a tarball is impossible
During the first edition of the Tiger Compiler project, students had to write
their own Makefiles — after all, knowing Make is considered mandatory for
an Epitean. This had the most dramatic effects, with a wide range of creative
and imaginative ways to have your project fail; for instance:

— Forget to ship some files

— Ship object files, or even the executable itself. Needless to say that
NetBSD executables did not run properly on Akim’s ayu/Linux box.

— Ship temporary files (*~, #*#, etc.).
— Ship core dumps (“Wow! This is the heck of an heavy tarball...”).
— Ship tarballs in the tarball.

— Ship tarballs of other groups in the tarball. It was then hard to demon-
strate they were not cheating :)

— Have incorrect dependencies that cause magic failures.

— Have completely lost confidence in dependencies and Make, and therefore
define the all target as first running clean and then the actual build.

As aresult Akim grew tired of fixing the tarballs, and in order to have a robust,
efficient (albeit some piece of pain in the neck sometimes) distribution'? we
moved to using Automake, and hence Autoconf.

There are reasons not to be happy with it, agreed. But there are many more
reasons to be sad without it. So Autoconf and Automake are here to stay.

Note, however, that you are free to use another system if you wish. Just obey
the standard package interface (see Section 2.6 [Submission|, page 51).

The SemantVisitor is a nightmare to maintain
The SemantVisitor, which performs both the type checking and the transla-
tion to intermediate code, was near to impossible to deliver in pieces to the
students: because type checking and translation were so much intertwined,
it was not possible to deliver as a first step the type checking machinery
template, and then the translation pieces. Students had to fight with non ap-
plicable patches. This was fixed in Tiger 2003 by splitting the SemantVisitor

12 See the shift of language? From tarball to distribution.

The Tiger Compiler Project Assignment

into TypeVisitor and TranslationVisitor. The negative impact, of course,
is a performance loss.

Akim is tired during the student defenses

Seeing every single group for each compiler stage is a nightmare. Sometimes
Akim was not enough aware.

1.4.3 Tiger 2003
During this year, Akim was helped by:

Comaintainers

Alexandre Duret-Lutz, Thierry Géraud.

Submission dates were:

Stage
TC-1

TC-2
TC-3
TC-4
TC-5

Submission
Monday, December 18th 2000 at
noon

Friday, February 23th 2001 at noon
Friday, March 30th 2001 at noon
Tuesday, June 12th 2001 at noon
Monday, September 17th 2001 at
noon

Some groups have reached TC-6.

Criticisms include:

The C++ compiler is broken

Akim had to install an updated version of the C++ compiler since the system
team did not want non standard software. Unfortunately, NetBSD turned out
to be seriously incompatible with this version of the C++ compiler (its crtl.o
dumped core on the standard stream constructors, way before calling main).
We had to revert to using the bad native C++ compiler.

It is to be noted that some funny guy once replaced the g++ executable from
Akim’s account into ‘rm -rf ~’. Some students and Akim himself have been
bitten. The funny thing is that this is when the system administration realized
the teacher accounts were not backed up.

Fortunately, since that time, decent compilers have been made available, and
the Tiger Compiler is now written in strictly standard C++.

The asT is rigid

Because the members of the AST objects were references, it was impossible to
implement any change on it: simplifications, optimization etc. This is fixed in
Tiger 2004 where all the members are now pointers, but the interface to these
classes still uses references.

Akim is even more tired during the student defenses

Just as the previous year, see Section 1.4.2 [Tiger 2002]|, page 7, but with
more groups and more stages. But now there are enough competent students
to create a group of assistants, the Yakas, to help the students, and to share
the load of defenses.

Upgrading is not easy

Only tarballs were submitted, making upgrades delicate, error prone, and
time consuming. The systematic use of patches between tarballs since the
2004 edition solves this issue.

Chapter 1: Introduction 9

Upgraded tarballs don’t compile

Students would like at least to be able to compile a tarball with its holes. To
this end, much of the removed code is now inside functions, leaving just what
it needed to satisfy the prototype. Unfortunately this is not very easy to do,
and conflicts with the next complaint:

Filling holes is not interesting

In order to scale down the amount of code students have to write, in order to
have them focus on instructional material, more parts are submitted almost
complete except for a few interesting places. Unfortunately, some students
decided to answer the question completely mechanically (copy, paste, tweak
until it compiles), instead of focusing of completing their own education. There
is not much we can do about this. Some parts will therefore grow; typically
some files will be left empty instead of having most of the skeleton ready
(prototypes and so forth). This means more work, but more interesting I
(Akim) guess. But it conflicts with the previous item...

1.4.4 Tiger 2004
During this year, Akim was helped by:

Comaintainers

Alexandre Duret-Lutz, Raphaél Poss, Robert Anisko, Yann Régis-Gianas,

Assistants Arnaud Dumont, Pascal Guedon, Samuel Plessis-Fraissard,

Students

Cédric Bail, Sébastien Broussaud (Darks Bob), Stéphane Molina (Kain),
William Fink.

Submission dates were:

Stage
TC-2
TC-3
TC-4
TC-5
TC-6

Submission

Tuesday, March 4th 2002 at noon
Friday, March 15th 2002 at noon
Friday, April 12th 2002 at noon
Friday, June 14th 2002, at noon
Monday, July 15th 2002 at noon

Criticisms include:

The driver is not maintainable

The compiler driver was a nightmare to maintain, extend etc. when delivering
additional modules etc. This was fixed in 2005 by the introduction of the Task
model.

No sane documentation

This was addressed by the use of Doxygen in 2005.

No uML documentation

The solution is yet to be found.

Too many visitors

It seems that some students think there were too many visitors to implement.
I (Akim) do not subscribe to this view (after all, why not complain that
“there are too many programs to implement”, or, in a more C++ vocabulary
“there are too many classes to implement”), nevertheless in Tiger 2005 this
was addressed by making the EscapeVisitor “optional” (actually it became
a rush).

10 The Tiger Compiler Project Assignment

Too many memory leaks
The only memory properly reclaimed is that of the asT. No better answer
for the rest of the compiler. This is the most severe flaw in this project, and
definitely the worst thing to remember of: what we showed is not what student
should learn to do.

Though a garbage collector is tempting and well suited for our tasks, its ped-
agogical content is less interesting: students should be taught how to properly
manage the memory.

Upgraded tarballs don’t compile
Filling holes is not interesting
Cannot be solved, see Section 1.4.3 [Tiger 2003], page 8.

Ending on TC-6 is frustrating
Several students were frustrated by the fact we had to stop at TC-6: the
reference compiler did not have any back-end. Continuing onto TC-7 was
offered to several groups, and some of them actually finished the compiler.
We took their work, adjusted it, and it became the base of the reference
compiler of 2005. The most significant effort was made by Daniel Gazard.

Double submission is intractable
Students were allowed to deliver twice their project — with a small penalty
— if they failed to meet the so-called “first submission deadline”, or if they
wanted to improve their score. But it was impossible to organize, and led to
too much sloppiness from some students. These problems were addressed with
the introduction of “uploads” in Tiger 2005.

1.4.5 Tiger 2005

A lot of the following material is the result of discussion with several people, including,
but not limited to'?:

Comaintainers
Benoit Perrot, Raphaél Poss,

Assistants Alexis Brouard, Sébastien Broussaud (Darks Bob), Stéphane Molina (Kain),
William Fink,

Students Claire Calméjane, David Mancel, Fabrice Hesling, Michel Loiseleur.

I (Akim) here thank all the people who participated to this edition of this project. It
has been a wonderful vintage, thanks to the students, the assistants, and the members of
the LRDE.

Deliveries were:

Stage Submission

TC-0 Friday, January 24th 2003 12:00

TC-1 Friday, February 14th 2003 12:00

TC-2 Friday, March 14th 2003 12:00

TC-4 Friday, April 25th 2003 12:00

TC-3 Rush from Saturday, May 24th at 18:00 to Sunday 12:00
TC- Friday, June 20th 2003, 12:00

56

TC-7 Friday, July 4th 2003 12:00

13 Please, let us know whom we forgot!

Chapter 1: Introduction 11

TC-
78
TC-9

Friday, July 18th 2003 12:00

Monday, September 8th 2003 12:00

Criticisms about Tiger 2005 include:

Too many memory leaks

See Section 1.4.4 [Tiger 2004], page 9. This is the most significant failure
of Tiger as an instructional project: we ought to demonstrate the proper
memory management in big project, and instead we demonstrate laziness.
Please, criticize us, denounce us, but do not reproduce the same errors.

The factors that had pushed to a weak memory management is mainly a lack
of coordination between developers: we should have written more things. So
don’t do as we did: define the memory management policy for each module,
and write it.

The 2006 edition pays strict attention to memory allocation.

Too long to compile

Too much code was in *.hh files. Since then the policy wrt file contents was
defined (see Section 2.4.3 [File Conventions|, page 32), and in Tiger 2006 was
adjusted to obey these conventions. Unfortunately, although the improvement
was significant, it was not measured precisely.

The interfaces between modules have also been cleaned to avoid excessive
inter dependencies. Also, when possible, opaque types are used to avoid ad-
ditional includes. Each module exports forward declarations in a fwd.hh file
to promote this. For instance, ast/tasks.hh today includes:

// Forward declarations of ast:: items.

#include "ast/fwd.hh"

/] ...
/// Global root node of abstract syntax tree.
extern ast::Exp* the_program;

/...

where it used to include all the AsT headers to define exactly the type
ast: :Exp.

Upgraded tarballs don’t compile
Filling holes is not interesting

Cannot be solved, see Section 1.4.3 [Tiger 2003], page 8.

No written conventions

Since its inception, the Tiger Compiler Project lacked this very section
(see Section 1.4 [History], page 6) and that dedicated to coding style (see
Section 2.4 [Coding Style], page 32) until the debriefing of 2005. As a result,
some students or even so co-developers of our own tc reproduced errors of the
past, changed something for lack of understanding, slightly broke the homo-
geneity of the coding style etc. Do not make the same mistake: write down
your policy.

The AsT is too poor

One would like to insert annotations in the AsT, say whether a variable is
escaping (to know whether it cannot be in a register, see Section 4.5 [TC-3],
page 98, and Section 4.14 [TC-5], page 132), or whether the left hand side of
an assignment in Void (in which case the translation must not issue an actual
assignment), or whether ‘a < b’ is about strings (in which case the translation

12 The Tiger Compiler Project Assignment

will issue a hidden call to strcmp), or the type of a variable (needed when
implementing object oriented Tiger), etc., etc.

As you can see, the list is virtually infinite. So we would need an extensible
system of annotation of the AsT. As of September 2003 no solution has been
chosen. But we must be cautious not to complicate TC-2 too much (it is
already a very steep step).

People don’t learn enough C++
It seems that the goal of learning object oriented programming and C++ is
sometimes hidden behind the difficult understanding of the Tiger compiler
itself. Sometimes students just fill the holes.

To avoid this:

— The holes will be bigger (conflicting with the ease to compile something,
of course) to avoid any mechanical answering.

— Each stage is now labeled with its "goals" (e.g., Section 4.4.1 [TC-2
Goals], page 89) that should help students to understand what is ex-
pected from them, and examiners to ask the appropriate questions.

The computation of the escapes is too hard

The computation of the escapes is too easy
If you understood what it means that a variable escapes, then the implemen-
tation is so straightforward that it’s almost boring. If you didn’t understand
it, you're dead. Because the understanding of escapes needs a good under-
standing of the stack management (explained more in details way afterward,
during TC-5), many students are deadly lost.

We are considering splitting TC-5 into two: TC-5- which would be limited to
programs without escaping variables, and TC-5+ with escaping variables and
the computation of the escapes.

The static-link optimization pass is improperly documented
Todo.

The use of references is confusing

We used to utilize references instead of pointers when the arity of the relation
is one; in other words, we used pointers iff 0 was a valid value, and references
otherwise. This is nice and clean, but unfortunately it caused great confusion
amongst students (who were puzzled before ‘*new’, and, worse yet, ended
believing that’s the only way to instantiate objects, even automatic!), and also
confused some of the maintainers (for whom a reference does not propagate
the responsibility wrt memory allocation/deallocation).

Since Tiger 2006, the coding style enforces a more conventional style.

Not enough freedom

The fact that the modelisation is already settled, together with the extensive
skeletons, results in too tight a space for a programmer to experiment alter-
natives. We try to break these bounds for those who want by providing a
generic interface: if you comply with it, you may interchange with your full
re-implementation. We also (now explicitly) allow the use of a different tool
set. Hints at possible extensions are provided, and finally, alternative imple-
mentation are suggested for each stage, for instance see Section 4.4.6 [TC-2
Improvements|, page 98.

1.4.6 Tiger 2006
Akim has been helped by:

Chapter 1: Introduction

Assistants Claire Calméjane, Fabrice Hesling, Marco Tessari, Tristan Lanfrey

Deliveries:
Stage Kind Submission Supervisor
TC-0 Wednesday, 2004-02-04 12:00 Anne-Lise Brourhant
TC-1 Sunday, 2004-02-08 12:00 Tristan Lanfrey
TC-2 Sunday, 2004-03-07 12:00 Anne-Lise Brourhant,

Tristan Lanfrey
TC-3 Rush Fr., 2004-03-19 18:30 to Sun., Fabrice Hesling
2004-03-21 19:00

TCA4 Sunday, 2004-04-11 19:00 Tristan Lanfrey

TC-5 Sunday, 2004-06-06 12:00 Fabrice Hesling

TC-6 Sunday, 2004-06-27 12:00 Marco Tessari

TC-7 Opt Sunday, 2004-07-11 12:00 Marco Tessari or Fabrice
Hesling

TC- Opt Thursday, 2004-07-29 12:00 Marco Tessari

89

Criticisms about Tiger 2006 include:
The interface of symbol: :Table should be provided

13

On the one hand side, we meant to have students implement it from scratch
so we shouldn’t provide the header, and on the other hand, the rest of the

(provided) code expects a well defined interface, so we should publish it! The

result was confusion and loss of time.

The problem actually disappeared: Tiger 2007 no longer depends so heavily

on scoped symbol tables.

Some examples are incorrectly rejected by the reference compiler

The Tiger reference manual does not exclude sick examples such as:

let

type rec = {}
in

rec {}
end

where the type rec escapes its scope since the type checker will assign the
type rec to the let construct. Given the suggested implementation, which
reclaims memory allocated by the declarations when closing the scope, the

compiler dumps core.

The new implementation, tested with 2005b, copes with this gracefully: types
are destroyed when the ast is. This does not cure the example, which should
be invalid iMaHO. The following example, from Arnaud Fabre, amplifies the

problem.

let
var box :=

let
type box = {val: string}
var box := box {val = "42\n"}

in
box

end

in

14 The Tiger Compiler Project Assignment

print (box.val)
end

TC-5 is too hard a stage
This is a recurrent complaint. We tried to make it easier by moving more
material into earlier stages (e.g., scopes are no longer dealt with by the
TranslateVisitor: the Binder did it all).

Multiple inheritance is not demonstrated
There are several nice opportunities of factoring the AsT using multiple inher-
itance. Tiger 2007 uses them (e.g., Escapable, Bindable etc.).

The coding style for types is inconsistent

The sources are ambivalent wrt to pointer and reference types. Sometimes
‘type *var’, sometimes ‘type* var’. Obviously the latter is the more “logi-
cal”: the space separates the type from the variable name. Unfortunately the
declaration semantics in C/C++ introduces pitfalls: ‘int* ip, i’ is equivalent
to ‘int* ip; int i;’. That is why I, Akim, was using the ‘type *var’ style,
and resisted to expressing the coding style on this regard. The resulting mix of
styles was becoming chronic: defining a rule was needed... In favor of ‘type*
var’, with the provision that multiple variable declarations are forbidden.

More enthusiasm from the assistants
It has been suggested that assistants should show more motivation for the
Tiger Project. It was suggested that they were not enough involved in the
process. For Tiger 2007, there are no less than 10 Tiger assistants (as opposed
to 4), and two of them are co-maintaining the reference compiler. Assistants
will also be kept more informed of code changes than before.

More technical lectures
Some regret when programming techniques (e.g., object functions, ‘#include
<functional>’) are not taught. My (Akim’s) personal opinion is that students
should learn to learn by themselves. It was decided to more emphasize these
goals. Also, oral examinations should be ahead the code submission, and that
should ensure that students have understood what is expected from them.

Formal definition of Booleans
The Tiger language enjoys well defined semantics: a given program has a
single defined behavior... except if the value of ‘a & b’ or ‘a | b’ is used. To
fix this issue, in Tiger 2007 they return either 0 or 1.

Amongst other noteworthy changes, after five years of peaceful existence, the stages of
the compiler were renamed from T1, T4 etc. to TC-1, TC-4... EPITA moved from “periods”
(P1, P2...) to “trimesters” and they stole T1 and so forth from Tiger.

1.4.7 Tiger 2005b
Akim has been helped by:

Comaintainers

Arnaud Fabre, Gilles Walbrou, Roland Levillain

Assistants Charles Rathouis, Claire Calméjane, Fabrice Hesling, Marco Tessari, Tristan
Carel, Tristan Lanfrey,

Deliveries:

Stage Kind Submission
TC-1 Sun 2004-10-10 12:00

Chapter 1: Introduction 15

TC-2 Sun 2004-10-24 12:00
TC-3 Sun 2004-11-7 12:00
TC4 Sun 2004-11-28 12:00

Criticisms about Tiger 2006 include:

Use of misc: :ident
Some examples would be most welcome. Well, there ismisc/test-indent.cc,
and now the PrintVisitor code includes a few examples.

test-ref.cc
This file is used only in TC-5, yet it is submitted at TC-1, so students want
to fix it, which is too soon. Tarballs will be adjusted to avoid this.

1.4.8 Tiger 2007

Akim has been helped by:

Comaintainers
Arnaud Fabre, Roland Levillain, Gilles Walbrou

Assistants Arnaud Fabre, Bastien Gueguen, Benoit Monin, Chloé Boivin, Fanny Ricour,
Gilles Walbrou, Julien Nesme, Philippe Kajmar, Tristan Carel

Deliveries:
Stage Kind Launch Submission Supervisor
TC-0 Wed 2005-03-09 Tue 2005-03-15 23:42 Bastien Gueguen
TC-1 Rush Fri 2005-03-18 Sun 2005-03-19 9:00 Guillaume Bousquet
TC-2 Mon 2005-03-21 Sun 2005-04-03 Nicolas Rateau
TC-3 Rush Fri 2005-04-08 20:00 Sun 2005-04-10 12:00 Fanny Ricour
TC-4 Mon 2005-04-18 Sun 2005-05-01 Julien Nesme
TC-5 Mon 2005-05-09 Sun 2005-06-05 Benoit Monin
TC-6 Mon 2005-06-06 Sun 2005-06-12 Philippe Kajmar
TC-7 Mon 2005-06-13 Sun 2005-06-19 Gilles Walbrou
TC-8 Mon 2005-06-20 Mon 2005-06-27 Arnaud Fabre
TC-9 Mon 2005-06-20 Sun 2005-07-03 Arnaud Fabre
Final Wed 2005-07-06
submission

Criticisms about Tiger 2007 include:

Cheating Too much cheating during TC-5. Some would like more repression; that’s fair
enough. We will also be stricter during the exams.

Debriefing After a submission, there should be longer debriefings, including details about
common errors. Some of the mysterious test cases should be explained (but
not given in full). Maybe some bits of C++ code too.

Design of the compiler
More justification of the overall design is demanded. Some selected parts,
typically TC-5, should have a UML presentation.

Tarball Keep the tarball simple to use. We have to improve the case of tcsh. Also:

give the tarball before the presentation by the assistants.

Oral examinations
Assistants should be given a map of where to look at. The test suite should

be evaluated at each submission. The use of version control too.

16 The Tiger Compiler Project Assignment

Optional parts
They want more of them! We have more: see Section 4.6 [TC-R], page 106,
Section 4.9 [TC-D], page 116, and Section 4.10 [TC-I], page 119.

misc:: tools
There should be a presentation of them.

TC-3 is too long
TC-3, a rush, took several groups by surprise.

Some groups would have liked to have the files earlier: in the future we will
publish them on the Wednesday, instead of the last minute.

Some groups have found it very difficult to be several working together on the
same file (binder.cc of course). This is also a problem in the group manage-
ment, and use of version control: when tasks are properly assigned, and using
a tool such as Subversion, such problems should be minimal. In particular,
merges resulting from updates should not be troublesome! Difficult updates
result from disordered edition of the files. Dropping the use of a version con-
trol manager is not an answer: you will be bitten one day if two people edit
concurrently the same file. One option is to split the file, say binder-exp.cc
and binder-dec.cc for instance. I (Akim) leave this to students.

The template method template is too hard
Some students would have preferred not to have the declaration of
Binder: :decs_visit, but the majority prefers: we will stay on this version,
but we will emphasize that students are free not to follow our suggestions.

TC-5 Several people would like more time to do it. But let’s face it: the time most
student spend on the project is independent of the amount of available time.
Rather, early oral exams about TC-5 should suffice to prompt students to
start earlier.

People agree it is harder, and mainly because of compiler construction issues,
not C++ issues. But many students prefer to keep it this way, rather than
completely giving away the answers to compiler construction related problems.

1.4.9 Tiger 2008
We have been helped by:

Comaintainers
Christophe Duong, Fabien Ouy

Assistants

Deliveries:
Stage Kind Launch Submission Supervisor
TC-0 Tue 01-03 Fri 01-13 23:42 Christophe Duong
TC-1 Rush Fri 03-17 Sun 03-19 12:12 Renaud Lienhart
TC-2 Mon 03-20 Thu 03-30 23:42 David Doukhan
TC-3 Rush Fri 03-31 Sun 04-02 12:12 Frederick Mousnier-

Lompre

TC-4 Tue 04-04 Mon 04-24 23:42 Guillaume Deslandes
TC-5 Mon 05-01 Sun 05-28 23:42 Alexis Sebbane
TC-6 Mon 05-29 Sun 06-11 23:42 Christophe Duong
TC-7 Wed 06-14 Wed 06-21 12:00

TC-8 Wed 06-21 Sun 07-2 12:00

Chapter 1: Introduction 17

TC-9 Mon 07-03 Sun 07-16 12:00
Final

Some of the noteworthy changes compared to Section 1.4.8 [Tiger 2007], page 15:

Simplification of the parser
The parser is simplified in a number of ways. First the old syntax for imported
files, 1let <decs> end, is simplified into <decs>. We also use GLR starting at
TC-2. &, | and the unary minus operator are desugared using concrete syntax
transformations.

See Section 4.6 [TC-R], page 106, Unique identifiers
This new optional part should be done during TC-3. Leave TC-E for later
(with TC-5 or maybe TC-4).

Concrete syntax
Transformations can now be written using Tiger concrete syntax rather than
explicit AsT construction in C++. This applies to the DesugarVisitor,
BoundsCheckingVisitor and InlineVisitor.

1.4.10 Leopard 2009
We have been helped by:

Comaintainers
Benoit Tailhades, Alain Vongsouvanh, Razik Yousfi, Benoit Perrot, Benoit
Sigoure

Assistants

Deliveries:

Stage Kind Launch Submission Supervisor

LC-0 Mon 03-05 Fri 03-16 12:00

LC-1 Rush Fri 03-23 Sun 03-25 12:00

LC-2 Mon 03-26 Fri 04-06 12:00

LC-3 & LC-R Rush Fri 04-06 Sun 04-08 12:00

LC-4 Mon 04-23 Sun 05-06 12:00

LC-5 Mon 05-15 Sun 06-03 12:00

LC-6 Mon 06-04 Sun 06-10 12:00

LC-7 Mon 06-11 Wed 06-20 12:00

LC-8 Thu 06-21 Sun 07-01 12:00

LC-9 Mon 07-02 Sun 07-15 12:00

Some of the noteworthy changes compared to Section 1.4.9 [Tiger 2008], page 16:

Object-Oriented Programming
The language is extended with object-oriented features, as described by An-
drew Appel in chapter 14 of Section 5.2 [Modern Compiler Implementation],
page 233. The syntax is close to Appel’s, with small modifications, see See
Section “Syntactic Specifications” in Tiger Compiler Reference Manual.

Leopard To reflect this major addition, the language (and thus the project) is given a
new name, Leopard. These changes was announced at TC-2, (renamed LC-2).

LC-R LC-R is a mandatory part of the LC-3 assignment.

18 The Tiger Compiler Project Assignment

1.4.11 Tiger 2010
We have been helped by:

Comaintainers
Benoit Perrot, Benoit Sigoure, Guillaume Duhamel, Yann Grandmaitre, Nico-
las Teck

Assistants

Deliveries:

Stage Kind Launch Submission Supervisor

TC-0 Mon Nov 05, 2007 Sun Nov 25, 2007 12:00

TC-1 Mon Dec 10, 2007 Sun Dec 16, 2007 12:00

TC-2 Mon Feb 25, 2008 Wed Mar 05, 2008 12:00

TC-3 & TC-R Rush Fri Mar 07, 2008 Sun Mar 09, 2008 12:00

TCA4 Mon Mar 10, 2008 Sun Mar 23, 2008 12:00

TC-5 Mon Mar 24, 2008 Sun Apr 06, 2008 12:00

TC-6 Mon Apr 14, 2008 Sun Apr 20, 2008 12:00

TC-7 Mon Apr 21, 2008 Sun May 04, 2008 12:00

TC-8 Mon May 05, 2008 Sun May 18, 2008 12:00

TC-9 Mon May 19, 2008 Sun Jun 01, 2008 12:00

Some of the noteworthy changes compared to Section 1.4.10 [Leopard 2009], page 17:
The Tiger is back
The project is renamed back to its original name.
1.4.12 Tiger 2011

This is the tenth year of the Tiger Project.
We have been helped by:

Assistants Adrien Biarnes, Medhi Ellaffet, Vincent Nguyen-Huu, Yann Grandmaitre,
Nicolas Teck

Deliveries:
Stage Kind Launch Submission Supervisor
tig Rush Dec 20, 2008 Dec 21, 2008
TC-0 Jan 05, 2009 Jan 16, 2009 at 12:00
TC-1 Rush Jan 16, 2009 Jan 18, 2009 at 12:00
TC-2 Feb 16, 2009 Feb 25, 2009 at 23:42
TC-3 & TC-R Rush Feb 27, 2009 Mar 01, 2009 at 11:42
TC-4 & TC-E Mar 02, 2009 Mar 15, 2009 at 11:42
TC-5 Mar 16, 2009 Mar 25, 2009 at 23:42
TC-6 Apr 23, 2009 May 03, 2009 at 12:00
TC-7 May 04, 2009 May 17, 2009
TC-8 May 18, 2009 May 31, 2009
TC-9 Jun 29, 2009 Jul 12, 2009

Some of the noteworthy changes compared to Section 1.4.11 [Tiger 2010], page 18:

The Bistromatig
A new assignment is given for the .tig project: The Bistromatig. It consists
in implementing an arbitrary-radix infinite-precision calculator. The project

Chapter 1: Introduction

19

is an adaptation of the famous Bistromathic project, that used to be one of the
first C assignments at EPITA in the Old Days. The name was borrowed from

Douglas Adams

14>

TC-E TC-E is a mandatory part of the TC-4 assignment.

1.4.13 Tiger 2012
This is the eleventh year of the Tiger Project.

We have been helped by:

s invention'® from Life, the Universe and Everything'S.

Assistants Adrien Biarnes, Rémi Chaintron, Julien Delhommeau, Thomas Joly, Alexan-
dre Laurent, Vincent Lechemin, Matthieu Martin

Deliveries:

Stage
tig

TC-0
TC-1
TC-2

Kind
Rush

TC-3 & TC-R Rush

TC-4 & TC-E
TC-5
TC-6
TC-7
TC-8
TC-9

Launch

Dec 02, 2009
Dec 11, 2009
Jan 11, 2010
Feb 01, 2010
Feb 19, 2010
Feb 22, 2010
Mar 11, 2010
Apr 19, 2010
May 12, 2010
May 25, 2010
Jun 07, 2010

Submission

Dec 04, 2009
Dec 20, 2009
Jan 17, 2010
Feb 17, 2010
Feb 26, 2010
Mar 07, 2010
Mar 22, 2010
May 02, 2010
May 25, 2010
Jun 06, 2010
Jun 12, 2010

Supervisor

Some of the noteworthy changes compared to Section 1.4.12 [Tiger 2011], page 18:

Shorter mandatory assignment
By decision of the department of studies, the mandatory assignment ends after

TC-3.

1.4.14 Tiger 2013
This is the twelfth year of the Tiger Project.

We have been helped by:

Assistants Rémi Chaintron, Julien Grall

Deliveries:

Stage
tig

TC-0
TC-1
TC-2

Kind
Rush

TC-3 & TC-R Rush

TC-4 & TC-E
TC-5
TC-6

Launch

14 yttp://en.wikipedia.org/wiki/Douglas_Adams.
15 http://en.wikipedia.org/wiki/Bistromathic_drive#Bistromathic_drive.
16 http://en.wikipedia.org/wiki/Life%2C_the_Universe_and_Everything.

Submission

Supervisor

http://en.wikipedia.org/wiki/Douglas_Adams
http://en.wikipedia.org/wiki/Bistromathic_drive#Bistromathic_drive
http://en.wikipedia.org/wiki/Life%2C_the_Universe_and_Everything

20 The Tiger Compiler Project Assignment

TC-7
TC-8
TC-9
Some of the noteworthy changes compared to Section 1.4.13 [Tiger 2012], page 19:

Build overhaul
Silent rules, fewer Makefiles.

Bison Variant
The parser is storing objects on its stacks, not only pointers. Other recent
Bison features are also used.

1.4.15 Tiger 2014

This is the thirteenth year of the Tiger Project.
We have been helped by:

Assistants Jonathan Aigrain, Jules Bovet, Hugo Damme, Michael Denoun, Julien Grall,
Christophe Pierre, Paul Similowski

csI students
Félix Abecassis

Deliveries for Ingl students:

Stage Kind Launch Submission Supervisor
tig Lab Nov 16, 2011 Nov 16, 2011
TC-0 Dec 05, 2011 Dec 18, 2011 at 23:42
TC-1 Rush Jan 30, 2012 at 19:00 Feb 02, 2012 at 18:42
TC-2 Feb 02, 2012 at 19:00 Feb 10, 2012 at 18:42
TC-3 & TC-R Rush Feb 10, 2012 at 19:00 Feb 12, 2012 at 11:42
TC-4 & TC-E Feb 20, 2012 at 19:00 Mar 04, 2012 at 11:42
TC-5 Mar 05, 2012 at 19:00 Mar 18, 2012 at 11:42
TC-6 Apr 23, 2012 at 19:00 May 06, 2012 at 11:42
TC-7 May 21, 2012 at 19:00 Jun 03, 2012 at 11:42
TC-8 Jun 04, 2012 at 19:00 Jun 17, 2012 at 11:42
TC-9 Jul 02, 2012 at 19:00 Jul 15, 2012 at 11:42
Deliveries for Applngl students:
Stage Kind Launch Submission Supervisor
tig Lab Nov 19, 2011 Nov 19, 2011
TC-0 Dec 05, 2011 Dec 18, 2011 at 23:42
TC-1 Jan 28, 2012 at 10:00 Feb 05, 2012 at 11:42
TC-2 Feb 08, 2012 at 19:00 Feb 17, 2012 at 18:42

TC-3 & TC-R Rush Feb 17, 2012 at 19:00
Some of the noteworthy changes compared to Section 1.4.14 [Tiger 2013], page 19:

The Logomatig
Due to time constraints, the Bistromatig assignment that has been previously
used in the past three years for the .tig rush has been replaced by a 4-hour
lab assignment: The Logomatig. This assignment is about implementing a
small interpreter in Tiger for a subset of the Logo language!'”. The name of
this project is a tribute to Logo, Tiger and the Bistromathic (though there

are very few calculations in it).

Feb 19, 2012 at 11:42

17 http://en.wikipedia.org/wiki/Logo_%28programming_language’29.

http://en.wikipedia.org/wiki/Logo_%28programming_language%29

Chapter 1: Introduction 21

Introduction of C++ 2011 features

Git

Since a new C++ standard has been released this year (September 11, 2011), we
are introducing some of its features in the Tiger project, namely range-based
for-loops, auto-typed variables, use of the nullptr literal constant, use of
explicitly defaulted and deleted functions, template metaprogramming traits
provided by the standard library, and use of consecutive right angle brackets
in templates. This set of features has been chosen for it is supported both by
ace 4.6 and Clang 3.0.

Git has replaced Subversion as version control system at EPITA. As of this
year, we also provide the code with gaps through a public Git repository!s.
This method makes the integration of the code provided at the beginning of
each stage easier (with the exception of TC-0, which is still to be done from

scratch).

1.4.16 Tiger 2015
This is the fourteenth year of the Tiger Project.
We have been helped by:

Assistants Laurent Gourvénec, Xavier Grand, Frédéric Lefort, Théophile Ranquet, Robin

Wils

Deliveries for Ingl students:

Stage Kind Launch Submission Supervisor
tig Rush Nov 23, 2012 at 18:42 Nov 25, 2012 at 11:42

PTHL (TC-0) Dec 10, 2012 at 18:42 Dec 23, 2012 at 11:42

TC-1 Rush Feb 11, 2013 at 18:42 Feb 13, 2013 at 23:42

TC-2 Feb 14, 2013 at 18:42 Feb 24, 2013 at 11:42

TC-3 & TC-R Mar 4, 2013 at 18:42 Mar 10, 2013 at 11:42

TC-4 & TC-E Mar 11, 2013 at 18:42 Mar 24, 2013 at 11:42

TC-5 Apr 22, 2013 at 18:42 May 5, 2013 at 11:42

TC-6 May 20, 2013 at 19:00 Jun 2, 2013 at 11:42

TC-7 Jun 2, 2013 at 19:00 Jun 16, 2013 at 11:42

TC-8 Jun 28, 2013 at 19:00 Jul 11, 2013 at 11:42

TC-9 Jul 12, 2013 at 19:00 Jul 21, 2013 at 11:42

Deliveries for Applngl students:
Stage Kind Launch Submission Supervisor

tig Rush Nov 23, 2012 at 18:42

Nov 25, 2012 at 11:42

PTHL (TC-0) Dec 10, 2012 at 18:42 Dec 23, 2012 at 11:42
TC-1 Feb 11, 2013 at 18:42 Feb 17, 2013 at 11:42
TC-2 Feb 18, 2013 at 18:42 Feb 28, 2013 at 11:42
TC-3 & TC-R Mar 11, 2013 at 18:42 Mar 20, 2013 at 23:42

Some of the noteworthy changes compared to Section 1.4.15 [Tiger 2014], page 20:

TC-0 renamed as PTHL

In an effort to emphasize the link between the THL (Formal Languages) lec-
ture and the first stage of the Tiger project, the latter has been renamed as

PTHL (“THL Project”).

18 https://gitlab.lrde.epita.fr/tiger/tc-base.git.

https://gitlab.lrde.epita.fr/tiger/tc-base.git

22

TC-3 is no longer a rush

TC-3 has not been a successful step among many students for several years
now. It has been deemed by many of them as too complex to be understood
and implemented in a couple of days. Therefore we decided to extend the time
allotted to this stage so as to give students more chance to pass TC-3.

Extension of the mandatory assignment to TC-5
By decision of the department of studies, all Ingl are required to work on the

The Tiger Compiler Project Assignment

Tiger project up to TC-5. Subsequent steps remain optional.

Use of more C++ 2011 features

This year, explicit template instantiation declarations (extern template
clauses) are introduced in the project to control template instantiations in
lieu of *.hcc files. The set of C++ features used in the Tiger compiler is still

supported by both ccc 4.6 and Clang 3.0.

1.4.17 Tiger 2016

This is the fifteenth year of the Tiger Project.
We have been helped by:

Beta testers
Anthony Seure, Rémi Weng

Assistants Aurélien Baud, Alexis Chotard, Baptiste Covolato, Arnaud Farbos, Laurent

Gourvénec, Frédéric Lefort, Vincent Mirzaian-Dehkordi

Deliveries for Ingl students:

Stage Kind Launch

tig Rush Nov 22, 2013 at 21:00
PTHL (TC-0) Dec 9, 2013 at 18:42
TC-1 Rush Feb 17, 2014 at 14:00
TC-2 Feb 20, 2014 at 09:00
TC-3 & TC-R Mar 3, 2014 at 19:00
TC-4 & TC-E Mar 14, 2014 at 19:00
TC-5 May 5, 2014 at 19:00
TC-6 May 23, 2014 at 19:00
TC-7 Jun 9, 2014 at 19:00
TC-8 Jul 7, 2014 at 19:00
TC-9 Jul 15, 2014 at 10:00

Deliveries for Applngl students:

Stage Kind Launch
tig Rush Nov 22, 2013 at 21:00
PTHL (TC-0) Dec 9, 2013 at 18:42

Some of the noteworthy changes compared to Section 1.4.16 [Tiger 2015], page 21:

Use of even more C++ 2011 features

Submission

Nov 24, 2013 at 11:42
Dec 22, 2013 at 11:42
Feb 19, 2014 at 23:42
Mar 2, 2014 at 11:42
Mar 16, 2014 at 11:42
May 4, 2014 at 11:42
May 24, 2014 at 23:42
Jun 8, 2014 at 11:42
Jun 22, 2014 at 11:42
Jul 13, 2014 at 11:42
Jul 20, 2014 at 11:42

Submission
Nov 24, 2013 at 11:42
Dec 22, 2013 at 11:42

The compiler introduces the following C++ 2011 features:

— (standard) smart pointers (std::unique_ptr, std::shared_ptr);

— general-purpose initializer lists;
— lambda expressions;

— explicit overrides;

Chapter 1: Introduction

— template aliases;

— new function declarator syntax;

— delegating constructors;

— non-static data member initializers;

— inherited constructors.

23

The whole set of C++ features used in the Tiger compiler is supported by both
cce 4.8 and Clang 3.3.

C++ scanner

We introduce a C++ scanner this year, still generated by Flex, but im-

plemented as classes.

The management of the scanner’s inputs has been

improved and responsibilities shared between the scanner and the driver
(parse: :TigerParser).

More Git Usage

Starting this year, we deliver code with gaps exclusively through the tc-base
public Git repository!®. We no longer provide tarballs nor patches as a means
to update students’ code bases.

Changes in the language regarding object-oriented constructs
The nil keyword has been made compatible with objects.

Style Many stylistics changes have been performed, mainly to match the epita Cod-

ing Style.
1.4.18 Tiger 2017

This is the sixteenth year of the Tiger Project.
We have been helped by:

Assistants Aurélien Baud, Baptiste Covolato, Pierre De Abreu, Léo Ercolanelli, Arnaud
Farbos, Axel Manuel, Vincent Mirzaian-Dehkordi, Matthieu Simon, Jérémie

Simon

Deliveries for Ingl students:

Stage Kind
tig Rush
PTHL (TC-0)

TC-1 Rush
TC-2

TC-3 & TC-R

TC-4 & TC-E

TC-5

TC-6

TC-7

TC-8

TC-9

Launch

Nov 21, 2014 at 21:00
Dec 8, 2014 at 18:42
Feb 4, 2015 at 22:00
Feb 13, 2015 at 22:00
Feb 23, 2015 at 22:00
Mar 9, 2015 at 19:00
Avr 20, 2015 at 19:00
May 25, 2015 at 19:00
Jun 1, 2015 at 19:00
Jun 8, 2015 at 19:00
Jul 6, 2015 at 10:00

Deliveries for Applngl students:

Stage Kind
tig Rush

Launch
Nov 21, 2014 at 21:00

19 https://gitlab.lrde.epita.fr/tiger/tc-base.git.

Submission

Nov 23, 2014 at 11:42
Dec 21, 2014 at 11:42
Feb 8, 2015 at 11:42
Feb 22, 2015 at 11:42
Mar 1, 2015 at 11:42
Mar 22, 2015 at 11:42
May 3, 2015 at 11:42
May 31, 2015 at 11:42
Jun 7, 2015 at 11:42
Jun 14, 2015 at 11:42
Jul 19, 2015 at 11:42

Submission
Nov 23, 2014 at 11:42

https://gitlab.lrde.epita.fr/tiger/tc-base.git

24 The Tiger Compiler Project Assignment

PTHL (TC-0) Dec 8, 2014 at 18:42 Dec 21, 2014 at 11:42
Some of the noteworthy changes compared to Section 1.4.17 [Tiger 2016], page 22:

Use of even more C++ 2011 features
The compiler introduces the following C++ 2011 features:

— wuse using instead of typedef;

— variadic templates (misc::variant).

The C++ features used in the Tiger compiler are supported by both acc 4.8
and Clang 3.3.

Style
TC-Y

Many stylistics changes have been performed.
An ArM back end has been added.

All the given code compiles
Code given to students compiles even with the // FIXME chunks.

1.4.19 Tiger 2018
This is the seventeenth year of the Tiger Project.
We have been helped by:

Assistants Rémi Billon, Pierre-Louis Dagues, Pierre De Abreu, Léo Ercolanelli, Arnaud
Gaillard, Axel Manuel, Sébastien Piat, Matthieu Simon, Jérémie Simon, Fran-

cis Visoiu Mistrih

Deliveries for Ingl students:

Stage Kind Launch Submission

tig Rush Nov 20, 2015 at 20:00 Nov 22, 2015 at 11:42
PTHL (TC-0) Dec 7, 2015 at 20:00 Dec 20, 2015 at 11:42
TC-1 Rush Feb 15, 2016 at 20:00 Feb 19, 2016 at 11:42
TC-2 Feb 19, 2016 at 20:00 Feb 28, 2016 at 11:42
TC-3 & TC-R Mar 7, 2016 at 20:00 Mar 20, 2016 at 11:42
TC-4 & TC-E Apr 18, 2016 at 20:00 May 1, 2016 at 11:42
TC-5 May 2, 2016 at 20:00 May 15, 2016 at 11:42
TC-6 May 23, 2016 at 20:00 May 29, 2016 at 11:42
TC-7 May 30, 2016 at 20:00 Jun 5, 2016 at 11:42
TC-8 Jun 6, 2016 at 20:00 Jun 12, 2016 at 11:42
TC-9 Jun 27, 2016 at 20:00 Jul 10, 2016 at 11:42

Some of the noteworthy changes compared to Section 1.4.18 [Tiger 2017], page 23:

type: : Type visitor
Make the type: : Type class visitable.

#pragma once
Remove the cpp guards and replace them with #pragma once directives.

Use of C++14
Move the standard from C++11 to C++14 since it is fully supported by both
ccce 5.0 and Clang 3.4.

LLVM translator
Add TC-L, a stage for Livm 1R generation. After TC-4, students have two
choices:

— Continue with Section 4.21 [TC-L], page 212, and stop.

Chapter 1: Introduction 25

— Continue with Section 4.14 [TC-5], page 132, and choose to do TC-
backend.

Dementors
Allow students to fix and push previous stages of TC more often after the
final submission.

Overfun-object
Add support for programs with overload and object.
Usable through the new options:
e —-overfun-object-bindings-compute
e —-overfun-object-types-compute

e ——overfun-object-object-desugar

1.4.20 Tiger 2019

This is the eighteenth year of the Tiger Project.
We have been helped by:

Assistants Loic Banet, Moray Baruh, Rémi Billon, Pierre-Louis Dagues, Arnaud Gail-
lard, Ashkan Kiaie-Sandjie, Guillaume Marques, Sarasvati Moutoucomara-
poule, Cyprien Orfila, Sébastien Piat, Francis Visoiu Mistrih

Deliveries for Ingl students:

Stage Kind Launch Submission

tig Rush Nov 4, 2016 at 19:00 Nov 6, 2016 at 11:42
PTHL (TC-0) Dec 5, 2016 at 20:00 Dec 18, 2016 at 11:42
TC-1 Rush Jan 30, 2017 at 20:00 Feb 3, 2017 at 11:42
TC-2 Feb 3, 2017 at 20:00 Feb 12, 2017 at 11:42
TC-3 & TC-R Feb 13, 2017 at 20:00 Feb 26, 2017 at 11:42
TC-4 & TC-E Mar 13, 2017 at 20:00 Mar 26, 2017 at 11:42
TC-5 Apr 17, 2017 at 20:00 Apr 30, 2017 at 11:42
TC-6 May 15, 2017 at 20:00 May 21, 2017 at 11:42
TC-7 May 29, 2017 at 20:00 Jun 4, 2017 at 11:42
TC-8 Jun 5, 2017 at 20:00 Jun 11, 2017 at 11:42
TC-9 Jun 26, 2017 at 20:00 Jul 9, 2017 at 11:42

Deliveries for Applngl students:

Stage Kind Launch Submission
tig Rush Nov 4, 2016 at 19:00 Nov 6, 2016 at 11:42
PTHL (TC-0) Dec 5, 2016 at 20:00 Dec 18, 2016 at 11:42

Some of the noteworthy changes compared to Section 1.4.19 [Tiger 2018], page 24:

ast::tasks::the_program
Make the_program a smart pointer, removing the -—ast-delete option.

Use of even more C++14 features
e use helper type for type_traits

e use smart pointers’ make function
Style Many stylistics changes have been performed.

Debug info
Adding support debug information for the Tiger language using LLVM.

26 The Tiger Compiler Project Assignment

C++17

Continuous integration
Provide a CI for the students.

1.4.21 Tiger 2020

This is the nineteenth year of the Tiger Project.
We have been helped by:

Notify future C++17’s changes in comments.

Assistants Loic Banet, Moray Baruh, Meven Courouble, Maxime Joubert, Ashkan Kiaie-
Sandjie, Steven Lariau, Guillaume Marques, Sarasvati Moutoucomarapoule,
Cyprien Orfila, Nicolas Poitoux, Loic Reyreaud, Andreas Touly

Deliveries for Ingl students:

Stage Kind Launch Submission

tig Rush Jan 29, 2018 at 09:00 Jan 31, 2018 at 11:42
TC-0 (PTHL) Jan 29, 2018 at 14:00 Feb 1, 2018 at 19:42
TC-1 Rush Feb 1, 2018 at 20:00 Feb 4, 2018 at 11:42
TC-2 Feb 5, 2018 at 20:00 Feb 25, 2018 at 11:42
TC-3 & TC-R Feb 12, 2018 at 20:00 Mar 11, 2018 at 11:42
TC-4 & TC-E Mar 12, 2018 at 20:00 Mar 25, 2018 at 11:42
TC-5 Apr 16, 2018 at 20:00 Apr 29, 2018 at 11:42
TC-6 May 14, 2018 at 20:00 May 20, 2018 at 11:42
TC-7 May 21, 2018 at 20:00 May 27, 2018 at 11:42
TC-8 Jun 4, 2018 at 20:00 Jun 10, 2018 at 11:42
TC-9 Jun 25, 2018 at 20:00 Jul 8, 2018 at 11:42

Deliveries for Applngl students:

Stage Kind Launch Submission
tig Rush Jan 29, 2018 at 09:00 Jan 31, 2018 at 11:42
TC-0 (PTHL) Jan 29, 2018 at 14:00 Feb 1, 2018 at 19:42

Some of the noteworthy changes compared to Section 1.4.20 [Tiger 2019], page 25:
C++17

e use structured bindings
e use std::variant instead of boost::variant
e use class template argument deduction
e use if(init; condition)

callee/caller-save

Swap callee-save and caller-save order

Desugar ~ Add desugar implementation for ArrayExp during TC-O

enum class

Replace enums with enum classes
_main Ensure _main existence and correct prototype in the AST
Metavar ~ Remove MetavarExp and Metavariable AST nodes

Namespaces
Use nested namespaces

Smart pointers
Replace some raw pointers with unique_ptr or shared_ptr

target::*::rewrite_program
Add alternative rewrite_program implementation

Setup a debian-sid Dockerfile
Provide a docker with requirements to build tc

27

29

2 Instructions

2.1 Interactions
Bear in mind that if you are writing, it is to be read, so pay attention to your reader.

The right place

Using mails is almost always wrong: first ask around you, then try to find the
assistants in their lab, and finally post into assistants.tiger. You need to
have a very good reason to send a message to the assistants or to Akim and
Etienne, as it usually annoys us, which is not in your interest.

The newsgroup assistants.tiger is dedicated to the Compiler Construction
lecture, the Tiger project, and related matters (e.g. assignments in Tiger
itself). Any other material is off topic.

A meaningful title
Find a meaningful subject.

Don’t do that Do this
Problem in TC-1 Cannot generate location.hh
make check make check fails on test-ref

A legal content
Pieces of critical code (e.g., precedence section in the parser, the string han-
dling in the scanner, or whatever you are supposed to find by yourself) are
not to be published.

This includes the test cases. While posting a simple test case is tolerated,
sending many of them, or simply one that addresses a specific common failure
(e.g., some obscure cases for escapes) is strictly forbidden.

A complete content
If you experience a problem that you fail to solve, make a report as complete
as possible: include pieces of code (unless the code is critical and shall not be
published) and the full error message from the compiler/tool. The following
text by Simon Tatham is enlightening; its scope goes way beyond the Tiger
Project: How to Report Bugs Effectively!. See also [How not to go about a
programming assignment], page 242, item “Be clever when using electronic
mail”.

A legible content
Use French or English. Epitean is definitely not a language.

A pertinent content
Trolls are not welcome.

2.2 Rules of the Game

As any other assignment, the Tiger Project comes with its rules to follow.

Thou Shalt Not Copy Code [Rule]

Thou Shalt Not Possess Thy Neighbor’s Code [Rule]
It is strictly forbidden to possess code that is not yours. You are encouraged to work
with others, but don’t get a copy of their code. See [How not to go about a programming
assignment], page 242, for more hints on what will not be accepted.

! http://www.chiark.greenend.org.uk/ sgtatham/bugs.html.

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

30 The Tiger Compiler Project Assignment

Tests are part of the project [Rule]

Do not copy tests or test frame works [Rule]
Test cases and test engines development are parts of the Tiger Project. As such the
same rules apply as for code.

If something is fishy, say it [Rule]
If something illegal happened in the course of a stage, let us know, arrangements might
be possible. If we find out, the rules will be strictly applied. It already happened that
third year students have had to redo the Tiger Project because their code was found
in another group: -42/20 is seldom benign.

Don’t hesitate working with other groups [Rule]
Don’t bother everybody instead of trying first. Conversely, once you did your best,
don’t hesitate working with others.

2.3 Groups

Starting with TC-1, assignments are to be done by groups of three.

The first cause of failures to the Tiger project is human problems within the groups.
We cannot stress too much the importance of constituting a good group of four people.
The Tiger project starts way before your first line of code: it begins with the selection of
your partners.

Here are a few tips, collected wisdom from the previous failures.

You work for yourself, not for grades

Yes, we know, when you’re a student grades are what matters. But close your
eyes, make a step backwards, and look at yourself for a minute, from behind.
You see a student, some sort of a larva, which will turn into a grownup. The
larva stage lasts 3 to 4 years, while the hard working social insect is there
for 40+ years: a 5% ratio without the internships. Three minutes out of an
hour. These years are made to prepare you to the rest of your life, to provide
you with what it takes to enjoy a lifelong success in jobs. So don’t waste
these three minutes by just cheating, paying little attention to what you are
given, or by just waiting for this to end. The opportunity to learn is a unique
moment in life: treasure it, even if it hurts, if it’s hard, because you may well
regret these three minutes for much of your life.

Start recruiting early
Making a team is not easy. Take the time to know the people, talk with them,
and prepare your group way before beginning the project. The whole TC-0 is
a test bed for you to find good partners.

Don’t recruit good lazy friends
If s/he’s lazy, you’ll have to scold her/him. If s/he’s a friend, that will be
hard. Plus it will be even harder to report your problems to us.

Recruit people you can depend on
Trust should be your first criterion.

Members should have similar programming skills

Weak programmers should run away from skilled programmers
The worst “good idea” is “I'm a poor programmer, I should be in a group of
skilled programmers: I will learn a lot from them”. Experience shows this is
wrong. What actually happens is as follows.

At the first stage, the leader assigns you a task. You try and fail, for weeks.
In the meanwhile, the other members teach you lots of facts, but (i) you can’t

Chapter 2: Instructions 31

memorize everything and end up saying “hum hum” without having under-
stood, and (ii) because they don’t understand what you don’t understand,
they are often poor teachers. The day before the submission, the leader does
your assignments to save the group. You learned nothing, or quite. Second
stage: same beginning, you are left with your assignment, but the other mem-
bers are now bothered by your asking questions: why should they answer,
since you don’t understand what they say (remember: they are poor teachers
because they don’t understand your problems), and you don’t seem to remem-
ber anything! The day before the submission, they do your work. From now
on, they won’t even ask you for anything: “fixing” you is much more time
consuming than just doing it by themselves. Oral examinations reveal you
neither understand nor do anything, hence your grades are bad, and you win
another round of first year...

Take our advice: if you have difficulties with programming, be with other
people like you. Your chances are better together, and anyway you are allowed
to ask for assistance from other groups.

Don’t mix repeaters with first year students
Repeaters have a much better understanding of the project than they think:
they know its history, some parts of the code, etc. This will introduce a
difference of skills from the beginning, which will remain till the end. It will
result in the first year students having not participated enough to learn what
was to be learned.

Don’t pick up old code

This item is especially intended to repeaters: you might be tempted to keep
the code from last year, believing this will spare you some work. It may not
be so. Indeed, every year the specifications and the provided code change,
sometimes with dramatic impact on the whole project. Struggling with an old
code base to meet the new standard is a long, error prone, and uninteresting
work. You might spend more time trying to preserve your old code than what
is actually needed to implement the project from scratch. Not to mention that
of course the latter has a much stronger educational impact.

Diagnose and cure drifts
When a dysfunction appears, fix it, don’t let it grow. For instance, if a member
never works in spite of the warnings, don’t cover him: he will have the whole
group drown. It usually starts with one member making more work on Tiger,
less on the rest of the curriculum, and then he gets tired all the time, with
bad mood etc. Don’t walk that way: denounce the problems, send ultimatums
to this person, and finally, warn the assistants you need to reconfigure your

group.

Reconfigure groups when needed
Members can leave a group for many reasons: dropped EPITA, dropped Tiger,
joined one of the schools’ laboratories, etc. If your group is seriously unbal-
anced (two skilled people is OK, otherwise be three), ask for a reconfiguration
in the news.

Tiger is a part of your curriculum
Tiger should neither be 0 nor 100% of your curriculum: find the balance. It
is not easy to find it, but that’s precisely one thing EPITA teaches: balancing
overloads.

32 The Tiger Compiler Project Assignment

2.4 Coding Style

This section could have been named “Strong and Weak Requirements”, as it includes not
only mandatory features from your compiler (memory management), but also tips and
advice. As the captain Barbossa would put it, “actually, it’s more of a guideline than a
rule.”

2.4.1 No Draft Allowed

The code you deliver must be clean. In particular, when some code is provided, and you
have to fill in the blanks denoted by ‘FIXME: Some code has been deleted.’. Sometimes
you will have to write the code from scratch.

In any case, dead code and dead comments must be removed. You are free to leave
comments spotting places where you fixed a ‘FIXME:’, but never leave a fixed ‘FIXME:’ in
your code. Nor any irrelevant comment.

The official compiler for this project, is anu C++ Compiler, 5.0 or higher (see Section 5.5
[GCC], page 249).

2.4.2 Use of Foreign Features

If, and only if, you already have enough fluency in C++ to be willing to try something
wilder, then the following exception is made for you. Be warned: along the years the
Tiger project was polished to best fit the typical epitean learning curve, trying to escape
this curve is also taking a major risk. By the past, some students tried different approaches,
and ended with unmaintainable pieces of code.

If you and your group are sure you can afford some additional difficulty (for additional
benefits), then you may use the following extra tools. You have to warn the examiners
that you use these tools. You also have to take care of harnessing configure.ac to make
sure that what you need is available on the testing environment. Be also aware that you
are likely to obtain less help from us if you use tools that we don’t master: You are on
your own, but, hey!, that’s what you're looking for, ain’t it?

The Loki Library
See [Modern C++ Design|, page 243, for more information about Loki.

The Boost Library
As provided by the unstable Debian packages 1ibboost-*. See [Boost.org],
page 237.

Any Other Parser or Scanner Generator
If you dislike Flex and/or Bison but you already know how to use them, then
you are welcome to use other technologies.

If you think about something not listed here, please send us your proposal; acceptance
is required to use them.

2.4.3 File Conventions

There are some strict conventions to obey wrt the files and their contents.

One class LikeThis per files like-this.x [Rule]
Each class LikeThis is implemented in a single set of file named like-this.*. Note
that the mixed case class names are mapped onto lower case words separated by dashes.

There can be exceptions, for instance auxiliary classes used in a single place do not
need a dedicated set of files.

Chapter 2: Instructions 33

*.hh: Declarations [Rule]

The *.hh should contain only declarations, i.e., prototypes, extern for variables etc.
Inlined short methods are accepted when there are few of them, otherwise, create an
* . hxx file. The documentation should be here too.

There is no good reason for huge objects to be defined here.
As much as possible, avoid including useless headers (GotW007?, GotW034?):
— when detailed knowledge of a class is not needed, instead of
#include <foo.hh>
write

// Fud decl.
class Foo;

or better yet: use the appropriate fwd.hh file (read below).

— if you need output streams, then include ostream, not iostream. Actually, if you
merely need to declare the existence of streams, you might want to include iosfwd.

* . hxx: Inlined definitions [Rule]

Some definitions should be loaded in different places: templates, inline functions etc.
Declare and document them in the *.hh file, and implement them in the *.hxx file.
The *.hh file last includes the *.hxx file, conversely *.hxx first includes *.hh. Read
below.

*.cc: Definitions of functions and variables [Rule]
Big objects should be defined in the *.cc file corresponding to the declara-
tion/documentation file *.hh.

There are less clear cut cases between *.hxx and *.cc. For instance short but time
consuming functions should stay in the *. cc files, since inlining is not expected to speed
up significantly. As another example features that require massive header inclusions
are better defined in the *.cc file.
As a concrete example, consider the accept methods of the AsT classes. They are short
enough to be eligible for an *.hxx file:

void

LetExp: :accept(Visitor& v)

{

v(*this);

}
We will leave them in the *.cc file though, since this way only the *.cc file needs to
load ast/visitor.hh; the *.hh is kept short, both directly (its contents) and indirectly
(its includes).

Explicit template instantiation [Rule]

There are several strategies to compile templates. The most common strategy consists
in leaving the code in a *.hxx file, and letting every user of the class template instantiate
the code. While correct, this approach has several drawbacks:

— Because the *.hh file includes the *.hxx file, each time a simple declaration of a
template is needed, the full implementation comes with it. And if the implemen-
tation requires other declarations such as std::iostream, you force all the client
code to parse the iostream header!

2 http://www.gotw.ca/gotw/007 . htm.
3 http://www.gotw.ca/gotw/034 .htm.

http://www.gotw.ca/gotw/007.htm
http://www.gotw.ca/gotw/034.htm

34 The Tiger Compiler Project Assignment

— The instantiation is performed several times, which is time and space consuming.

— The dependencies are tight: the clients of the template depend upon its implemen-
tation.

To circumvent these problems, we may control template instantiations using explicit
template instantiation definitions (available since C++ 1998) and declarations (intro-
duced by C++ 2011).

This mechanism is compatible with the way templates are usually handled in the Tiger
compiler, i.e., where both template declarations and definitions are accessible from the
included header, though often indirectly (see above). We use the following two-fold
strategy:

— First, we add an explicit template definition in the implementation file of the
template’s client (for instance temp/temp.cc) to instruct the compiler that we
want to instantiate a template (e.g. misc::endo_map<T>) for a given (set of)
parameter(s) (e.g. temp::Temp) in this compilation unit (temp/temp.o). This
explicit template definition is performed using a template clause.

/*%
*x \file temp/temp.cc
*x \brief temp::Temp.
*/

#include <temp/temp.hh>
/] ...

namespace misc

{
// Explicit template instantiation definition to generate the
template class endo_map<temp::Temp>;

3

File 2.1: temp.cc

— Then, we block the automatic (implicit) instantiation of the template for this (set
of) parameter(s), which would otherwise be triggered by default by the compiler
when the implementation of the template is made available to it—which is the case
in our example, since the header of the template (misc/endomap.hh) also includes
its implementation (misc/endomap.hxx). To do so, we add an explicit template
instantiation declaration matching the previous explicit template definition, using
an extern template clause.

/**
** \file temp/temp.hh
** \brief Fresh temps.
*/

#pragma once
#include <misc/endomap.hh>
namespace temp

{
struct Temp { /* ... *x/ };

code.

Chapter 2: Instructions 35

}
/] ...

namespace misc

{
// Explicit template instantiation declaration.
extern template class endo_map<temp::Temp>;

3

File 2.2: temp.hh

Any translation unit containing this explicit declaration will not generate this very
template instantiation, unless an explicit definition is seen (in our case, this will
happen within temp/temp.cc only).

You will notice that both the approach and the syntax used here recall the ones used
to declare and define global variables in C and C++.

We can further improve the previous design by factoring explicit instantiation code
using the preprocessor.

/%%

*xx \file temp/temp.hh

*x \brief Fresh temps.

*/
#pragma once
#include <misc/endomap.hh>

#ifndef MAYBE_EXTERN
define MAYBE_EXTERN extern
#endif

namespace temp

{
struct Temp { /* ... */ };
}

//

namespace misc
{
// Explicit template instantiation declaration.
MAYBE_EXTERN template class endo_map<temp::Temp>;
}

File 2.3: temp-factored.hh

VAL
*x \file temp/temp.cc
** \brief temp::Temp.

36 The Tiger Compiler Project Assignment

*/

#define MAYBE_EXTERN
#include <temp/temp.hh>
#undef MAYBE_EXTERN

/] ...

File 2.4: temp-factored.cc

Explicit template instantiation declarations (not definitions) are only available since
C++ 2011. Before that, we used to introduce a fourth type of file, * .hcc: files that had
to be compiled once for each concrete template parameter.

Guard included files (*.hh & *.hxx) [Rule]
Use the ‘#pragma once’ directive to ensure the contents of a file is read only once. This
is critical for *.hh and *.hxx files that include one another.

One typically has:
/**
*x \file sample/sample.hh

xx \brief Declaration of sample::Sample.
*x /

#pragma once
/7 ...

#include <sample/sample.hxx>

File 2.5: sample/sample.hh
/*x*

** \file sample/sample.hxx

*x% \brief Inlined definition of sample::Sample.
*x /

#pragma once

#include <sample/sample.hh>

/] ...

File 2.6: sample/sample.hxx

fwd.hh: forward declarations [Rule]
Dependencies can be a major problem during big project developments. It is not ac-
ceptable to “recompile the world” when a single file changes. To fight this problem, you
are encouraged to use fwd.hh files that contain simple forward declarations. Everything
that defeat the interest of fwd.hh file must be avoided, e.g., including actual header
files. These forward files should be included by the *.hh instead of more complete
headers.

Chapter 2: Instructions 37

The expected benefit is manifold:
— A forward declaration is much shorter.

— Usually actual definitions rely on other classes, so other ‘#include’s etc. Forward
declarations need nothing.

— While it is not uncommon to change the interface of a class, changing its name is
infrequent.

Consider for example ast/visitor.hh, which is included directly or indirectly by many
other files. Since it needs a declaration of each AsT node one could be tempted to use
ast/all.hh which includes virtually all the headers of the ast module. Hence all the
files including ast/visitor.hh will bring in the whole ast module, where the much
shorter and much simpler ast/fwd.hh would suffice.

Of course, usually the *.cc files need actual definitions.

Module, namespace, and directory likethis [Rule]
The compiler is composed of several modules that are dedicated to a set of coherent
specific tasks (e.g., parsing, AsT handling, register allocation etc.). A module name is
composed of lower case letters exclusively, likethis, not like_this nor like-this.
This module’s files are stored in the directory with the same name, which is also that
of the namespace in which all the symbols are defined.

Contrary to file names, we do not use dashes to avoid clashes with Swig and namespace.

libmodule.*: Pure interface [Rule]
The interface of the module module contains only pure functions: these functions should

not depend upon globals, nor have side effects of global objects. Global variables are
forbidden here.

tasks.*: Impure interface [Rule]
Tasks are the place for side effects. That’s where globals such as the current AsT, the
current assembly program, etc., are defined and modified.

2.4.4 Name Conventions

Stay out of reserved names [Rule]
The standard reserves a number of identifier classes, most notably ‘_*’ [17.4.3.1.2]:

Each name that begins with an underscore is reserved to the implementa-
tion for use as a name in the global namespace.

Using ‘_*’ is commonly used for cpp guards (‘_FOO_HH_’), private members (‘_foo’),
and internal functions (‘_foo ()’): don’t.

Name your classes LikeThis [Rule]
Class should be named in mixed case; for instance Exp, StringExp, TempMap,
InterferenceGraph etc. This applies to class templates. See [CStupidClassName],
page 239.

Name public members like_this [Rule]
No upper case letters, and words are separated by an underscore.

Name private/protected members like_this_ [Rule]
It is extremely convenient to have a special convention for private and protected mem-
bers: you make it clear to the reader, you avoid gratuitous warnings about conflicts
in constructors, you leave the “beautiful” name available for public members etc. We
used to write _like_this, but this goes against the standard, see [Stay out of reserved
names|, page 37.

38 The Tiger Compiler Project Assignment

For instance, write:

class IntPair
{
public:
IntPair(int first, int second)
: first_(first)
, second_(second)
{
}
protected:
int first_, second_;

}
See [CStupidClassName], page 239.

Name your using type alias foo_type [Rule]
When declaring a using type alias, name the type foo_type (where foo is obviously
the part that changes). For instance:

using map_type = std::map<const symbol, Entry_T>;
using symtab_type = std::list<map_type>;

We used to use foo_t, unfortunately this (pseudo) name space is reserved by POsIX.

Name the parent class super_type [Rule]
It is often handy to define the type of “the” super class (when there is a single one); use
the name super_type in that case. For instance most Visitors of the Ast start with:

class TypeChecker: public ast::DefaultVisitor
{
public:
using super_type = ast::DefaultVisitor;
using super_type: :operator();
/...
(Such using clauses are subject to the current visibility modifier, hence the public
beforehand.)

Hide auxiliary classes [Rule]
Hide auxiliary/helper classes (i.e., classes private to a single compilation unit, not
declared in a header) in functions, or in an anonymous namespace. Instead of:

struct Helper { ... };

void
doit ()
{

Helper h;

}
write:

namespace { struct Helper { ... }; }

void
doit ()
{

Helper h;

Chapter 2: Instructions 39

or
void
doit ()

{
struct Helper { ... } h;

3

The risk otherwise is to declare two classes with the same name: the linker will ignore
one of the two silently. The resulting bugs are often difficult to understand.

2.4.5 Use of C++ Features

Hunt Leaks [Rule]
Use every possible means to release the resources you consume, especially memory.
Valgrind can be a nice assistant to track memory leaks (see Section 5.8 [Valgrind],
page 250). To demonstrate different memory management styles, you are invited to
use different features in the course of your development: proper use of destructors for
the ast, use of a factory for symbol, Temp etc., use of std: :unique_ptr starting with
the Translate module, and finally use of reference counting via smart pointers for the
intermediate representation.

Hunt code duplication [Rule]
Code duplication is your enemy: the code is less exercised (if there are two routines
instead of one, then the code is run half of the time only), and whenever an update is
required, you are likely to forget to update all the other places. Strive to prevent code
duplication from sneaking into your code. Every C++ feature is good to prevent code
duplication: inheritance, templates etc.

Prefer dynamic_cast of references [Rule]
Of the following two snippets, the first is preferred:

const IntExp& ie = dynamic_cast<const IntExp&>(exp);
int val = ie.value_get();

const IntExp* iep = dynamic_cast<const IntExp*>(&exp);

assert(iep);

int val = iep->value_get();
While upon type mismatch the second aborts, the first throws a std: :bad_cast: they
are equally safe.

Use virtual methods, not type cases [Rule]
Do not use type cases: if you want to dispatch by hand to different routines depending
upon the actual class of objects, you probably have missed some use of virtual functions.
For instance, instead of

bool
compatible_with(const Type& lhs, const Type& rhs)
{
if (&lhs == &rhs)
return true;
if (dynamic_cast<Record*>(&lhs))
if (dynamic_cast<Nil*>(&rhs))
return true;

40 The Tiger Compiler Project Assignment

if (dynamic_cast<Record*>(&rhs))
if (dynamic_cast<Nil*>(&lhs))
return true;
return false;

X
write
bool
Record: :compatible_with(const Type& rhs)
{
return &rhs == this || dynamic_cast<const Nilx>(&rhs) ;
X
bool
Nil::compatible_with(const Type& rhs)
{
return dynamic_cast<const Record*>(&rhs);
X
Use dynamic_cast for type cases [Rule]

Did you read the previous item, “Use virtual methods, not type cases”? If not, do it
now.

If you really meed to write type dispatching, carefully chose between typeid and
dynamic_cast. In the case of tc, where we sometimes need to down cast an ob-
ject or to check its membership to a specific subclass, we don’t need typeid, so use
dynamic_cast only.

They address different needs:

dynamic_cast for (sub-)membership, typeid for exact type
The semantics of testing a dynamic_cast vs. a comparison of a typeid are
not the same. For instance, think of a class A with subclass B with subclass
C; then compare the meaning of the following two snippets:

// Is ‘a’ containing an object of exactly the type B?

bool testl = typeid(a) == typeid(B);

// Is ‘a’ containing an object of type B, or a subclass of B?
bool test2 = dynamic_cast<B*>(&a);

Non polymorphic entities
typeid works on hierarchies without vtable, or even builtin types (int
etc.). dynamic_cast requires a dynamic hierarchy. Beware of typeid on
static hierarchies; for instance consider the following code, courtesy from
Alexandre Duret-Lutz:

#include <iostream>

struct A
{
// virtual “AQ) {};
};
struct B: A
{

};

Chapter 2: Instructions 41

int
main()
{
Ax a = new B;
std::cout << typeid(*a).name() << std::endl;
}
it will “answer” that the typeid of ‘*a’ is A(!). Using dynamic_cast here
will simply not compile?. If you provide A with a virtual function table
(e.g., uncomment the destructor), then the typeid of ‘*a’ is B.

Compromising the future for the sake of speed
Because the job performed by dynamic_cast is more complex, it is also
significantly slower that typeid, but hey! better slow and safe than fast
and furious.

You might consider that today, a strict equality test of the object’s class is
enough and faster, but can you guarantee there will never be new subclasses
in the future? If there will be, code based dynamic_cast will probably
behave as expected, while code based typeid will probably not.

More material can be found the chapter 8 of see [Thinking in C++ Volume 2], page 246:
Run-time type identification®.

Use const references in arguments to save copies (Ec22) [Rule]
We use const references in arguments (and return value) where otherwise a passing
by value would have been adequate, but expensive because of the copy. As a typical
example, accessors ought to return members by const reference:

const Exp&
OpExp::lhs_get() const
{

return lhs_;
}

Small entities can be passed/returned by value.

Use references for aliasing [Rule]
When you need to have several names for a single entity (this is the definition of
aliasing), use references to create aliases. Note that passing an argument to a function
for side effects is a form of aliasing. For instance:

template <typename T>

void

swap(T& a, T& b)

{
T c = a;
a = b;
b = c;

}

Use pointers when passing an object together with its [Rule]

management

When an object is created, or when an object is given (i.e., when its owner leaves the
management of the object’s memory to another entity), use pointers. This is consistent

4 For instance, g++ reports an ‘error: cannot dynamic_cast ‘a’ (of type ‘struct A*’) to type
‘struct B*’ (source type is not polymorphic)’.

5 http://www.smart2help.com/e-books/ticpp-2nd-ed-vol-two/#_Toc53985808.

http://www.smart2help.com/e-books/ticpp-2nd-ed-vol-two/#_Toc53985808

42 The Tiger Compiler Project Assignment

with C++: new creates an object, returns it together with the responsibility to call
delete: it uses pointers. For instance, note the three pointers below, one for the
return value, and two for the arguments:

OpExp*
opexp_builder (OpExp: :0Oper oper, Exp* lhs, Exp* rhs)
{
return new OpExp(oper, lhs, rhs);
}
Avoid static class members (Ec47) [Rule]

More generally, “Ensure that non-local static objects are initialized before they’re
used”, as reads the title of Ec47.

Non local static objects (such as std::cout etc.) are initialized by the C++ system
even before main is called. Unfortunately there is no guarantee on the order of their
initialization, so if you happen to have a static object which initialization depends
on that of another object, expect the worst. Fortunately this limitation is easy to
circumvent: just use a simple Singleton implementation, that relies on a local static
variable.

This is covered extensively in EC47.

Use foo_get, not get_foo [Rule]
Accessors have standardized names: foo_get and foo_set.

There is an alternative attractive standard, which we don’t follow:

class Class
{
public:
int foo();
void foo(int foo);
private:
int foo_;

}
or even

class Class
{
public:
int foo();
Class& foo(int foo); // Return *this.
private:
int foo_;

}
which enables idioms such as:

{
Class obj;
obj.foo(12)
.bar (34)
.baz (56)
.qux(78)
.quux (90) ;

Chapter 2: Instructions 43

Use dump as a member function returning a stream [Rule]
You should always have a means to print a class instance, at least to ease debugging.
Use the regular operator<< for standalone printing functions, but dump as a member
function. Use this kind of prototype:

std::ostream& Tree::dump(std::ostream& ostr [, ...]) const

where the ellipsis denote optional additional arguments. dump returns the stream.

2.4.6 Use of sTL

Specify comparison types for associative containers of [Rule]
pointers (Es20)
For instance, instead of declaring

using temp_set_type = std::set<const Temp*>;
declare

/// Object function to compare two Temp*.
struct temp_compare
{
bool
operator() (const Temp* sl, const Temp* s2) const
{
return *sl < *s2;
}
s

using temp_set_type = std::set<const Temp* , temp_compare>;

temp_set_type my_set;

Or, using C++11 lambdas:

/// Lambda to compare two Tempx.
auto temp_compare = [](const Temp* si1, const Temp* s2)
{

return *sl < *s2;

3
using temp_set_type = std::set<const Temp* , decltype(temp_compare)>;

temp_set_type my_set{temp_compare};

Scott Meyers mentions several good reasons, but leaves implicit a very important one:
if you don’t, since the outputs will be based on the order of the pointers in memory,
and since (i) this order may change if your allocation pattern changes and (ii) this
order depends of the environment you run, then you cannot compare outputs (including
traces). Needless to say that, at least during development, this is a serious misfeature.

Prefer standard algorithms to hand-written loops (Es43) [Rule]
Using for_each, find, find_if, transform etc. is preferred over explicit loops. This
is for (i) efficiency, (ii) correctness, and (iii) maintainability. Knowing these algorithms
is mandatory for who claims to be a C++ programmer.

44 The Tiger Compiler Project Assignment

Prefer member functions to algorithms with the same names [Rule]
(Bs44)

For instance, prefer ‘my_set.find(my_item)’ to ‘find (my_item, my_set.begin(),

my_set.end())’. This is for efficiency: the former has a logarithmic complexity, ver-

sus... linear for the latter! You may find the Item 44 of Effective STLS on the Internet.

2.4.7 Matters of Style

The following items are more a matter of style than the others. Nevertheless, you are
asked to follow this style.

80 columns maximum [Rule]
Stick to 80 column programming. As a matter of fact, stick to 76 or 78 columns most of
the time, as it makes it easier to keep the diffs within the limits. And if you post/mail
these diffs, people are likely to reply to the message, hence the suggestion of 76 columns,
as for emails.

Order class members by visibility first [Rule]
When declaring a class, start with public members, then protected, and last private
members. Inside these groups, you are invited to group by category, i.e., methods,
types, and members that are related should be grouped together. The motivation is
that private members should not even be visible in the class declaration (but of course,
it is mandatory that they be there for the compiler), and therefore they should be
“hidden” from the reader.

This is an example of what should not be done:

class Foo

{

public:
Foo(std::string, int);
virtual “Foo();

private:

using string_type = std::string;
public:

std: :string bar_get() const;

void bar_set(std::string);
private:

string_type bar_;

public:
int baz_get() const;
void baz_set(int);
private:
int baz_;
}

rather, write:

class Foo

{

public:
Foo(std::string, int);
virtual “Foo();

6 http://www.informit.com/articles/article.aspx?p=21851.

http://www.informit.com/articles/article.aspx?p=21851

Chapter 2: Instructions 45

std::string bar_get() const;
void bar_set(std::string);

int baz_get() const;
void baz_set(int);

private:
using string_type; = std::string
string_type bar_;
int baz_;

b

and add useful Doxygen comments.

Keep superclasses on the class declaration line [Rule]
When declaring a derived class, try to keep its list of superclasses on the same line.
Leave a space at least on the right hand side of the colon. If there is not enough room to
do so, leave the colon on the class declaration line (the opposite applies for constructor,
see [Put initializations below the constructor declaration|, page 47).

class Derived: public Base
{

/...
};

/// Object function to compare two Tempx.
struct temp_ptr_less

{

bool operator() (const Temp* sl, const Temp* s2) const;

};

Don’t use inline in declaratiomns [Rule]
Use inline in implementations (i.e., *.hxx, possibly *.cc)), not during declarations
(*.hh files).

Use override [Rule]
If a method was once declared virtual, it remains virtual, there is no need to repeat
it. However, be sure to explicitly mark it as override so that your compiler can verify
it.

class Base

{

public:
/...

virtual void foo() = 0;

};

class Derived: public Base
{
public:

/...

void foo() override;

};

46 The Tiger Compiler Project Assignment

Pointers and references are part of the type [Rule]
Pointers and references are part of the type, and should be put near the type, not near
the variable.

int* p; // not ‘int *p;’
list& 1; // not ‘list &1;°
void* magic(); // not ‘void *magic(Q);’

Do not declare many variables on one line [Rule]
Use
int* p;
int* q;
instead of
int *p, *q;

The former declarations also allow you to describe each variable.

Leave no space between template name and effective [Rule]
parameters
Write

std::list<int> 1;
std::pair<std::list<int>, int> p;

with a space after the comma. There is no need for a space between two closing ‘>’
(since C++ 2011):

std::list<std::list<int>> 1ls;
These rules apply for casts:

// Come on baby, light my fire.
int* p = static_cast<int*>(42);

Leave one space between TEMPLATE and formal parameters [Rule]
Write

template <class T1l, class T2>
struct pair;

with one space separating the keyword template from the list of formal parameters.

Leave no space between a function name and its argument(s), [Rule]
either formal or actual
int
foo(int n)
{
return bar(n);

}
The ‘()’ operator is not a list of arguments.

class Foo
{
public:
Foo();
virtual “Foo();
bool operator() (int n);

};

Chapter 2: Instructions

Put initializations below the constructor declaration
Don’t put or initializations or constructor invocations on the same line as you declare
the constructor. As a matter of fact, don’t even leave the colon on that line. Instead

of ‘A::AQ): BO,

C()’, write either:

A::AQ)
: BO
, CO
{
}
or
A::AQ)
: BO, CO
{
}

47

[Rule]

The rationale is that the initialization belongs more to the body of the constructor than
its signature. And when dealing with exceptions leaving the colon above would yield a
result even worse than the following.

A::AQ)
try
: BO
, CO
{
}
catch (...
{
}

)

2.4.8 Documentation Style

Write correct English
Nowadays most editors provide interactive spell checking, including for sources (strings
and comments). For instance, see flyspell-mode in Emacs, and in particular the

flyspell-prog-mode.

~/.emacs.el:

(add-hook
(add-hook
(add-hook
(add-hook
(add-hook
(add-hook

and so forth.

’c-mode-hook ’flyspell-prog-mode
’c++-mode-hook ’flyspell-prog-mode
’cperl-mode-hook ’flyspell-prog-mode

’makefile-mode-hook ’flyspell-prog-mode
’python-mode-hook ’flyspell-prog-mode
’sh-mode-hook ’flyspell-prog-mode

End comments with a period.

Be concise

1)
1)
1)
1)
1)
1)

[Rule]

To trigger this automatically, install the following in your

[Rule]

For documentation as for any other kind of writing, the shorter, the better: hunt useless
words. See [The Elements of Style|, page 246, for an excellent set of writing guidelines.

Here are a few samples of things to avoid:

Don’t document the definition instead of its object
Don’t write:

/// Declaration of the Foo class.

48 The Tiger Compiler Project Assignment

class Foo

{

};

Of course you're documenting the definition of the entities! “Declaration
of the” is totally useless, just use ‘/// Foo class’. But read bellow.

Don’t qualify obvious entity kinds
Don’t write:

/// Foo class.

class Foo

{

public:
/// Construct a Foo object.
Foo(Bar& bar)

};

It is so obvious that you’re documenting the class and the constructor that
you should not write it down. Instead of documenting the kind of an entity
(class, function, namespace, destructor...), document its goal.

/// Wrapper around Bar objects.
class Foo
{
public:
/// Bind to \a bar.
Foo(Bar& bar)

};

Use the Imperative [Rule]
Use the imperative when documenting, as if you were giving order to the function
or entity you are describing. When describing a function, there is no need to repeat
“function” in the documentation; the same applies obviously to any syntactic category.
For instance, instead of:

/// \brief Swap the reference with another.
/// The method swaps the two references and returns the first.
ref& swap(ref& other);

write:

/// \brief Swap the reference with another.
/// Swap the two references and return the first.
ref& swap(ref& other);

The same rules apply to ChangeLogs.

Use rebox.el to mark up paragraphs [Rule]
Often one wants to leave a clear markup to separate different matters. For declara-
tions, this is typically done using the Doxygen ‘\name ... \{ ... \}’ sequence; for
implementation files use rebox.el (see [rebox.el|, page 56).

Write Documentation in Doxygen [Rule]
Documentation is a genuine part of programming, just as testing. We use Doxygen
(see Section 5.16 [Doxygen], page 255) to maintain the developer documentation of the
Tiger Compiler. The quality of this documentation can change the grade.

Chapter 2: Instructions 49

Beware that Doxygen puts the first letter of documentation in upper case. As a result,

/// \file ast/arrayexp.hh
/// \brief ast::ArrayExp declaration.

will not work properly, since Doxygen will transform ast::ArrayExp into
‘Ast::ArrayExp’, which will not be recognized as an entity name. As a workaround,
write the slightly longer:

/// \file ast/arrayexp.hh
/// \brief Declaration of ast::ArrayExp.

Of course, Doxygen documentation is not appropriate everywhere.

Document namespaces in lib*.hh files [Rule]
Document classes in their *.hh file [Rule]
There must be a single location, that’s our standard.

Use ‘\directive’ [Rule]
Prefer backslash (‘\’) to the commercial at (‘@’) to specify directives.

Prefer C Comments for Long Comments [Rule]
Prefer C comments (‘/** ... */’) to C++ comments (‘/// ...”). This is to ensure
consistency with the style we use.

Prefer C++ Comments for One Line Comments [Rule]
Because it is lighter, instead of

/*x \brief Name of this program. */
extern const char* program_name;

prefer

/// Name of this program.
extern const char* program_name;

For instance, instead of

/* Construct an InterferenceGraph. */
InterferenceGraph(const std::string& name,
const assem::instrs_t& instrs, bool trace = false);

or

/** @brief Construct an InterferenceGraph.
** QOparam name its name, hopefully based on the function name
** Q@param instrs the code snippet to study
** Qparam trace trace flag
*%/
InterferenceGraph(const std::string& name,
const assem::instrs_t& instrs, bool trace = false);

or

/// \brief Construct an InterferenceGraph.
/// \param name its name, hopefully based on the function name
/// \param instrs the code snippet to study
/// \param trace trace flag
InterferenceGraph(const std::string& name,
const assem::instrs_t& instrs, bool trace = false);

write

/** \brief Construct an InterferenceGraph.
\param name its name, hopefully based on the function name

50 The Tiger Compiler Project Assignment

\param instrs the code snippet to study
\param trace trace flag
*/
InterferenceGraph(const std::string& name,
const assem::instrs_t& instrs, bool trace = false);

2.5 Tests

As stated in Section 2.2 [Rules of the Game], page 29, writing a test framework and tests
is part of the exercise.

As a starting point, we provide a tarball containing a few Tiger files, see Section 3.3
[Given Test Cases|, page 70. They are not enough: your test suite should be continually
expanding.

2.5.1 Writing Tests

In three occasions tests are “easy” to write:

— The specifications of the language are a fine source for many tests. For instance the
specification of integer literals show several cases to exercise.

— If your compiler crashes or fails, before even trying to fix it, include the test case in
your test suite.

— If you are developing a component for the compiler, you can certainly feel the weak
points. Immediately write a test for these.

See [Testing student-made compilers], page 245, for many hints on what tests you need
to write.

2.5.2 Generating the Test Driver

Unless your whole test infrastructure is embedded in a single file (which is not a good idea),
we advise you to generate any script used to run your tests so that they can be run from
a directory other than the source directory where they reside. This is especially useful to
maintain several builds (e.g. with different compilers or compiler flags) in parallel (see the
section on VPATH Builds” in Automake’s manual) and when running ‘make distcheck’
(see the section on Checking the Distribution®), as source and build directories are distinct
in these circumstances.

The simplest way to generate a script is to rely on configure. For instance, the
following line in configure.ac generates a script tests/testsuite from the input
tests/testsuite.in, while performing variables substitutions (in particular ‘@srcdir@’
and similar variables):

AC_CONFIG_FILES([tests/testsuite], [chmod a=rx tests/testsuite])

The template file tests/testsuite.in can then leverage this information to find data
in the source directory. E.g., if tests are located in the tests/ subdirectory of the top
source directory, the beginning of tests/testsuite.in might look like this:

#! /bin/sh
Qconfigure_input@

Where the tests can be found.
testdir="0Qabs_top_srcdir@/tests"

7 http://wuw.gnu.org/software/automake/manual/html_node/VPATH-Builds.html.
8 http://www.gnu.org/software/automake/manual/html_node/Checking-the-Distribution.html.

http://www.gnu.org/software/automake/manual/html_node/VPATH-Builds.html
http://www.gnu.org/software/automake/manual/html_node/Checking-the-Distribution.html

Chapter 2: Instructions 51

...

Another strategy to generate scripts is to use make, as suggested by Autoconf’s manual
(see the section on Installation Directory Variables?®).

2.6 Submission
We use two kinds of project submissions in the project.

— For PTHL (see Section 4.2 [PTHL (TC-0)], page 72), your sources must be pushed
through the ‘master’ branch to the central Git repository at submission time. Follow
the instructions given by the teaching assistants.

— From TC-1 on, your code must still be submitted through git, following indications
given on the assistants’s intranet. However, the assistants "moulinette" will use the
tarball built by the command ‘make distcheck’. Be sure that the created tarball has
a correct name. If bardec_f is the head of your group, the tarball must be bardec_
f-tc-n.tar.bz2 where n is the number of the “release” (see Section 5.4.1 [Package
Name and Version|, page 247). The following commands must work properly:

$ bunzip2 -cd bardec_f-tc-n.tar.bz2 | tar xvf -
$ cd bardec_f-tc-n

$ export CC=gcc+-5.0 CXX=g++-5.0

$ mkdir _build

$ cd _build

$../configure

$ make

$ src/tc /tmp/test.tig

$ make distcheck

For more information on the tools, see Section 5.4 [The GNU Build System], page 247,
Section 5.5 [GCC], page 249.

2.7 Evaluation
Some stages are evaluated only by a program, and others are evaluated both by humans,

and a program.

2.7.1 Automated Evaluation

Each stage of the compiler will be evaluated by an automatic corrector. Soon after your
work is submitted, the logs are available on the assistants’ intranet.

Automated evaluation enforces the requirements: you must stick to what is being
asked. For instance, for TC-E it is explicitly asked to display something like:

var /* escaping */ i : int := 2

so if you display any of the following outputs

var i : int /* escaping */ := 2
var i /* escaping */ : int := 2
var /* Escapes */ i : int := 2

be sure to fail all the tests, even if the computation is correct.

9 http://www.gnu.org/software/autoconf /manual/html_node/Installation-Directory-Variables.
html.

http://www.gnu.org/software/autoconf/manual/html_node/Installation-Directory-Variables.html
http://www.gnu.org/software/autoconf/manual/html_node/Installation-Directory-Variables.html

52 The Tiger Compiler Project Assignment

2.7.2 During the Examination

When you are defending your projects, here are a few rules to follow:

Don’t talk Don’t talk unless you are asked to: when a person is asked a question, s/he is
the only one to answer. You must not talk to each other either: often, when
one cannot answer a question, the question is asked to another member. It is
then obvious why the members of the group shall not talk.

Don’t touch the screen
Don’t touch my display! You have nice fingers, but I don’t need their prints
on my screen.

Tell the truth
If there is something the examiner must know (someone did not work on the
project at all, some files are coming from another group etc.), say it immedi-
ately, for, if we discover that by ourselves, you will be severely sanctioned.

Learn It is explicitly stated that you can not have worked on a stage provided this
was an agreement with the group. But it is also explicitly stated that you must
have learned what was to be learned from that compiler stage, which includes
C++ techniques, Bison and Flex mastering, object oriented concepts, design
patterns and so forth.

Complain now!
If you don’t agree with the notation, say it immediately. Private messages
about “this is unfair: I worked much more than bardec_f but his grade is
better than mine” are thrown away.

Conversely, there is something we wish to make clear: examiners will probably be harsh
(maybe even very harsh), but this does not mean they disrespect you, or judge you badly.

You are here to defend your project and knowledge, they are here to stress them, to
make sure they are right. Learning to be strong under pressure is part of the exercise.
Don’t burst into tears, react! Don’t be shy, that’s not the proper time: you are selling
them something, and they will never buy something from someone who cries when they
are criticizing his product.

You should also understand that human examination is the moment where we try to
evaluate who, or what group, needs help. We are here to diagnose your project and provide
solutions to your problems. If you know there is a problem in your project, but you failed
to fix it, tell it to the examiner! Work with her/him to fix your project.

2.7.3 Human Evaluation

The point of this evaluation is to measure, among other things:

the quality of the code
How clean it is, amount of code duplication, bad hacks, standards violations
(e.g., ‘stderr’ is forbidden in proper C++ code) and so forth. It also aims at
detecting cheaters, who will be severely punished (mark = -42).

the knowledge each member acquired
While we do not require that each member worked on a stage, we do require
that each member (i) knows how the stage works and (ii) has perfectly under-
stood the (C++, Bison etc.) techniques needed to implement the stage. Each
stage comes with a set of goals (see Section 4.2.1 [PTHL Goals|, page 72, for
instance) on which you will be interrogated.

Chapter 2: Instructions 53

Examiners: the human grade.

The examiner should not take (too much) the automated tests into account to decide
the mark: the mark is computed later, taking this into account, so don’t do it twice.

Examiners: broken tarballs.

If you fixed the tarball or made whatever modification, run ‘make distcheck’ again,
and update the delivered tarball. Do not keep old tarballs, do not install them in a special
place: just replace the first tarball with it, but say so in the ‘eval’ file.

The rationale is simple: only tarballs pass the tests, and every tarball must be able to
pass the tests. If you don’t do that, then someone else will have to do it again.

2.7.4 Marks Computation
Because the Tiger Compiler is a project with stages, the computation of the marks depends
on the stages too. To spell it out explicitly:

A stage is penalized by bad results on tests performed for previous stages.

It means, for instance, that a TC-3 compiler will be exercised on TC-1, TC-2, and
TC-3. If there are still errors on TC-1 and TC-2 tests, they will pessimize the result of
TC-3 tests. The older the errors are, the more expensive they are.

95

3 Source Code

3.1 Given Code

Starting with TC-1, code with gaps is provided through the tc-base public Git repository?!.
We used to provide code through tarballs and patches before, but we only rely on Git now.
This approach is the best one, as git merge is arguably simpler than patch and has other
advantages (like preserving the execution bit of scripts, identifying the origin of every line
of code using git blame, etc.). Each commit containing the contents of a new stage is
labeled with a ‘class-tc-base-x.y tag.

Here is the recommended strategy to use this repository.

1. At TC-1, subscribe to the repository, fetch its contents and integrate the given code
using git merge with the commit labeled ‘2020-tc-base-1.0’ into your ‘master’
branch:

$ git remote add tc-base https://gitlab.lrde.epita.fr/tiger/tc-base.git
$ git fetch tc-base
$ git merge 2020-tc-base-1.0

Fix the conflicts and record the merge commit:

$ git add src/tc.cc ...
$ git commit
2. For any subsequent stage m, all you will need to do is fetch the new commits from the
‘tc-base’ repository and merge the code given at stage m into yours (and of course,
fix the conflicts). E.g.:

$ git fetch tc-base
$ git merge 2020-tc-base-m.0

3.2 Project Layout

This section describes the mandatory layout of the package.

3.2.1 The Top Level

AUTHORS . txt
In the top level of the distribution, there must be a file AUTHORS.txt which
contents is as follows:

Fabrice Bardéche <bardec_f@epita.fr>
Jean-Paul Sartre <sartre_j@epita.fr>
Jean-Paul Deux <deux_j@epita.fr>

Jean-Paul Belmondo <belmon_jQ@epita.fr>
The group leader is first. Do not include emails other than those of EPITA.
We repeat: give the ‘login@epita.fr’ address. Starting from TC-1, the file
AUTHORS. txt is distributed thanks to the EXTRA_DIST variable in the top-level
Makefile.am, but pay attention to the spelling.

ChangelLog
Optional. The list of the changes made in the compiler, with the dates and
names of the people who worked on it. See the Emacs key binding ‘C-x 4 a’.

README. txt
Various free information.

! https://gitlab.lrde.epita.fr/tiger/tc-base.git.

https://gitlab.lrde.epita.fr/tiger/tc-base.git

56 The Tiger Compiler Project Assignment

NEWS.txt Optional. Summary of changes introduced by each release.
lib/ This directory contains helping tools, that are not specific to the project.
src/ All the sources are in this directory.

tests/ Your own test suite. You should make it part of the project, and ship it like
the rest of the package. Actually, it is abnormal not to have a test suite here.

3.2.2 The build-aux Directory

bison++.in (build-aux/bin) [File]
This is a wrapper around Bison, tailored to produce C++ parsers. Compared to bison,
bison++ updates the output files only if changed. For a file such as location.hh,
virtually included by the whole front-end, this is a big win.

Also, bison outputs ‘\file location.hh’ in Doxygen documentation, which clashes
with ast/location.hh. bison++ changes this into ‘\file parse/location.hh’.

flex++.in (build-aux/bin) [File]
A wrapper around Flex, to simplify and improve the generation of C++ scanners.

monoburg++.in (build-aux/bin) [File]
Likewise for MonoBURG.

rebox.el (build-aux/) [File]
This file provides two new Emacs functions, ‘M-x rebox-comment’ and ‘M-x
rebox-region’. They build and maintain nice looking boxed comments in most
languages. Once installed (read it for instructions), write a simple comment such as:

// Comments end with a period.

then move your cursor into this comment and press ‘C-u 2 2 3 M-q’ to get:

‘2 2 3’ specifies the style of the comment you want to build. Once the comment built,
‘M-q’ suffices to refill it. Run ‘C-u - M-q’ for an interactive interface.

tiger.el (build-aux) [File]

panther.el (build-aux) [File]
Theses files provide Emacs major modes for Tiger programs (*.tig) and Panther
(“object-less” Tiger) programs (*.pan files). Read them to get installation instruc-
tions.

tiger-ftdetect.vim (build-aux) [File]
tiger-syntax.vim (build-aux) [File]
Vim scripts to detect and enable syntax hilighting for Tiger files.

3.2.3 The 1ib Directory

3.2.4 The lib/misc Directory

Convenient C++ tools.

contract.* (lib/misc/) [File]
A useful improvement over cassert.

Chapter 3: Source Code 57

error.* (lib/misc/) [File]
The class misc::error implements an error register. Because libraries are expected
to be pure, they cannot issue error messages to the error output, nor exit with failure.
One could pass call-backs (as functions or as objects) to set up error handling. Instead,
we chose to register the errors in an object, and have the library functions return this
register: it is up to the caller to decide what to do with these errors. Note also that
direct calls to std::exit bypass stack unwinding. In other words, with std::exit
(instead of throw) your application leaks memory.

An instance of misc: :error can be used as if it were a stream to output error messages.
It also keeps the current exit status until it is “triggered”, i.e., until it is thrown. Each
module has its own error handler. For instance, the Binder has an error_ attribute,
and uses it to report errors:

void

Binder: :error(const ast::Ast& loc, const std::string& msg)

{

error_ << misc::error::bind
<< loc.location_get() << ": " << msg << std::endl;
}

Then the task system fetches the local error handler, and merges it into the global
error handler error (see common.*). Some tasks trigger the error handler: if errors
were registered, an exception is raised to exit the program cleanly. The following code
demonstrates both aspects
void
bindings_compute ()
{
// bind::bind returns the local error handler.
error << ::bind::bind(*ast::tasks::the_program);
error.exit_on_error();

}

escape.* (lib/misc/) [File]
This file implements a means to output string while escaping non printable characters.
An example:

std::cout << "escape(\"\111\") = " << escape("\"\111\"") << std::endl;
Understanding how escape works is required starting from TC-2.

flex-lexer.hh (lib/misc/) [File]
The skeleton of the C++ scanner. Adapted from Flex’s FlexLexer.h and used as a
replacement, thanks to flex++ (see [flex++.in], page 56).

graph.* (lib/misc/) [File]
This file contains a generic implementation of oriented and undirected graphs.

Understanding how graph works is required starting from TC-8.

indent.* (lib/misc/) [File]
Exploiting regular std: :ostream to produce indented output.
ref.* (lib/misc/) [File]

Smart pointers implementing reference counting.

set.* (lib/misc/) [File]
A wrapper around std: :set that introduce convenient operators (operator+ and so
forth).

58 The Tiger Compiler Project Assignment

scoped-map.* (lib/misc/) [File]
The handling of misc: : scoped_map<Key, Data>, generic scoped map, serving as a basis
for symbol tables used by the Binder. misc: :scoped_map maps a Key to a Data (that
should ring a bell...). You are encouraged to implement something simple, based on
stacks (see std: :stack, or better yet, std: :vector) and maps (see std: :map).

It must provide this interface:

put (const Key& key, const Data& value) [void]
Associate value to key in the current scope.

get (const Key& key) const [Data]
If key was associated to some Data in the open scopes, return the most recent
insertion. Otherwise, if Data is a pointer type, then return the empty pointer, else
throw a std: :range_error. To implement this feature, see <type_traits>?

dump (std::ostream& ostr) const [std::ostreamé&]
Send the content of this table on ostr in a human-readable manner, and return the
stream.

scope_begin () [void]

Open a new scope.

scope_end () [void]
Close the last scope, forgetting everything since the latest scope_begin().

symbol.* (lib/misc/) [File]
In a program, the rule for identifiers is to be used many times: at least once for its
definition, and once for each use. Just think about the number of occurrences of size_t
in a C program for instance.

To save space one keeps a single copy of each identifier. This provides additional
benefits: the address of this single copy can be used as a key: comparisons (equality or
order) are much faster.

The class misc::symbol is an implementation of this idea. See the lecture notes,
scanner.pdf®. misc::symbol is based on misc: :unique.

timer.* (lib/misc/) [File]
A class that makes it possible to have timings of processes, similarly to gcc’s ——time-
report, or bison’s ——report=time. It is used in the Task machinery, but can be used
to provide better timings (e.g., separating the scanner from the parser).

unique.* (lib/misc/) [File]
A generic class implementing the Flyweight design pattern. It maps identical objects
to a unique reference.

variant.* (lib/misc/) [File]
A wrapper over std::variant supporting conversion operators.

2 http://en.cppreference.com/w/cpp/header/type_traits.
3 https://www.lrde.epita.fr/ “tiger//lecture-notes/slides/ccmp/scanner.pdf.

http://en.cppreference.com/w/cpp/header/type_traits
https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/scanner.pdf

Chapter 3: Source Code 59

3.2.5 The src Directory

common.hh (src/) [File]
Used throughout the project.
tc (src/) [File]

Your compiler.

tc.cc (sre)) [File]
Main entry. Called, the driver.

3.2.6 The src/task Directory

No namespace for the time being, but it should be task. Delivered for TC-1. A generic
scheme to handle the components of our compiler, and their dependencies.

3.2.7 The src/parse Directory

Namespace ‘parse’. Delivered during TC-1.

scantiger.1l (src/parse/) [File]
The scanner.

parsetiger.yy (src/parse/) [File]
The parser.

position.hh (src/ast/) [File]

Keeping track of a point (cursor) in a file.

location.hh (src/ast/) [File]
Keeping track of a range (two cursors) in a (or two) file.

libparse.hh (src/ast/) [File]
which prototypes what tc.cc needs to know about the module ‘parse’.

3.2.8 The src/ast Directory

Namespace ‘ast’, delivered for TC-2. Implementation of the abstract syntax tree. The
file ast/README gives an overview of the involved class hierarchy.

location.hh (src/ast/) [File]
Imports Bison’s parse: :location.

visitor.hh (src/ast/) [File]
Abstract base class of the compiler’s visitor hierarchy. Actually, it defines a
class template GenVisitor, which expects an argument which can be either
misc::constify_traits or misc::id_traits. This allows to define two parallel
hierarchies: ConstVisitor and Visitor, similar to iterator and const_iterator.

The understanding of the template programming used is not required at this stage
as it is quite delicate, and goes far beyond your (average) current understanding of
templates.

default-visitor.* (src/ast/) [File]
Implementation of the GenDefaultVisitor class template, which walks the abstract
syntax tree, doing nothing. This visitor does not define visit methods for nodes re-
lated to object-oriented constructs (classes, methods, etc.); thus it is an abstract class,
and is solely used as a basis for deriving other visitors. It is instantiated twice:
GenDefaultVisitor<misc::constify_traits> and GenDefaultVisitor<misc::id_
traits>.

60 The Tiger Compiler Project Assignment

non-object-visitor.* (src/ast/) [File]
Implementation of the GenNonObjectVisitor class template, which walks the
abstract syntax tree, doing nothing, but aborting on nodes related to object-oriented
constructs (classes, methods, etc.). This visitor is abstract and is solely used
as a basis for deriving other visitors (see Section 4.4.5 [TC-2 FAQ], page 96).
It is instantiated twice: GenNonObjectVisitor<misc::constify_traits> and
GenNonObjectVisitor<misc::id_traits>.

object-visitor.* (src/ast/) [File]
Implementation of the GenObjectVisitor class template, which walks object-related
nodes of an abstract syntax tree, doing nothing. This visitor is abstract and
is solely used as a basis for deriving other visitors. It is instantiated twice:
GenObjectVisitor<misc::constify_traits> and GenObjectVisitor<misc::id_
traits>.

pretty-printer.x* (src/ast/) [File]
The PrettyPrinter class, which pretty-prints an Ast back into Tiger concrete syntax.

typable.* (src/ast/) [File]
This class is not needed before TC-4 (see Section 4.8 [TC-4], page 109).

Auxiliary class from which typable AsT node classes should derive. It has a simple
interface made to manage a pointer to the type of the node:

type_set (const type:Type*) [void]

type: :Type* type_get () const [const)
Accessors to the type of this node.

accept (ConstVisitor& v) const [void]

accept (Visitor& v) [void]

These methods are abstract, as in ast: :Ast.

type-constructor.* (src/ast/) [File]
This class is not needed before TC-4 (see Section 4.8 [TC-4], page 109).

Auxiliary class from which should derive AsT nodes that construct a type (e.g.,
ast::ArrayTy). Its interface is similar to that of ast: : Typable with one big difference:
ast: :TypeConstructor is responsible for de-allocating that type.

created_type_set (const type::Type*) [void]

type: :Type* created_type_get () const [const)
Accessors to the created type of this node.

accept (ConstVisitor& v) const [void]

accept (Visitor& v) [void]

It is convenient to be able to visit these, but it is not needed.

escapable.x* (src/ast/) [File]
This class is needed only for TC-E (see Section 4.7 [TC-E], page 107).

Auxiliary class from which AsT node classes that denote the declaration of variables and
formal arguments should derive. Its role is to encode a single Boolean value: whether
the variable escapes or not. The natural interface includes escape_get and escape_set
methods.

Chapter 3: Source Code 61

3.2.9 The src/bind Directory

Namespace ‘bind’. Binding uses to definitions.

binder.* (src/bind/) [File]
The bind: :Binder visitor. Binds uses to definitions (works on syntax without object).

renamer. * (src/bind/) [File]
The bind: :Renamer visitor. Renames every identifier to a unique name (works on
syntax without object).

3.2.10 The src/escapes Directory

Namespace ‘escapes’. Compute the escaping variables.

escapes-visitor.* (src/escapes/) [File]
The escapes: :EscapesVisitor.

3.2.11 The src/type Directory
Namespace ‘type’. Type checking.

libtype.* (src/type/) [File]
The interface of the Type module. It exports a single procedure, types_check.

types.hh (src/type/) [
type.* (src/type/) [
array.* (src/type/) [
attribute.x (src/type/) [
builtin-types.* (src/type/) [
class.* (src/type/) [
field.* (src/type/) [
function.* (src/type/) [
method.* (src/type/) [
named. * (src/type/) [
record.* (src/type/) [File
The definitions of all the types. Built-in types (Int, String and Void) are defined in
src/type/builtin-types.*.

nil.* (src/type/) [File]
The Nil type is holding information about the real record type that it’s hiding. The
record_type represents the actual type that the nil was meant to be used with.

The record_type is set during the type-checker in the parent nodes of the node holding
a Nil type.

type-checker.* (src/type/) [File]
The type: : TypeChecker visitor. Computes the types of an asT and adds type labels
to the corresponding nodes (works on syntax without object).

pretty-printer.* (src/type/) [File]
The type::PrettyPrinter visitor which pretty-prints type::Types in a human-
readable way. Used to output nice type errors.

62 The Tiger Compiler Project Assignment

3.2.12 The src/object Directory

binder.* (src/object/) [File]
The object: :Binder visitor. Binds uses to definitions (works on syntax with objects).
Inherits from bind: :Binder.

type-checker.* (src/object/) [File]
The object::TypeChecker visitor. Computes the types of an AsT and adds type
labels to the corresponding nodes (works on syntax with objects). Inherits from
type: :TypeChecker.

renamer . * (src/object/) [File]
The object: :Renamer visitor. Renames every identifier to a unique name (works on
syntax with objects), and keeps a record of the names of the renamed classes. Inherits
from bind: :Renamer.

desugar-visitor.* (src/object/) [File]
The object: :DesugarVisitor visitor. Transforms an AsT with objects into an AsT
without objects.

3.2.13 The src/overload Directory

Namespace ‘overload’. Overloading function support.
3.2.14 The src/astclone Directory

cloner.* (src/astclone) [File]
The astclone: :Cloner visitor. Duplicate an AsT. This copy is purely structural: the
clone is similar to the original tree, but any existing binding or type information is not
preserved.

3.2.15 The src/desugar Directory

desugar-visitor.* (src/desugar) [File]
The desugar: :DesugarVisitor visitor. Remove constructs that can be considered
as syntactic sugar using other language constructs. For instance, turn for loops into
while loops, string comparisons into function calls. Inherits from astclone: :Cloner,
so the desugared AsT is a modified copy of the initial tree.

bounds-checking-visitor.* (src/desugar) [File]
The desugar: :BoundsCheckingVisitor visitor. Add dynamic array bounds checks
while duplicating an ast. Inherits from astclone: :Cloner, so the result is a modified
copy of the input AsT.

3.2.16 The src/inlining Directory

inliner.* (src/inlining) [File]
The desugar: : Inliner visitor. Perform inline expansion of functions.

pruner.* (src/inlining) [File]
The desugar: :Pruner visitor. Prune useless function declarations within an ast.

3.2.17 The src/temp Directory
Namespace temp, delivered for TC-5.

Chapter 3: Source Code 63

identifier.* (src/temp/) [File]
Provides the class template Identifier built upon misc::variant and
used to implement temp::Temp and temp::Label. Also contains the generic

IdentifierCompareVisitor, used to compare two identifiers.

Identifier handles maps of Identifiers. For instance, the Temp t5 might be allo-
cated the register $t2, in which case, when outputting t5, we should print $t2. Maps
stored in the xalloc’d slot Identifier: :map of streams implements such a correspon-
dence. In addition, the operator<< of the Identifier class template itself "knows"
when such a mapping is active, and uses it.

label.* (src/temp/) [File]
We need labels for jumps, for functions, strings etc. Implemented as an instantiation
of the temp: :Identifier scheme.

temp.* (src/temp/) [File]
So called temporaries are pseudo-registers: we may allocate as many temporaries as we
want. Eventually the register allocator will map those temporaries to either an actual
register, or it will allocate a slot in the activation block (aka frame) of the current
function. Implemented as an instantiation of the temp: :Identifier scheme.

temp-set.* (src/temp)) [File]
A set of temporaries, along with its operator<<.

3.2.18 The src/tree Directory

Namespace tree, delivered for TC-5. The implementation of the intermediate representa-
tion. The file tree/README should give enough explanations to understand how it works.

Reading the corresponding explanations in Appel’s book is mandatory.

It is worth noting that contrary to A. Appel, just as we did for ast, we use n-ary
structures. For instance, where Appel uses a binary seq, we have an n-ary seq which
allows us to put as many statements as we want.

To avoid gratuitous name clashes, what Appel denotes exp is denoted sxp (Statement
Expression), implemented in translate: : Sxp.

Please, pay extra attention to the fact that there are temp: : Temp used to create unique
temporaries (similar to misc::symbol), and tree::Temp which is the intermediate rep-
resentation instruction denoting a temporary (hence a tree: :Temp needs a temp: : Temp).
Similarly, on the one hand, there is temp: : Label which is used to create unique labels, and
on the other hand there are tree: :Label which is the 1R statement to define to a label,
and tree::Name used to refer to a label (typically, a tree::Jump needs a tree: :Name
which in turn needs a temp: :Label).

fragment.* (src/tree/) [File]
It implements tree: :Fragment, an abstract class, tree: :DataFrag to store the literal
strings, and tree: :ProcFrag to store the routines.

fragments.* (src/tree/) [File]
Lists of tree: :Fragment.

visitor.* (src/tree/) [File]
Implementation of tree::Visitor and tree::ConstVisitor to implement function
objects on tree::Fragments. In other words, these visitors implement polymorphic
operations on tree: :Fragment.

64 The Tiger Compiler Project Assignment

3.2.19 The src/frame Directory

Namespace ‘frame’, delivered for TC-5.

access.x* (src/frame/) [File]
An Access is a location of a variable: on the stack, or in a temporary.

frame.* (src/frame/) [File]
A Frame knows only what are the “variables” it contains.

3.2.20 The src/translate Directory

Namespace ‘translate’. Translation to intermediate code translation. It includes:

libtranslate.* (src/translate/) [File]
The interface.

access.x* (src/translate/) [File]
Static link aware versions of level: :Access.

level.x (src/translate/) [File]
translate: :Level are wrappers frame: :Frame that support the static links, so that
we can find an access to the variables of the “parent function”.

exp.hh (src/translate/) [File]
Implementation of translate::Ex (expressions), Nx (instructions), Cx (conditions),
and Ix (if) shells. They wrap tree::Tree to delay their translation until the actual
use is known.

translation.hh (src/translate/) [File]
functions used by the translate::Translator to translate the AsT into HIR. For in-
stance, it contains ‘Exp* simpleVar (const Access& access, const Level& level)’,
‘Exp* callExp(const temp::Label& label, std::1ist<Exp*> args)’ etc. which are
routines that produce some ‘Tree: :Exp’. They handle all the unCx etc. magic.

translator.hh (src/translate/) [File]
Implements the class ‘Translator’ which performs the 1R generation thanks to
translation.hh. It must not be polluted with translation details: it is only coor-
dinating the AsT traversal with the invocation of translation routines. For instance,
here is the translation of an ‘ast::SimpleVar’:

virtual void operator() (const SimpleVar& e)

{
exp_ = simpleVar(*var_access_[e.def_get()], *level_);

}

3.2.21 The src/canon Directory

Namespace canon.

3.2.22 The src/assem Directory
Namespace assem, delivered for TC-7.

This directory contains the implementation of the Assem language: yet another inter-
mediate representation that aims at encoding an assembly language, plus a few needed
features so that register allocation can be performed afterward. Given in full.

Chapter 3: Source Code 65

instr.* (src/assem)) [File]

move.* (src/assem/) [File]

oper.x* (src/assem/) [File]

label.* (src/assem)) [File]

comment . * (src/assem/) [File]
Implementation of the basic types of assembly instructions.

fragment.* (src/assem/) [File]
Implementation of assem: :Fragment, assem: :ProcFrag, and assem: :DataFrag. They
are very similar to tree::Fragment: aggregate some information that must remain
together, such as a frame: :Frame and the instructions (a list of assem: : Instr).

visitor.hh (src/assem/) [File]
The root of assembler visitors.

layout.hh (src/assem/) [File]
A pretty printing visitor for assem: :Fragment.

libassem.* (src/assem/) [File]
The interface of the module, and its implementation.

3.2.23 The src/target Directory
Namespace target, delivered for TC-7. Some data on the back end.

cpu.* (src/target/) [File]
Description of a cpu: everything about its registers, and its word size.

target.* (src/target/) [File]
Description of a target (language): its cpu, its assembly (target: :Assembly), and it
translator (target::Codegen).

assembly.* (src/target/) [File]
The abstract class target: :Assembly, the interface for elementary assembly instruc-
tions generation.

codegen.* (src/target/) [File]
The abstract class target: :Codegen, the interface for all our back ends.

mips (src/target/) [Directory]

ia32 (src/target/) [Directory]

arm (src/target/) [Directory]

The instruction selection per se split into a generic part, and a target specific (MmIps,
1o-32 and ARM) part. See Section 3.2.24 [src/target/mips|, page 66, Section 3.2.25
[src/target /ia32], page 67, and Section 3.2.26 [src/target/arm], page 68.

libtarget.* (src/target/) [File]
Converting tree: :Fragments into assem: :Fragments.

tiger-runtime.c (src/target/) [File]
This is the Tiger runtime, written in C, based on Andrew Appel’s runtime.c*. The
actual runtime.s file for Mips was written by hand, but the 14-32 was a compiled
version of this file. It should be noted that:

Strings Strings are implemented as 4 bytes to encode the length, and then a 0-
terminated a la C string. The length part is due to conformance to the

4 http://www.cs.princeton.edu/ appel/modern/java/chapl2/runtime.c.

http://www.cs.princeton.edu/~appel/modern/java/chap12/runtime.c

66 The Tiger Compiler Project Assignment

Tiger Reference Manual, which specifies that 0 is a regular character that
can be part of the strings, but it is nevertheless terminated by 0 to be
compliant with spimM/Nolimips’ print syscall. This might change in the
future.

Special Strings
There are some special strings: 0 and 1 character long strings are all imple-
mented via a singleton. That is to say there is only one allocated string ‘""’,
a single ‘"1"’ etc. These singletons are allocated by main. It is essential to
preserve this invariant/convention in the whole runtime.

strcmp vs. stringEqual
We don’t know how Appel wants to support ‘"bar" < "foo"’ since he
doesn’t provide strcmp. We do. His implementation of equality is more ef-
ficient than ours though, since he can decide just be looking at the lengths.
That could be improved in the future...

main The runtime has some initializations to make, such as strings singletons,
and then calls the compiled program. This is why the runtime provides
main, and calls tc_main, which is the “main” that your compiler should
provide.

3.2.24 The src/target/mips Directory
Namespace target: :mips, delivered for TC-7. Code generation for mips R2000.

cpu.* (src/target/mips/) [File]
The description of the mips (actually, spim/Nolimips) cpu.

spim-assembly.* (src/target/mips/) [File]
Our assembly language (syntax, opcodes and layout); it abstracts the generation of MIps
R2000 instructions. target: :mips::SpimAssembly derives from target: :Assembly.

spim-layout.* (src/target/mips/) [File]
How wmrps (and spiM/Nolimips) fragments are to be displayed. In other words, that’s
where the (global) syntax of the target assembly file is selected.

codegen.* (src/target/mips/) [File]
tree.brg (src/target/mips/) [File]
exp.brg (src/target/mips/) [File]
binop.brg (src/target/mips/) [File]
call.brg (src/target/mips/) [File]
temp.brg (src/target/mips/) [File]
mem.brg (src/target/mips/) [File]
stm.brg (src/target/mips/) [File]
move.brg (src/target/mips/) [File]
move_load.brg (src/target/mips/) [File]
move_store.brg (src/target/mips/) [File]
cjump.brg (src/target/mips/) [File]
prologue.hh (src/target/mips/) [File]
epilogue.cc (src/target/mips/) [File]
A translator from LIR to ASSEM using the mips R2000 instruction set defined by
target::mips::SpimAssembly. It is implemented as a dynamic programming algo-
rithm generated by MonoBURG from a set of brg files. target::mips::Codegen
derives from target: :Codegen.

Chapter 3: Source Code 67

target.* (src/target/mips/) [File]
The main back end, based on a Mips cPU and a MIPS code generator.

runtime.s (src/target/mips/) [File]

runtime.cc (src/target/mips/) [File]

The Tiger runtime in mips assembly language: print etc. The C++ file runtime.cc is
built from runtime.s: do not edit the former. See Section 3.2.23 [src/target], page 65,
tiger-runtime.c.

3.2.25 The src/target/ia32 Directory

Namespace target::ia32, delivered for TC-7. Code generation for 1a-32. This is not
part of the student project, but it is left to satisfy their curiosity. In addition its presence
is a sane invitation to respect the constraints of a multi-back-end compiler.

cpu.* (src/target/ia32) [File]
Description of the 1386 cpu.

gas-assembly.* (src/target/ia32)) [File]
The 1a-32 assembly language (syntax, opcodes and layout); it abstracts
the generation of 1a-32 instructions using the aNU Assembler (Gas) syntax.
target::ia32: :GasAssembly derives from target: :Assembly.

gas-layout.* (src/target/ia32/) [File]
How 1a-32 fragments are to be displayed. In other words, that’s where the (global)
syntax of the target assembly file is selected.

codegen.* (src/target/ia32/) [
tree.brg (src/target/ia32/) [
exp.brg (src/target/ia32)) [
binop.brg (src/target/ia32/) [
call.brg (src/target/ia32/) [
temp.brg (src/target/ia32/) [
mem.brg (src/target/ia32/) [
stm.brg (src/target/ia32)) [
move.brg (src/target/ia32)) [
move_load.brg (src/target/ia32)) [
move_store.brg (src/target/ia32/) [
cjump.brg (src/target/ia32/) [
prologue.hh (src/target/ia32/) [
epilogue.cc (src/target/ia32)) [
A translator from LIR to ASSEM using the 1aA-32 instruction set defined by
target::ia32::GasAssembly. It is implemented as a dynamic programming
algorithm generated by MonoBURG from a set of brg files. target::1a32::Codegen
derives from target: :Codegen.

target.* (src/target/ia32/) [File]
The 1A-32 back-end, based on an 14-32 cpU and an 1a-32 code generator.

runtime-gnu-linux.s (src/target/ia32/) [File]

runtime-freebsd.s (src/target/ia32/) [File]

The GNU/Linux and FreeBSD Tiger runtimes in 1a-32 assembly language: print
etc. The C++ files runtime-gnu-linux.cc and runtime-freebsd.cc are built
from runtime-gnu-linux.s and runtime-freebsd.s: do not edit the former. See
Section 3.2.23 [src/target], page 65, tiger-runtime.c.

68 The Tiger Compiler Project Assignment

3.2.26 The src/target/arm Directory

Namespace target: :arm, delivered for TC-7. Code generation for ArM. This is not part
of the student project, but it is left to satisfy their curiosity. In addition its presence is a
sane invitation to respect the constraints of a multi-back-end compiler.

cpu.* (src/target/arm) [File]
Description of the ARMV7 cpu.

arm-assembly.* (src/target/arm/) [File]
The ArM assembly language (syntax, opcodes and layout); it abstracts the generation
of ARM instructions. target::arm::ArmAssembly derives from target: :Assembly.

arm-layout.* (src/target/arm/) [File]
How ArM fragments are to be displayed. In other words, that’s where the (global)
syntax of the target assembly file is selected.

arm-codegen. * (src/target/arm/) [File]
tree.brg (src/target/arm/) [File]
exp.brg (src/target/arm/) [File]
binop.brg (src/target/arm/) [File]
call.brg (src/target/arm/) [File]
temp.brg (src/target/arm/) [File]
mem.brg (src/target/arm/) [File]
stm.brg (src/target/arm/) [File]
move.brg (src/target/arm/) [File]
move_load.brg (src/target/arm/) [File]
move_store.brg (src/target/arm/) [File]
cjump.brg (src/target/arm/) [File]
prologue.hh (src/target/arm/) [File]
epilogue.cc (src/target/arm/) [

A translator from LIR to ASSEM using the ARM instruction set defined by
target::arm::ArmAssembly. It is implemented as a dynamic programming algorithm
generated by MonoBURG from a set of brg files. target::arm::Codegen derives
from target: :Codegen.

target.* (src/target/arm/) [File]
The armM back-end, based on an ARM cPU and an ARM code generator.

runtime.s (src/target/arm/) [File]
The Tiger runtime in ARM assembly language: print etc.

3.2.27 The src/liveness Directory
Namespace liveness, delivered for TC-8.

flowgraph.* (src/liveness/) [File]
FlowGraph implementation.

test-flowgraph.cc (src/liveness/) [File]
FlowGraph test.

liveness.* (src/liveness/) [File]
Computing the live-in and live-out information from the FlowGraph.

interference-graph.* (src/liveness/) [File]
Computing the InterferenceGraph from the live-in/live-out information.

Chapter 3: Source Code 69

3.2.28 The src/llvmtranslate Directory

Namespace 1lvmtranslate, delivered for TC-5. Translate the AsT to LLvM intermediate
code using the LLvM libraries.

escapes-collector.* (src/llvmtranslate/) [File]
The FrameBuilder and the EscapesCollector.
LLVM IR doesn’t support static link and nested functions. In order to translate those
functions to LLvM IR, we use Lambda Lifting, which consists in passing a pointer to the
escaped variables to the nested function using that variable.
In order to do that, we need a visitor to collect these kind of variables and associate
them to each function.

This visitor is the EscapesCollector.

In order for the EscapesCollector to work properly, the variables located in the
function’s frame have to be excluded. The FrameBuilder is building a frame for the
EscapesCollector to use.

libllvmtranslate.* (src/llvitranslate/) [File]
The interface.

1llvm-type-visitor.* (src/llvmtranslate/) [File]
The LvMm IR is a typed language. In order to ensure type safety, the Tiger types
(type: :Type) have to be translated to LLvM types (11vm: :Type). In order to do that,
this visitor defined in Section 3.2.28 [src/llvimtranslate|, page 69, is used to traverse the
type hierarcy and translate it to LLVM types.

translator.hh (src/llvmtranslate/) [File]
Implements the class ‘Translator’ which performs the LLvM IR generation using the
Lvm APL

For instance, here is the translation of a ‘ast::SimpleVar’:

virtual void operator() (const SimpleVar& e)

{
value_ = builder_.CreateLoad(access_var(e), e.name_get().get());
}
tiger-runtime.c (src/llvmtranslate/) [File]

This is the specific runtime for Section 4.21 [TC-L], page 212. It is based on the original
runtime, with some adaptations for LLvM.

It is compiled to rLivM 1R in $(build_dir)/src/llvmtranslate/runtime.ll,
then a function llvmtranslate::runtime_string() is generated in $(build_
dir)/src/llvmtranslate/runtime.cc.

This function is used by the task ——11lvm-runtime-display to print the runtime along
the LLvMm 1R.
Strings Strings are implemented as char* O-terminated buffers, like C strings.

Functions Most of the built-ins are just calls to the C standard library functions.

Characters
Since the type char doesn’t exist in TC, a char is nothing more than a
string of length 1.
In order to avoid allocations every time a character is asked for, an array
containing all the characters followed by a \0 is initialized at the beginning
of the program.

70 The Tiger Compiler Project Assignment

main The runtime initializes the one-character strings, then calls tc_main, which
is the main that your compiler should have provided.

3.2.29 The src/regalloc Directory

Namespace regalloc, register allocation, delivered for TC-9.

color.* (src/regalloc/) [File]
Coloring an interference graph.

regallocator.* (src/regalloc/) [File]
Repeating the coloration until it succeeds (no spills).

libregalloc.* (src/regalloc/) [File]
Removing useless moves once the register allocation performed, and allocating the reg-
ister for fragments.

test-regalloc.cc (src/regalloc/) [File]
Exercising this.

3.3 Given Test Cases

We provide a few test cases: you must write your own tests. Writing tests is part of the
project. Do not just copy test cases from other groups, as you will not understand why
they were written.

The initial test suite is available for download at tests.tgz®. It contains the following
directories:

good These programs are correct.

bind These programs have bind mismatches.
syntax These programs have syntactial errors.
type These programs contain type mismatches.

5 https://www.lrde.epita.fr/ tiger//tc/tests.tgz.

https://www.lrde.epita.fr/~tiger//tc/tests.tgz

71

4 Compiler Stages

The compiler will be written in several steps, described below.

4.1 Stage Presentation

The following sections adhere to a standard layout in order to present each stage n:

Introduction
The first few lines specify the last time the section was updated, the class
for which it is written, and the submission dates. It also briefly describes the
stage.

Tn Goals, What this stage teaches
This section details the goals of the stage as a teaching exercise. Be sure
that examiners will make sure you understood these points. They also have
instructions to ask questions about previous stages.

Tn Samples, See Tn work
Actual examples generated from the reference compilers are exhibited to
present and “specify” the stage.

Tn Given Code, Explanation on the provided code
This subsection points to the on line material we provide, introduces its com-
ponents, quickly presents their designs and so forth. Check out the developer
documentation of the Tiger Compiler! for more information, as the code is
(hopefully) properly documented.

Tn Code to Write, Explanation on what you have to write
But of course, this code is not complete; this subsection provides hints on
what is expected, and where.

Tn Options, Want some more?
During some stages, those who find the main task too easy can implement
more features. These sections suggest possible additional features.

Tn rAQ, Questions not to ask
Each stage sees a blossom of new questions, some of which being extremely
pertinent. We selected the most important ones, those that you should be
aware of, contrary to many more questions that you ought to find and ask
yourselves. These sections answer this few questions. And since they are
already answered, you should not ask them...

Tn Improvements, Other Designs

The Tiger Compiler is an instructional project the audience of which is learn-
ing C++. Therefore, although by the end of the development, in the latter
stages, we can expect able C++ programmers, most of the time we have to
refrain from using advanced designs, or intricate C++ techniques. These sec-
tions provide hints on what could have been done to improve the stage. You
can think of these sections as material you ought to read once the project is
over and you are a grown-up C++ programmer.

! https://www.lrde.epita.fr/ “tiger/tc-doc/.

https://www.lrde.epita.fr/~tiger/tc-doc/

72 The Tiger Compiler Project Assignment

4.2 PTHL (TC-0), Naive Scanner and Parser

2020-PTHL submission is Wednesday, February 1st 2018 at 19:42.
This section has been updated for EP1TA-2020 on 2015-11-16.

TC-0 is a weak form of TC-1: the scanner and the parser are written, but the framework
is simplified (see Section 4.3.4 [TC-1 Code to Write|, page 86). The grammar is also
simpler: object-related productions are not to be supported at this stage (see Section 4.2.5
[PTHL Improvements|, page 79). No command line option is supported.

4.2.1 PTHL Goals

Things to learn during this stage that you should remember:
— Writing/debugging a scanner with Flex.
— Using start conditions to handle non-regular issues within the scanner.

— Using ‘yy: :parser: :make_SYMBOL’ to build whole symbols (containing a token type,
a location, and possibly a semantic value) and pass them to the parser.

— Writing/debugging a parser with Bison.

— Resolving simple conflicts due to precedences and associativities thanks to directives
(e.g., ‘hleft’ etc.).

— Resolving hard conflicts with loop unrolling. The case of lvalue vs. array instantiation
is of first importance.

4.2.2 PTHL Samples

First, please note that all the samples, including in this section, are generated with a TC-
1+ compliant compiler: its behavior differs from that of a TC-0 compiler. In particular,
for the time being, forget about the options (-X and --parse).

Running TC-0 basically consists in looking at exit values:
print("Hello, World!\n")

File 4.1: simple.tig
$ tc simple.tig

Example 4.1: tc simple.tig

The following example demonstrates the scanner and parser tracing. The glyphs
« 7 and “=" are typographic conventions to specify respectively the standard error
stream and the exit status. They are not part of the output per se.

$ SCAN=1 PARSE=1 tc -X --parse simple.tig

error] Parsing file: "simple.tig"

error] Starting parse

Entering state O

error] Reading a token: --(end of buffer or a NUL)

error] ——accepting rule at line 196("print")

error] Next token is token "identifier" (simple.tig:1.1-5: print)
error] Shifting token "identifier" (simple.tig:1.1-5: print)
Entering state 2

error] Reading a token: --accepting rule at line 138(" (")
error] Next token is token " (" (simple.tig:1.6:)

error] Reducing stack O by rule 100 (line 626):

error $1 = token "identifier" (simple.tig:1.1-5: print)
error] => $$ = nterm funid (simple.tig:1.1-5: print)

[¢) [¢)

= =

3 3

o o
== = == = =

Chapter 4: Compiler Stages 73

error] Entering state 36

error] Next token is token "(" (simple.tig:1.6:)

error] Shifting token "(" (simple.tig:1.6:)

error] Entering state 85

error] Reading a token: --accepting rule at line 197(""")

error] ——accepting rule at line 266("Hello, World!")

error] ——accepting rule at line 253("\n")

error] ——accepting rule at line 228(""")

error] Next token is token "string" (simple.tig:1.7-23: Hello, World!
error])

error] Shifting token "string" (simple.tig:1.7-23: Hello, World!
error])

error] Entering state 1

error] Reducing stack O by rule 4 (line 296):

error $1 = token "string" (simple.tig:1.7-23: Hello, World!
error])

error] => $$ = nterm exp (simple.tig:1.7-23: "Hello, World!\n")
error] Entering state 131

Reading a token: --accepting rule at line 139(")")

error] Next token is token ")" (simple.tig:1.24:)

error] Reducing stack O by rule 45 (line 417):

erro $1 = nterm exp (simple.tig:1.7-23: "Hello, World!\n")
error] —> $$ = nterm args.l (simple.tig:1.7-23: "Hello, World!\n")
Entering state 133

error] Next token is token ")" (simple.tig:1.24:)

error] Reducing stack O by rule 44 (line 412):

erro $1 = nterm args.l (simple.tig:1.7-23: "Hello, World!\n")
error] —> $$ = nterm args (simple.tig:1.7-23: "Hello, World!\n")
Entering state 132

error] Next token is token ")" (simple.tig:1.24:)

error] Shifting token ")" (simple.tig:1.24:)

error] Entering state 174

error] Reducing stack O by rule 6 (line 304):

error $1 = nterm funid (simple.tig:1.1-5: print)

error $2 = token "(" (simple.tig:1.6:)

erro $3 = nterm args (simple.tig:1.7-23: "Hello, World!\n")
erro $4 = token ")" (simple.tig:1.24:)

error] —> $$ = nterm exp (simple.tig:1.1-24: print("Hello, World!\n"))
error] Entering state 25

error] Reading a token: --(end of buffer or a NUL)

error] ——accepting rule at line 134("

error] ")

error] ——(end of buffer or a NUL)

error] ——EOF (start condition 0)

error] Now at end of input.

error] Reducing stack O by rule 1 (line 287):

erro $1 = nterm exp (simple.tig:1.1-24: print("Hello, World!\n"))
error] —> $$ = nterm program (simple.tig:1.1-24:)

error] Entering state 24

error] Now at end of input.

error] Shifting token "end of file" (simple.tig:2.1:)

error] Entering state 63

[¢) [¢) [¢)
= = =
3 3 3
o o o
= == == == == = == = = = = = == ==

The Tiger Compiler Project Assignment

error] Cleanup: popping token "end of file" (simple.tig:2.1:)
error] Cleanup: popping nterm program (simple.tig:1.1-24:)
error] Parsing string: function _main() = (_exp(0);)
error|] Starting parse

error] Entering state O

error] Reading a token: --(end of buffer or a NUL)

error] ——accepting rule at line 164("function")

error] Next token is token "function" (:1.1-8:)

error] Shifting token "function" (:1.1-8:)

error] Entering state 8

error] Reading a token: --accepting rule at line 133(" ")
error] ——accepting rule at line 195("_main")

error| Next token is token "identifier" (:1.10-14: _main)
error] Shifting token "identifier" (:1.10-14: _main)

error] Entering state 43

error] Reading a token: --accepting rule at line 138(" (")
error] Next token is token " (" (:1.15:)

error] Shifting token "(" (:1.15:)

Entering state 93

error] Reading a token: --accepting rule at line 139(")")
error] Next token is token ")" (:1.16:)

error] Reducing stack O by rule 95 (line 605):

error] => $$ = nterm funargs (:1.16:)

Entering state 144

error] Next token is token ")" (:1.16:)

error] Shifting token ")" (:1.16:)

error] Entering state 186

error] Reading a token: --accepting rule at line 133(" ")
--accepting rule at line 152("=")
error] Next token is token "=" (:1.18:)

error] Reducing stack O by rule 86 (line 567):

error] —> $$ = nterm typeid.opt (:1.17:)

error] Entering state 215

error] Next token is token "=" (:1.18:)

error] Shifting token "=" (:1.18:)

error] Entering state 231

error] Reading a token: --accepting rule at line 133(" ")
error] ——accepting rule at line 138("(")

error] Next token is token " (" (:1.20:)

error] Shifting token "(" (:1.20:)

error] Entering state 12

error] Reading a token: --accepting rule at line 191("_exp")
error] Next token is token "_exp" (:1.21-24:)

error] Shifting token "_exp" (:1.21-24:)

error] Entering state 21

error] Reading a token: --accepting rule at line 138(" (")
error] Next token is token " (" (:1.25:)

error| Shifting token "(" (:1.25:)

error] Entering state 60

error] Reading a token: --accepting rule at line 113("0")
error] Next token is token "integer" (:1.26: 0)

error] Shifting token "integer" (:1.26: 0)

[¢) [¢) [¢)
= = =
3 3 3
o o o
= == == == == = == = = = = = == ==

Chapter 4: Compiler Stages 75

error
€rro
€rro
error
error
error
€rro
€rro
error
error
error
€rro
error
error
error
error
€rro
error

error
error
€rro

error

error
€rro
€rro
error

error
€rro
€rro
error
error
error
€rro
€rro
error
error
error
€rro
€rro
error
error
error
€rro
€rro
error
error
error
€rro
error

[¢) [¢) [¢)
= = =
3 3 3
o o o
= == == == == = == = = = = = == ==

Entering state 106
Reading a token: --accepting rule at line 139(")")
Next token is token ")" (:1.27:)
Shifting token ")" (:1.27:)
Entering state 164
Reducing stack O by rule 37 (line 397):
$1 = token "_exp" (:1.21-24:)
$2 = token "(" (:1.25:)
$3 = token "integer" (:1.26: 0)
$4 = token ")" (:1.27:)
-> $$ = nterm exp (:1.21-27: print("Hello, World!\n"))
Entering state 48
Reading a token: --accepting rule at line 148(";")
Next token is token ";" (:1.28:)
Reducing stack O by rule 48 (line 424):
$1 = nterm exp (:1.21-27: print("Hello, World!\n"))
-> $$ = nterm exps.1 (:1.21-27: print("Hello, World!\n"))
Entering state 49
Next token is token ";" (:1.28:)
Shifting token ";" (:1.28:)
Entering state 99
Reading a token: --accepting rule at line 133(" ")
--accepting rule at line 138("(")
Next token is token "(" (:1.30:)
Shifting token "(" (:1.30:)
Entering state 12
Reading a token: --accepting rule at line 139(")")
Next token is token ")" (:1.31:)
Reducing stack O by rule 52 (line 436):
-> $$ = nterm exps.0.2 (:1.31:)
Entering state 51
Next token is token ")" (:1.31:)
Shifting token ")" (:1.31:)
Entering state 100
Reducing stack O by rule 11 (line 321):

$1 = token "(" (:1.30:)
$2 = nterm exps.0.2 (:1.31:)
$3 = token ")" (:1.31:)

-> $$ = nterm exp (:1.30-31: ())

Entering state 153
Reading a token: --(end of buffer or a NUL)
--accepting rule at line 139(")")
Next token is token ")" (:1.32:)
Reducing stack O by rule 51 (line 431):
$1 = nterm exps.l (:1.21-27: print("Hello, World!\n"))

$2 = token ";" (:1.28:)
$3 = nterm exp (:1.30-31: ())
-> $$ = nterm exps.2 (:1.21-31: print("Hello, World!\n"), ()

Entering state 50
Reducing stack O by rule 53 (line 437):

$1 = nterm exps.2 (:1.21-31: print("Hello, World!\n"), (O)
-> $$ = nterm exps.0.2 (:1.21-31: print("Hello, World!\n"), ()

The Tiger Compiler Project Assignment

error] Entering state 51

error] Next token is token ")" (:1.32:)

error] Shifting token ")" (:1.32:)

error] Entering state 100

error] Reducing stack O by rule 11 (line 321):
error $1 = token "(" (:1.20:)

erro $2 = nterm exps.0.2 (:1.21-31: print("Hello, World!\n"), ())
erro $3 = token ")" (:1.32:)

error] => $$ = nterm exp (:1.20-32: (

error print("Hello, World!\n");

error O

error]))

error] Entering state 239

error| Reading a token: --(end of buffer or a NUL)
error] —-EOF (start condition 0)

error] Now at end of input.

error] Reducing stack O by rule 93 (line 598):
error $1 = token "function" (:1.1-8:)

$2 = token "identifier" (:1.10-14: _main)
error $3 = token "(" (:1.15:)

error $4 = nterm funargs (:1.16:)

erro $5 = token ")" (:1.16:)

error $6 = nterm typeid.opt (:1.17:)

$7 = token "=" (:1.18:)

error $8 = nterm exp (:1.20-32: (

erro print ("Hello, World!\n");

erro O

error]))

-> $$ = nterm fundec (:1.1-32:

error] function _main() =

erro (

erro print("Hello, World!\n");

error O

error))

error] Entering state 35

error] Now at end of input.

error] Reducing stack O by rule 91 (line 593):
error $1 = nterm fundec (:1.1-32:

error] function _main() =

error (

erro print ("Hello, World!\n");

erro O

error])

error] —> $$ = nterm fundecs (:1.1-32:

error] function _main() =

erro (

erro print("Hello, World!\n");

error O

error))

error] Entering state 34

error] Now at end of input.

error] Reducing stack O by rule 54 (line 447):

[¢) [¢) [¢)
= = =
3 3 3
o o o
= == == == == = == = = = = = == ==

Chapter 4: Compiler Stages

error] => $$ = nterm decs (:1.33:)

error] Entering state 83

error] Reducing stack O by rule 57 (line 451):
error $1 = nterm fundecs (:1.1-32:

error] function _main() =

error (

erro print ("Hello, World!\n");

erro O

error))

error $2 = nterm decs (:1.33:)

error] => $$ = nterm decs (:1.1-32:

error] function _main() =

error (

error print ("Hello, World!\n");

error O

error))

error] Entering state 27

error] Reducing stack O by rule 2 (line 289):
$1 = nterm decs (:1.1-32:

error] function _main() =

error (

erro print ("Hello, World!\n");

error O

))

error] => $$ = nterm program (:1.1-32:)

error] Entering state 24

error] Now at end of input.

error] Shifting token "end of file" (:1.33:)
Entering state 63

error] Cleanup: popping token "end of file" (:1.33:)
error] Cleanup: popping nterm program (:1.1-32:)

[¢) [¢) [¢)
= = =
3 3 3
o o o
= = == = = = = = == ==

Example 4.2: SCAN=1 PARSE=1 tc -X --parse simple.tig

7

A lexical error must be properly diagnosed and reported. The following (generated)
examples display the location: this is not required for TC-0; nevertheless, an error message

on the standard error output is required.

"\z does not exist."

File 4.2: back-zee.tig

$ tc -X --parse back-zee.tig
back-zee.tig:1.1-3: unrecognized escape: \z
=2

Example 4.3: tc -X —-parse back-zee.tig

Similarly for syntactical errors.
a++

File 4.3: postinc.tig

$ tc -X --parse postinc.tig
postinc.tig:1.3: syntax error, unexpected +

78

=3

The Tiger Compiler Project Assignment

Example 4.4: tc -X —--parse postinc.tig

4.2.3 PTHL Code to Write

We don’t need several directories, you can program in the top level of the package.

You must write:

src/scantiger.ll
The scanner.

1val supports strings, integers and even symbols. Nevertheless, symbols (i.e.,
identifiers) are returned as plain C++ strings for the time being: the class
misc: :symbol is introduced in TC-1.

If the environment variable SCAN is defined (to whatever value) Flex scanner
debugging traces are enabled, i.e., set the variable yy_flex_debug to 1.

src/parsetiger.yy
The parser, and maybe main if you wish. Bison advanced features will be used
in TC-1.

Makefile

Use C++ (e.g., C++ 1/0O streams, strings, etc.)

Use C++ features of Bison.

Use locations.

Use ‘hexpect 0’ to have Bison report conflicts are genuine errors.

Use the ‘%require "3.0"’ directive to prevent any problem due to old
versions of Bison.

Use the ‘/idefine api.value.type variant’ directive to ask Bison for
C++ object support in the semantic values. Without this, Bison uses
union, which can be used to store objects (just Plain Old Data), hence
pointers and dynamic allocation must be used.

Use the ‘Ydefine api.token.constructor’ directive to request that
symbols be handled as a whole (token type, location, and possibly se-
mantic value) in the scanner through ‘parse::parser::make_SYMBOL’
routines.

Use the environment variable PARSE to enable parser traces, i.e., to set
yydebug to 1, run:
PARSE=1 tc foo.tig
Use Y%printer to improve the tracing of semantic values. For instance,
%hdefine api.value.type variant
%token <int> INT "integer"
%printer { yyo << $$; } <int>

This file is mandatory. Running make must build an executable tc in the
root directory. The eNu Build System is not mandatory: TC-1 introduces
Autoconf, Automake etc. You may use it, in which case we will run configure
before make.

4.2.4 PTHL raq

Translating escapes in the scanner (or not)
Escapes in string can be translated at the scanning stage, or kept as is. That
is, the string "\n" can produce a token STRING with the semantic value \n

Chapter 4: Compiler Stages 79

(translation) or \\n (no translation). You are free to choose your favorite
implementation, but keep in mind that if you translate, you’ll have to “un-
translate” later (i.e., convert \n back to \\n).

We encourage you to do this translation, but the other solution is also correct,
as long as the next steps of your compiler follow the same conventions as your
input.

You must check for bad escapes whatever solution you choose.

Must lexical and syntactic extensions be implemented?
No. Language extensions (see Section “Language Extensions” in Tiger Com-
piler Reference Manual) such as metavariables keywords (‘_decs’, ‘_exp’,

‘_lvalue’, ‘_namety’) and casts (‘_cast’) are not required for PTHL.

Handling metavariables constructs becomes mandatory at TC-2 (see
Section 4.4.4 [TC-2 Code to Write|, page 95) where they are used within
TwEASTS (Text With Embedded AST, see ast.pdf?), while casts are only
needed for the optional bounds checking assignment (see Section 4.11 [TC-B],
page 119).

What values can be represented by an int?
The set of valid integer values is the set of signed 32-bit integers in 2’s com-
plement, that is the integer interval [—23! 23! —1].

What values can be represented by an integer literal?
Although an integer value can be any number in [—23' 231 — 1], it is how-
ever not possible to represent the literal —23'(= —2147483648) for technical
reasons. It is however possible to create an integer value representing this
number.

To put it in nutshell, the following declaration is not valid:

var i := -2147483648
whereas this one is:
var i := -2147483647 - 1

4.2.5 PTHL Improvements
Possible improvements include:

Using %destructor
You may use %destructor to reclaim the memory lost during the error recov-
ery. It is mandated in TC-2, see Section 4.4.5 [TC-2 FAQ)], page 96.

Parser driver
You may implement a parser driver to handle the parsing context (flags, open
files, etc.). Note that a driver class will be (partially) provided at TC-1.

Handling object-related constructs from PTHL
Your scanner and parser are not required to support oo constructs at PTHL,
but you can implement them in your LALR(1) parser if you want. (Fully sup-
porting them at TC-2 is highly recommended though, during the conversion
of your LALR(1) parser to a GLR one.)

Object-related productions from the Tiger grammar?® are:

Class definition (canonical form).
ty ::= ‘class’ [‘extends’ type-id] ‘{ ’ classfields ‘} ’

2 https://www.lrde.epita.fr/ tiger//lecture-notes/slides/ccmp/ast.pdf.
3 https://www.lrde.epita.fr/ “tiger/tiger.split/Syntactic-Specifications.html.

https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/ast.pdf
https://www.lrde.epita.fr/~tiger/tiger.split/Syntactic-Specifications.html

80 The Tiger Compiler Project Assignment

Class definition (alternative form).

dec ::= ‘class’ id [‘extends’ type-id 1 ‘{ ’ classfields ‘} °’
classfields ::= { classfield }
Class fields.
classfield ::=

Attribute declaration.

vardec
Method declaration.
| ‘method’ id ‘(’ tyfields ‘)’ [“:’ type-id] ‘=’ exp

Object creation.
exp ::= ‘new’ type-id

Method call.
exp ::= lvalue ‘.’ id ‘C [exp { ¢,” exp }])’

4.3 TC-1, Scanner and Parser

2020-TC-1 submission for Ingl students is Sunday, February 4th 2018 at 11:42.
This section has been updated for eprTa-2020 on 2016-01-27.

Scanner and parser are properly running, but the abstract syntax tree is not built yet.
Differences with PTHL (TC-0) include:

aNU Build System
Autoconf, Automake are used.

Options, Tasks
The compiler supports basic options via in the Task module. See Section
“Invoking tc¢” in Tiger Compiler Reference Manual, for the list of options to
support.

Locations The locations are properly computed and reported in the error messages.

Relevant lecture notes include dev-tools.pdf? and scanner.pdf®.

4.3.1 TC-1 Goals
Things to learn during this stage that you should remember:

Basic use of the anu Build System
Autoconf, Automake. The initial set up of the project will best be done via
‘autoreconf -fvim’, but once the project initiated (i.e., configure and the
Makefile.ins exist) you should depend on make only. See Section 5.4 [The
GNU Build System], page 247.

Integration into an existing framework
Putting your own code into the provided code base.

Basic C++ classes
The classes Location and Position provide a good start to study foreign
C++ classes. Your understanding them will be controlled, including the
‘operator’s.

4 https://www.lrde.epita.fr/ tiger//lecture-notes/slides/ccmp/dev-tools.pdf.
5 https://www.lrde.epita.fr/ “tiger//lecture-notes/slides/ccmp/scanner.pdf.

https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/dev-tools.pdf
https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/scanner.pdf

Chapter 4: Compiler Stages 81

Location Tracking
Issues within the scanner and the parser.

Implementation of a few simple C++ classes
The code for misc: :symbol and misc: :unique is incomplete.

A first standard container: std: :set
The implementation of the misc: :unique class relies on std: :set.

The Flyweight design pattern
The misc: :unique class is an implementation of the Flyweight design pattern.

Version Control System
Using the Git version control system is mandatory. Your understanding of it
will be checked.

4.3.2 TC-1 Samples

The only information the compiler provides is about lexical and syntax errors. If there
are no errors, the compiler shuts up, and exits successfully:

/* An array type and an array variable. */
let

type arrtype = array of int

var arrl : arrtype := arrtype [10] of O
in

arrl[2]
end

File 4.4: testOl.tig
$ tc -X --parse testO1.tig

Example 4.5: tc -X —-parse test01.tig

If there are lexical errors, the exit status is 2, and an error message is output on the
standard error output. Its format is standard and mandatory: file, (precise) location, and
then the message (see Section “Errors” in Tiger Compiler Reference Manual).

1
/* This comments starts at /*x 2.2 %/

File 4.5: unterminated-comment.tig

$ tc -X --parse unterminated-comment.tig
unterminated-comment.tig:2.2-3.0: unexpected end of file in a comment
=2

Example 4.6: tc -X --parse unterminated-comment.tig
If there are syntax errors, the exit status is set to 3:

let var a : nil := ()
in

1
end

File 4.6: type-nil.tig
$ tc -X --parse type-nil.tig

82 The Tiger Compiler Project Assignment

type-nil.tig:1.13-15: syntax error, unexpected nil, expecting iden-
tifier or _namety
=3

Example 4.7: tc -X —-parse type-nil.tig

If there are errors which are non lexical, nor syntactic (Windows will not pass by me):

$ tc C:/TIGER/SAMPLE.TIG
[error] tc: cannot open ‘C:/TIGER/SAMPLE.TIG’: No such file or directory
=1

Example 4.8: tc C:/TIGER/SAMPLE.TIG

The option --parse-trace, which relies on Bison’s /%debug and %printer directives,
must work properly®:

a + "all

File 4.7: ata.tig

$ tc -X --parse-trace --parse ata.tig

error] Parsing file: "a+a.tig"

error|] Starting parse

error] Entering state O

error] Reading a token: Next token is token "identifier" (ata.tig:1.1: a)
error] Shifting token "identifier" (a+a.tig:1.1: a)
error] Entering state 2

error] Reading a token: Next token is token "+" (ata.tig:1.3:)
error] Reducing stack O by rule 90 (line 585):

error $1 = token "identifier" (ata.tig:1.1: a)
error] => $$ = nterm varid (ata.tig:1.1: a)

error] Entering state 33

error| Reducing stack O by rule 38 (line 402):

error $1 = nterm varid (ata.tig:1.1: a)

error] => $$ = nterm lvalue (ata.tig:1.1: a)

error] Entering state 26

error] Next token is token "+" (ata.tig:1.3:)
Reducing stack O by rule 35 (line 395):

error $1 = nterm lvalue (ata.tig:1.1: a)

error] => $$ = nterm exp (ata.tig:1.1: a)

error] Entering state 25

error] Next token is token "+" (ata.tig:1.3:)
Shifting token "+" (ata.tig:1.3:)

error] Entering state 74

error] Reading a token: Next token is token "string" (ata.tig:1.5-7: a)
error] Shifting token "string" (a+ta.tig:1.5-7: a)
error] Entering state 1

Reducing stack O by rule 4 (line 296):

error $1 = token "string" (a+ta.tig:1.5-7: a)
error] -> $$ = nterm exp (ata.tig:1.5-7: "a")

error] Entering state 119

error] Reading a token: Now at end of input.

[¢) [¢) [¢)
= = =
3 3 3
o o o
== = == = = = = = == =

6 For the time being, forget about -X.

Chapter 4: Compiler Stages 83

error] Reducing stack O by rule 29 (line 376):

erro $1 = nterm exp (ata.tig:1.1: a)

erro $2 = token "+" (ata.tig:1.3:)

error $3 = nterm exp (ata.tig:1.5-7: "a")

error] => $$ = nterm exp (ata.tig:1.1-7: (a + "a"))

error] Entering state 25

error] Now at end of input.

error] Reducing stack O by rule 1 (line 287):

error $1 = nterm exp (a+ta.tig:1.1-7: (a + "a"))

error] => $$ = nterm program (ata.tig:1.1-7:)

error] Entering state 24

error] Now at end of input.

error] Shifting token "end of file" (ata.tig:2.1:)

error] Entering state 63

error] Cleanup: popping token "end of file" (ata.tig:2.1:)
error] Cleanup: popping nterm program (a+ta.tig:1.1-7:)

error] Parsing string: function _main() = (_exp(0); O)
error] Starting parse

Entering state O

error] Reading a token: Next token is token "function" (:1.1-8:)
error] Shifting token "function" (:1.1-8:)

error] Entering state 8

error] Reading a token: Next token is token "identifier" (:1.10-14: _main)
Shifting token "identifier" (:1.10-14: _main)

error] Entering state 43

error] Reading a token: Next token is token "(" (:1.15:)
error] Shifting token "(" (:1.15:)

error] Entering state 93

Reading a token: Next token is token ")" (:1.16:)
error] Reducing stack O by rule 95 (line 605):

error] => $$ = nterm funargs (:1.16:)

error] Entering state 144

error] Next token is token ")" (:1.16:)

error] Shifting token ")" (:1.16:)

error] Entering state 186

error] Reading a token: Next token is token "=" (:1.18:)
error] Reducing stack O by rule 86 (line 567):

error] —> $$ = nterm typeid.opt (:1.17:)

error] Entering state 215

error] Next token is token "=" (:1.18:)

error] Shifting token "=" (:1.18:)

error] Entering state 231

error] Reading a token: Next token is token "(" (:1.20:)
error] Shifting token "(" (:1.20:)

error] Entering state 12

error] Reading a token: Next token is token "_exp" (:1.21-24:)
error] Shifting token "_exp" (:1.21-24:)

error] Entering state 21

error] Reading a token: Next token is token "(" (:1.25:)
error] Shifting token "(" (:1.25:)

error] Entering state 60

error] Reading a token: Next token is token "integer" (:1.26: 0)

[¢) [¢) [¢)
= = =
3 3 3
o o o
= == == == == = == = = = = = == ==

The Tiger Compiler Project Assignment

error] Shifting token "integer" (:1.26: 0)

error] Entering state 106

error] Reading a token: Next token is token ")" (:1.27:)
error] Shifting token ")" (:1.27:)

error] Entering state 164

error] Reducing stack O by rule 37 (line 397):

erro $1 = token "_exp" (:1.21-24:)

erro $2 = token "(" (:1.25:)

error $3 = token "integer" (:1.26: 0)

error $4 = token ")" (:1.27:)

error] => $$ = nterm exp (:1.21-27: (a + "a"))

error] Entering state 48

error] Reading a token: Next token is token ";" (:1.28:)
error] Reducing stack O by rule 48 (line 424):

error $1 = nterm exp (:1.21-27: (a + "a"))

error] => $$ = nterm exps.1 (:1.21-27: (a + "a"))

error] Entering state 49

error] Next token is token ";" (:1.28:)

Shifting token ";" (:1.28:)

error] Entering state 99

error] Reading a token: Next token is token "(" (:1.30:)
error] Shifting token "(" (:1.30:)

error] Entering state 12

Reading a token: Next token is token ")" (:1.31:)
error] Reducing stack O by rule 52 (line 436):

error] => $$ = nterm exps.0.2 (:1.31:)

error] Entering state 51

error] Next token is token ")" (:1.31:)

Shifting token ")" (:1.31:)

error] Entering state 100

error] Reducing stack O by rule 11 (line 321):

erro $1 = token "(" (:1.30:)

error $2 = nterm exps.0.2 (:1.31:)

error $3 = token ")" (:1.31:)

error] => $$ = nterm exp (:1.30-31: ()

error] Entering state 153

error] Reading a token: Next token is token ")" (:1.32:)
error] Reducing stack O by rule 51 (line 431):

error $1 = nterm exps.1 (:1.21-27: (a + "a"))

error $2 = token ";" (:1.28:)

erro $3 = nterm exp (:1.30-31: ()

error] —> $$ = nterm exps.2 (:1.21-31: (a + "a"), ()
error] Entering state 50

error] Reducing stack O by rule 53 (line 437):

error $1 = nterm exps.2 (:1.21-31: (a + "a"),)
error] => $$ = nterm exps.0.2 (:1.21-31: (a + "a"), O)
error] Entering state 51

error] Next token is token ")" (:1.32:)

error] Shifting token ")" (:1.32:)

error] Entering state 100

error] Reducing stack O by rule 11 (line 321):

error $1 = token "(" (:1.20:)

[¢) [¢) [¢)
= = =
3 3 3
o o o
= == == == == = == = = = = = == ==

Chapter 4: Compiler Stages 85

error $2 = nterm exps.0.2 (:1.21-31: (a + "a"),)

error $3 = token ")" (:1.32:)
error] —> $$ = nterm exp (:1.20-32: (
error (a + "a");

error O

error]))

error] Entering state 239

error] Reading a token: Now at end of input.

error] Reducing stack O by rule 93 (line 598):

error $1 = token "function" (:1.1-8:)

error $2 = token "identifier" (:1.10-14: _main)
erro $3 = token "(" (:1.15:)

error $4 = nterm funargs (:1.16:)

error $5 = token ")" (:1.16:)

error $6 = nterm typeid.opt (:1.17:)

error $7 = token "=" (:1.18:)
erro $8 = nterm exp (:1.20-32: (
error (a + "a");

O
error]))

error] —> $$ = nterm fundec (:1.1-32:
error] function _main() =

error (

(a + "a");

error O

erro))

error] Entering state 35

error] Now at end of input.

Reducing stack 0 by rule 91 (line 593):
error $1 = nterm fundec (:1.1-32:
error] function _main() =

erro (

error (a + "a");

error O

error))

error] => $$ = nterm fundecs (:1.1-32:
error] function _main() =

error (

error (a + "a");

error O

erro))

error] Entering state 34

error] Now at end of input.

error] Reducing stack O by rule 54 (line 447):
error] —> $$ = nterm decs (:1.33:)
error] Entering state 83

error] Reducing stack O by rule 57 (line 451):
error $1 = nterm fundecs (:1.1-32:
error] function _main() =

error (

error (a + "a");

error O

[¢) [¢) [¢)
= = =
3 3 3
o o o
== == == == = == = = = = = == =

86 The Tiger Compiler Project Assignment

error))

error $2 = nterm decs (:1.33:)
error] —> $$ = nterm decs (:1.1-32:
error] function _main() =

error (

error (a + "a");

erro O

erro))

error] Entering state 27

error] Reducing stack O by rule 2 (line 289):
error $1 = nterm decs (:1.1-32:

error] function _main() =

error (

error (a + "a");

error O

error)

error] —> $$ = nterm program (:1.1-32:)

error] Entering state 24

Now at end of input.

error] Shifting token "end of file" (:1.33:)
error] Entering state 63

error] Cleanup: popping token "end of file" (:1.33:)
error] Cleanup: popping nterm program (:1.1-32:)

[0}
=
=
o
= = = = == =

Example 4.9: tc -X --parse-trace —-parse ata.tig

Note that (i), --parse is needed, (ii), it cannot see that the variable is not declared nor
that there is a type checking error, since type checking... is not implemented, and (iii),
the output might be slightly different, depending upon the version of Bison you use. But

?dn

what matters is that one can see the items: ‘"identifier" a’, ‘"string" a’.

4.3.3 TC-1 Given Code

Some code is provided through the ‘tc-base’ repository; use tags ‘2020-tc-base-1.0’ to
integrate it with your existing code base. See Section 3.1 [Given Code], page 55, for more
information on using the ‘tc-base’ Git repository.

See Section 3.2.1 [The Top Level], page 55, Section 3.2.5 [src], page 59, Section 3.2.7
[src/parse], page 59, Section 3.2.4 [lib/misc|, page 56.

4.3.4 TC-1 Code to Write

Be sure to read Flex and Bison documentations and tutorials, see Section 5.9 [Flex &
Bison]|, page 251.

configure.ac
Makefile.am
Include your own test suite in the tests directory, and hook it to make check.

src/parse/scantiger.1l
The scanner must be completed to read strings, identifiers etc. and track
locations.

— Strings will be stored as C++ std::string. See the following code for
the basics.

\" grown_string.clear(); BEGIN SC_STRING;

Chapter 4: Compiler Stages 87

<SC_STRING>{ /* Handling of the strings. Initial " is eaten.

\" o

BEGIN INITIAL;

return TOKEN_VAL(STRING, grown_string);
}

\\x [0-9a-fA-F]1{2} A
grown_string.append(1, strtol(yytext + 2, 0, 16));
}

}

— Symbols (i.e., identifiers) must be returned as misc: : symbol objects, not
strings.

— The locations are tracked. The class Location to use is produced by
Bison: src/parse/location.hh.

To track of locations, adjust your scanner, use YY_USER_ACTION and the
yylex prologue:

ho

hi
// Everything here is run each time yylex is invoked.
%}
nifn return TOKEN(IF);
o

See the lecture notes, and read the C++ chapter of’ ¢Nu Bison’s docu-
mentation. Note that the version being used for the Tiger project may
differ from the latest public release, thus students should build their own
documentation by running ‘make html’ in the provided Bison tarball.

K99

Pay special attention to its “Complete C++ Example®” which is very much

like our set up.

src/parse/parsetiger.yy
— The grammar must be complete but without actions.

— Use %printer to implement --parse-trace support for terminals (see
Section 4.3.2 [TC-1 Samples|, page 81)

src/parse/tiger-parser.cc
The class TigerParser drives the lexing and parsing of input file. Its imple-
mentation in src/parse/tiger-parser.cc is incomplete.

lib/misc/symbol. *

lib/misc/unique.*
The class misc: :symbol keeps a single copy of identifiers, see Section 3.2.4
[lib/misc], page 56. Its implementation in lib/misc/symbol.hxx and
lib/misc/symbol.cc is incomplete. Note that running ‘make check’ in
lib/misc exercises lib/misc/test-symbol.cc: having this unit test pass

7 http://wuw.gnu.org/software/bison/manual/bison.html.
8 http://www.gnu.org/software/bison/manual/bison.html#A-Complete-C_002b_002b-Example

*/

http://www.gnu.org/software/bison/manual/bison.html
http://www.gnu.org/software/bison/manual/bison.html#A-Complete-C_002b_002b-Example

88 The Tiger Compiler Project Assignment

should be a goal by itself. As a matter of fact, unit tests were left to help
you: once they pass successfully you may proceed to the rest of the compiler.
misc::symbol’s implementation is based on misc::unique, a generic class
implementing the Flyweight design pattern. The definition of this class,
lib/misc/unique.hxx, is also to be completed.

lib/misc/variant.*
The implementation of the class template misc: :variant<TO0, Ts...> lacks
a couple of conversion operators that you have to supply.

4.3.5 TC-1 raq

Bison reports type clashes
Bison may report type clashes for some actions. For instance, if you have
given a type to "string", but none to exp, then it will choke on:

exp: "string";

because, unless you used ‘%define variant’, it actually means
exp: "string" { $$ = $1; };

which is not type consistent. So write this instead:
exp: "string" {};

Where is ast: :Exp?
Its real definition will be provided with TC-2, so meanwhile you have to
provide a fake. We recommend for a forward declaration of ‘ast::Exp’ in
libparse.hh.

Finding prelude.tih
When run, the compiler needs the file prelude.tih that includes the signature
of all the primitives. But the executable tc is typically run in two very different
contexts:

installed An installed binary will look for an installed prelude.tih, typi-
cally in /usr/local/share/tc/. The cpp macro PKGDATADIR is
set to this directory. Its value depends on the use of configure’s
option --prefix, defaulting to /usr/local.

compiled, not installed
When compiled, the binary will look for the installed
prelude.tih, and of course will fail if it has never been installed.
There are two means to address this issue:

The environment variable TC_PKGDATADIR
If set, it overrides the value of PKGDATADIR.

The option --1ibrary-prepend/-p
Using this option you may set the library file search
path to visit the given directory before the built-in
default value. For instance ‘tc -p /tmp foo.tig’ will
first look for prelude.tih in /tmp.

Must import be functional?

Yes. Read the previous item.

4.3.6 TC-1 Improvements

Possible improvements include:

Chapter 4: Compiler Stages 89

4.4 TC-2, Building the Abstract Syntax Tree

2020-TC-2 submission for Ingl students is Sunday, February 25th 2018 at 11:42.
This section has been updated for ErrTa-2020 on 2016-01-27.

At the end of this stage, the compiler can build abstract syntax trees of Tiger programs
and pretty-print them. The parser is now a GLR parser and equipped with error recovery.
The memory is properly deallocated on demand.

The code must follow our coding style and be documented, see Section 2.4 [Coding
Style], page 32, and Section 5.16 [Doxygen], page 255.

Relevant lecture notes include dev-tools.pdf®, ast.pdf!®.

4.4.1 TC-2 Goals

Things to learn during this stage that you should remember:

Strict Coding Style
Following a strict coding style is an essential part of collaborative work. Un-
derstanding the rationales behind rules is even better. See Section 2.4 [Coding
Style], page 32.

Memory Leak Trackers
Using tools such as Valgrind (see Section 5.8 [Valgrind], page 250) to track
memory leaks.

Understanding the use of a cLR Parser
The parser should now use all the possibilities of a GLR parser.

Error recovery with Bison
Using the error token, and building usable AsTs in spite of lexical/syntax
errors.

Using sTL containers
The AST uses std::vector, misc: :symbol uses std: :set.

Inheritance
The asT hierarchy is typical example of a proper use of inheritance, together
with. . .

Inclusion polymorphism
An intense use of inclusion polymorphism for accept.

Use of constructors and destructors
In particular using the destructors to reclaim memory bound to components.

virtual Dynamic and static bindings.

misc::indent
misc::indent extends std: :ostream with indentation features. Use it in the
PrettyPrinter to pretty-print. Understanding how misc: :indent works will
be checked later, see Section 4.5.1 [TC-3 Goals], page 99.

The Composite design pattern
The AST hierarchy is an implementation of the Composite pattern.

The Visitor design pattern
The PrettyPrinter is an implementation of the Visitor pattern.

Writing good developer documentation (using Doxygen)
The asT must be properly documented.

9 https://www.lrde.epita.fr/ tiger//lecture-notes/slides/ccmp/dev-tools.pdf.
10 https://www.lrde.epita.fr/ tiger//lecture-notes/slides/ccmp/ast.pdf.

https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/dev-tools.pdf
https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/ast.pdf

90 The Tiger Compiler Project Assignment

4.4.2 TC-2 Samples

Here are a few samples of the expected features.

4.4.2.1 TC-2 Pretty-Printing Samples
The parser builds abstract syntax trees that can be output by a pretty-printing module:

/* Define a recursive function. */
let
/* Calculate n!. */
function fact (n : int) : int =
if n=20
then 1
else n *x fact (n - 1)
in
fact (10)
end

File 4.8: simple-fact.tig

$ tc -XA simple-fact.tig
/* == Abstract Syntax Tree. == */

function _main() =

(
let
function fact(n : int) : int =
(if (n = 0)
then 1
else (n * fact((n - 1))))
in
fact(10)
end;
O
)

Example 4.10: tc -XA simple-fact.tig

The pretty-printed output must be valid and equivalent.

Valid means that any Tiger compiler must be able to parse with success your output.
Pay attention to the banners such as ‘== Abstract...’: you should use comments: ‘/*
== Abstract... */’. Pay attention to special characters too.

print ("\"\x45\x50ITA\"\n")

File 4.9: string-escapes.tig

$ tc -XA string-escapes.tig
/* == Abstract Syntax Tree. == */

function _main() =
(
print("\"EPITA\"\n");
O

Chapter 4: Compiler Stages 91

Example 4.11: tc -XA string-escapes.tig

FEquivalent means that, except for syntactic sugar, the output and the input are equal.
Syntactic sugar refers to ‘&’, ‘|’, unary ‘-’, etc.

1=1&2=2

File 4.10: 1s-and-2s.tig

$ tc -XA 1s-and-2s.tig
/* == Abstract Syntax Tree. == %/

function _main() =
(
(if (1 = 1)
then ((2 = 2) <> 0)
else 0);
O

Example 4.12: tc -XA 1s-and-2s.tig
$ tc -XA 1s-and-2s.tig >output.tig

Example 4.13: tc -XA 1s-and-2s.tig >output.tig

$ tc -XA output.tig
/* == Abstract Syntax Tree. == %/

function _main() =
(
(if (1 =1)
then ((2 = 2) <> 0)
else 0);
O

Example 4.14: tc -XA output.tig
Beware that for loops are encoded using a ast: :VarDec: do not display the ‘var’:

for i := 0 to 100 do
(print_int (i))

File 4.11: for-loop.tig

$ tc -XA for-loop.tig
/* == Abstract Syntax Tree. == %/

function _main() =

(
(for i := 0 to 100 do
print_int(i));
O

92 The Tiger Compiler Project Assignment

Example 4.15: tc -XA for-loop.tig

Parentheses must not stack for free; you must even remove them as the following
example demonstrates.

CCCCCCCCCCoddNNNINN

File 4.12: parens.tig

$ tc -XA parens.tig
/* == Abstract Syntax Tree. == */

function _main() =

(
0;
O

Example 4.16: tc -XA parens.tig

This is not a pretty-printer trick: the asTs of this program and that of ‘0O’ are exactly the
same: a single ast: : IntExp.

As a result, anything output by ‘tc -A’ is equal to what ‘tc -A | tc -XA -7 displays!

4.4.2.2 TC-2 Chunks

The type checking rules of Tiger, or rather its binding rules, justify the contrived parsing
of declarations. This is why this section uses -b/--bindings-compute, implemented later
(see Section 4.5 [TC-3], page 98).

In Tiger, to support recursive types and functions, continuous declarations of functions
and continuous declarations of types are considered “simultaneously”. For instance in
the following program, foo and bar are visible in each other’s scope, and therefore the
following program is correct wrt type checking.

let function foo() : int = bar()
function bar() : int = foo()

in
0
end

File 4.13: foo-bar.tig
$ tc -b foo-bar.tig

Example 4.17: tc -b foo-bar.tig

In the following sample, because bar is not declared in the same bunch of declarations,
it is not visible during the declaration of foo. The program is invalid.

let function foo() : int = bar()
var stop := 0
function bar() : int = foo()
in
0

end

Chapter 4: Compiler Stages 93

File 4.14: foo-stop-bar.tig

$ tc -b foo-stop-bar.tig
foo-stop-bar.tig:1.28-32: undeclared function: bar
=4

Example 4.18: tc -b foo-stop-bar.tig
The same applies to types.

We shall name chunk a continuous series of type (or function) declaration.

A single name cannot be defined more than once in a chunk.

let function foo() : int = 0
function bar() : int =1
function foo() : int = 2
var stop := 0
function bar() : int = 3

in
0
end

File 4.15: fbofsb.tig

$ tc -b fbfsb.tig

fbfsb.tig:3.5-28: redefinition: foo
fbfsb.tig:1.5-28: first definition
=4

Example 4.19: tc -b £fbfsb.tig

It behaves exactly as if chunks were part of embedded let in end, i.e., as if the previous
program was syntactic sugar for the following one (in fact, in 2006-tc used to desugar it
that way).

let
function foo() : int =0
function bar() : int =1
in
let
function foo() : int = 2
in
let
var stop := 0
in
let
function bar() : int = 3
in
0
end
end
end

end

94 The Tiger Compiler Project Assignment

File 4.16: fbfsb-desugared.tig

Given the type checking rules for variables, whose definitions cannot be recursive,
chunks of variable declarations are reduced to a single variable.

4.4.2.3 TC-2 Error Recovery

Your parser must be robust to (some) syntactic errors. Observe that on the following
input several parse errors are reported, not merely the first one:
(
13
(2, 3);
(4, 5);
6

File 4.17: multiple-parse-errors.tig

$ tc multiple-parse-errors.tig

multiple-parse-errors.tig:3.5: syntax error, unexpected ",", ex-
pecting ;

multiple-parse-errors.tig:4.5: syntax error, unexpected ",", ex-
pecting ;

=3

Example 4.20: tc multiple-parse-errors.tig

Of course, the exit status still reveals the parse error. Error recovery must not break
the rest of the compiler.

$ tc -XA multiple-parse-errors.tig

multiple-parse-errors.tig:3.5: syntax error, unexpected ",", ex-
pecting ;

multiple-parse-errors.tig:4.5: syntax error, unexpected ",", ex-
pecting ;

/* == Abstract Syntax Tree. == %/

function _main() =

(

1;
OF
O;

Example 4.21: tc -XA multiple-parse-errors.tig

4.4.3 TC-2 Given Code
Code is provided through the ‘tc-base’ repository, using tag ‘2020-tc-base-2.0".

Chapter 4: Compiler Stages 95

For a description of the new modules, see Section 3.2.4 [lib/misc|, page 56, and
Section 3.2.8 [src/ast], page 59.

4.4.4 TC-2 Code to Write

What is to be done:

src/parse/parsetiger.yy
Build the asT

Complete actions to instantiate AST nodes.

Support object-related syntax

Supporting object constructs, an improvement suggested for TC-
0 (see Section 4.2.5 [PTHL Improvements|, page 79), is highly
recommended.

Support metavariable constructs

Augment your scanner and your parser to support the (reserved)
keywords ‘_decs’, ‘_exp’, ‘_lvalue’ and ‘_namety’ and imple-
ment the corresponding grammar rules (see Section “Language
Extensions” in Tiger Compiler Reference Manual). The seman-
tic actions of these productions shall use the ‘metavar’ function
template to fetch the right AsT subtree from the parse: :Tweast
object attached to the parsing context (parse::TigerParser in-
stance).

Implement error recovery.

There should be at least three uses of the token error. Read the
Bison documentation about it.

Use %printer

Extend the use of %printer to display non-terminals.

Use Ydestructor

GLR

Chunks

Use %destructor to reclaim the memory bound to semantic val-
ues thrown away during error recovery.

Change your skeleton to glr.cc, use the Y%glr-parser directive.
Thanks to GLR, conflicts (S/R and/or R/R) can be accepted. Use
hexpect and %expect-rr to specify their number. For informa-
tion, we have no R/R conflicts, and two S/R: one related to the
“big lvalue” issue, and the other to the implementation of the
two _cast operators (see Section “Additional Syntactic Specifica-
tions” in Tiger Compiler Reference Manual).

In order to implement easily the type checking of declarations
and to simplify following modules, adjust your grammar to parse
declarations by chunks. The implementations of these chunks are
in ast::FunctionDecs, ast::MethodDecs, ast::VarDecs, and
ast: :TypeDecs; they are implemented thanks to ast: : AnyDecs).
Note that an ast::VarDecs node appearing in a declaration list
shall contain exactly one ast: :VarDec object (see Section 4.4.2.2
[TC-2 Chunks|, page 92); however, an ast: :VarDecs used to im-
plement a function’s formal arguments may of course contain sev-
eral ast: :VarDec (one per formal).

src/ast Complete the abstract syntax tree module: no ‘FIXME:’ should be left. Several
files are missing in full. See src/ast/README for additional information on
the missing classes.

96 The Tiger Compiler Project Assignment

src/ast/default-visitor.hxx
Complete the GenDefaultVisitor class template. It is the basis for following
visitors in the Tiger compiler.

src/ast/object-visitor.hxx
Likewise, complete GenObjectVisitor. This class template is used to instanti-
ate visitors factoring common code (default traversals of object-related nodes)
and serves as a base class of ast: :PrettyPrinter (and later bind: :Binder).

src/ast/pretty-printer.hh

src/ast/pretty-printer.cc
The PrettyPrinter class must be written entirely. It must use the
misc::xalloc features to support indentation.

4.4.5 TC-2 raqQ

A NameTy, or a symbol
At some places, you may use one or the other. Just ask yourself which is the
most appropriate given the context. Appel is not always right.

Bison Be sure to read its dedicated section: Section 5.9 [Flex & Bison|, page 251.

Memory leaks in the parser during error recovery
To reclaim the memory during error recovery, use the %destructor directive:

htype <ast::Exp*> exp
htype <ast::Var*> lvalue
%destructor { delete $$; } <ast::Exp*> <ast::Varx> /* ... */;

Memory leaks in the standard containers
See Section 5.8 [Valgrind], page 250, for a pointer to the explanation and
solution.

How do I use misc: :error
See [misc/error], page 57, for a description of this component. In the case
of the parse module, TigerParser aggregates the local error handler. From
scan_open, for instance, your code should look like
if ('yyin)
error_ << misc::error::failure
<< program_name << ": cannot open ‘" << name << "’:
<< strerror(errno) << std::endl
<< &misc::error::exit;

ast::fields_type vs. ast::VarDecs

Record definition vs. Function declaration
The grammar of the Tiger language (see Section “Syntactic Specifications” in
Tiger Compiler Reference Manual) includes:

Function, primitive and method declarations.

<dec> ::=
"function" <id> "(" <tyfields> ")" [":" <type-id>] "="
| "primitive" <id> "(" <tyfields> ")" [":" <type-id>]
<classfield> ::=
"method" <id> ||(|| <tyfields> ||)|| [n:u <type—id>] n=n

Record type declaration.
<ty> ::= "{" <tyfields> "}"

<exp>

<exp>

Chapter 4: Compiler Stages 97

List of ‘‘id : type’’.

<tyfields> ::= [<id> ":" <type-id> { "," <id> ":" <type-id> }]
This grammar snippet shows that we used tyfields several times, in two
very different contexts: a list of formal arguments of a function, primitive
or method; and a list of record fields. The fact that the syntax is similar in
both cases is an “accident”: it is by no means required by the language. A.
Appel could have chosen to make them different, but what would have been
the point then? It does make sense, sometimes, to make two different things
look alike, that’s a form of economy — a sane engineering principle.

If the concrete syntaxes were chosen to be identical, should it be the case for
abstract too? We would say it depends: the inert data is definitely the same,
but the behaviors (i.e., the handling in the various visitors) are very different.
So if your language features “inert data”, say C or ML, then keeping the same
abstract syntax makes sense; if your language features “active data” — let’s
call this... objects — then it is a mistake. Sadly enough, the first edition of
Red Tiger book made this mistake, and we also did it for years.

The second edition of the Tiger in Java introduces a dedicated abstract syntax
for formal arguments; we made a different choice: there is little difference
between formal arguments and local variables, so we use a VarDecs, which
fits nicely with the semantics of chunks.

Regarding the abstract syntax of a record type declaration, we use a list of
Fields (aka fields_type).

Of course this means that you will have to duplicate your parsing of the
tyfields non-terminal in your parser.

ast::DefaultVisitor and ast: :NonObjectVisitor
The existence of ast: :NonObjectVisitor is the result of a reasonable com-
promise between (relative) safety and complexity.

The problem is: as object-aware programs are to be desugared into object-
free ones, (a part of) our front-end infrastructure must support two kinds of
traversals:

— Traversals dealing with aAsT with objects: ast::PrettyPrinter,
object::Binder, object: :TypeChecker, object: :DesugarVisitor.

— Traversals dealing with AsT without objects bind::Binder,
type: :TypeChecker, and all other AsT visitors.

The first category has visit methods for all type of nodes of our (object-
oriented) AST, so they raise no issue. On the other hand, the second category
of visitors knows nothing about objects, and should either be unable to visit
AST w/ objects (static solution) or raise an error if they encounter objects
(dynamic solution).

Which led us to several solutions:

1. Consider that we have two kinds of visitors, and thus two hierarchies
of visitors. Two hierarchies might confuse the students, and make the
maintenance harder. Hooks in the asT nodes (accept methods) must be
duplicated, too.

2. Have a single hierarchy of visitors, but equip all concrete visitors travers-
ing AsTs w/o objects with methods visiting object-related node aborting
at run time.

3. Likewise, but factor the aborting methods in a single place, namely
ast::NonObjectVisitor. That is the solution we chose.

98 The Tiger Compiler Project Assignment

Solutions 2 and 3 let us provide a default visitor for asts without objects, but
it’s harder to have a meaningful default visitor for AsTs with objects: indeed,
concrete visitors on AsTs w/ objects inherit from their non-object counterparts,
where methods visiting object nodes are already defined! (Though they abort
at run time.)

We have found that having two visitors (ast::DefaultVisitor and
ast::NonObjectVisitor) to solve this problem was more elegant, rather
than merging both of them in ast::DefaultVisitor. The pros are that
ast::DefaultVisitor remains a default visitor; the cons are that this visitor
is now abstract, since object-related nodes have no visit implementation.
Therefore, we also introduced an ast::0bjectVisitor performing default
visits of the remaining node types; the combined inheritance of both
ast::DefaultVisitor and ast::0bjectVisitor provides a complete
default visitor.

4.4.6 TC-2 Improvements

Possible improvements include:

Desugar Boolean operators and unary minus in concrete syntax
In the original version of the exercise, the | and & operators and the unary
minus operator are desugared in abstract syntax (i.e., using explicit instantia-
tions of AsT nodes). Using TigerInput, you can desugar using Tiger’s concrete
syntax instead. This second solution is advised.

Introduce an Error class
When syntactic errors are caught, a valid AsT must be built anyway, hence a
critical question is: what value should be given to the missing bits? If your
error recovery is not compatible with what the user meant, you are likely to
create artificial type errors with your invented value.

While this behavior is compliant with the assignment, you may improve this
by introducing an Error class (one?), which will never trigger type checking
€rrors.

Using Generic Visitors
Andrei Alexandrescu has done a very interesting work on generic implementa-
tion of Visitors, see [Modern C++ Design|, page 243. It does require advanced
C++ skills, since it is based on type lists, which requires heavy use of templates.

Using Visitor Combinators
Going even further that Andrei Alexandrescu, Nicolas Tisserand proposes an
implementation of Visitor combinators, see [Generic Visitors in C++], page 242.

4.5 TC-3, Bindings
2020-TC-3 submission for Ingl students is Sunday, March 11th 2018 at 11:42.
Section 4.6 [TC-R], page 106, is part of the mandatory assignment of 2020-TC-3.
This section has been updated for ErrTa-2020 on 2016-01-27.

At the end of this stage, the compiler must be able to compute and display the bind-
ings. These features are triggered by the options -b/--bindings-compute, ——object-
bindings-compute and -B/--bindings-display.

Relevant lecture notes include: names.pdf'.

1 https://www.lrde.epita.fr/ “tiger//lecture-notes/slides/ccmp/names.pdf.

https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/names.pdf

Chapter 4: Compiler Stages 99

4.5.1 TC-3 Goals

Things to learn during this stage that you should remember:

The Command design pattern

The Task module is based on the Command design pattern.

Writing a Container Class Template

Class template are most wuseful to implement containers such as
misc::scoped_map.

Using methods from parents classes

Traits

super_type and qualified method invocation to factor common code.

Traits are a useful technique that allows to write (compile time) functions
ranging over types. See Section A.1 [Glossary], page 257. The implementation
of both hierarchies of visitors (const or not) relies on traits. You are expected
to understand the code.

Streams’ internal extensible arrays

C++ streams allows wusers to dynamically store information within
themselves thanks to std::ios::xalloc, std::stream::iword, and
std::stream::pword (see ios_base documentation by Cplusplus
Ressources'?). Indented output can use it directly in operator<<, see
lib/misc/indent.* and 1lib/misc/test-indent.cc. More generally, if you
have to resort to using print because you need additional arguments than
the sole stream, consider using this feature instead.

Use this feature so that the PrettyPrinter can be told from the
std: :ostream whether escapes and bindings should be displayed.

4.5.2 TC-3 Samples

Binding is relating a name use to its definition.

let

var me := 0

in

me
end

File 4.18: me.tig

$ tc -XbBA me.tig
/* == Abstract Syntax Tree. == */

function _main /* 0x563048f78b00 */() =

(

let
var me /* 0x563048f7b5b0 */ := 0
in
me /* 0x563048f7b5b0 */
end;
O

Example 4.22: tc -XbBA me.tig

12 http://www.cplusplus.com/ref/iostream/ios_base/.

http://www.cplusplus.com/ref/iostream/ios_base/

100 The Tiger Compiler Project Assignment

This is harder when there are several occurrences of the same name. Note that primitive
types are accepted, but have no pre-declaration, contrary to primitive functions.

let

var me := 0

function id(me : int) : int = me
in

me
end

File 4.19: meme.tig

$ tc -XbBA meme.tig
/* == Abstract Syntax Tree. == */

function _main /* 0x5566cd725b00 */() =

(
let
var me /* 0x5566cd7285b0 */ := 0
function id /* 0x5566cd7272d0 */(me /* 0x5566cd7261e0 */ : int /* 0 */)
me /* 0x5566cd7261e0 */
in
me /* 0x5566cd7285b0 */
end;
O
)

Example 4.23: tc -XbBA meme.tig
TC-3 is in charge of incorrect uses of the names, such as undefined names,

me

File 4.20: nome.tig

$ tc -bBA nome.tig
nome.tig:1.1-2: undeclared variable: me
=4

Example 4.24: tc -bBA nome.tig

or redefined names.

let

type me = {}

type me = {}

function twice(a: int, a: int) : int = a + a
in

me {} = me {}
end

File 4.21: tome.tig

$ tc -bBA tome.tig

tome.tig:3.3-14: redefinition: me
tome.tig:2.3-14: first definition
tome.tig:4.25-31: redefinition: a

int

Chapter 4: Compiler Stages 101

tome.tig:4.18-23: first definition
=4

Example 4.25: tc -bBA tome.tig

In addition to binding names, —-bindings-compute is also in charge of binding the
break to their corresponding loop construct.

let var x := 0 in
while 1 do
(

for i := 0 to 10 do

(
X 1= x + i,
if x >= 42 then

break

)

if x >= 51 then
break

)

end

File 4.22: breaks-in-embedded-loops.tig

$ tc -XbBA breaks-in-embedded-loops.tig
/* == Abstract Syntax Tree. == */

function _main /* 0x55a197e92b00 */() =

(
let
var x /* 0x55a197e955e0 */ := 0
in
(while /* 0x55a197e960a0 */ 1 do
(
(for /* 0x55a197e94ae0 */ i /* 0x55a197e94280 */ := 0 to 10 do
(
(x /* 0x55a197e955e0 */ := (x /* 0x55a197e955e0 */ + i /* 0x55a197e942
(if (x /* 0x55a197e955e0 */ >= 42)
then break /* 0x55a197e94ae0 */
else)
));
(if (x /* 0x55a197e955e0 */ >= 51)
then break /* 0x55a197e960a0 */
else ())
))
end;
O
)

Example 4.26: tc -XbBA breaks-in-embedded-loops.tig

break

102 The Tiger Compiler Project Assignment

File 4.23: break.tig

$ tc -b break.tig
break.tig:1.1-5: ‘break’ outside any loop
=4

Example 4.27: tc -b break.tig

Embedded loops show that there is scoping for breaks. Beware that there are places,
apparently inside loops, where breaks make no sense too.

Although it is a matter of definitions and uses of names, record members are not bound
here, because it is easier to implement during type checking. Likewise, duplicate fields are
to be reported during type checking.

let
type box = { value : int }
type dup = { value : int, value : string }
var box := box { value = 51 }
in
box.head
end

File 4.24: box.tig

$ tc -XbBA box.tig
/* == Abstract Syntax Tree. == */

function _main /* 0x55c8f9b45ed0 */()

(
let
type box /* 0x55c8f9b44db0 */ = { value : int /% O */ }
type dup /* 0x55c8f9b440a0 */ = {
value : int /* 0 %/,
value : string /* 0 */
}
var box /* 0x55c8f9b44750 */ := box /* 0x55c8f9b44db0 */ { value = 51 }
in
box /* 0x55c8f9b44750 */.head
end;
O
)

Example 4.28: tc -XbBA box.tig

$ tc -T box.tig

box.tig:3.33-46: identifier multiply defined: value
box.tig:6.3-10: invalid field: head

=5

Example 4.29: tc -T box.tig

Chapter 4: Compiler Stages 103

But apart from these field-specific checks delayed at TC-4, TC-3 should report other name-
related errors. In particular, a field with an invalid type name is a binding error (related
to the field’s type, not the field itself), to be reported at TC-3.

let

type rec = { a : unknown }
in

rec { a =42 }
end

File 4.25: unknown-field-type.tig

$ tc -XbBA unknown-field-type.tig
unknown-field-type.tig:2.20-26: undeclared type: unknown
=4

Example 4.30: tc -XbBA unknown-field-type.tig

Likewise, class members (both attributes and methods) are not to be bound at
Section 4.5 [TC-3], page 98, but at the type-checking stage (see Section 4.8 [TC-4],
page 109). Therefore, no bindings are to be displayed in regards to object at Section 4.5
[TC-3], page 98.

let
type C = class {}
var ¢ := new C

in

c.missing_method();
c.missing_attribute
end

File 4.26: bad-member-bindings.tig
$ tc -X --object-bindings-compute -BA bad-member-bindings.tig
/* == Abstract Syntax Tree. == */

function _main /* 0x55914f1e3b00 */() =

(
let
type C /* 0xb55914f1e4610 */ =
class extends Object /* 0 */
{
}
var ¢ /* 0x55914f1e3bd0 */ := new C /* 0x55914f1e4610 */
in
(
c /* 0x55914f1e3bd0 */.missing_method();
c /* 0x55914f1e3bd0 */.missing_attribute
)
end;
O
)

Example 4.31: tc -X --object-bindings-compute -BA bad-member-bindings.tig

104 The Tiger Compiler Project Assignment

$ tc --object-types-compute bad-member-bindings.tig
bad-member-bindings.tig:5.3-20: unknown method: missing_method
bad-member-bindings.tig:6.3-21: unknown attribute: missing_attribute
=5

Example 4.32: tc --object-types-compute bad-member-bindings.tig

Concerning the super class type, the compiler should just check that this type exists in the
environment at Section 4.5 [TC-3], page 98. Other checks are left to TC-4 (see Section 4.8.2
[TC-4 Samples|, page 110).

let
/* Super class doesn’t exist. */
class Z extends Ghost {}

in

end

File 4.27: missing-super-class.tig

$ tc -X --object-bindings-compute -BA missing-super-class.tig
missing-super-class.tig:3.19-23: undeclared type: Ghost
=4

Example 4.33: tc -X --object-bindings-compute -BA missing-super-class.tig

4.5.3 TC-3 Given Code

Code is provided through the ‘tc-base’ repository, using tag ‘2020-tc-base-3.0’. For a
description of the new module, see Section 3.2.9 [src/bind], page 61.

4.5.4 TC-3 Code to Write

misc: :scoped_map<Key, Data>
Complete the class template misc: :scoped_map in 1ib/misc/scoped-map.hh
and lib/misc/scoped-map.hxx. See Section 3.2.4 [lib/misc|, page 56, See
[scoped_map], page 58, for more details.

Equip ast Augment constructs “using” an identifier, such as CallExp, with def_, def_
get, and def_set to be able to set a reference to their definition, here a
FunctionDec.

ast::PrettyPrinter
Implement --bindings-display support in the PrettyPrinter. Be sure to
display the addresses exactly as displayed in this document: immediately after
the identifier.

Complete the bind: :Binder
Most of the assignment is here...

Complete the object: :Binder
...and here. object: :Binder inherits from bind: :Binder so as to factor com-
mon parts.

Implement renaming to unique identifiers.
TC-R is a mandatory assignment. Once TC-3 completed, implementing TC-R
is straightforward, see Section 4.6 [TC-R], page 106. Note that --rename is
helpful to write a test suite for TC-3.

Chapter 4: Compiler Stages 105

Complete auxiliary code
Write the tasks, 1ibbind. * etc.

4.5.5 TC-3 raqQ

Ambiguous resolution of operator<< for ast: :VarDec

Starting from TC-3, ast::VarDec inherits both from ast::VarDec and
ast::Escapable. Printing an ast: :VarDec using operator<< can be trouble-
some as this operator may be overloaded for both ast: :VarDec’s base classes,
but not for ast: : VarDec itself, resulting in an ambiguous overload resolution.
The simplest way to get rid of this ambiguity is to convert the ast: :VarDec
object to the type of one of its base classes (“upcast”) before printing it, either
by creating a alias or (more simply) by using the static_cast operator:

const ast::VarDec& vardec = ...

// Printing VARDEC as an ast::Dec using an intermediate
// variable (alias).

const ast::Dec& dec = vardec;

ostr << dec;

// Printing VARDEC as an ast::Escapable using an
// on-the-fly conversion.
ostr << static_cast<const ast::Escapable&>(vardec);

What is the purpose of the ‘bound’ task?

The computation of name bindings can be carried out in different ways, de-
pending on the input language: Tiger without object constructs (“Panther”),
Tiger with object constructs and Tiger with support for function overload-
ing. These different flavors of the binding computation are performed by op-
tions --bindings-compute, —-—-object-bindings-compute and --overfun-
bindings-compute respectively (see Section “Invoking tc¢” in Tiger Compiler
Reference Manual).

However, some subsequent task may later just require that an AsT is an-
notated with bindings (“bound”) regardless of the technique used to com-
pute these bindings. The purpose of the ‘bound’ task is to address this
need: ensuring that one of the bindings task has been executed. This task
can be considered as a disjunction (logical “or”) of the ‘bindings-compute’,
‘object-bindings-compute’ and ‘overfun-bindings-compute’ tasks, the
first one being the default binding strategy.

4.5.6 TC-3 Improvements
Possible improvements include:

Factoring the binding interface
In the ast module, several classes need to be changed to be “bindable”, i.e.,
to have new data and function members to set, store, and retrieve their asso-
ciated definition. Instead of changing several classes in a very similar fashion,
introduce a Bindable template class and derive from its instantiation.

Hash tables
How about using true hash tables (aka “unordered associative containers” in

Boost parlance) instead of trees? You might also want to try Google’s Sparse
Hash Tables®®.

13 http://code.google.com/p/sparsehash/.

http://code.google.com/p/sparsehash/

106 The Tiger Compiler Project Assignment

Escaping Variables Computation
Once TC-3 completed, you might consider the TC-E option now, see
Section 4.7 [TC-E], page 107. It takes about 100 lines to make it.

4.6 TC-R, Unique Identifiers

2020-TC-3 submission for Ingl students is Sunday, February 25th 2018 at 11:42.
Section 4.6 [TC-R], page 106, is part of the mandatory assignment of 2020-TC-3.
This section has been updated for EprTa-2020 on 2016-01-27.

At the end of this stage, when given the option --rename, the compiler produces an
AST such that no identifier is defined twice.

Relevant lecture notes include: names.pdf!*.

4.6.1 TC-R Samples

Note that the transformation does not apply to field names.

let
type a = { a: int }
function a(a: a): a=a{ a=a+a}
var a : a := a(1, 2)
in
a.a
end

File 4.28: as.tig

$ tc -X --rename -A as.tig
/* == Abstract Syntax Tree. == %/

function _main() =

(
let
type a_0 = { a : int }
function a_2(a_1 : a_0) : a_0 =
a0{a=1(_1+al)?}
var a_3 : a_0 := a_2(1, 2)
in
a_3.a
end;
O
)

Example 4.34: tc -X --rename -A as.tig

4.6.2 TC-R Given Code
No additional code is provided, see Section 4.5.3 [TC-3 Given Code], page 104.

4.6.3 TC-R Code to Write

bind: :Renamer
Write it from scratch.

14 https://www.lrde.epita.fr/ “tiger//lecture-notes/slides/ccmp/names.pdf.

https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/names.pdf

Chapter 4: Compiler Stages 107

Complete auxiliary code
Write the tasks, 1ibbind. * etc.

4.6.4 TC-R raq

Should I rename primitives (builtins) or _main?
No, you shall not rename them; you have to keep the interface of the Tiger
runtime. Likewise for _main.

4.7 TC-E, Computing the Escaping Variables

2020-TC-E submission is Sunday, March 25th 2018 at 11:42.
Section 4.7 [TC-E|, page 107, is part of the mandatory assignment of 2020-TC-4.

This section has been updated for ErrTa-2020 on 2015-01-27.

At the end of this stage, the compiler must be able to compute and display the es-
caping variables. These features are triggered by the options --escapes-compute/-e and
--escapes-display/-E.

Relevant lecture notes include: names.pdf'® and intermediate.pdf'®.

4.7.1 TC-E Goals

Things to learn during this stage that you should remember:

Understanding escaping variables

In TC-E, we consider the case of non-local variables, i.e., variables that are
defined in a function, but used (at least once) in another function, nested in
the first one. This possibility for an inner function to use variables declared in
outer functions is called block structure. Because such variables are used out-
side of their host function, they are qualified as “escaping”. This information
will be necessary during the translation to the intermediate representation
(see Section 4.14 [TC-5], page 132) when variables (named temporaries a that
stage) are assigned a location (in the stack or in a register). Escaping variables
shall indeed be stored in memory, so that non-local uses of such variables can
actually have a means to access them.

Writing a Visitor from scratch
The escapes: :EscapesVisitor provided is almost empty. A goal of TC-E
is to write a complete visitor (though a small one). Do not forget to use
ast::DefaultVisitor to factor as much code as possible.

4.7.2 TC-E Samples

This example demonstrates the computation and display of escaping variables (and formal
arguments). By default, all the variables must be considered as escaping, since it is safe
to put a non escaping variable onto the stack, while the converse is unsafe.

let

var one := 1

var two := 2

function incr(x: int) : int = x + one
in

incr(two)
end

15 https://www.lrde.epita.fr/ tiger//lecture-notes/slides/ccmp/names.pdf.
16 https://www.lrde.epita.fr/ “tiger//lecture-notes/slides/ccmp/intermediate.pdf.

https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/names.pdf
https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/intermediate.pdf

108 The Tiger Compiler Project Assignment

File 4.29: variable-escapes.tig

$ tc -XEAeEA variable-escapes.tig
/* == Abstract Syntax Tree. == %/

function _main() =

(
let
var /* escaping */ one := 1
var /* escaping */ two := 2
function incr(/#* escaping */ x : int) : int =
(x + one)
in
incr (two)
end;
O
)
/* == Abstract Syntax Tree. == */

function _main() =
(

let
var /* escaping */ one := 1
var two := 2
function incr(x : int) : int =

(x + one)

in
incr (two)

end;

O

Example 4.35: tc -XEAeEA variable-escapes.tig

Compute the escapes after binding, so that the asT is known to be sane enough (type
checking is irrelevant): the EscapeVisitor should not bother with undeclared entities.

undeclared

File 4.30: undefined-variable.tig

$ tc -e undefined-variable.tig
undefined-variable.tig:1.1-10: undeclared variable: undeclared
=4

Example 4.36: tc -e undefined-variable.tig

Run your compiler on merge.tig and to study its output. There is a number of silly
mistakes that people usually make on TC-E: they are all easy to defeat when you do have
a reasonable test suite, and once you understood that torturing your project is a good
thing to do.

4.7.3 TC-E Given Code
No additional code is provided, see Section 4.5.3 [TC-3 Given Code], page 104.

Chapter 4: Compiler Stages 109

4.7.4 TC-E Code to Write
See Section 3.2.8 [src/ast], page 59, and Section 3.2.10 [src/escapes|, page 61.

ast::PrettyPrinter
Implement --escapes-display support in the PrettyPrinter. Follow
strictly the output format, since we parse your output to check it. Display the
‘/* escaping */’ flag where needed, and only where needed: each definition
of an escaping variable/formal is preceded by the comment ‘/* escaping */’.
Do not display meaningless flags due to implementation details. How this
pretty-printing is implemented is left to you, but factor common code.

escapes: :EscapesVisitor
Write the class escapes: :EscapesVisitor in src/escapes/escapes-visitor.hh
and src/escapes/escapes-visitor.cc.

Introduce ast: :Escapable
Ensure ast: : VarDec inherits from ast: : Escapable. See [Escapable], page 60.

4.7.5 TC-E raq
4.7.6 TC-E Improvements

Possible improvements include:

4.8 TC-4, Type Checking

2020-TC-4 submission is Sunday, May 25th 2018 at 11:42.
Section 4.7 [TC-E|, page 107, is part of the mandatory assignment of 2020-TC-4.

This section has been updated for eprTa-2020 on 2016-01-27.

At the end of this stage, the compiler type checks Tiger programs, and annotates the
AsT. Clear error messages are required.

Relevant lecture notes include names.pdf!”, type-checking.pdf!®.

4.8.1 TC-4 Goals

Things to learn during this stage that you should remember:

Function template and member function templates
Functions template are quite convenient to factor code that looks alike but
differs by the nature of its arguments. Member function templates are used
to factor error handling the TypeChecker.

Virtual member function templates
You will be asked why there can be no such thing in C++.

Template specialization
Although quite different in nature, types and functions are processed in a
similar fashion in a Tiger compiler: first one needs to visit the headers (to
introduce the names in the scope, and to check that names are only defined
once), and then to visit the bodies (to bind the names to actual values). We
use templates and template specialization to factor this. See also the Template
Method.

17 https://www.lrde.epita.fr/ tiger//lecture-notes/slides/ccmp/names.pdf.
18 https://www.lrde.epita.fr/ “tiger//lecture-notes/slides/ccmp/type-checking.pdf.

https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/names.pdf
https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/type-checking.pdf

110 The Tiger Compiler Project Assignment

The Template Method design pattern
The Template Method allows to factor a generic algorithm, the steps of which
are specific. This is what we use to type check function and type declarations.
Do not confuse Template Method with member function template, the order
matters. Remember that in English the noun is usually last, preceded by
qualifier.

Type-checking
What it is, how to implement it.

Stack unwinding
What it means, and when the C++ standard requires it from the compiler.

4.8.2 TC-4 Samples

Type checking is optional, invoked by --types-compute. As for the computation of
bindings, this option only handles programs with no object construct. To perform the
type-checking of programs with objects, use ——object-types-compute.

Implementing overloaded functions in Tiger is an option, which requires the im-
plementation of a different type checker, triggered by --overfun-types-compute (see
Section 4.12 [TC-A], page 123). The option --typed/-T makes sure one of them was run.

1 + ll2|l

File 4.31: int-plus-string.tig
$ tc int-plus-string.tig

Example 4.37: tc int-plus-string.tig

$ tc -T int-plus-string.tig
int-plus-string.tig:1.5-7: type mismatch

right operand type: string
expected type: int
=5

Example 4.38: tc -T int-plus-string.tig
The type checker shall ensure loop index variables are read-only.

/* error: index variable erroneously assigned to. */
for 1 := 10 to 1 do
i=1i-1

File 4.32: assign-loop-var.tig

$ tc -T assign-loop-var.tig
assign-loop-var.tig:3.3-12: variable is read only
=5

Example 4.39: tc -T assign-loop-var.tig
When there are several type errors, it is admitted that some remain hidden by others.

unknown_function(unknown_variable)

File 4.33: unknowns.tig

$ tc -T unknowns.tig

Chapter 4: Compiler Stages 111

unknowns.tig:1.1-34: undeclared function: unknown_function
=4

Example 4.40: tc -T unknowns.tig
Be sure to check the type of all the constructs.
if 1 then 2

File 4.34: bad-if.tig
$ tc -T bad-if.tig
bad-if.tig:1.1-11: type mismatch
then clause type: int

else clause type: void
=5

Example 4.41: tc -T bad-if.tig

Be aware that type and function declarations are recursive by chunks. For instance:

let
type one = { hd : int, tail : two }
type two = { hd : int, tail : one }
function one(hd : int, tail : two) : one
= one { hd = hd, tail = tail }
function two(hd : int, tail : ome) : two
= two { hd = hd, tail = tail }

var one := one(11l, two(22, nil))
in

print_int(one.tail.hd); print("\n")
end

File 4.35: mutuals.tig
$ tc -T mutuals.tig

Example 4.42: tc -T mutuals.tig
In case you are interested, the result is:

$ tc -H mutuals.tig >mutuals.hir

Example 4.43: tc -H mutuals.tig >mutuals.hir

$ havm mutuals.hir
22

Example 4.44: havm mutuals.hir
The type-checker must catch erroneous inheritance relations.

let
/* Mutually recursive inheritance. */
type A = class extends A {}

/* Mutually recursive inheritance. */
type B = class extends C {}
type C = class extends B {}

112 The Tiger Compiler Project Assignment

/* Class inherits from a non-class type. */
type E = class extends int {}

in

end

File 4.36: bad-super-type.tig

$ tc --object-types-compute bad-super-type.tig
bad-super-type.tig:3.12-29: recursive inheritance: A
bad-super-type.tig:6.12-29: recursive inheritance: C
bad-super-type.tig:10.26-28: class type expected, got: int
=5

Example 4.45: tc --object-types-compute bad-super-type.tig

Handle the type-checking of TypeDecs with care in object::TypeChecker: they
are processed in three steps, while other declarations use a two-step visit. The
object: : TypeChecker visitor proceeds as follows when it encounters a TypeDecs:

1. Visit the headers of all types in the block.

2. Visit the bodies of all types in the block, but ignore members for each type being a
class.

3. For each type of the block being a class, visit its members.
This three-pass visit allows class members to make forward references to other types

defined in the same block of types, for instance, instantiate a class B from a class A
(defined in the same block), even if B is defined after A.

let
/* A block of types. */
class A
{

/* Valid forward reference to B, defined in the same block
as the class enclosing this member. */
var b := new B

}
type t = int
class B
{
}
in
end

File 4.37: forward-reference-to-class.tig

$ tc --object-types-compute forward-reference-to-class.tig

Example 4.46: tc --object-types-compute forward-reference-to-class.tig

(See object: :TypeChecker: :operator () (ast: : TypeDecs&) for more details.

4.8.3 TC-4 Given Code

Some code is provided through the ‘tc-base’ repository, using tag ‘2020-tc-base-4.0".
For a description of the new module, see Section 3.2.11 [src/type], page 61.

Chapter 4: Compiler Stages 113

4.8.4 TC-4 Code to Write
What is to be done.

ast::Typable
ast::TypeConstructor

Because many asT nodes will be annotated with their type, the feature is
factored by these two classes. See [Typable], page 60, and [TypeConstructor],
page 60, for details.

ast::Exp, ast::Dec, ast:: Ty

These are typable.

ast::FunctionDec, ast::TypeDec, ast:: Ty

These build types.

src/type/type.*,
src/type/array. *,
src/type/builtin-types. *,
src/type/class.*,
src/type/function. *,
src/type/method. *,
src/type/named. *,
src/type/nil. *,
src/type/record. *

Implement the Singletons type: :String, type: :Int, and type: :Void. Using
templates would be particularly appreciated to factor the code between the
three singleton classes, see Section 4.8.5 [TC-4 Options|, page 114.

The remaining classes are incomplete.

Pay extra attention to type::operator==(const Type& a, const Type& b)
and type: :Type: :compatible_with.

type: :TypeChecker
object: :TypeChecker

type::
type::

type::

Of course this is the most tricky part. We hope there are enough comments in
there so that you understand what is to be done. Please, post your questions
and help us improve it.

It is also the type::TypeChecker’s job to set the record_type in the
type::Nil class. record_type is holding some information about the
type: :Record type associated to the type::Nil type. We choose to handle
the record_type only when no error occured in the type-checking process.

GenVisitor
GenDefaultVisitor

type: : Types are visitable. You must implement the default visitor class tem-
plate, which walks through the tree of types doing nothing. It’s used as a base
class for the type visitors.

PrettyPrinter

In order to output nice error messages, the types need to be printed. You must
implement a visitor that prints the types, similar to ast: :PrettyPrinter.

Computing the Escaping Variables

The implementation of Section 4.7 [TC-E], page 107, suggested at Section 4.5
[TC-3], page 98, becomes a mandatory assignment at Section 4.8 [TC-4],
page 109.

114 The Tiger Compiler Project Assignment

4.8.5 TC-4 Options

These are features that you might want to implement in addition to the core features.

type: :Error
One problem is that type error recovery can generate false errors. For instance
our compiler usually considers that the type for incorrect constructs is Int,
which can create cascades of errors:

"666" = if 000 then 333 else "666"

File 4.38: is_devil.tig

$ tc -T is_devil.tig
is_devil.tig:1.9-34: type mismatch
then clause type: int

else clause type: string
is_devil.tig:1.1-34: type mismatch
left operand type: string

right operand type: int
=5

Example 4.47: tc -T is_devil.tig

One means to avoid this issue consists in introducing a new type,
type: :Error, that the type checker would never complain about. This can
be a nice complement to ast: :Error.

Various Desugaring
See Section 4.9 [TC-D], page 116, for more details. This is quite an easy
option, and a very interesting one. Note that implementing desugaring makes
TC-5 easier.

Bounds Checking
If you felt TC-D was easy, then implementing bounds checking should be easy
too. See Section 4.11 [TC-B], page 119.

Overloaded Tiger
See Section 4.12 [TC-A], page 123, for a description of this ambitious option.

Renaming object-oriented constructs
Like TC-R, this task consists in writing a visitor renaming AsT nodes holding
names (either defined or used), this time with support for object-oriented con-
structs (option --object-rename). This visitor, object: :Renamer, shall also
update named types (type::Named) and collect the names of all (renamed)
classes. This option is essentially a preliminary step of TC-O (see the next
item).

Desugaring Tiger to Panther

If your compiler is complete w.r.t. object constructs (in particular, the type-
checking and the renaming of objects is a requirement), then you can im-
plement this very ambitious option, whose goal is to convert a Tiger pro-
gram with object constructs into a program with none of them (i.e., in
the subset of Tiger called Panther). This work consists in completing the
object: :DesugarVisitor and implementing the —--object-desugar option.
See Section 4.13 [TC-O], page 126.

Chapter 4: Compiler Stages 115

4.8.6 TC-4 raq

Stupid Types

One can legitimately wonder whether the following program is correct:

let type weirdo = array of weirdo

in

print("I’m a creep.\n")

end
the answer is "yes", as nothing prevents this in the Tiger specifications. This
type is not usable though.

Is type: :Field useful?
Using std: :pair in type: :Record is probably enough, and simpler.
Is nil compatible with objects?
For instance, is the following example valid?
var a : Object := nil

The answer is yes: nil is both compatible with records and objects.

Can one redefine the built-in class Object?
Yes, if the rules of the Tiger Compiler Reference Manual are honored, notably:
— Every class has a super class, defaulting to the built-in class Object
(syntactic sugar of class without an extends clause).

— Recursive inheritance (within the same block of types) is forbidden.

For example,
let class Object {} in end
is invalid, since it is similar to
let class Object extends Object {} in end
and recursive inheritance is invalid.
One can try and introduce a Dummy type as a workaround
let
class Dummy {}
class Object extends Dummy {}
in
end
but this is just postponing the problem, since the code above is the same as
the following:
let
class Dummy extends Object {}
class Object extends Dummy {}
in
end
where there is still a recursive inheritance.

The one solution is to define our Dummy type beforehand (i.e., in its own block
of type declarations), then to redefine Object.
/* Valid. */
let
class Dummy {3}
in
let

116 The Tiger Compiler Project Assignment

class Object extends Dummy {}
in
end
end

Take care: this new Object type is different from the built-in one. The code
below gives an example of an invalid mix of these two types.

let
class Dummy {}

function get_builtin_object() : Object = new Object /* builtin */

in
let
class Object extends Dummy {} /* custom */
/* Invalid assignment, since an instance of the builtin Object
is *not* an instance of the custom Object. */
var o : Object /* custom */ := get_builtin_object() /* builtin */
in
end
end

4.8.7 TC-4 Improvements

Possible improvements include:

A Singleton template
Implementations of the Singleton design pattern are frequently needed; the
type module alone requires three instances! Therefore a template to generate
such singletons is desirable. There are two ways to address this issue: tailored
to type (directly in src/type/builtin-types.*), or in a completely generic
way (in lib/misc/singleton.*). See [Modern C++ Design|, page 243, for a
topnotch implementation.

A more verbose type display
When reporting a type, one must be careful with recursive definitions that
could produce never ending outputs. The suggested simple implementation
ensure this by limiting the Named-depth (i.e., the number of Named objects
traversed) to one. Another, nicer possibility, would be to limit the expansion
to once per Named.

A Graphical User Interface
tcsh is up and running. You might want to use it to implement a GUI using
Python’s Tkinter!?.

4.9 TC-D, Removing the syntactic sugar from the Abstract
Syntax Tree
TC-D is an optional assignment.
This section has been updated for EPrTA-2009 on 2007-04-26.

At the end of this stage, the compiler must be able to remove syntactic sugar from a
type-checked ast. These features are triggered by the options --desugar and --overfun-
desugar.

19 http://docs.python.org/2/library/tkinter.html.

http://docs.python.org/2/library/tkinter.html

Chapter 4: Compiler Stages

4.9.1 TC-D Samples

String comparisons can be translated to an equivalent AsST using function calls, before the
translation to HIR.

||fooll = ||barll

File 4.39: string-equality.tig

$ tc --desugar-string-cmp --desugar -A string-equality.tig
/* == Abstract Syntax Tree. == */

primitive
primitive
primitive
primitive
primitive
primitive
primitive
primitive
primitive
primitive
primitive
primitive
primitive
primitive
function

(

print(string_0 : string)
print_err(string_1 : string)
print_int(int_2 : int)

flush()

getchar() : string

ord(string_3 : string) : int

chr(code_4 : int) : string

size(string 5 : string) : int

streq(s1_6 : string, s2_7 : string) : int
strcmp(s1_8 : string, s2_9 : string) : int

substring(string_10 : string, start_11 : int, length_12 :

concat(fst_13 : string, snd_14 : string) : string
not(boolean_15 : int) : int
exit(status_16 : int)

_main() =

streq("foo", "bar");

O

Example 4.48:

tc --desugar-string-cmp --desugar -A string-equality.tig

IIfooll < ||barll

File 4.40: string-less.tig

$ tc --desugar-string-cmp --desugar -A string-less.tig

/* == Abstract Syntax Tree. == */
primitive print(string O : string)
primitive print_err(string_1 : string)
primitive print_int(int_2 : int)
primitive flush()

primitive getchar() : string

primitive
primitive
primitive
primitive
primitive
primitive
primitive
primitive
primitive

ord(string_3 : string) : int

chr(code_4 : int) : string

size(string_5 : string) : int

streq(s1_6 : string, s2_7 : string) : int
strcmp(s1_8 : string, s2_9 : string) : int

substring(string_10 : string, start_11 : int, length_12 :

concat(fst_13 : string, snd_14 : string) : string
not(boolean_15 : int) : int
exit(status_16 : int)

117

int)

int)

string

string

118 The Tiger Compiler Project Assignment

function _main() =
(
(strcmp("foo", "bar") < 0);
O

Example 4.49: tc --desugar-string-cmp --desugar -A string-less.tig
for loops can be seen as sugared while loops, and be transformed as such.

for i := 0 to 10 do print_int(i)

File 4.41: simple-for-loop.tig

$ tc --desugar-for --desugar -A simple-for-loop.tig
/* == Abstract Syntax Tree. == */

primitive print(string_O : string)

primitive print_err(string 1 : string)

primitive print_int(int_2 : int)

primitive flush()

primitive getchar() : string

primitive ord(string_3 : string) : int

primitive chr(code_4 : int) : string

primitive size(string 5 : string) : int

primitive streq(s1_6 : string, s2_7 : string) : int
primitive strcmp(s1_8 : string, s2_9 : string) : int

primitive substring(string_10 : string, start_11 : int, length_ 12 :

primitive concat(fst_13 : string, snd_14 : string) : string
primitive not(boolean_15 : int) : int
primitive exit(status_16 : int)
function _main() =
(
let
var _lo := 0
var _hi := 10
var i_17 := _lo
in
(if (_lo <= _hi)
then (while 1 do
(
print_int(i_17);
(if (i_17 = _hi)
then break
else));
(.17 := (i_17 + 1))
)
else)
end;

O

Example 4.50: tc --desugar-for --desugar -A simple-for-loop.tig

int)

string

Chapter 4: Compiler Stages 119

4.10 TC-I, Function inlining

TC-I is an optional assignment.

This section has been updated for EPITA-2009 on 2007-04-26.
At the end of this stage, the compiler inlines function bodies where functions are called.
In a later pass, useless functions can be pruned from the ast. These features are triggered
by the options --inline and --prune. If you also implemented function overloading (see
Section 4.12 [TC-A], page 123), use the options -—overfun-inline and --overfun-prune.

4.10.1 TC-I Samples

let

function sub(i: int, j: int) :int = i + j
in

sub(1, 2)
end

File 4.42: sub.tig

$ tc -X --inline -A sub.tig
/* == Abstract Syntax Tree. == */

function _main() =

(
let
function sub_2(i_0 : int, j_1 : int) : int =
(i_0 + j_1)
in
let
var i_0 : int :=1
var j_1 : int := 2
var res : int := (i_0 + j_1)
in
res
end
end;
O
)

Example 4.51: tc -X --inline -A sub.tig

Recursive functions cannot be inlined.

4.11 TC-B, Array bounds checking

TC-B is an optional assignment.
This section has been updated for prTa-2020 on 2015-01-31.

At the end of this stage, the compiler adds dynamic checks of the bounds of arrays to
the asT. Every access (either on read or write) is checked, and the program should stops
with the runtime exit code (120) on out-of-bounds access. This feature is triggered by the
options —-bounds-checks-add and --overfun-bounds-checks-add.

4.11.1 TC-B Samples

Here is an example with an out-of-bounds array subscript, run with HAVM.

120

let
type int_array = array of

var foo := int_array [10]
in
/* Out-of-bounds access.
foo[20]
end

File 4.43: subscript-read.tig

$ tc --bounds-checks-add -A
/* Abstract Syntax Tree.

primitive print(string 0 :
primitive
primitive
primitive
primitive
primitive
primitive
primitive
primitive
primitive
primitive
primitive
primitive
primitive
function _
let
type
type _int_array = {
arr : __int_array,
size int

}

print_int(int_2 :
flush O
getchar()
ord(string_3
chr(code_4 : int)
size(string_5 :
streq(s1_6
strcmp(s1_8 :

concat(fst_13 :
not (boolean_15 :
exit(status_16 :
main() =

function _check_bounds(a :

(
(if (if (index < 0)
then 1

string
string)

string)

string, s2_7
string, s2_9 :
substring(string_10 :
string, snd_14 :
int)
int)

The Tiger Compiler Project Assignment

int
of 3

subscript-read.tig

*/

string)
print_err(string_1

string)
int)

int

string

int

string)
string)
string, start_11
string)

int

int

int, length_12 :
string

int)

int

__int_array = array of int

_int_array, index : int, location : string)

else ((index >= a.size) <> 0))

then (

print_err(location);
print_err(": array index out of bounds.\n");

exit (120)
)
else ());
index

in

let

type _box_int_array_
int_array_17,

arr

17 = {

string

int

Chapter 4: Compiler Stages 121

size : int
}
type int_array_17 = array of int
var foo_18 := let
var _size := 10
in
_box_int_array_17 {
arr = int_array_17 [_size] of 3,

size = _size
}
end
in
foo_18.arr[_check_bounds(_cast(foo_18, _int_array), 20, "1.1")]
end;
O
)
end

Example 4.52: tc --bounds-checks-add -A subscript-read.tig

$ tc --bounds-checks-add -L subscript-read.tig >subscript-read.lir

Example 4.53: tc ——bounds-checks-add -L subscript-read.tig >subscript-
read.lir
$ havm subscript-read.lir
1.1: array index out of bounds.
=120

Example 4.54: havm subscript-read.lir

And here is an example with an out-of-bounds assignment to an array cell, tested with
Nolimips.

let
type int_array = array of int
var foo := int_array [10] of 3
in

/* Out-of-bounds assignment. */
foo[42] := 51
end

File 4.44: subscript-write.tig

$ tc --bounds-checks-add -A subscript-write.tig
/* == Abstract Syntax Tree. == */

primitive print(string_O : string)
primitive print_err(string_1 : string)
primitive print_int(int_2 : int)
primitive flush()

primitive getchar() : string

primitive ord(string_3 : string) : int
primitive chr(code_4 : int) : string
primitive size(string 5 : string) : int

122 The Tiger Compiler Project Assignment

primitive streq(s1_6 : string, s2_7 : string) : int
primitive strcmp(sl1_8 : string, s2_9 : string) : int

primitive substring(string_10 : string, start_11 : int, length 12 :

primitive concat(fst_13 : string, snd_14 : string) : string
primitive not(boolean_15 : int) : int
primitive exit(status_16 : int)
function _main() =
let
type __int_array = array of int
type _int_array = {
arr : __int_array,
size : int

}

function _check_bounds(a : _int_array, index : int, location :

(
(if (if (index < 0)
then 1
else ((index >= a.size) <> 0))
then (
print_err(location);
print_err(": array index out of bounds.\n");
exit (120)
)
else ());
index

in

let
type _box_int_array_17 = {
arr : int_array_17,
size : int
}
type int_array_17 = array of int
var foo_18 := let
var _size := 10
in
_box_int_array_17 {
arr = int_array_17 [_size] of 3,
size = _size
}
end
in
(foo_18.arr[_check_bounds(_cast(foo_18, _int_array), 42,
end;
O
)

end

Example 4.55: tc --bounds-checks-add -A subscript-write.tig

$ tc --bounds-checks-add -S subscript-write.tig >subscript-write.

int)

string)

||1.1||)]

S

string

int

:= 51)

Chapter 4: Compiler Stages 123

Example 4.56: tc —-bounds-checks-add -S subscript-write.tig >subscript-
write.s
$ nolimips -1 nolimips -Nue subscript-write.s
1.1: array index out of bounds.
=120

Example 4.57: nolimips -1 nolimips -Nue subscript-write.s

4.11.2 TC-B raq

The bounds checking extension relies on the use of casts (see Section 4.11.1 [TC-B Sam-
ples], page 119), see See Section “Language Extensions” in Tiger Compiler Reference Man-
ual. However, a simplistic implementation of casts introduces ambiguities in the grammar
that even a GLR parser cannot resolve dynamically.
Consider the following example, where foo is an l-value :
_cast(foo, string)
This piece of code can be parsed in two different ways:
1. exp -> cast-exp —> exp -> lvalue (foo)
2. exp -> lvalue -> cast-lvalue -> lvalue (foo0)
As the cast must preserve the l-value nature of foo, it must itself produce an l-value.

Hence we want the latter interpretation. This is a true ambiguity, not a local ambiguity
that GLR can resolve simply by “waiting for enough look-ahead”.

To help it take the right decision, you can favor the right path by assigning dynamic pri-
orities to relevant rules, using Bison’s %dprec keyword. See Bison’s manual (see Section 5.9
[Flex & Bison]|, page 251) for more information on this feature.

4.12 TC-A, Ad Hoc Polymorphism (Function Overloading)

TC-A is an optional assignment.
This section has been updated for EP1TA-2009 on 2007-04-26.
At the end of this stage, the compiler must be able to resolve overloaded function

calls. These features are triggered by the options --overfun-bindings-compute and
--overfun-types-compute/-0.

Relevant lecture notes include: names.pdf?°.

4.12.1 TC-A Samples

Overloaded functions are not supported in regular Tiger.

let
function null(i: int) : int
function null(s: string) : int
in
null("123") = null(123)
end

]
]
(@]

File 4.45: sizes.tig

$ tc -Xb sizes.tig
sizes.tig:3.3-41: redefinition: null

20 https://www.lrde.epita.fr/ “tiger//lecture-notes/slides/ccmp/names.pdf.

https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/names.pdf

124 The Tiger Compiler Project Assignment

sizes.tig:2.3-40: first definition
=4

Example 4.58: tc -Xb sizes.tig

Instead of regular binding, overloaded binding binds each function call to the set of
active function definitions. Unfortunately displaying this set is not implemented, so we

cannot see them in the following example:

$ tc -X --overfun-bindings-compute -BA sizes.tig
/* == Abstract Syntax Tree. == %/

function _main /* 0x55940eca7890 */() =
(
let

function null /* 0x55940eca7c20 */(i /* 0x55940ecaa700 */ :

(i /* 0x55940ecaa700 */ = 0)

function null /* 0x55940eca8610 */(s /* 0x55940eca9cel */ :

(s /* 0x55940eca9ce0 */ = "")
in
(null /% 0 *x/("123") = null /* 0 *x/(123))
end;

O

Example 4.59: tc -X --overfun-bindings-compute -BA sizes.tig

int /* 0 x/)

string /* 0 */)

The selection of the right binding cannot be done before type-checking, since precisely
overloading relies on types to distinguish the actual function called. Therefore it is the

type checker that “finishes” the binding.

$ tc -XOBA sizes.tig
/* == Abstract Syntax Tree. == %/

function _main /* 0x55ce2d384890 */() =

(
let

function null /* 0x55ce2d386ed0 */(i /* 0x55ce2d385e00 */ :

(i /* 0x55ce2d385e00 */ = 0)

function null /* 0x55ce2d384b00 */(s /* 0x55ce2d3850a0 */ :

(s /* 0x55ce2d3850a0 x/ = "")
in

int /* 0 x/)

string /* 0 */)

(null /* 0x55ce2d384b00 */("123") = null /* 0x55ce2d386ed0 */(123))

end;

O

Example 4.60: tc -X0BA sizes.tig

There can be ambiguous (overloaded) calls.

let
type foo = {}
function empty(f: foo) : int = f
type bar = {}

nil

int

int

Chapter 4: Compiler Stages 125

function empty(b: bar) : int = b = nil
in

empty(foo {});

empty (bar {});

empty(nil)
nd

0]

File 4.46: over-amb.tig
$ tc -X0 over-amb.tig
error] over—amb.tig:9.3-12: nil ambiguity calling ‘empty’
error] matching declarations:

empty @

{

f : foo =
{

error] by

i

empty @

{

b : bar =
{

}

}

=5

Example 4.61: tc -X0 over-amb.tig

The spirit of plain Tiger is kept: a “chunk” is not allowed to redefine a function with
the same signature:

let
function foo(i: int) = ()
function foo(i: int) = Q)
in
foo(42)
end

File 4.47: over-duplicate.tig

$ tc -X0 over-duplicate.tig

over-duplicate.tig:3.3-27: function complete redefinition: foo
over—-duplicate.tig:2.3-27: first definition

=5

Example 4.62: tc -X0 over-duplicate.tig

but a signature can be defined twice in different blocks of function definitions, in which
case the last defined function respecting the calling signature is used..

let
function foo(i: int) = Q)
in
let
function foo(i: int) = ()

in

126 The Tiger Compiler Project Assignment

foo(51)
end
end

File 4.48: over-scoped.tig

$ tc -XOBA over-scoped.tig
/* == Abstract Syntax Tree. == */

function _main /* 0x55818121a110 */() =

(
let
function foo /* 0x55818121bed0 */(i /* 0x55818121ae00 */ : int /* 0 */) =
O
in
let
function foo /* 0x55818121a230 */(i /* 0x55818121a0al0 */ : int /* 0 */) =
O
in
foo /* 0x55818121a230 */(51)
end
end;
O
)

Example 4.63: tc -XOBA over-scoped.tig

4.12.2 TC-A Given Code

No additional code is provided.

4.12.3 TC-A Code to Write
See Section 3.2.8 [src/ast], page 59, and Section 3.2.13 [src/overload], page 62.

4.13 TC-0O, Desugaring object constructs
TC-0 is an optional assignment.
This section has been updated for EriTa-2012 on 2015-01-21.

At the end of this stage, the compiler must be able to desugar object constructs into
plain Tiger without objects, a.k.a. Panther. This feature is triggered by the option
--object-desugar. Do not forget that you need to complete and write all missing parts
of the object support (parser, ast, binder, type-checker, etc...). Make sure that all of these
are correctly working before starting this bonus.

This a very hard assignment. If you plan to work on it, start with very simple programs,
and progressively add new desugaring patterns. Be sure to keep a complete test suite to
cover all cases and avoid regressions.

Achieving a faithful and complete translation from Tiger to Panther requires a lot of
work. Even the reference implementation of the object-desugar pass (about 1,000 lines
of code) is not perfect, as some inputs may generate invalid Tiger code after desugaring
objects (in particular when playing with scopes).

Chapter 4: Compiler Stages 127

4.13.1 TC-O Samples

Be warned: even Small object-oriented Tiger programs may generate complicated desug-
ared outputs.

let

class A {}
in
end

File 4.49: empty-class.tig

$ tc -X --object-desugar -A empty-class.tig
/* == Abstract Syntax Tree. == %/

function _main() =
let
type _variant_Object = { exact_type : int }
type _variant_A_O0 = { exact_type : int }
var _id_Object := 0
var _id_A_0 :=1
function _new_Object() : _variant_Object =
_variant_Object { exact_type = _id_Object }

in
(
let
function _new_A_0() : _variant_A_O =
let
in
_variant_A_O { exact_type = _id_A_O }
end
function _upcast_A_O_to_Object(source : _variant_A_0) : _vari-
ant_0Object =
_variant_0Object { exact_type = _id_A_O }
in
O
end;
O
)
end

Example 4.64: tc -X --object-desugar -A empty-class.tig

let
class B
{
var a := 42
method m() : int = self.a
}
var b := new B
in
b.a := b1

end

128 The Tiger Compiler Project Assignment

File 4.50: simple-class.tig

$ tc -X --object-desugar -A simple-class.tig
/* == Abstract Syntax Tree. == */

function _main() =
let
type _variant_Object = {
exact_type : int,
field_B_1 : _contents_B_1
}
type _contents_B_1 = { a : int }
type _variant_B_1 = {
exact_type : int,
field_B_1 : _contents_B_1
}
var _id_Object := 0
var _id_B_1 :=1
function _new_Object() : _variant_Object =
_variant_Object {
exact_type = _id_0Object,
field_B_1 = nil
}

in

let
function _new_B_1() : _variant B_1 =
let
var contents_B_1 := _contents_B_1 { a = 42 }
in
_variant_B_1 {
exact_type = _id_B_1,
field_B_1 = contents_B_1
}
end
function _upcast_B_1_to_Object(source : _variant_B_1)
ant_QObject =
_variant_0Object {
exact_type = _id_B_1,
field_B_1 = source.field_B_1
}

function _method_B_1_m(self : _variant_B_1) : int =
self.field_B_1.a
function _dispatch_B_1_m(self : _variant_B_1) : int =

_method_B_1_m(self)
var b_2 := _new_B_10)
in
(b_2.field_B_1.a := 51)
end;

O

. _vari-

Chapter 4: Compiler Stages 129

end

Example 4.65: tc -X —--object-desugar -A simple-class.tig

let
class C
{
var a := 0
method m() : int = self.a
}
class D extends C
{
var b := 9
/* Override C.m(). =*/
method m() : int = self.a + self.b
}
var d : D := new D
/* Valid upcast due to inclusion polymorphism. */
var ¢ : C :=d
in
c.a := 42;

/* Note that accessing ‘c.b’ is not allowed, since ‘c’ is
statically known as a ‘C’, even though it is actually a ‘D’
at run time. */
let
/* Polymorphic call. x*/
var res := c.m(Q)

in
print_int(res);
print("\n")

end

end

File 4.51: override.tig

$ tc --object-desugar -A override.tig
/* == Abstract Syntax Tree. == */

primitive print(string O : string)

primitive print_err(string_1 : string)

primitive print_int(int_2 : int)

primitive flush()

primitive getchar() : string

primitive ord(string_3 : string) : int

primitive chr(code_4 : int) : string

primitive size(string_ 5 : string) : int

primitive streq(s1_6 : string, s2_7 : string) : int
primitive strcmp(s1_8 : string, s2_9 : string) : int
primitive substring(string 10 : string, start_11 : int, length_12 : int) : string
primitive concat(fst_13 : string, snd_14 : string) : string
primitive not(boolean_15 : int) : int

primitive exit(status_16 : int)

function _main() =

130 The Tiger Compiler Project Assignment

let
type _variant_Object = {
exact_type : int,
field_C_18 : _contents_C_18,
field_D_20 : _contents_D_20
}
type _contents_C_18 = { a : int }
type _variant_C_18 = {
exact_type : int,
field_C_18 : _contents_C_18,
field_D_20 : _contents_D_20
}
type _contents_D_20 = { b : int }
type _variant_D_20 = {
exact_type : int,
field_D_20 : _contents_D_20,
field_C_18 : _contents_C_18
}
var _id_Object :=
var _id_C_18 :=1
var _id_D_20 := 2
function _new_Object() : _variant_Object =
_variant_Object {
exact_type = _id_0Object,

0

field_C_18 = nil,
field_D_20 = nil
}
in
(
let
function _new_C_18() : _variant_C_18 =
let
var contents_C_18 := _contents_C_18 { a = 0 }
in
_variant_C_18 {
exact_type = _id_C_18,
field_C_18 = contents_C_18,
field_D_20 = nil
}
end
function _upcast_C_18_to_0Object(source : _variant_C_18)
ant_0Object =
_variant_0Object {
exact_type = _id_C_18,
field_C_18 = source.field_C_18,
field_D_20 = source.field_D_20
}
function _downcast_C_18_to_D_20(source : _variant_C_18)
ant_D_20 =

_variant_D_20 {
exact_type = _id_D_20,
field_D_20 = source.field_D_20,

: _vari-

: _vari-

Chapter 4: Compiler Stages 131

field_C_18 = source.field_C_18
}
function _method_C_18_m(self : _variant_C_18) : int =
self.field_C_18.a
function _dispatch_C_18_m(self : _variant_C_18) : int =
(if (self.exact_type = _id_D_20)
then _method_D_20_m(_downcast_C_18_to_D_20(self))
else _method_C_18_m(self))
function _new_D_20() : _variant_D_20 =
let
var contents_D_20 :
var contents_C_18 :
in
_variant_D_20 {
exact_type
field_D_20
field_C_18
+
end
function _upcast_D_20_to_C_18(source : _variant_D_20) : _vari-
ant_C_18 =
_variant_C_18 {
exact_type = _id_D_20,
field_C_18 source.field_C_18,
field_D_20 source.field_D_20

]
o ©

_contents_D_20 { b
_contents_C_18 { a

e

_id_D_20,
contents_D_20,
contents_C_18

+
function _upcast_D_20_to_Object(source : _variant_D_20) : _vari-
ant_QObject =
_variant_Object {
exact_type = _id_D_20,
field_C_18 source.field_C_18,
field_D_20 = source.field_D_20

+

function _method_D_20_m(self : _variant_D_20) : int =
(self.field_C_18.a + self.field_D_20.b)

function _dispatch_D_20_m(self : _variant_D_20) : int =
_method_D_20_m(self)

var d_21 : _variant_D_20 := _new_D_20Q)
var c_22 : _variant_C_18 := _upcast_D_20_to_C_18(d_21)
in
(
(c_22.field_C_18.a := 42);
let
var res_23 := _dispatch_C_18_m(c_22)
in
(
print_int(res_23);
print("\n")
)
end

end;

132 The Tiger Compiler Project Assignment

O
)

end

Example 4.66: tc --object-desugar -A override.tig

$ tc --object-desugar -L override.tig >override.lir

Example 4.67: tc --object-desugar -L override.tig >override.lir

$ havm override.lir
51

Example 4.68: havm override.lir

4.14 TC-5, Translating to the High Level Intermediate
Representation

2020-TC-5 submission is Saturday, April 29th 2018 at 11:42
This section has been updated for eprTa-2020 on 2016-01-27.

At the end of this stage the compiler translates the AsT into the high level intermediate
representation, HIR for short.

Relevant lecture notes include intermediate.pdf?®'.

4.14.1 TC-5 Goals

Things to learn during this stage that you should remember:

Smart pointers
The techniques used to implement reference counting via the redefinition of
operator-> and operator*. std::unique_ptrs are also smart pointers.

std::unique_ptr
The intermediate translation is stored in an unique_ptr to guarantee it is
released (delete) at the end of the run.

Reference counting
The class template misc: :ref provides reference counting smart pointers to
ease the memory management. It is used to handle nodes of the intermediate
representation, especially because during TC-6 some rewriting might trans-
form this tree into an pag, in which case memory deallocation is complex.

Variants C++ features the union keyword, inherited from C. Not only is union not
type safe, it also forbids class members. Some people have worked hard to
implement union a la C++, i.e., with type safety, polymorphism etc. These
union are called “discriminated unions” or “variants” to follow the vocabu-
lary introduced by Caml. See the papers from Andrei Alexandrescu: Dis-
criminated Unions (i)??, Discriminated Unions (ii)?*, Generic: Discriminated
Unions (iii)?* for an introduction to the techniques. We use misc::variant
in temp.

21
22

https://www.lrde.epita.fr/ “tiger//lecture-notes/slides/ccmp/intermediate.pdf.

http: / / www . drdobbs . com / cpp / discriminated-unions-i / 184403821 7
queryText=alexandrescu’,2Bdiscriminated’2Bunions
z http: / / www . drdobbs . com / cpp / discriminated-unions-ii / 184403828 7

queryText=alexandrescu’,2Bdiscriminated’2Bunions

2 http: / / www . drdobbs . com / generic-discriminated-unions-iii / 184403834 7

queryText=alexandrescu/,2Bdiscriminated’2Bunions

https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/intermediate.pdf
http://www.drdobbs.com/cpp/discriminated-unions-i/184403821?queryText=alexandrescu%2Bdiscriminated%2Bunions
http://www.drdobbs.com/cpp/discriminated-unions-i/184403821?queryText=alexandrescu%2Bdiscriminated%2Bunions
http://www.drdobbs.com/cpp/discriminated-unions-ii/184403828?queryText=alexandrescu%2Bdiscriminated%2Bunions
http://www.drdobbs.com/cpp/discriminated-unions-ii/184403828?queryText=alexandrescu%2Bdiscriminated%2Bunions
http://www.drdobbs.com/generic-discriminated-unions-iii/184403834?queryText=alexandrescu%2Bdiscriminated%2Bunions
http://www.drdobbs.com/generic-discriminated-unions-iii/184403834?queryText=alexandrescu%2Bdiscriminated%2Bunions

Chapter 4: Compiler Stages 133

I (Akim) strongly encourage you to read these enlightening articles.

Default copy constructor, default assignment operator
The C++ standard specifies that unless specified, default implementations of
the copy constructor and assignment operator must be provided by the com-
piler. There are some pitfalls though, clearly exhibited in the implementation
of misc::ref. You must be able to explain these pitfalls.

Template template parameters
C++ allows several kinds of entities to be used as template parameters. The
most well known kind is “type”: you frequently parameterize class templates
with types via ‘template <typename T>’ or ‘template <class T>’. But you
may also parameterize with a class template. The temp module heavily uses
this feature: understand it, and be ready to write similar code.

Explicit template instantiations
You must be able to explain how templates are “compiled”. In addition,
you know how to explicitly instantiate templates, and explain what it can
be used for. The implementation of temp::Identifier (and temp::Temp
and temp::Label) is based on these ideas. See the corresponding rule in
Section 2.4.3 [File Conventions|, page 32, for some explanations on this topic.

Covariant return
C++ supports covariance of the method return type. This feature is crucial to
implement methods such as clone, as in frame: :Access::clone(). Under-
stand return type covariance.

Lazy /delayed computation
The ‘Ix’, ‘Cx’, ‘Nx’, and ‘Ex’ classes delay computation to address context-
depend issues in a context independent way.

Intermediate Representations

A different approach of hierarchies
In this project, the AsT is composed of different classes related by inheritance
(as if the kinds of the nodes were class members). Here, the nodes are members
of a single class, but their nature is specified by the object itself (as if the kinds
of the nodes were object members).

Stack Frame, Activation Record
The implementation of recursion and automatic variables.

Inner functions and their impact on memory management at runtime
Reaching non local variables.

4.14.2 TC-5 Samples

TC-5 can be started (and should be started if you don’t want to finish it in a hurry) by
first making sure your compiler can handle code that uses no variables. Then, you can
complete your compiler to support more and more Tiger features.

4.14.2.1 TC-5 Primitive Samples
This example is probably the simplest Tiger program.
0

File 4.52: 0.tig
$ tc --hir-display O.tig

134 The Tiger Compiler Project Assignment

/* == High Level Intermediate representation. == */
Routine: _main
label main
Prologue
Body
seq
SXp
const 0
SXp
const O
seq end
Epilogue
label end

Example 4.69: tc --hir-display 0.tig

You should then probably try to make more difficult programs with literals only. Arith-
metics is one of the easiest tasks.

1+2%3

File 4.53: arith.tig

$ tc -H arith.tig
/* == High Level Intermediate representation. == */
Routine: _main
label main
Prologue
Body
seq
SXp
binop add
const 1
binop mul
const 2
const 3
SXp
const O
seq end
Epilogue
label end

Example 4.70: tc -H arith.tig
Use havm to exercise your output.

$ tc -H arith.tig >arith.hir

Example 4.71: tc -H arith.tig >arith.hir

$ havm arith.hir

Example 4.72: havm arith.hir

Chapter 4: Compiler Stages 135

Unfortunately, without actually printing something, you won’t see the final result,
which means you need to implement function calls. Fortunately, you can ask havm for a
verbose execution:

$ havm --trace arith.hir

error] checkinglLow

error] plaining

error] unparsing

error] checking

error| evaling

error] call (name main) []

error] 9.6-9.13: const 1

error] 11.8-11.15: const 2

error] 12.8-12.15: const 3

error] 10.6-12.15: binop mul 2 3
error] 8.4-12.15: binop add 1 6
error] 7.2-12.15: sxp 7

error| 14.4-14.11: const O

error] 13.2-14.11: sxp O

error] end call (name main) [] =0

Example 4.73: havm --trace arith.hir

If you look carefully, you will find an ‘sxp 7’ in there...

Then you are encouraged to implement control structures.

if 101 then 102 else 103

File 4.54: if-101.tig

$ tc -H if-101.tig
/* == High Level Intermediate representation. == */
Routine: _main
label main
Prologue
Body
seq
seq
cjump ne
const 101
const O
name 10
name 11
label 10
SXp
const 102
Jjump
name 12
label 11
SXp
const 103
label 12
seq end

136 The Tiger Compiler Project Assignment

SXp
const O
seq end
Epilogue
label end

Example 4.74: tc -H if-101.tig
And even more difficult control structure uses:

while 101
do (if 102 then break)

File 4.55: while-101.tig

$ tc -H while-101.tig
/* == High Level Intermediate representation. == */
Routine: _main
label main
Prologue
Body
seq
seq
label 11
cjump ne
const 101
const O
name 12
name 10
label 12
seq
cjump ne
const 102
const O
name 13
name 14
label 13
jump
name 10
Jjump
name 15
label 14
SXp
const O
label 15
seq end
Jjump
name 11
label 10
seq end
SXp
const O
seq end
Epilogue

Chapter 4: Compiler Stages 137

label end

Example 4.75: tc -H while-101.tig

Beware that HAVM has some known bugs with its handling of break, see [HAVM Bugs],
page 252.

4.14.2.2 TC-5 Optimizing Cascading If

Optimize the number of jumps needed to compute nested if, using ‘translate::Ix’. A
plain use of ‘translate: :Cx’ is possible, but less efficient.

Consider the following sample:

if if 11 < 22 then 33 < 44 else 55 < 66 then print("0K\n")

File 4.56: boolean.tig

a naive implementation will probably produce too many cjump instructions®:

$ tc --hir-naive -H boolean.tig
/* == High Level Intermediate representation. == */
label 17
"OK\n"
Routine: _main
label main
Prologue
Body
seq
seq
cjump ne
eseq
seq
cjump 1t
const 11
const 22
name 10
name 11
label 10
move
temp tO
eseq
seq
move
temp t1
const 1
cjump 1t
const 33
const 44
name 13
name 14
label 14
move
temp t1

25 The option --hir-naive is not to be implemented.

138

const O
label 13
seq end
temp t1
jump
name 12
label 11
move
temp tO
eseq
seq
move
temp t2
const 1
cjump 1t
const 55
const 66
name 15
name 16
label 16
move
temp t2
const O
label 15
seq end
temp t2
jump
name 12
label 12
seq end
temp tO
const O
name 18
name 19
label 18
SXp
call
name print
name 17
call end
Jjump
name 110
label 19
SXp
const O
Jjump
name 110
label 110
seq end
SXp
const O
seq end

The Tiger Compiler Project Assignment

Chapter 4: Compiler Stages 139

Epilogue
label end

Example 4.76: tc -—hir-naive -H boolean.tig

$ tc --hir-naive -H boolean.tig >boolean-1.hir

Example 4.77: tc --hir-naive -H boolean.tig >boolean-1.hir

$ havm --profile boolean-1.hir
error] /* Profiling. */

error] fetches from temporary :
error] fetches from memory
error] binary operations

error] function calls

error] stores to temporary
error] stores to memory

error| jumps

error] conditional jumps

error] /* Execution time. */
error] number of cycles : 19
0K

WNONFE OON

Example 4.78: havm —--profile boolean-1.hir

An analysis of this pessimization reveals that it is related to the computation of an inter-
mediate expression (the value of ‘if 11 < 22 then 33 < 44 else 55 < 66’) later decoded
as a condition. A better implementation will produce:

$ tc -H boolean.tig
/* == High Level Intermediate representation. == */
label 10
"OK\n"
Routine: _main
label main
Prologue
Body
seq
seq
seq
cjump 1t
const 11
const 22
name 14
name 15
label 14
cjump 1t
const 33
const 44
name 11
name 12
label 15
cjump 1t
const bb

140

const 66
name 11
name 12

seq end
label 11
SXp

call
name print
name 10
call end

jump

name 13

label 12
sXp

const O

label 13
seq end

sxXp

const O

Example 4.79: tc -H boolean.tig

$ tc -H boolean.tig >boolean-2.hir

The Tiger Compiler Project Assignment

Example 4.80: tc -H boolean.tig >boolean-2.hir

$ havm --profile boolean-2.hir

error
error
error
€rro

€rro

error
error
error
€rro

error

error
OK

/* Profiling. =/

fetches from temporary :

fetches from memory
binary operations
function calls

stores to temporary
stores to memory

jumps

conditional jumps

/* Execution time. */
number of cycles : 13

Example 4.81: havm —--profile boolean-2.hir

4.14.2.3 TC-5 Builtin Calls Samples

The game becomes more interesting with primitive calls (which are easier to compile than
function definitions and function calls).

(print_int(101); print("\n"))

File 4.57:

print-101.tig

$ tc -H print-101.tig >print-101.hir

Chapter 4: Compiler Stages 141

Example 4.82: tc -H print-101.tig >print-101.hir

$ havm print-101.hir
101

Example 4.83: havm print-101.hir
Complex values, arrays and records, also need calls to the runtime system:

let

type ints = array of int

var ints := ints [51] of 42
in

print_int(ints[ints[0]]); print("\n")
end

File 4.58: print-array.tig

$ tc -H print-array.tig
/* == High Level Intermediate representation. == */
label 10
n \n n
Routine: _main
label main
Prologue
move
temp t1
temp fp
move
temp fp
temp sp
move
temp sp
binop sub
temp sp
const 4
Body
seq
seq
move
mem
temp fp
eseq
move
temp tO
call
name init_array
const 51
const 42
call end
temp tO
seq
SXPp

142 The Tiger Compiler Project Assignment

call
name print_int
mem
binop add
mem
temp fp
binop mul
mem
binop add
mem
temp fp
binop mul
const O
const 4
const 4
call end
SXp
call
name print
name 10
call end
seq end
seq end
SXPp
const O
seq end
Epilogue
move
temp sp
temp fp
move
temp fp
temp t1
label end

Example 4.84: tc -H print-array.tig

$ tc -H print-array.tig >print-array.hir

Example 4.85: tc -H print-array.tig >print-array.hir

$ havm print-array.hir
42

Example 4.86: havm print-array.hir
The case of record is more subtle. Think carefully about the following example

let
type list = { h: int, t: list }
var list list { h =1,
t =1list { h = 2,
t = nil } }

in

Chapter 4: Compiler Stages 143

print_int(list.t.h); print("\n")
end

File 4.59: print-record.tig

4.14.2.4 TC-5 Samples with Variables

The following example demonstrates the usefulness of information about escapes: when it
is not computed, all the variables are stored on the stack.

let
var a :
var b :
var c :

in
a = 2;
c:=a+b+c;
print_int(c);
print("\n")

end

I
N =

]
w

File 4.60: vars.tig

$ tc -H vars.tig
/* == High Level Intermediate representation. == */
label 10
n \nll
Routine: _main
label main
Prologue
move
temp tO
temp fp
move
temp fp
temp sp
move
temp sp
binop sub
temp sp
const 12
Body
seq
seq
move
mem
temp fp
const 1
move
mem
binop add
temp fp
const -4
const 2

144

move
mem
binop add
temp fp
const -8
const 3
seq
move
mem
temp fp
const 2
move
mem
binop add
temp fp
const -8
binop add
binop add
mem
temp fp
mem
binop add
temp fp
const -4
mem
binop add
temp fp
const -8
SXPp
call
name print_int
mem
binop add
temp fp
const -8
call end
SXp
call
name print
name 10
call end
seq end
seq end
SXPp
const O
seq end
Epilogue
move
temp sp
temp fp
move
temp fp

The Tiger Compiler Project Assignment

Chapter 4: Compiler Stages 145

temp tO
label end

Example 4.87: tc -H vars.tig

Once escaping variable computation implemented, we know none escape in this example,
hence they can be stored in temporaries:

$ tc -eH vars.tig
/* == High Level Intermediate representation. == */
label 10
n \n n
Routine: _main
label main
Prologue
Body
seq
seq
move
temp tO
const 1
move
temp t1
const 2
move
temp t2
const 3
seq
move
temp tO
const 2
move
temp t2
binop add
binop add
temp tO
temp t1
temp t2
SXPp
call
name print_int
temp t2
call end
SXPp
call
name print
name 10
call end
seq end
seq end
SXp
const 0O
seq end

146 The Tiger Compiler Project Assignment

Epilogue
label end

Example 4.88: tc -eH vars.tig

$ tc -eH vars.tig >vars.hir

Example 4.89: tc -eH vars.tig >vars.hir

$ havm vars.hir
7

Example 4.90: havm vars.hir
Then, you should implement the declaration of functions
let
function fact(i: int) : int =
if i = 0 then 1
else i * fact(i - 1)

in
print_int (fact(15));
print("\n")

end

File 4.61: fact15.tig

$ tc -H factl5.tig
/* == High Level Intermediate representation. == */
Routine: fact
label 10
Prologue
move
temp tl1
temp fp
move
temp fp
temp sp
move
temp sp
binop sub
temp sp
const 8
move
mem
temp fp
temp 10
move
mem
binop add
temp fp
const -4
temp il
Body
move

Chapter 4: Compiler Stages

temp rv
eseq
seq
cjump eq
mem
binop add
temp fp
const -4
const O
name 11
name 12
label 11
move
temp tO
const 1
Jjump
name 13
label 12
move
temp tO
binop mul
mem
binop add
temp fp

const -4

call
name 10
mem
temp fp
binop sub
mem

binop add
temp fp
const

const 1
call end
label 13
seq end
temp tO
Epilogue
move
temp sp
temp fp
move
temp fp
temp tl
label end

label 14

n \nll
Routine: _main
label main

147

148 The Tiger Compiler Project Assignment

Prologue
Body
seq
seq
SXp
call
name print_int
call
name 10
temp fp
const 15
call end
call end
sSXp
call
name print
name 14
call end
seq end
SXPp
const O
seq end
Epilogue
label end

Example 4.91: tc -H fact15.tig
$ tc -H fact1lb.tig >fact15.hir

Example 4.92: tc -H fact15.tig >fact15.hir

$ havm factl5.hir
2004310016

Example 4.93: havm fact15.hir

Note that the result of 15! (1307674368000) does not fit on a signed 32-bit integer, and
is therefore wrapped (to 2004310016).

And finally, you should support escaping variables (see File 4.29).

$ tc -eH variable-escapes.tig
/* == High Level Intermediate representation. == */
Routine: incr
label 10
Prologue
move
temp t2
temp fp
move
temp fp
temp sp
move
temp sp
binop sub

Chapter 4: Compiler Stages 149

temp sp
const 4
move
mem
temp fp
temp 10
move
temp t1
temp il
Body
move
temp rv
binop add
temp t1
mem
mem
temp fp
Epilogue
move
temp sp
temp fp
move
temp fp
temp t2
label end

Routine: _main
label main
Prologue
move
temp t3
temp fp
move
temp fp
temp sp
move
temp sp
binop sub
temp sp
const 4
Body
seq
SXp
eseq
seq
move
mem
temp fp
const 1
move
temp tO
const 2

150 The Tiger Compiler Project Assignment

seq end
call
name 10
temp fp
temp tO
call end
SXp
const 0
seq end
Epilogue
move
temp sp
temp fp
move
temp fp
temp t3
label end

Example 4.94: tc -eH variable-escapes.tig

4.14.3 TC-5 Given Code

Some code is provided through the ‘tc-base’ repository, using tag ‘2020-tc-base-5.0".
For a description of the new modules, see Section 3.2.17 [src/temp], page 62, Section 3.2.18
[src/tree], page 63, Section 3.2.19 [src/frame], page 64, Section 3.2.20 [src/translate],
page 64.

4.14.4 TC-5 Code to Write

You are encouraged to first try very simple examples: ‘nil’, ‘1 + 2’, ‘"foo" < "bar"’ etc.
Then consider supporting variables, and finally handle the case of the functions.

temp: :Identifier
Their implementations are to be finished. This task is independent of oth-
ers. Passing test-temp.cc is probably the sign you completed correctly the
implementation.

You are invited to follow the best practices for variants, in particular, avoid
“type switching” by hand, rather use variant visitors. For instance the
IdentifierEqualVisitor can be used this way:

template <template <typename Tag_> class Traits_>
bool
Identifier<Traits_>::operator==(const Identifier<Traits_>& rhs) const
{
return

rank_get() == rhs.rank_get()

&& std::visit(IdentifierEqualToVisitor(),
static_cast<std::variant<unsigned, misc::symbol>>(value_
static_cast<std::variant<unsigned,
misc::symbol>>(rhs.value_));

tree: :Fragment
There remains to implement tree: :ProcFrag: :dump that outputs the routine
themselves plus the glue code (allocating the frame etc.).

Chapter 4: Compiler Stages 151

translate/translation.*
translate: :Translator
There are holes to fill.

4.14.5 TC-5 Options

This section documents possible extensions you could implement in TC-5.

4.14.5.1 TC-5 Bounds Checking

The implementation of the bounds checking can be done when generating the 1r. Require-
ments are the same than for the see Section 4.11 [TC-B], page 119, option. You can use
HAVM to test the success of your bounds checking.

4.14.5.2 TC-5 Optimizing Static Links

Warning: this optimization is difficult to do perfectly, and therefore, expect a big bonus.

In a first and conservative extension, the compiler considers that all the functions
(but the builtins!) need a static link. This is correct, but inefficient: for instance, the
traditional fact function will spend almost as much time handling the static link, than
its real argument.

Some functions need a static link, but don’t need to save it on the stack. For instance,
in the following example:

let

var foo :=1

function foo() : int = foo
in

foo()
end

the function foo does need a static link to access the variable foo, but does not need to
store its static link on the stack.

It is suggested to address these problems in the following order:

1. Implement the detection of functions that do not need a static link (see exercise 6.5
in Section 5.2 [Modern Compiler Implementation], page 233), but still consider any
static link escapes.

2. Adjust the output of -—escapes-display to display ‘/* escaping sl */’ before the
first formal argument of the functions (declarations) that need the static link:

$ cat fact.tig

let
function fact(n : int) : int =
if (mn = 0)
then 1
else n * fact((n - 1))
in
fact (10)
end
$ tc -XEA fact.tig
/* == Abstract Syntax Tree. == */

function _main() =

(
let
function fact(/* escaping sl *//* escaping */ n : int) : int

152 The Tiger Compiler Project Assignment

(if (m = 0)
then 1
else (n * fact((n - 1))))
in
fact (10)
end;
O
)
$ tc -XeEA fact.tig
/* == Abstract Syntax Tree. == */

function _main() =

(
let
function fact(n : int) : int =
(if (m = 0)
then 1
else (n * fact((n - 1))))
in
fact (10)
end;
O
)

3. Adjust your call and progFrag prologues.
4. Improve your computation so that non escaping static links are detected:

$ cat escaping-sl.tig
let
var toto := 1
function outer() : int =
let function inner() : int = toto
in inner() end

in
outer ()
end
$ tc -XeEA escaping-sl.tig
/* == Abstract Syntax Tree. == */

function _main() =
(
let
var /* escaping */ toto := 1
function outer(/* escaping sl */) : int =
let
function inmer(/* sl */) : int =
toto
in
inner ()
end
in
outer ()
end;

Chapter 4: Compiler Stages 153

O
)

Here, both outer and inner need their static link (so that inner can access toto.
However, outer’s static link escapes, while inner’s does not.

Watch out, it is not trivial to find the minimum. What do you think about the static
link of the function sister below?

let
var v := 1
function outer() : int =
let
function inner() : int = v
in
inner ()
end
function sister() : int = outer()
in
sister()
end

4.14.6 TC-5 raq

‘$fp’ or ‘fp’?
Andrew Appel clearly has his HIR/LIR depend on the target in three different
ways: the names of the frame pointer and result registers?, and the machine
word size.

That would mean that the target module (see Section 3.2.23 [src/target],
page 65) would be given during TC-5, which seemed too difficult and anti-
pedagogical, so we used fp and rv where he uses $fp and $v0. While this does
make TC-5 more target independent and TC-5 code base lighter, it slightly
complicates the rest of the compiler.

There remains one target dependent information wired in hard: the word size
is set to 4.

‘$x13’ or ‘t13’7
Anonymous temporaries should be output as ‘t13’ for HAvM at stages 5 and
6, and as ‘$x13’ for Nolimips, stage 7. The code provided does not support
(yet) this double standard, so it always outputs ‘t13’, although the samples
provided here use ‘$x13’. Fortunately HavM supports both standards??, so this
does not matter for TC-5 and TC-6. We recommend ‘t13’ though, contrary
to our samples, generated with a tc that needs more work.

How to perform the allocation of the static link in a level?
The constructor of translate: :Level reads:

// Install a slot for the static link if needed.
Level::Level(const misc::symbol& name,
const Level* parent,
frame: :bool_list_type formal_escapes)
: parent_(parent)
, frame_(new frame::Frame(name))

26 The case of the stack pointer register is different because it is not used in the actual function body: it
is referred to by the “fake” prologue/epilogue output by the ProcFrag.

27 Actually temporaries in HAVvM may have any name, you might use ‘He110W0r1d13’ as well.

154

Why var i

The Tiger Compiler Project Assignment

{
// FIXME: Some code was deleted here (Allocate a formal for

// Install translate::Accesses for all the formals.
for (const bool b : formal_escapes)
formal_alloc(b);
}
To allocate a formal for the static link, look at how other formals are allocated,
and take these into account:
— there is always a formal attribute allocated for the static link in
translate: :Level;

— this formal always escapes.

Obviously, this won’t hold if you plan to optimize the static links (see
Section 4.14.5.2 [TC-5 Optimizing Static Links|, page 151); you’ll have to
tweak translate: :Level’s constructor.

:= 0 function _main() = (i, ()) won’t compile?

If you try to compute the intermediate representation for a single variable dec-
laration, you’ll probably run into a SIGSEGV or a failed assertion. For instance,
the following command probably won’t work: echo ’var i := 0 function _
main() = (i, O)’ | tc —~hir-compute -.

the static lin

Variables must be allocated in a level (see translate: :Translator: :operator () (const

ast::VarDec&)). However, there is no level for global variable declarations
(outside _main). The current language specification does not address this
case, so you are free to handle it as you wish, though an assertion on the
presence of an enclosing level is probably the easiest solution.

4.14.7 TC-5 Improvements

Possible improvements include:

Maximal node sharing

The proposed implementation of Tree creates new nodes for equal expressions;
for instance two uses of the variable foo lead to two equal instantiations of
tree: :Temp. The same applies to more complex constructs such as the same
translation if foo is actually a frame resident variable etc. Because memory
consumption may have a negative impact on performances, it is desirable
to implement maximal sharing: whenever a Tree is needed, we first check
whether it already exists and then reuse it. This must be done recursively:
the translation of ‘(x + x) * (x + x)’ should have a single instantiation of ‘x
+ x’ instead of two, but also a single instantiation of ‘x’ instead of four.

Node sharing makes some algorithms, such as rewriting, more complex, espe-
cially wrt memory management. Garbage collection is almost required, but
fortunately the node of Tree are reference counted! Therefore, almost every-
thing is ready to implement maximal node sharing. See [spot], page 245, for
an explanation on how this approach was successfully implemented. See The
ATerm library?® for a general implementation of maximally shared trees.

4.15 TC-6, Translating to the Low Level Intermediate
Representation

2020-TC-6 is a part of the TC Back End option.

28 http://www.meta-environment.org/Meta-Environment/ATerms.

http://www.meta-environment.org/Meta-Environment/ATerms

Chapter 4: Compiler Stages 155

2020-TC-6 submission is Sunday, May 20st 2018 at 11:42.
This section has been updated for prTa-2020 on 2016-01-27.

At the end of this stage, the compiler produces low level intermediate representation:
LIR. LIR is a subset of the HIR: some patterns are forbidden. This is why it is also named
canonicalization.

Relevant lecture notes include intermediate.pdf®.

4.15.1 TC-6 Goals

Things to learn during this stage that you should remember:

Term Rewriting System
Term rewriting system are a whole topic of research in itself. If you need to
be convinced, just look for “term rewriting system” on Google®’.

“Functional” Programming in C++
A lot of TC-6 is devoted to looking for specific nodes in lists of nodes, and
splitting, and splicing lists at these places. This could be done by hand, with
many hand-written iterations, or using functors and sTL algorithms. You
are expected to do the latter, and to discover things such as std::splice,
std::find_if, lambda functions, etc.

4.15.2 TC-6 Samples

There are several stages in TC-6.

4.15.2.1 TC-6 Canonicalization Samples

The first task in TC-6 is getting rid of all the eseq. To do this, you have to move the
statement part of an eseq at the end of the current sequence point, and keeping the
expression part in place.

Compare for instance the HIR to the LIk in the following case:

let function print_ints(a: int, b: int) =
(print_int(a); print(", "); print_int(b); print("\n"))
var a := 0
in
print_ints(1, (a := a + 1; a))
end

File 4.62: preincr-1.tig
One possible HIR translation is:

$ tc -eH preincr-1.tig
/* == High Level Intermediate representation. == */
label 11

n n
b

label 12
" \nn
Routine: print_ints
label 10
Prologue
move

29 https://www.lrde.epita.fr/"tiger//lecture-notes/slides/ccmp/intermediate.pdf.
30 http://www.google.com/search?q=term+rewriting+system.

https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/intermediate.pdf
http://www.google.com/search?q=term+rewriting+system

156

temp t2
temp fp
move
temp fp
temp sp
move
temp sp
binop sub
temp sp
const 4
move
mem
temp fp
temp iO
move
temp tO
temp il
move
temp t1
temp 12
Body
seq
SXp
call
name print_int
temp tO
call end
SXp
call
name print
name 11
call end
SXp
call
name print_int
temp tl
call end
SXp
call
name print
name 12
call end
seq end
Epilogue
move
temp sp
temp fp
move
temp fp
temp t2
label end

The Tiger Compiler Project Assignment

Chapter 4: Compiler Stages

Routine: _main
label main
Prologue
Body
seq
seq
move
temp t3
const O
sSXp
call
name 10
temp fp
const 1
eseq
move
temp t3
binop add
temp t3
const 1
temp t3
call end
seq end
SXp
const O
seq end
Epilogue
label end

Example 4.95: tc -eH preincr-1.tig
A possible canonicalization is then:

$ tc -elL preincr-1.tig

/* == Low Level Intermediate representation.

label 11
label 12
" \Il"
Routine: print_ints
label 10
Prologue
move
temp t2
temp fp
move
temp fp
temp sp
move
temp sp
binop sub
temp sp
const 4

*/

157

158

move
mem
temp fp
temp i0
move
temp tO
temp il
move
temp t1
temp i2
Body
seq
label 13
SXp
call
name print_int
temp tO
call end
SXp
call
name print
name 11
call end
SXp
call
name print_int
temp t1
call end
SXp
call
name print
name 12
call end
label 14
seq end
Epilogue
move
temp sp
temp fp
move
temp fp
temp t2
label end

Routine: _main
label main
Prologue
Body
seq

label 15

move

temp t3

The Tiger Compiler Project Assignment

Chapter 4: Compiler Stages 159

const O
move
temp tb5
temp fp
move
temp t3
binop add
temp t3
const 1
SXp
call
name 10
temp tb5
const 1
temp t3
call end
label 16
seq end
Epilogue
label end

Example 4.96: tc -eL preincr-1.tig

The example above is simple because ‘1’ commutes with ‘(a :=a + 1; a)’: the order
does not matter. But if you change the ‘1’ into ‘a’, then you cannot exchange ‘a’ and ‘(a
:=a+ 1; a)’, so the translation is different. Compare the previous LIR with the following,
and pay attention to

let function print_ints(a: int, b: int) =
(print_int(a); print(", "); print_int(b); print("\n"))
var a := 0
in
print_ints(a, (a := a + 1; a))
end

File 4.63: preincr-2.tig

$ tc -elL preincr-2.tig
/* == Low Level Intermediate representation. == %/
label 11
n s n
label 12
n \n n
Routine: print_ints
label 10
Prologue
move
temp t2
temp fp
move
temp fp
temp sp
move
temp sp

160

binop sub
temp sp
const 4
move
mem
temp fp
temp 10
move
temp tO
temp il
move
temp tl
temp i2
Body
seq
label 13
SXp
call

name print_int

temp tO
call end
SXp
call
name print
name 11
call end
SXp
call

name print_int

temp tl
call end
SXp
call
name print
name 12
call end
label 14
seq end
Epilogue
move
temp sp
temp fp
move
temp fp
temp t2
label end

Routine: _main
label main

Prologue

Body

seq

The Tiger Compiler Project Assignment

Chapter 4: Compiler Stages 161

label 15
move
temp t3
const O
move
temp tb5
temp fp
move
temp t6
temp t3
move
temp t3
binop add
temp t3
const 1
SXPp
call
name 10
temp t5
temp t6
temp t3
call end
label 16
seq end
Epilogue
label end

Example 4.97: tc -eL preincr-2.tig
As you can see, the output is the same for the HIR and the LIR:

$ tc -eH preincr-2.tig >preincr-2.hir

Example 4.98: tc -eH preincr-2.tig >preincr-2.hir

$ havm preincr-2.hir
0, 1

Example 4.99: havm preincr-2.hir

$ tc -eL preincr-2.tig >preincr-2.1ir

Example 4.100: tc -eL preincr-2.tig >preincr-2.1lir

$ havm preincr-2.lir
0, 1

Example 4.101: havm preincr-2.1lir

Be very careful when dealing with mem. For instance, rewriting something like:
call(foo, eseq(move(temp t, const 51), temp t))
into
move temp tl, temp t
move temp t, const 51

162 The Tiger Compiler Project Assignment

call(foo, temp t)

is wrong: ‘temp t’ is not a subexpression, rather it is being defined here. You should
produce:

move temp t, const 51
call(foo, temp t)

Another danger is the handling of ‘move (mem,)’. For instance:
move (mem foo, x)
must be rewritten into:

move (temp t, foo)
move (mem(temp t), x)

not as:

move (temp t, mem(foo0))
move (temp t, x)

In other words, the first subexpression of ‘move (mem(foo),)’ is ‘foo’, not ‘mem(foo)’.
The following example is a good crash test against this problem:

let type int_array = array of int

var tab := int_array [2] of 51
in
tab[0] := 100;
tab[1] := 200;

print_int(tab[0]); print("\n");
print_int(tab[1]); print("\n")
end

File 4.64: move-mem.tig

$ tc -eL move-mem.tig >move-mem.lir

Example 4.102: tc -eL move-mem.tig >move-mem.lir

$ havm move-mem.lir
100
200

Example 4.103: havm move-mem.lir

You also ought to get rid of nested calls:
print (chr (ord("\n")))

File 4.65: nested-calls.tig

$ tc -L nested-calls.tig
/* == Low Level Intermediate representation. == %/
label 10
n \Il"

Routine: _main
label main
Prologue
Body
seq

label 11

Chapter 4: Compiler Stages 163

move
temp tl
call
name ord
name 10
call end
move
temp t2
call
name chr
temp tl
call end
SXp
call
name print
temp t2
call end
label 12
seq end
Epilogue
label end

Example 4.104: tc -L nested-calls.tig

There are only two valid call forms: ‘sxp(call(...))’, and ‘move(temp(...),
call(...))".

Contrary to C, the HIR and LIR always denote the same value. For instance the following
Tiger code:

let
var a := 1
function a(t: int) : int =
(a := a + 1;
print_int(t); print(" -> "); print_int(a); print("\n");
a)
var b := a(1) + a(2) * a(3)
in
print_int(b); print("\n")
end

File 4.66: seq-point.tig
should always produce:

$ tc -L seq-point.tig >seq-point.lir

Example 4.105: tc -L seq-point.tig >seq-point.lir

$ havm seq-point.lir

1 ->2
2 > 3
3 >4

14

164 The Tiger Compiler Project Assignment

Example 4.106: havm seq-point.lir
independently of the what IR you ran. It has nothing to do with operator precedence!

In C, you have no such guarantee: the following program can give different results with
different compilers and/or on different architectures.

#include <stdio.h>

int a_ = 1;
int

a(int t)

{

++a_;
printf("%d -> %d\n", t, a_);
return a_;

3

int

main(void)

{
int b = a(l) + a(2) * a(3);
printf ("%d\n", b);
return O;

}
4.15.2.2 TC-6 Scheduling Samples

Once your eseq and call canonicalized, normalize cjumps: they must be followed by their
“false” label. This goes in two steps:

1. Split in basic blocks.

A basic block is a sequence of code starting with a label, ending with a jump (condi-
tional or not), and with no jumps, no labels inside.

2. Build the traces.

Now put all the basic blocks into a single sequence.

The following example highlights the need for new labels: at least one for the entry
point, and one for the exit point:

1 &2

File 4.67: 1-and-2.tig

$ tc -L 1-and-2.tig
/* == Low Level Intermediate representation. == %/
Routine: _main
label main
Prologue
Body
seq
label 13
cjump ne
const 1
const O

Chapter 4: Compiler Stages

name 10
name 11
label 11
label 12
jump
name 14
label 10
jump
name 12
label 14
seq end
Epilogue
label end

Example 4.107: tc -L 1-and-2.tig

The following example contains many jumps. Compare the HIR to the LIR:
while 10 | 20 do if 30 | 40 then break else break

File 4.68: broken-while.tig

$ tc -H broken-while.tig
/* == High Level Intermediate representation. == */
Routine: _main
label main
Prologue
Body
seq
seq
label 11
seq
cjump ne
const 10
const O
name 13
name 14
label 13
cjump ne
const 1
const O
name 12
name 10
label 14
cjump ne
const 20
const O
name 12
name 10
seq end
label 12
seq
seq

165

166 The Tiger Compiler Project Assignment

cjump ne
const 30
const O
name 18
name 19
label 18
cjump ne
const 1
const O
name 15
name 16
label 19
cjump ne
const 40
const O
name 15
name 16
seq end
label 15
Jjump
name 10
jump
name 17
label 16
Jump
name 10
label 17
seq end
Jjump
name 11
label 10
seq end
SXp
const O
seq end
Epilogue
label end

Example 4.108: tc -H broken-while.tig

$ tc -L broken-while.tig
/* == Low Level Intermediate representation. == %/
Routine: _main
label main
Prologue
Body
seq
label 110
label 11
cjump ne
const 10
const O

Chapter 4: Compiler Stages

name 13
name 14
label 14
cjump ne
const 20
const O
name 12
name 10
label 10
jump
name 111
label 12
cjump ne
const 30
const O
name 18
name 19
label 19
cjump ne
const 40
const O
name 15
name 16
label 16
jump
name 10
label 15
Jump
name 10
label 18
cjump ne
const 1
const O
name 15
name 113
label 113
jump
name 16
label 13
cjump ne
const 1
const O
name 12
name 114
label 114
jump
name 10
label 111
seq end
Epilogue
label end

167

168 The Tiger Compiler Project Assignment

Example 4.109: tc -L broken-while.tig

4.15.3 TC-6 Given Code

Some code is provided through the ‘tc-base’ repository, using tag ‘2020-tc-base-6.0".
For a description of the new module, see Section 3.2.21 [src/canon], page 64.

It includes most of the canonicalization.

4.15.4 TC-6 Code to Write
Everything you need.

4.15.5 TC-6 Improvements

Possible improvements include:

4.16 TC-7, Instruction Selection

2020-TC-7 is a part of the TC Back End option.
2020-TC-7 submission is Sunday, May 27th 2018 at 11:42.

This section has been updated for rrTa-2020 on 2016-01-27.

At the end of this stage, the compiler produces the very low level intermediate represen-
tation: assem. This language is basically the target assembly, enhanced with arbitrarily
many registers ($x666). This output is obviously target dependent: we aim at MIPS, as we
use Nolimips to run it.

Relevant lecture notes include instr-selection.pdf?!.

4.16.1 TC-7 Goals

Things to learn during this stage that you should remember:

RISC VS. CISC etc.
Different kinds of microprocessors, different spirits in assembly.

Assembly Understanding how computer actually run.

Memory hierarchy/management at runtime
Recursive languages need memory management to implement automatic vari-
ables.

Tree matching, rewriting
Writing/debugging a code generator with MonoBURG.

Use of ios::xalloc
Instr are contained in Instrs, itself in Fragment, itself in Fragments. Sup-
pose you mean to add a debugging flag to print an Instr, what shall you
do? Add another argument to all the dump methods in these four hierarchies?
The problem with Temp is even worse: they are scattered everywhere, yet we
would like to specify how to output them thanks to a std::map. Should we
pass this map in each and every single call?

Using ios::xalloc, ostream: :pword, and ostream: :iword saves the day.

31 https://www.lrde.epita.fr/ “tiger//lecture-notes/slides/ccmp/instr-selection.pdf.

https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/instr-selection.pdf

Chapter 4: Compiler Stages 169

4.16.2 TC-7 Samples

The goal of TC-7 is straightforward: starting from LIR, generate the miPs instructions,
except that you don’t have actual registers: we still heavily use Temps. Register allocation
will be done in a later stage, Section 4.18 [TC-9], page 189.

let

var answer := 42
in

answer := 51
end

File 4.69: the-answer.tig
$ tc --inst-display the-answer.tig

== Final assembler ouput. ==

Routine: _main

tc_main:

Allocate frame
move $x11, $ra
move $x3, $s0
move $x4, $si
move $x5, $s2
move $x6, $s3
move $x7, $s4
move $x8, $sb5
move $x9, $s6
move $x10, $s7

10:
1i $x1, 42
sw $x1, ($fp)
1i $x2, 51
sw $x2, ($£fp)

11:
move $s0, $x3
move $s1, $x4
move $s2, $x5
move $s3, $x6
move $s4, $x7
move $s5, $x8
move $s6, $x9
move $s7, $x10
move $ra, $x11

Deallocate frame
jr $ra

Example 4.110: tc --inst-display the-answer.tig

At this stage the compiler cannot know what registers are used; that’s why in the previous
output it saves "uselessly" all the callee-save registers on main entry. For the same reason,
the frame is not allocated.

While Nolimips accepts the lack of register allocation, it does require the frame to be
allocated. That is the purpose of ~—nolimips-display:

$ tc --nolimips-display the-answer.tig

170 The Tiger Compiler Project Assignment

== Final assembler ouput. ==
Routine: _main
tc_main:
sw $fp, -4 ($sp)
move $fp, $sp
sub $sp, $sp, 8
move $x11, $ra
move $x3, $s0
move $x4, $s1
move $x5, $s2

move $x6, $s3
move $x7, $s4
move $x8, $s5
move $x9, $s6
move $x10, $s7

10:
1i $x1, 42
sw $x1, ($£fp)
1i $x2, 51
sw $x2, ($fp)
11:
move $s0, $x3
move $s1, $x4
move $s2, $x5

move $s3, $x6
move $s4, $x7

move $s5, $x8
move $s6, $x9
move $s7, $x10
move $ra, $xi11
move $sp, $fp

1w $fp, -4 ($fp)
jr $ra

Example 4.111: tc -—nolimips-display the-answer.tig

The final stage, register allocation, addresses both issues. For your information, it
results in:

$ tc -sI the-answer.tig

== Final assembler ouput. ==
Routine: _main
tc_main:

swW $fp, -4 ($sp)

move $fp, $sp

sub $sp, $sp, 8
10:

1i $t0, 42

sw $t0, ($fp)

1i $t0, 51

sW $t0, ($£fp)
11:

move $sp, $fp

Chapter 4: Compiler Stages 171

jr $ra

Example 4.112: tc -sI the-answer.tig

A delicate part of this exercise is handling the function calls:
let function add(x: int, y: int) : int = x + y
in

print_int(add(1, (add(2, 3)))); print("\n")
end

File 4.70: add.tig
$ tc -e --inst-display add.tig

== Final assembler ouput. ==

Routine: add

tc_10:

Allocate frame
move $x15, $ra
sw $a0, ($£fp)
move $x0, $al
move $x1, $a2
move $x7, $s0
move $x8, $s1
move $x9, $s2

move $x10, $s3
move $x11, $s4
move $x12, $s5
move $x13, $s6
move $x14, $s7

12:
add $x6, $x0, $x1
move $v0, $x6
13:
move $s0, $x7
move $s1, $x8
move $s2, $x9
move $s3, $x10
move $s4, $x11
move $s5, $x12
move $s6, $x13
move $s7, $x14
move $ra, $x15
Deallocate frame
jr $ra
.data
11:
.word 1

.asciiz "\n"
.text

172 The Tiger Compiler Project Assignment

Routine: _main

tc_main:

Allocate frame
move $x28, $ra
move $x20, $s0
move $x21, $s1
move $x22, $s2
move $x23, $s3
move $x24, $s4
move $x25, $s5
move $x26, $s6
move $x27, $s7

14:
move $a0, $fp
1i $x16, 2
move $a1, $x16
1i $x17, 3
move $a2, $x17
jal tc_10
move $x4, $vO
move $a0, $fp
1i $x18, 1
move $al, $x18
move $a2, $x4
jal tc_10
move $x5, $vO
move $a0, $x5
jal tc_print_int
la $x19, 11
move $a0, $x19
jal tc_print

15:
move $s0, $x20
move $s1, $x21
move $s2, $x22
move $s3, $x23
move $s4, $x24
move $s5, $x25
move $s6, $x26
move $s7, $x27
move $ra, $x28

Deallocate frame
jr $ra

Example 4.113: tc -e ——inst-display add.tig

Once your function calls work properly, you can start using Nolimips (using options
--nop-after-branch --unlimited-registers —-execute) to check the behavior of your
compiler.

$ tc -eR --nolimips-display add.tig >add.nolimips

Chapter 4: Compiler Stages 173

Example 4.114: tc -eR -—nolimips-display add.tig >add.nolimips

$ nolimips -1 nolimips -Nue add.nolimips
6

Example 4.115: nolimips -1 nolimips -Nue add.nolimips

You must also complete the runtime. No difference must be observable between a run
with HAvM and another with Nolimips:

substring("", 1, 1)

File 4.71: substring-0-1-1.tig
$ tc e —-nolimips-display substring-0-1-1.tig

== Final assembler ouput. ==
.data
10:
.word O
.asciiz ""
.text

Routine: _main

tc_main:

Allocate frame
move $x12, $ra
move $x4, $s0
move $x5, $s1
move $x6, $s2

move $x7, $s3
move $x8, $s4
move $x9, $s5
move $x10, $s6
move $x11, $s7

11:
la $x1, 10
move $a0, $x1
1i $x2, 1
move $a1, $x2
1i $x3, 1
move $a2, $x3
jal tc_substring
12:
move $s0, $x4
move $s1, $x5
move $s2, $x6

move $s3, $x7
move $s4, $x8
move $s5, $x9
move $s6, $x10
move $s7, $x11
move $ra, $x12

174 The Tiger Compiler Project Assignment

Deallocate frame
jr $ra

Example 4.116: tc -e ——nolimips-display substring-0-1-1.tig
$ tc -eR --nolimips-display substring-0-1-1.tig >substring-0-1-1.nolimips

Example 4.117: tc -eR —-nolimips-display substring-0-1-1.tig >substring-0-
1-1.nolimips
$ nolimips -1 nolimips -Nue substring-0-1-1.nolimips
substring: arguments out of bounds
=120

Example 4.118: nolimips -1 nolimips -Nue substring-0-1-1.nolimips

4.16.3 TC-7 Given Code

Some code is provided through the ‘tc-base’ repository, using tag ‘2020-tc-base-7.0".
For more information about the TC-7 code delivered see Section 3.2.23 [src/target],
page 65, Section 3.2.22 [src/assem]|, page 64.

4.16.4 TC-7 Code to Write

There is not much code to write:
— Codegen (src/target/mips/call.brg, src/target/mips/move.brg): complete
some rules in the grammar of the code generator produced by MonoBURG.
— SpimAssembly: :move_build (src/target/mips/spim-assembly.cc): build a move
instruction using mips R2000 standard instruction set.

— SpimAssembly: :binop_inst, SpimAssembly: :binop_build
(src/target/mips/spim-assembly.cc): build arithmetic binary operations
(addition, multiplication, etc.) using mips R2000 standard instruction set.

— SpimAssembly::load_build, SpimAssembly: :store_build
(src/target/mips/spim-assembly.cc): build a load (respectively a store)

instruction using mips R2000 standard instruction set. Here, the indirect addressing
mode is used.

— SpimAssembly::cjump_build (src/target/mips/spim-assembly.cc): translate
conditional branch instructions (branch if equal, if lower than, etc.) into mips R2000
assembly.

— You have to complete the implementation of the runtime in
src/target/mips/runtime.s:

strcmp
streq

print_int
substring
concat

Information on mips R2000 assembly instructions may be found in spim manual.

Completing the following routines will be needed during register allocation only (see

Section 4.18 [TC-9], page 189):

— Codegen: :rewrite_program (src/target/mips/epilogue.cc)

Chapter 4: Compiler Stages 175

4.16.5 TC-7 raq

Nolimips ‘Precondition ‘has_unlimited(reg.get_index())’ failed’
This lovely error message is the sign you’re using an obsolete version of No-
limips. Update.

4.16.6 TC-7 Improvements

Possible improvements include:

4.17 TC-8, Liveness Analysis
2020-TC-8 is a part of the TC Back End option.
2020-TC-8 submission is Sunday, June 10th 2018 at 11:42.
This section has been updated for ErrTa-2020 on 2016-01-27.

At the end of this stage, the compiler computes the input of TC-9: the interference
graph (or conflict graph). The options -N and --interference-dump allow the user to
see these graphs, one per function. To compute the interference graph, the compiler first
computes the liveness of each temporary, i.e., a graph whose nodes are the instructions,
and labeled with live temporaries. The options -V, ——1liveness-dump dumps these graphs.
Finally, the structure of the liveness graph is the flow graph: its nodes are the instructions,
and edges correspond to control flow. Use options -F, ——flowgraph-dump to dump them.

All dumped graphs use the poT format. You can display them using dotty or convert
them to other formats (such as PDF or PNG) using dot, both part of the GraphViz
package.

Relevant lecture notes include liveness.pdf®?.

4.17.1 TC-8 Goals

Things to learn during this stage that you should remember:

Graph handling, using the Boost Graph Library
We use the Boost Graph Library?? to implement graphs in the Tiger Compiler.
You must be able to manipulate Boost Graphs, and understand some aspects
of their design.

Flow graph
Liveness

Interference graph/conflict graph
4.17.2 TC-8 Samples

First consider simple examples, without any branching:
10 + 20 * 30

File 4.72: tens.tig
$ tc -I tems.tig

== Final assembler ouput. ==
Routine: _main
tc_main:
Allocate frame
move $x13, $ra

32 https://www.lrde.epita.fr/ tiger//lecture-notes/slides/ccmp/liveness.pdf
33 http://www.boost.org/libs/graph/doc/

https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/liveness.pdf
http://www.boost.org/libs/graph/doc/

176 The Tiger Compiler Project Assignment

move $x5, $s0
move $x6, $si1
move $x7, $s2

move $x8, $s3
move $x9, $s4
move $x10, $s5
move $x11, $s6
move $x12, $s7

10:
1i $x1, 10
1i $x2, 20
mul $x3, $x2, 30
add $x4, $x1, $x3

11:
move $s0, $x5
move $s1, $x6
move $s2, $x7
move $s3, $x8
move $s4, $x9
move $s5, $x10
move $s6, $x11
move $s7, $x12
move $ra, $x13

Deallocate frame
jr $ra

Example 4.119: tc -I tens.tig

$ tc -FVN tens.tig

Example 4.120: tc -FVN tens.tig

Chapter 4: Compiler Stages 177

move t13, $ra

add t4, tl,

move $s0, 5

File 4.73: tens.main._main.flow.gv

178 The Tiger Compiler Project Assignment

[Sfp $ra $50 $s1 552 $53 $54 $55 $56 $57 $sp $10 $zero

i $50 S5 $52 $53 S5 $55 $56 557 $5p V0 $x13 Szero

move $x5, $50

[Sfp $s1 $52 $53 $s4 555 $56 557 $5p SV0 $x13 $x5 $zer0

move $x6, $s1

S $52 853 $54 $55 $56 857 $sp $v0 $x13 $x5 $x6 $zer0

IS $53 S5 $55 $56 $57 $sp Sv0 Sx13 Sx5 $36 $x7 $zer0

move $x8, $53

i $54 355 $56 557 Ssp $v0 $x13 $x5 $x6 Sx7 $x8 $7er0

ST $55 $56 $57 Ssp S0 $x13 $x5 $x6 Sx7 $x8 $x9 Szero

move $x10, §55

S $56 857 $5p $¥0 $x10 $x13 $x5 $x6 $x7 $x8 $x9 $zer0

[STp $57 $5p $10 $x10 $x11 Sx13 $x5 Sx6 Sx7 $x8 $x9 Szer0

p $5p S0 $x10 $x11 $x12 $x13 $x5 $x6 $x7 $x8 $x9 $zero

ISfp $sp Sv0 $x10 $x11 $x12 $x13 $x5 $x6 $x7 $x8 $x9 $zer0

[Sfp $sp Sv0 $x10 $x11 $x12 $x13 $x5 $x6 $x7 $x8 $x9 $z¢r0

IS $50 S5p $¥0 $x10 $x11 $x12 $x13 $36 $x7 $x8 $x9 $zero

i $50 $51 $5p $v0 $x10 $x11 $x12 $x13 $x7 $x8 $x9 $zer0

move $52, $x7

ISfp $50 51 $52 Ssp $v0 $x10 $x11 $x12 $x13 $x8 $x9 $zer0

IS $50 851 $52 $53 $5p $V0 $x10 $x11 $x12 $x13 $x9 Szero

[5fp $50 S51 $52 53 $s4 Ssp $30 $x10 $x11 $x12 $x13 Szer0

i $50 $51 $52 $53 $54 $55 Ssp $v0 $x11 $x12 $x13 $zer0

move $56, $x11

ISfp $50 851 $52 $53 $54 $55

move $57, $x12

S $50 $51 $52 $53 $54 $55 $56 557 $5p SV0 $x13 Szero

5 $ra $50 Ss1 $52 §3 S $55 $6 S57 5o Sv0 $zer0

56 $5p $v0 $x12 $x13 Szero

File 4.74: tens.main._main.liveness.gv

Chapter 4: Compiler Stages 179

\.s‘; ? 2! ;\\f\/«

"”“ ?lf/’/zz
\ // X <W/// /;Z//‘
‘\‘ ‘”"\\ '/{’!' "

" \% (\\\/\% \\ \
| @\ \“ »

4\\

, \y/; ‘\

File 4.75: tens.main._main.interference.gv

But as you can see, the result is quite hairy, and unreadable, especially for interference
graphs:

— the callee save registers (‘$s0’ to ‘$s7’ on Mips) collide with every other temporary.

— the callee save registers have to be... saved, which doubles the number of Temp.

180 The Tiger Compiler Project Assignment

To circumvent this problem, use --callee-save to limit the number of such registers:

100 + 200 * 300

File 4.76: hundreds.tig

$ tc --callee-save=0 -VN hundreds.tig

Example 4.121: tc --callee-save=0 -VN hundreds.tig

Chapter 4: Compiler Stages 181

tc_main:

$fp $ra $sp $v0 $zero

Allocate frame

$fp $ra $sp $v0 $zero

move $x5, $ra

$fp $sp $v0 $x5 $zero

10:

$fp $sp $v0 $x5 $zero

i $x1, 100

$fp $sp $v0 $x1 $x5 $zero

li $x2, 200

$fp $sp $v0 $x1 $x2 $x5 $zero

mul $x3, $x2, 300

Sfp $sp $v0 $x1 $x3 $x5 $zero

add $x4, $x1, $x3

$fp $sp $v0 $x5 $zero

11:

$fp $sp $v0 $x5 $zero

move $ra, $x5

$fp $ra $sp $v0 $zero

Deallocate frame

$fp $ra $sp $v0 $zero

jr $ra

File 4.77: hundreds.main._main.liveness.gv

The Tiger Compiler Project Assignment

Q7

I
il
’\

|||||

Chapter 4: Compiler Stages 183

$ tc --callee-save=0 -I ors.tig

== Final assembler ouput. ==
Routine: _main
tc_main:
Allocate frame

move $x4, $ra
15:

1i $x1, 1

bne $x1, 0, 13
14:

1i $x2, 2

bne $x2, 0, 10
11:
12:

J 16
10:

J 12
13:

1i $x3, 1

bne $x3, 0, 10
17:

j 11
16:

move $ra, $x4
Deallocate frame

jr $ra

Example 4.122: tc --callee-save=0 -I ors.tig

$ tc -FVN ors.tig

Example 4.123: tc -FVN ors.tig

184 The Tiger Compiler Project Assignment

Allocate frame.

File 4.80: ors.main._main.flow.gv

Chapter 4: Compiler Stages 185

15 550 $51 52 56 S50 55 856 57 Sp $10 S0
move S$x12, Sra
i $50.51 $52 53 5 555 556 857 Sop $v0 12 er0
move $x4. 550
i S51 862553 554 36 $56 557 $9p 0 3812 834 S0
move $x5. 551
1552 563 5 555556 57 Sop 10 $x12 $ck 555 S0
move $x6. 532
Fip 553 50 555 566 547 S5 90 $x12 515 536 S0
move $x7. 833
Fip 554 565 556 567 S 510 5112 584 515 516 847 10
move Sx8. $34
Fip S55 546 547 S5p 40 512 54 55 536 547 838 S
move $x9. 535
Fip 55657 S5 1D $x12 5 S5 536 517 $38 319 S0

move $x10, 556

1 557 S5p 510 $x10 612 x4 $55 536 $x7 538 30 S7er0

move Sx11, 857

B1p $5p 540 10 $x11 Sx12 $x 555 536 537 $x8 539 Soero

S1p S5p 510 510 $x11 Sx12 514 $15 556 517 $x8 $19 Szero
1 $5p $40 SX10 Sx11 Sx12 S5 535 556 517 S8 $19 Szero

i S5p 590 Sx10 Sx11 $x12 512 53 15 536 57 $18 539 Szero.

bae $x2. 0, 10

p SS90 S110 $x11 312 53 S S35 $56 517 S8 $19 Szero

bae $x3., 0. 10

889 8339 Szem0 SIp $5p $40 S10 Sx11 S112 514 535 56 517 S48 $19 Szero

$612 534 845 536 857 758 919 Szer0 p S5p V0 $510 Sx11 5512 $x4 $55 536 37 538 39 Szer0

s $5p 540 10 5311 33

104 $55 536 $57 $58 539 Srero

Sip $5p $40 SX10 $311 Sx12 $x0 535 556 857 S8 $19 Szer0

$1p S5p 510 S10 $x11 SK12 514 515 556 537 Sx8 $19 Szera

1 55p 590 5110 511 $x12 54 555 536 557 S48 $x9 e
move $30. Sx4
1550 S5p $90 Sx10 11 5512 555 536 $x7 S8 49 Sero
move $s1.Sx5
1540 551 590 $x10 Sx11 Sx12 536 517 $38 519 Sero
move $12. Sx6
p 90 510 11 5612 5x7 8 59 Szero
move $53. Sx7
1550 551 52 553 S5p $v0 Sx10 11 6612 558 669 Sero
move $5d. Sx8

1 50 551 552 553 554 $5p $40 $x10 Sx11 $312 $19 S7er0

1 550 551 52 563 554 5 Sop SvO SI0SK11 12 810
move $56. $x10
1550 561 852543 554 55 556 5p $90 11 $x12 S0
move 557, Sx11
1550 561 552563 54 55 556 57 Sp 0 $812 Szero

move Sra, $x12

File 4.81: ors.main._main.liveness.gv

186 The Tiger Compiler Project Assignment

//
g y
74
/ / N
|
|
[/ NN
/
)
[
\\ / \
\ \1
W \
\ |
N /‘\
N i
\)
| \
/ o
\ Z
=
\
/ /
77
\
\ /
/
\
\

File 4.82: ors.main._main.interference.gv

Chapter 4: Compiler Stages 187

4.17.3 TC-8 Given Code

Some code is provided through the ‘tc-base’ repository, using tag ‘2020-tc-base-8.0".
To read the description of the new modules, see Section 3.2.4 [lib/misc|, page 56,
Section 3.2.27 [src/liveness], page 68.

4.17.4 TC-8 Code to Write

lib/misc/graph. *
Implement the topological sort.

src/liveness/flowgraph.*
Write the constructor, which is where the FlowGraph is actually constructed
from the assembly fragments.

src/liveness/liveness.*
Write the constructor, which is where the Liveness (a decorated FlowGraph)
is built from assembly instructions.

src/liveness/interference-graph.*
In InterferenceGraph: : compute_liveness, build the graph.

4.17.5 TC-8 raq

Why do we have a TempMap, and not Appel?
See [$fp or fp], page 153, for all the details. Pay special attention to converting
the temporaries where needed:

— the flow graph is independent of the temporaries

— the liveness graph, when computing live-in and live-out sets, must of
course convert the “def” and “use” sets

— the interference graph, when attributing a node number for each tem-
porary (InterferenceGraph: :node_of), must allocate the same number
to corresponding temporaries (e.g., ‘$fp’ and ‘fp’ must bear the same
number).

There is another reason to use a TempMap here: to build the liveness graph
after register allocation, to check the compiler.

1 &2

File 4.83: and.tig

$ tc -sV and.tig

Example 4.124: tc -sV and.tig

188

tc_main:

Allocate frame

13:

li

$t0, 1

bne $t0, 0, 10

The Tiger Compiler Project Assignment

$fp $ra $s0 $s1 $s2 $s3 $s4 $s5 $s6 $s7 $sp $v0 $zero
$fp Sra $s0 $s1 $s2 $s3 $s4 $s5 $s6 $s7 $sp $v0 $zero
$tp $ra $s0 $s1 $s2 $s3 $s4 $s5 $s6 $s7 $sp $v0 $zero

$fp $ra $s0 $s1 $s2 $s3 $s4 $s5 $s6 $s7 $sp $t0 $v0 $zero

$fp $ra $s0 $s1 $s2 $s3 $s4 $s5 $s6 $s7 $sp VMSO $s1 $s2 $53 $s4 $55 $s6 $s7 $sp $v0 $zero

10:

fp $ra $s0 $s1 $s2 $s3 $s4 $s5 $s6 $s7 $sp $v0 $zero

$fp $ra $s0 $s1 $s2 $s3 $s4 $s5 $s6 $s7 $sp $v0 $zero j

12:

14:

Deallocate frame

jr $ra

$fp $ra $s0 $s1 $s2 $53 $s4 $s5 $s6 $s7 $sp $v0 $zero

$fp $ra $s0 $s1 $s2 $s3 $s4 $s5 $56 $s7 $sp $v0 $zero

tp $ra $s0 $s1 $s2 $s3 $s4 $s5 $s6 $57 $sp $v0 $zero

$fp $ra $s0 $s1 $s2 $s3 $s4 $s5 $s6 $s7 $sp $v0 $zero

$fp $ra $s0 $s1 $s2 $s3 $s4 $s5 $56 $57 $sp $v0 $zero

File 4.84: and.main._main.liveness.gv

4.17.6 TC-8 Improvements

Possible improvements include:

Chapter 4: Compiler Stages 189

4.18 TC-9, Register Allocation

2020-TC-9 is a part of the TC Back End option.
2020-TC-9 submission is Sunday, July 8th 2018 at 11:42.

This section has been updated for EP1TA-2020 on 2016-01-27.
At the end of this stage, the compiler produces code that is runnable using Nolimips.

Relevant lecture notes include regalloc.pdf®.

4.18.1 TC-9 Goals

Things to learn during this stage that you should remember:
— Use of work lists for efficiency
— Attacking NP complete problems

— Register allocation as graph coloring

4.18.2 TC-9 Samples

This section will not demonstrate the output of the option -S, -—asm-display, since it
outputs the long Tiger runtime. Once the registers allocated (i.e., once -s, ——asm-compute
executed) the option -I, --instr-display produces the code without the runtime. In
short: we use —-sI instead of -S to save place.

Allocating registers in the main function, when there is no register pressure is easy, as,
in particular, there are no spills. A direct consequence is that many move are now useless,
and have disappeared. For instance (File 4.85, see Example 4.125):

1 +2 %3

File 4.85: seven.tig

$ tc -sI seven.tig

== Final assembler ouput. ==
Routine: _main
tc_main:
Allocate frame
10:
1i $t1, 1
1i $t0, 2
mul $t0, $t0, 3
add $t0, $t1, $tO
11:
Deallocate frame
jr $ra

Example 4.125: tc -sI seven.tig

$ tc -S seven.tig >seven.s

Example 4.126: tc -S seven.tig >seven.s

$ nolimips -1 nolimips -Ne seven.s

Example 4.127: nolimips -1 nolimips -Ne seven.s

34 https://www.lrde.epita.fr/ “tiger//lecture-notes/slides/ccmp/regalloc.pdf.

https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/regalloc.pdf

190 The Tiger Compiler Project Assignment

Another means to display the result of register allocation consists in reporting the mapping
from temps to actual registers:

$ tc -s --tempmap-display seven.tig

/* Temporary map. */

fp > $fp
v => $vO0
t1 -> $t1
t2 -> $t0
t3 -> $t0
t4 -> $t0
t5 -> $s0
t6 -> $s1
t7 -> $s2
t8 -> $s3
t9 -> $s4
t10 -> $s5
t11 -> $s6
t12 -> $s7
t13 -> $ra

Example 4.128: tc -s —--tempmap-display seven.tig
Of course it is much better to see what is going on:
(print_int(1 + 2 * 3); print("\n"))

File 4.86: print-seven.tig

$ tc -sI print-seven.tig
== Final assembler ouput. ==
.data
10:
.word 1
.asciiz "\n"
.text

Routine: _main

tc_main:
swW $fp, -4 ($sp)
move $fp, $sp
sub $sp, $sp, 8
sw $ra, ($fp)
11:
1i $to, 1
1i $ra, 2
mul $ra, $ra, 3
add $a0, $t0, $ra
jal tc_print_int
la $a0, 10
jal tc_print
12:
1w $ra, ($fp)

move $sp, $fp

Chapter 4: Compiler Stages

1w $fp, -4 ($fp)

jr $ra

Example 4.129: tc -sI print-seven.tig

$ tc -S print-seven.tig >print-seven.s

Example 4.130: tc -S print-seven.tig >print-seven.s

$ nolimips -1 nolimips -Ne print-seven.s

7

Example 4.131: nolimips -1 nolimips -Ne print-seven.s

To torture your compiler, you ought to
quite slow, it spends way too much time in

let
var a00 := 00
var all := 11
var a22 := 22
var a33 := 33
var a44 := 44
in
print_int (O

+ al00 +
+ all +
+ a22 +
+ a33 +
+ ad4d +
print("\n")
end

File 4.87: print-many.tig

var
var
var
var
var

a00
all
a22
a33
ad4d

abb :
a66 :
ar7’
a88 :
af99 :

ab5b
a66
ar7
a88
a99

+ + + + +

191

use many temporaries. To be honest, ours is
register allocation.

+ + + + +

55
66
77
88
99

abb
a66
a77
a88
a99);

$ tc -eIs --tempmap-display -I --time-report print-many.tig
Execution times (seconds)

1: parse
9: asm-compute
rest

Cumulated times (seconds)

1: parse
rest

TOTAL (seconds)
== Final assembler ouput. ==
.data
10:
.word 1

.asciiz "\n"
.text

Routine: _main
tc_main:
Allocate frame

(50%
(50%)
(100%)
(50%)
(. 100%)
user,

(@)

o

(0%)
(0%)
(0%)
(0%)
(0%)
system,

(@]

o

.01

.01

.01

.01
.01

(100%)
(0%)
(100%)
¢ 100%)
(100%)
wall

192

11:

12:

move
move
move
move
move
move
move
move
move

1i
1i
1i
1i
1i
1i
1i
1i
1i
1i
1i
add
add
add
add
add
add
add
add
add
add
add
add
add
add
add
add
add
add
add
add
move
jal
la
move
jal

move
move
move
move
move

$x41, $ra
$x33, $s0
$x34, $s1
$x35, $s2
$x36, $s3
$x37, $s4
$x38, $sb5
$x39, $s6
$x40, $s7

$x0, O

$x1, 55
$x2, 11
$x3, 66
$x4, 22
$x5, 77
$x6, 33
$x7, 88
$x8, 44
$x9, 99
$x11, 0
$x12, $x11,
$x13, $x12,
$x14, $x13,
$x15, $x14,
$x16, $x15,
$x17, $x16,
$x18, $x17,
$x19, $x18,
$x20, $x19,
$x21, $x20,
$x22, $x21,
$x23, $x22,
$x24, $x23,
$x25, $x24,
$x26, $x25,
$x27, $x26,
$x28, $x27,
$x29, $x28,
$x30, $x29,
$x31, $x30,
$a0, $x31
tc_print_int
$x32, 10
$a0, $x32
tc_print

$s0, $x33
$s1, $x34
$s2, $x35
$s3, $x36
$s4, $x37

$x0
$x0
$x1
$x1
$x2
$x2
$x3
$x3
$x4
$x4
$x5
$x5
$x6
$x6
$x7
$x7
$x8
$x8
$x9
$x9

The Tiger Compiler Project Assignment

Chapter 4: Compiler Stages

move
move
move
move

$s5, $x38
$s6, $x39
$s7, $x40
$ra, $x41

Deallocate frame

/*
fp
rv
t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t11
t12
t13
t14
t15
t16
t17
t18
t19
t20
t21
t22
t23
t24
t25
t26
t27
t28
t29
t30
t31
t32
t33
t34
t35
t36
t37
t38
t39
t40

jr

$ra

Temporary map. */

=->

$fp
$vo
$t9
$t8
$t7
$t6
$t5
$ta
$t3
$t2
$t1
$t0
$ra
$ra
$ra
$ra
$ra
$ra
$ra
$ra
$ra
$ra
$ra
$ra
$ra
$ra
$ra
$ra
$ra
$ra
$ra
$ra
$a0
$a0
$s0
$s1
$s2
$s3
$s4
$s5
$s6
$s7

t110 —> $ra
t111 -> $ra

193

194

== Final assembler ouput.

.data
10:
.word 1
.asciiz "\n"
.text

Routine: _main

tc_main:
sw $fp, -4 ($sp)
move $fp, $sp
sub $sp, $sp, 8
swW $ra, ($£fp)
11:
1i $t9, O
1i $t8, 55
1i $t7, 11
1i $t6, 66
1i $t5, 22
1i $ta, 77
1i $t3, 33
1i $t2, 88
1i $t1, 44
1i $t0, 99
1i $ra, O
add $ra, $ra, $t9
add $ra, $ra, $t9
add $ra, $ra, $t8
add $ra, $ra, $t8
add $ra, $ra, $t7
add $ra, $ra, $t7
add $ra, $ra, $t6
add $ra, $ra, $t6
add $ra, $ra, $t5
add $ra, $ra, $t5
add $ra, $ra, $t4
add $ra, $ra, $t4
add $ra, $ra, $t3
add $ra, $ra, $t3
add $ra, $ra, $t2
add $ra, $ra, $t2
add $ra, $ra, $ti1
add $ra, $ra, $ti1
add $ra, $ra, $tO
add $a0, $ra, $tO
jal tc_print_int
la $a0, 10
jal tc_print
12:
1w $ra, ($£fp)

move $sp, $fp
1w $fp, -4 ($

fp)

The Tiger Compiler Project Assignment

Chapter 4: Compiler Stages 195

jr $ra

Example 4.132: tc -elIs --tempmap-display -I --time-report print-many.tig

4.18.3 TC-9 Given Code

Some code is provided through the ‘tc-base’ repository, using tag ‘2020-tc-base-9.0".
To read the description of the new module, see Section 3.2.29 [src/regalloc], page 70.

4.18.4 TC-9 Code to Write

src/regalloc/color.hh

Implement the graph coloring. The skeleton we provided is an exact copy of
the implementation of the code suggest by Andrew Appel in the section 11.4
“Graph Coloring Implementation” of his book. A lot of comments that are
verbatim copies of his comments are left in the code. Unfortunately, the books
have several nasty mistakes on the algorithm, they reported on his web page
(see Section 5.2 [Modern Compiler Implementation], page 233); be sure to fix
your books.

Pay attention to misc: :set: there is a lot of syntactic sugar provided to im-
plement set operations. The code of Color can range from ugly and obfuscated
to readable and very close to its specification.

src/regalloc/regallocator.cc
Run the register allocation on each code fragment. Remove the useless moves.

src/target/mips/epilogue.cc
If your compiler supports spills, implement Codegen: :rewrite_program.

4.18.5 TC-9 raq
4.18.6 TC-9 Improvements

Possible improvements include:

4.19 TC-X, ia-32 Back End

TC-X is an optional assignment.
This section has been updated for EprTa-2015 on 2013-07-19.

At the end of this stage, the compiler produces 1a-32 code (possibly with infinite reg-
isters). Basically, this stage is Section 4.16 [TC-7], page 168, with the 1a-32 assembly
language instead of mipPs.

The 1a-32 architecture is the 32-bit Intel Architecture defined for the Intel 80306 (i386)
processors, an extension of the original 16-bit 8086 (x86) architecture. 1a-32 may also
be referenced as x86, 1386 and sometimes x86-32 or even x32, to distinguish it from the
original 16-bit (“x86-16”) or the 64-bit (x86-64 or x64) variants of the x86 family.

Relevant lecture notes include instr-selection.pdf®®.

4.19.1 TC-X Goals

Things to learn during this stage that you should remember:

CISC Vvs. RISC (again)
MIPS (see Section 4.16 [TC-7], page 168) has shown you an example of RIsc
architecture. Targeting 1A-32 shows you an example of the cisc family of
Processors.

35 https://www.lrde.epita.fr/ “tiger//lecture-notes/slides/ccmp/instr-selection.pdf.

https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/instr-selection.pdf

196 The Tiger Compiler Project Assignment

Compiler toolchain
At the end of the compiler (when register allocation is functional), the 1a-32
back end generates code in 14-32 assembly language, which can be assembled
and linked to produce a genuine executable program.

4.19.2 TC-X Samples

The goal of TC-X is straightforward: starting from LIR, generate the 1a-32 instructions,
except that you don’t have actual registers: we still heavily use Temps. Register allocation
has been (or will be) done in a another stage, Section 4.18 [TC-9], page 189.

let

var answer := 42
in

answer := 51
end

File 4.88: the-answer-ia32.tig

$ tc --target-ia32 --inst-display the-answer-ia32.tig
/** Tiger final assembler ouput. */

/** Routine: _main */

.text

.globl tc_main

.type tc_main,@function
tc_main:
Allocate frame

movl %ebx, %t3

movl %edi, %t4

movl %esi, %th

10:
movl $42, %t1
movl %tl, (%ebp)
movl $51, %t2
movl wt2, (Y%ebp)
11:
movl %t3, %ebx
movl %td, fhedi
movl %t5, %hesi
Deallocate frame
ret $0
12:

.size tc_main,l2-tc_main
.ident "LRDE Tiger Compiler"

Example 4.133: tc —-target-ia32 --inst-display the-answer-ia32.tig

At this stage the compiler cannot know what registers are used; the frame is not allocated.
The final stage, register allocation, addresses this issue. For your information, it results
in:

$ tc --target-ia32 -sI the-answer-ia32.tig
/** Tiger final assembler ouput. */

Chapter 4: Compiler Stages

/** Routine: _main */

.text

.globl tc_main

.type tc_main,@function
tc_main:

pushl Y%ebp

subl $4, Yesp

movl %hesp, %ebp

subl $4, Yesp

10:
movl $42, Yecx
movl hecx, (%ebp)
movl $51, Jecx
movl hecx, (%ebp)
11:
addl $4, ’hebp
leave
ret $0
12:

.size tc_main,l2-tc_main
.ident "LRDE Tiger Compiler"

Example 4.134: tc ——-target-ia32 -sI the-answer-ia32.tig

A delicate part of this exercise is handling the function calls:
let function add(x: int, y: int) : int = x + y
in

print_int(add(1, (add(2, 3)))); print("\n")
end

File 4.89: add-ia32.tig

$ tc -e --target-ia32 --inst-display add-ia32.tig
/** Tiger final assembler ouput. */

/**x Routine: add */
.text
.globl tc_10
.type tc_10,Q@function
tc_10:
Allocate frame
movl 12(%ebp), %t10
movl %t10, (%ebp)
movl 16 (%ebp), %tO
movl 20 (%ebp), %tl
movl %ebx, WtT
movl %edi, %t8
movl %esi, %t9
12:
movl »t0, %t6
addl htl, %t6
movl %t6, Yheax

197

198

The Tiger Compiler Project Assignment

%t7, %ebx

%t8, %edi

%t9, %esi

$12
tc_10,16-tc_10

.rodata

13:
movl
movl
movl

Deallocate frame
ret

16:
.size
.section

11:
.long 1

.asciz "\n"

/** Routine: _main */

.text

.globl tc_main

.type
tc_main:

Allocate frame

movl
movl
movl
14:
movl
pushl
movl
pushl
pushl
call
movl
pushl
movl
pushl
pushl
call
movl
pushl
call
lea
pushl
call
15:

movl
movl
movl

tc_main,@function

%ebx, %t15
%edi, %t16
Y%esi, %t17

$3, %t11
w11

$2, Jt12
%t12

%ebp
tc_10
%eax, %t4
yAR!

$1, %t13
%t13

%ebp
tc_10
Y%heax, %tb
%t5
tc_print_int
11, %t14
ht1d
tc_print

%t15, %ebx
%t16, %edi
%t17, Yesi

Deallocate frame

ret
17:
.size

.ident

$0

tc_main,l7-tc_main
"LRDE Tiger Compiler"

Chapter 4: Compiler Stages

Example 4.135: tc -e —-target-ia32 --inst-display add-ia32.tig

199

Once your compiler is complete, you can produce an actual 1Ao-32 output, assemble it

and link it with gcc to produce a real executable program:

$ tc -e —-target-ia32 --asm-compute --inst-display add-ia32.tig

/** Tiger final assembler ouput. */

/*% Routine: add */

.text

.globl tc_10

.type tc_10,@function
tc_10:

pushl Y%ebp

subl $4, Yesp

movl %esp, %ebp

subl $4, Yesp

movl 12(%ebp), %ecx

movl hecx, (Y%ebp)

movl 16 (%ebp) , %eax

movl 20 (%ebp) , %hecx
12:

addl hecx, heax
13:

addl $4, Yebp

leave

ret $12
16:

.size tc_10,16-tc_10

.section .rodata
11:

.long 1

.asciz "\n"

/** Routine: _main */

.text
.globl
.type
tc_main:
pushl
subl
movl
subl
14:
movl
pushl
movl
pushl
pushl
call

tc_main
tc_main,@function

%ebp

$4, Yesp
%esp, ‘%hebp
$0, Y%esp

$3, %ecx
%hecx
$2, %ecx
%ecx
%ebp
tc_10

200 The Tiger Compiler Project Assignment

pushl Yeax

movl $1, Yecx
pushl %ecx

pushl Y%ebp

call tc_10

pushl Y%eax

call tc_print_int
lea 11, %ecx
pushl %ecx

call tc_print

15:
addl $4, %ebp
leave
ret $0

17:
.size tc_main,l7-tc_main
.ident "LRDE Tiger Compiler"

Example 4.136: tc —e ——target-ia32 --asm-compute --inst-display add-
ia32.tig

$ tc -e --target-ia32 --asm-display add-ia32.tig >add-ia32.s

Example 4.137: tc -e —-target-ia32 --asm-display add-ia32.tig >add-ia32.s
$ gcc -m32 -oadd-ia32 add-ia32.s

Example 4.138: gcc -m32 -oadd-ia32 add-ia32.s

$./add-ia32
6

Example 4.139: ./add-ia32

The runtime must be functional. No difference must be observable in comparison with
a run with HAvVM:

substring("", 1, 1)

File 4.90: substring-0-1-1-ia32.tig
$ tc -e --target-ia32 --inst-display substring-0-1-1-ia32.tig
/** Tiger final assembler ouput. */

.section .rodata
10:

.long O

.asciz ""
/** Routine: _main */

.text

.globl tc_main

.type tc_main,@function
tc_main:
Allocate frame

Chapter 4: Compiler Stages 201

movl %ebx, %td
movl %edi, %th

movl %esi, %t6
11:

movl $1, %t1

pushl %t1

movl $1, %t2

pushl %t2

lea 10, %t3

pushl %t3

call tc_substring
12:

movl %td, hebx

movl %t5, %hedi

movl %t6, Y%esi
Deallocate frame

ret $0
13:

.size tc_main,l3-tc_main
.ident "LRDE Tiger Compiler"

Example 4.140: tc -e —--target-ia32 --inst-display substring-0-1-1-ia32.tig

$ tc -e --target-ia32 --asm-compute --inst-display substring-0-1-1-ia32.tig
/*x Tiger final assembler ouput. */

.section .rodata
10:

.long O

.asciz ""
/** Routine: _main */

.text

.globl tc_main

.type tc_main,@function

tc_main:
pushl Y%ebp
subl $4, Jesp
movl %esp, ‘hebp
subl $0, Yesp
11:
movl $1, Y%ecx
pushl Yecx
movl $1, Yecx
pushl %ecx
lea 10, %ecx
pushl %ecx
call tc_substring
12:

addl $4, Yebp
leave
ret $0

202 The Tiger Compiler Project Assignment

13:
.size tc_main,l3-tc_main
.ident "LRDE Tiger Compiler"

Example 4.141: tc -e --target-ia32 --asm-compute --inst-display substring-
0-1-1-ia32.tig
$ tc -e --target-ia32 --asm-display substring-0-1-1-ia32.tig >substring-
0-1-1-ia32.s

Example 4.142: tc -e --target-ia32 --asm-display substring-0-1-1-ia32.tig
>substring-0-1-1-ia32.s

$ gcc -m32 -osubstring-0-1-1-ia32 substring-0-1-1-ia32.s

Example 4.143: gcc -m32 -osubstring-0-1-1-ia32 substring-0-1-1-ia32.s

$./substring-0-1-1-ia32
substring: arguments out of bounds
=120

Example 4.144: ./substring-0-1-1-ia32

The following example illustrates conditional jumps.

if 42 > 51 then "forty-two" else "fifty-one"

File 4.91: condjump-ia32.tig

$ tc -e --target-ia32 --inst-display condjump-ia32.tig
/** Tiger final assembler ouput. */

.section .rodata
10:

.long 9

.asciz "forty-two"

.section .rodata
11:

.long 9

.asciz "fifty-one"

/**x Routine: _main */
.text
.globl tc_main
.type tc_main,@function
tc_main:
Allocate frame
movl %ebx, %t4
movl %edi, %th
movl %esi, %t6
15:
movl $42, %t1
cmp $51, %t1

Chapter 4: Compiler Stages 203

jig 12
13:
lea 11, %t2
14:
jmp 16
12:
lea 10, %t3
jmp 14
16:
movl %td, %hebx
movl %t5, %edi
movl W6, %hesi
Deallocate frame
ret $0
17:

.size tc_main,l7-tc_main
.ident "LRDE Tiger Compiler"

Example 4.145: tc -e —-target-ia32 --inst-display condjump-ia32.tig

$ tc -e --target-ia32 --asm-compute --inst-display condjump-ia32.tig
/** Tiger final assembler ouput. */

.section .rodata
10:

.long 9

.asciz "forty-two"

.section .rodata
11:

.long 9

.asciz "fifty-one"

/** Routine: _main */
.text
.globl tc_main
.type tc_main,@function

tc_main:
pushl Y%ebp
subl $4, Yesp
movl %hesp, %ebp
subl $0, Y%esp
15:
movl $42, Yecx
cmp $51, %ecx
jg 12
13:
lea 11, Y%ecx
14:
jmp 16
12:

lea 10, %ecx

204 The Tiger Compiler Project Assignment

jmp 14
16:
addl $4, Yebp
leave
ret $0
17:

.size tc_main,l7-tc_main
.ident "LRDE Tiger Compiler"

Example 4.146: tc -e —-target-ia32 --asm-compute --inst-display condjump-
ia32.tig

4.19.3 TC-X Given Code

Some code is provided along with the code given at TC-7 (see Section 4.16.3 [TC-7 Given
Code], page 174). See Section 3.2.25 [src/target/ia32], page 67.

4.19.4 TC-X Code to Write
There is not much code to write:

— Codegen (src/target/ia32/call.brg, src/target/ia32/move.brg): complete
some rules in the grammar of the code generator produced by MonoBURG.

— GasAssembly::cjump_build (src/target/ia32/gas-assembly.cc): translate con-
ditional branch instructions (branch if equal, if lower than, etc.) into 1a-32 assembly.

Information on 1a-32 assembly instructions may be found in the Tntel® 64 and TA-
32 Architectures Software Developer Manuals®® or in this much shorter IA32 Instruction
List form3”. The documentation of the GNU Assembler (GAS)3® is also a recommended
reading.

Completing the following routines is needed for register allocation only (see Section 4.18
[TC-9], page 189):

— Codegen: :rewrite_program (src/target/ia32/epilogue.cc)

4.19.5 TC-X raq
4.19.6 TC-X Improvements

Possible improvements include:
— Support OS X Assembler The 14-32 back end supports only the ELF file format.

OS X doesn’t support ELF files, but has its own file format, Mach-O. Check out a
discussion about the difference between OS X and Linux assembly?’.

You can start by taking a look at the OS X Assembler reference?’.

36 http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.

html.

http: / / wuw . eti . pg . gda . pl / katedry / kask / pracownicy / Jaroslaw . Kuchta / AKO /
IA32Y,20Instruction’20Set.pdf.

http://sourceware.org/binutils/docs-2.23.1/as/.

37

38

39 http://stackoverflow.com/questions/19720084/what-is-the-difference-between-assembly-on-mac-and-assembly-o:

19725269#19725269.

https: / / developer . apple . com / library / mac / documentation / DeveloperTools / Reference /
Assembler/Assembler.pdf.

40

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.eti.pg.gda.pl/katedry/kask/pracownicy/Jaroslaw.Kuchta/AKO/IA32%20Instruction%20Set.pdf
http://www.eti.pg.gda.pl/katedry/kask/pracownicy/Jaroslaw.Kuchta/AKO/IA32%20Instruction%20Set.pdf
http://sourceware.org/binutils/docs-2.23.1/as/
http://stackoverflow.com/questions/19720084/what-is-the-difference-between-assembly-on-mac-and-assembly-on-linux/19725269#19725269
http://stackoverflow.com/questions/19720084/what-is-the-difference-between-assembly-on-mac-and-assembly-on-linux/19725269#19725269
https://developer.apple.com/library/mac/documentation/DeveloperTools/Reference/Assembler/Assembler.pdf
https://developer.apple.com/library/mac/documentation/DeveloperTools/Reference/Assembler/Assembler.pdf

Chapter 4: Compiler Stages 205

4.20 TC-Y, arm Back End

TC-Y is an optional assignment.
This section has been updated for EprTA-2018 on 2015-10-28.

At the end of this stage, the compiler produces ArRm code (possibly with infinite reg-
isters). Basically, this stage is Section 4.16 [TC-7|, page 168, with the ArRM assembly
language instead of MiPs.

The arM architecture is a family of Risc instruction set architectures for computer
Processors.

Relevant lecture notes include instr-selection.pdf®!.

4.20.1 TC-Y Goals

Things to learn during this stage that you should remember:

Discover ARMV7
Discover the ARMv7 architecture and run programs on Raspberry Pi.

4.20.2 TC-Y Samples

The goal of TC-Y is straightforward: starting from LIR, generate the ARM instructions,
except that you don’t have actual registers: we still heavily use Temps. Register allocation
has been (or will be) done in a another stage, Section 4.18 [TC-9], page 189.
let
var answer := 42
in
answer := 51
end

File 4.92: the-answer-arm.tig

$ tc --target-arm --inst-display the-answer-arm.tig
Tiger final assembler ouput.

Routine: _main
.global tc_main

.text
tc_main:
Allocate frame
mov t3, ri10
mov t4, r4d
mov t5, rb5
mov t6, r6
mov t7, r7
mov t8, r8
mov t9, r9
10:
1ldr t1l, =42
str t1, [fp, #0]
1ldr t2, =b1
str t2, [fp, #0]
11:

41 https://www.lrde.epita.fr/ “tiger//lecture-notes/slides/ccmp/instr-selection.pdf

https://www.lrde.epita.fr/~tiger//lecture-notes/slides/ccmp/instr-selection.pdf

206 The Tiger Compiler Project Assignment

mov r10, t3
mov rd, t4
mov r5, t5
mov r6, t6
mov r7, t7
mov r8, t8
mov r9, t9

Deallocate frame
pop {fp, pc}

.ltorg

Example 4.147: tc —--target-arm —-inst-display the-answer-arm.tig

At this stage the compiler cannot know what registers are used; the frame is not allocated.
The final stage, register allocation, addresses this issue. For your information, it results
in:

$ tc --target-arm -sI the-answer-arm.tig

Tiger final assembler ouput.

Routine: _main
.global tc_main

.text
tc_main:
push {fp, 1r}
sub fp, sp, #4
sub sp, sp, #4
10:
1ldr rl, =42
str rl, [fp, #0]
ldr rl, =51
str rl, [fp, #0]
11:
add sp, sp, #4
pop {fp, pc}
.ltorg

Example 4.148: tc —--target-arm -sI the-answer-arm.tig

let function add(x: int, y: int) : int = x + y
in

print_int(add(1, (add(2, 3)))); print("\n")
end

File 4.93: add-arm.tig
$ tc -e --target-arm --inst-display add-arm.tig

Tiger final assembler ouput.

Routine: add
.global tc_10

Chapter 4: Compiler Stages

.text
tc_10:

Allocate frame

12:

13:

.ltorg

.data
11:

str
mov
mov
mov
mov
mov
mov
mov
mov
mov

add
mov

mov
mov
mov
mov
mov
mov
mov

pop

.WO
.as

Routine:
.global tc_main

.text
tc_main:

rl, [fp, #0]

t0, r2
tl, r3
t7, r10
t8, r4d
t9, rb

t10,
t11,
t12,
t13,

t6, t0, t1

r0, t6

rio0,

t7

r4, t8
r5, t9
r6, t10
r7, ti1
r8, ti12
r9, ti13
Deallocate frame

{fp,

rd 1
ciz "\Il"

_main

Allocate frame

14:

mov
mov
mov
mov
mov
mov
mov

mov
ldr
mov
ldr
mov

t18,
t19,
£20,
t21,
£22,
£23,
t24,

pc}

rl0
r4d
r5
r6
r7
r8
r9

rl, fp

t14,

=2

r2, ti4

t15,

=3

r3, tib

207

208 The Tiger Compiler Project Assignment

bl tc_10
mov t4, r0
mov rl, fp
1ldr t16, =1
mov r2, tié
mov r3, t4
bl tc_10
mov t5, r0
mov rl, tb5
bl tc_print_int
1ldr t17, =11
mov rl, ti17
bl tc_print
15:
mov r10, t18
mov rd, t19
mov r5, t20
mov r6, t21
mov r7, t22
mov r8, t23
mov r9, t24

Deallocate frame
pop {fp, pc}

.ltorg

Example 4.149: tc -e —--target-arm --inst-display add-arm.tig

The runtime must be functional. No difference must be observable in comparison with
a run with HAvVM:

substring("", 1, 1)

File 4.94: substring-0-1-1-arm.tig
$ tc -e —-target-arm --inst-display substring-O-1-1-arm.tig
Tiger final assembler ouput.

.data
10:
.word O
.asciz ""
Routine: _main
.global tc_main

.text

tc_main:

Allocate frame
mov t4, ri10
mov tb5, r4d
mov t6, rb5
mov t7, r6

mov t8, r7

Chapter 4: Compiler Stages 209

mov t9, r8
mov t10, r9
11:
1ldr t1, =10
mov rl, ti
ldr t2, =1
mov r2, t2
1ldr t3, =1
mov r3, t3
bl tc_substring
12:
mov r10, t4
mov rd, t5
mov r5, t6
mov r6, t7
mov r7, t8
mov r8, t9
mov r9, ti10

Deallocate frame
pop {fp, pc}

.1ltorg

Example 4.150: tc -e —-target-arm --inst-display substring-0-1-1-arm.tig

$ tc -e --target-arm --asm-compute --inst-display substring-0-1-l-arm.tig
Tiger final assembler ouput.

.data
10:
.word O

.asciz ""

Routine: _main
.global tc_main

.text
tc_main:
push {fp, 1r}
sub fp, sp, #4
sub sp, sp, #0
11:
ldr rl, =10
1ldr r2, =1
ldr r3, =1
bl tc_substring
12:
add sp, sp, #0

pop {fp, pc}

.ltorg

210

The Tiger Compiler Project Assignment

Example 4.151: tc -e —--target-arm --asm-compute --inst-display substring-0-

l1-1-arm.tig

The following example illustrates conditional jumps.
if 42 > 51 then "forty-two" else "fifty-one"

File 4.95: condjump-arm.tig

$ tc -e --target-arm --inst-display condjump-arm.tig

Tiger final assembler ouput.

.data
10:

.data
11:

.word 9
.asciz "forty-two"

.word 9
.asciz "fifty-one"

Routine:

.text
tc_main:

Allocate frame

15:

13:

14:

12:

16:

mov
mov
mov
mov
mov
mov
mov

1ldr
cmp
bgt

ldr
b

1ldr

mov
mov
mov
mov
mov
mov

_main
.global tc_main

t4,
t5,
t6,
t7,
t8,
t9,
t10,

t1,
t1,
12

t2,

16

t3,
14

rl0,
r4d,
r5,
r6,
r7,
r8,

rl0
r4d
r5
r6
r7
r3
r9

=42
#51

t4
t5
t6
t7
t8
t9

Chapter 4: Compiler Stages 211

mov r9, ti10
Deallocate frame

pop {fp, pc}
.ltorg
Example 4.152: tc -e —--target-arm --inst-display condjump-arm.tig

$ tc -e --target-arm --asm-compute --inst-display condjump-arm.tig
Tiger final assembler ouput.

.data
10:
.word 9
.asciz "forty-two"
.data
11:

.word 9
.asciz "fifty-one"

Routine: _main
.global tc_main

.text
tc_main:
push {fp, 1r}
sub fp, sp, #4
sub sp, sp, #0
15:
1ldr rl, =42
cmp rl, #51
bgt 12
13:
ldr rl, =11
14:
b 16
12:
1ldr rl, =10
b 14
16:
add sp, sp, #0
pop {fp, pc}
.ltorg

Example 4.153: tc -e --target-arm --asm-compute --inst-display condjump-
arm.tig

4.20.3 TC-Y Given Code

Some code is provided along with the code given at TC-7 (see Section 4.16.3 [TC-7 Given
Code], page 174). See Section 3.2.26 [src/target/arm], page 68.

212 The Tiger Compiler Project Assignment

4.20.4 TC-Y Code to Write

There is not much code to write:

— Codegen (src/target/arm/call.brg, src/target/arm/move.brg): complete some
rules in the grammar of the code generator produced by MonoBURG.

— ArmAssembly::cjump_build (src/target/arm/arm-assembly.cc): translate condi-
tional branch instructions (branch if equal, if lower than, etc.) into ARM assembly.

Information on ARM may be found in the ARM Architecture Reference Manual??.

Completing the following routines is needed for register allocation only (see Section 4.18
[TC-9], page 189):

— Codegen: :rewrite_program (src/target/arm/epilogue.cc)

4.20.5 TC-Y raq
How to compile and test?
To generate a binary from an ARM assembly file:
(print_int(42); print("\n"))

File 4.96: print-int-arm.tig

$ tc --target-arm -S print-int-arm.tig >print-int-arm.s

Example 4.154: tc --target-arm -S print-int-arm.tig >print-int-
arm.s
$ arm-linux-gnueabihf-gcc-7 -march=armv7-a -oprint-int print-
int-arm.s

Example 4.155: arm-linux-gnueabihf-gcc-7 -march=armv7-a
-oprint-int print-int-arm.s

To run your code, use QEMU:

$ gemu-arm -L /usr/arm-linux-gnueabihf ./print-int
42

Example 4.156: gemu-arm -L /usr/arm-linux-gnueabihf ./print-int

QEMU (Quick Emulator) is a machine emulator and virtualizer. It can emulate
a full system, including processor and peripherals. We are using it to emulate
an ARM Processor.

4.20.6 TC-Y Improvements
Possible improvements include:

— Take a quick look at the calling convention for both Section 4.19 [TC-X], page 195,
and Section 4.20 [TC-Y], page 205, you might find some work to do.

4.21 TC-L, llvm ir

TC-L is an optional assignment.
This section has been updated for EriTa-2018 on 2015-10-06.

42 http://www.club.cc.cmu.edu/ "mjrosenb/ARM/,20v7%20Architecture’,20Reference’20Manual . pdf.

http://www.club.cc.cmu.edu/~mjrosenb/ARM%20v7%20Architecture%20Reference%20Manual.pdf

Chapter 4: Compiler Stages 213

At the end of this stage, the compiler procudes LLvM IR code. This stage produces an
intermediate representation like Section 4.14 [TC-5], page 132.

The LLvM IR is a Static Single Assignment (ssa) based representation, that provides
type safety, low-level operations, and is capable of representing most of high-level languages
cleanly. It is the intermediate representation used by Section 5.6 [Clang], page 250.

Compared to the HIR, LLVM IR is typed. Providing type information can help the Livm
back end to optimize even more.

You can find more information about the language in the nivm Language Reference
Manual*®.

For more documentation on LLVM, use the LLvM Documentation**.

A relevant tutorial is available here: Kaleidoscope: Implementing a Language with
LvM?®. It may be useful if you want to go further.

The dependency for this stage is Section 5.6 [Clang], page 250. You can install it either
of a part of the 11vm-dev package, or by visiting LLVM Download Page*®.

This stage makes use of multiple previous stages:
Section 4.6 [TC-R]|, page 106

All the identifiers have to be unique, in order to translate them to LLVM
identifiers (for debug purposes).

Section 4.9 [TC-D], page 116
The desugar visitor is used to translate for loops and comparison between
strings.

4.21.1 TC-L Goals
Things to learn during this stage that you should remember:

Smart pointers
Usage of std: :unique_ptr.

Move semantics
How move semantics make std: :unique_ptr a powerful tool.

Basic blocks
Why do we need them, and how rLivM uses them in control-flow handling.

Inner functions and their impact on memory management at runtime
Reaching non local variables.

Properties of LivM 1R
— SSA

— Type safe
— Target independent
The LzvM compiler infrastructure
— LLVM IR
— The optimizer, opt
opt takes LLvM IR and applies optimization passes on it. This allows you

to select several optimization passes to apply on the LLvM IR and observe
the resulting LLvm 1R.

43 http://11vm.org/docs/LangRef .html.

44 http://1lvm.org/docs/index.html.

45 http://1lvm.org/docs/tutorial/index.html.
46 http://1lvm.org/releases/download.html.

http://llvm.org/docs/LangRef.html
http://llvm.org/docs/index.html
http://llvm.org/docs/tutorial/index.html
http://llvm.org/releases/download.html

214 The Tiger Compiler Project Assignment

— The Lovm Core libraries
— The LLvm Tools: 11vm-as, 11vm-dis, 11vm-1ink, etc.

Using an external runtime
Using a C runtime interacting with the Tiger code.

4.21.2 TC-L Samples

Starting from a typed AsT, generate the LLvM IR instructions using the LLvM framework.
let
var answer := 42
in
answer := 51
end

File 4.97: the-answer-1lvm.tig
$ tc --1lvm-display the-answer-llvm.tig
; ModulelD = ’tc’
source_filename = "tc"
target triple = "i386-pc-linux-gnu"

; Function Attrs: inlinehint nounwind
declare void Q@tc_print(i8*) #O0

; Function Attrs: inlinehint nounwind
declare void @tc_print_err(i8x) #0

; Function Attrs: inlinehint nounwind
declare void @tc_print_int(i32) #O0

; Function Attrs: inlinehint nounwind
declare void @tc_flush() #0

; Function Attrs: inlinehint nounwind
declare i8+% @tc_getchar() #0

; Function Attrs: inlinehint nounwind
declare 132 @tc_ord(i8*) #0

; Function Attrs: inlinehint nounwind
declare i8* @tc_chr(i32) #O0

; Function Attrs: inlinehint nounwind
declare i32 @tc_size(i8*) #O0

; Function Attrs: inlinehint nounwind
declare i32 @tc_streq(i8*, i8%) #O0

; Function Attrs: inlinehint nounwind
declare i32 Qtc_strcmp(i8*, i8%) #0

; Function Attrs: inlinehint nounwind
declare i8* Q@tc_substring(i8*, i32, i32) #0

Chapter 4: Compiler Stages 215

; Function Attrs: inlinehint nounwind
declare i8* @tc_concat(i8*, i8%) #0

; Function Attrs: inlinehint nounwind
declare i32 @tc_not(i32) #O

; Function Attrs: inlinehint nounwind
declare void Q@tc_exit(i32) #0

; Function Attrs: nounwind
define void @tc_main() #1 {
entry__main:
%answer_17 = alloca 132
store i32 42, i32x* %answer_17
store i32 51, i32* %answer_17
ret void

attributes #0 = { inlinehint nounwind }
attributes #1 = { nounwind }

Example 4.157: tc --11lvm-display the-answer-1lvm.tig
let function add(x: int, y: int) : int = x + y
in

print_int(add(1, (add(2, 3)))); print("\n")
end

File 4.98: add-1lvm.tig

$ tc --1llvm-display add-1lvm.tig

; ModulelID = ’tc’

source_filename = "tc"

target triple = "i386-pc-linux-gnu"

@string = private unnamed_addr constant [2 x i8] c"\0A\0O"

; Function Attrs: inlinehint nounwind
declare void @tc_print(i8*) #0

; Function Attrs: inlinehint nounwind
declare void @tc_print_err(i8*) #O0

; Function Attrs: inlinehint nounwind
declare void @tc_print_int(i32) #O0

; Function Attrs: inlinehint nounwind
declare void @tc_flush() #O

; Function Attrs: inlinehint nounwind
declare i8+* @tc_getchar() #0

216 The Tiger Compiler Project Assignment

; Function Attrs: inlinehint nounwind
declare i32 @tc_ord(i8*) #O0

; Function Attrs: inlinehint nounwind
declare i8% @tc_chr(i32) #0

; Function Attrs: inlinehint nounwind
declare 132 @tc_size(i8x*) #0

; Function Attrs: inlinehint nounwind
declare i32 Qtc_streq(i8*, i8%) #0

; Function Attrs: inlinehint nounwind
declare i32 Q@tc_strcmp(i8*, i8%) #0

; Function Attrs: inlinehint nounwind
declare i8% Qtc_substring(i8*, i32, i32) #0

; Function Attrs: inlinehint nounwind
declare i8% Q@tc_concat(i8*, i8%) #O0

; Function Attrs: inlinehint nounwind
declare 132 @tc_not(i32) #0

; Function Attrs: inlinehint nounwind
declare void @tc_exit(i32) #0

; Function Attrs: nounwind
define void @tc_main() #1 {
entry__main:
%call_add_19 = call i32 @add_19(i32 2, i32 3)
%call_add_191 = call i32 @add_19(i32 1, i32 %call_add_19)
call void @tc_print_int(i32 %call_add_191)
call void @tc_print(i8* getelementptr inbounds ([2 x i8], [2 x i8]* @string, i32 O
ret void

; Function Attrs: nounwind
define internal i32 @add_19(i32 %x_17, i32 %y_18) #1 {
entry_add_19:
%hy_182 = alloca 132
%x_171 = alloca i32
store 132 %x_17, i32% Yx_171
store 132 %y_18, 132* %y_182
%x_173 = load 132, i32x %x_171
Y%y_184 = load i32, i32% %y_182
%addtmp = add 132 %x_173, %y_184
ret i32 %addtmp

{ inlinehint nounwind }
{ nounwind }

attributes #0
attributes #1

Chapter 4: Compiler Stages 217

Example 4.158: tc —-11vm-display add-1lvm.tig

Once your compiler is complete, you can produce an actual LLvM IR output and compile
it with clang to produce a real executable program.

$ tc --llvm-runtime-display --1llvm-display add-llvm.tig

; ModulelD = ’tc’

source_filename = "tc"

target datalayout = "e-m:e-p:32:32-£64:32:64-£80:32-n8:16:32-5128"
target triple = "i386-pc-linux-gnu"

%struct._IO_FILE = type { 132, i8%, i8%, i8%, i8%, i8%, i8%, i8*, i8%, i8%*, i8%, 18
%struct._I0_marker = type { Ystruct._IO0_marker*, Ystruct._IO0_FILE*, i32 }

@string = private unnamed_addr constant [2 x i8] c"\0A\0O"

@stderr = external global %struct._IO_FILE*, align 4

@.str = private unnamed_addr constant [29 x i8] c"chr: character out of range\0A\0O"
@consts = internal global [512 x i8] zeroinitializer, align 1

@.str.1 = private unnamed_addr constant [36 x i8] c"substring: arguments out of boun
@stdin = external global %struct._IO_FILE*, align 4

Q@.str.2 = private unnamed_addr constant [1 x i8] zeroinitializer, align 1

@.str.3 = private unnamed_addr constant [3 x i8] c"%s\00", align 1

@.str.4 = private unnamed_addr constant [3 x i8] c¢"%d\00", align 1

@stdout = external global %struct._IO_FILE*, align 4

; Function Attrs: nounwind
define void @tc_main() #0 {
entry__main:
%call_add_19 = call i32 @add_19(i32 2, i32 3)
%call_add_191 = call i32 @add_19(i32 1, i32 %call_add_19)
call void @tc_print_int(i32 %call_add_191)
call void @tc_print(i8* getelementptr inbounds ([2 x i8], [2 x i8]* @string, i32 O
ret void

; Function Attrs: nounwind
define internal i32 Qadd_19(i32 %x_17, i32 %y_18) #0 {
entry_add_19:
%y_182 = alloca i32
%x_171 alloca 132
store i32 %x_17, 132*% %x_171
store 132 %y_18, 132* Yy_182
%x_173 = load 132, i32x %x_171
Y%y_184 = load 132, 132 %y_182
Yaddtmp = add 132 %x_173, %y_184
ret 132 %addtmp

; Function Attrs: noinline nounwind optnone
define i132% Qtc_init_array(i32, i32) #1 {
%3 = alloca i32, align 4

218 The Tiger Compiler Project Assignment

%4 = alloca i32, align 4

%5 = alloca i32x, align 4

%6 = alloca i32, align 4

store 132 %0, i32x% %3, align 4
store 132 %1, i32x% %4, align 4

%7 = load i32, i32% %3, align 4
%8 = mul i32 %7, 4

%9 call noalias i8* @malloc(i32 %8) #0
%10 = bitcast i8* %9 to i32x%
store 132* %10, i32%* %5, align 4
store i32 0, i32* Y6, align 4

br label %11

; <label>:11: ; preds = %20, %2
%12 = load i32, i32* %6, align 4

%13 = load i32, i32* %3, align 4

%14 = icmp ult 132 %12, %13

br il %14, label %15, label %23

; <label>:15: ; preds = %11
%16 = load i32, i32* %4, align 4

%17 = load i32%, i32*x %5, align 4

%18 = load i32, i32* 6, align 4

%19 = getelementptr inbounds 132, i32x %17, i32 %18

store 132 %16, i32x %19, align 4

br label %20

%15

; <label>:20: ; preds
%21 = load i32, i32* %6, align 4
%22 = add i32 %21, 1
store i32 %22, i32* Y6, align 4
br label %11

; <label>:23: ; preds = 11
%24 = load i32%, i32%* %5, align 4

ret i32* %24

; Function Attrs: nounwind
declare noalias i8* @malloc(i32) #2

; Function Attrs: noinline nounwind optnone
define 132 @tc_not(i32) #1 {

%2 = alloca i32, align 4

store 132 %0, i32* %2, align 4

%3 = load 132, i32* %2, align 4

%4 = icmp ne 132 %3, O

%5 = xor il %4, true

%6 = zext il %5 to 132

ret i32 %6

Chapter 4: Compiler Stages 219

; Function Attrs: noinline nounwind optnone
define void @tc_exit(i32) #1 {
%2 = alloca i32, align 4
store 132 %0, i32x% %2, align 4
%3 = load i32, i32* %2, align 4
call void Q@exit(i32 %3) #6
unreachable
; No predecessors!
ret void

; Function Attrs: noreturn nounwind
declare void Q@exit(i32) #3

; Function Attrs: noinline nounwind optnone
define i8* @tc_chr(i32) #1 {

%2 = alloca i32, align 4

store 132 %0, i32x% %2, align 4

%3 = load i32, i32* %2, align 4

%4 = icmp sle 132 0, %3

br i1 %4, label %5, label %8

; <label>:5: ; preds = %1
%6 = load i32, i32* %2, align 4
%7 = icmp sle 132 %6, 255
br il %7, label %11, label %8
; <label>:8: ; preds = %5, %1

%9 = load %struct._IO_FILE#*, %struct._IO_FILEx* @stderr, align 4

%10 = call i32 @fputs(i8+* getelementptr inbounds ([29 x i8], [29 x i8]* @.str, i32
call void @exit(i32 120) #6

unreachable

; <label>:11: ; preds = %5

%12 = load i32, i32* %2, align 4

%13 = mul nsw i32 %12, 2

%14 = getelementptr inbounds i8, i8* getelementptr inbounds ([512 x i8], [512 x i8
sts, 132 0, i32 0), 132 %13

ret i8* Y14
}

declare i32 @fputs(i8*, Ystruct._IO_FILEx) #4

; Function Attrs: noinline nounwind optnone
define i8% @tc_concat(i8*, i8x) #1 {
%3 = alloca i8%*, align 4
%4 = alloca i8%, align
%5 = alloca i8%, align
%6 = alloca i32, align
%7 = alloca i32, align
%8 = alloca i32, align
%9 = alloca i32, align

NG N NS

220

%10 = alloca i8%, align 4

store i8* 0, i8* %4, align 4
store i8* %1, i8*x* %5, align 4
%11 = load i8%, i8*x %4, align 4

The Tiger Compiler Project Assignment

%12 = call i32 @strlen(i8x %11) #7

store i32 %12, i32* Y6, align 4
%13 = load i8*, i8* 5, align 4

%14 = call i32 @strlen(i8x* %13) #7

store 132 %14, i32x %7, align 4

%15 = load i32, i32* %6, align 4
%16 = icmp eq i32 %15, 0

br il %16, label %17, label %19

; <label>:17:

%18 = load i8%, i8%x %5, align 4
store i8* 18, i8*x Y3, align 4
br label %69

; <label>:19:

%20 = load 132, i32x %7, align 4
%21 = icmp eq 132 %20, O
br il %21, label %22, label %24

; <label>:22:

%23 = load i8%, i8%x %4, align 4
store i8% 23, i8*x Y3, align 4
br label %69

; <label>:24:

store i32 0, i32* %8, align 4
%25 = load i32, i32* %6, align 4
%26 = load 132, i32x %7, align 4
%27 = add i32 %25, %26

store 132 %27, i32x %9, align 4
%28 = load i32, i32* %9, align 4
%29 = add nsw i32 %28, 1

%30 = call noalias i8* @malloc(i32 %29) #O

store i8% %30, i8*x %10, align 4
store 132 0, 132* %8, align 4
br label %31

; <label>:31:

%32 = load i32, i32* %8, align 4
%33 = load i32, i32* %6, align 4
%34 = icmp ult i32 %32, %33

br il %34, label %35, label %46

; <label>:35:

%36 = load i8%, i8%x %4, align 4
%37 = load i32, i32* %8, align 4
%38
%39

load i8, i8% %38, align 1

; preds = %2

; preds = %2

; preds = %19

; preds = %19

; preds = %43, %24
; preds = %31

getelementptr inbounds i8, i8+* %36, i32 %37

Chapter 4: Compiler

%40 = load i8*, i8+* %10, align 4

W41
%42

load

Stages

i32, i32*% %8, align 4

getelementptr inbounds i8, i8* %40,

store i8 %39, i8% %42, align 1
br label %43

; <label>:43:
%44 = load

i32, i32*% %8, align 4

%45 = add nsw i32 %44, 1
store 132 %45, i32x %8, align 4
br label %31

; <label>:46:

store 132 0, 132* %8, align 4
br label %47

; <label>:47:
%48 = load

%49 = load
%50 = icmp
br i1 %50,
; <label>:51:
%52 = load
%53 = load

%54 = getelementptr inbounds i8, i8% 952,

%55 = load

%56 = load i8%, i8+*x %10, align 4

%57 = load
%58 = load

i32, i32x %8, align 4
i32, 132 %7, align 4
ult i32 %48, %49

label %51, label %64

i8%, i8x* %5, align 4
i32, i32* %8, align 4
i8, i8x* Y54, align 1

i32, i32x %8, align 4
i32, i32* %6, align 4

%59 = add i32 %57, %58

%60 = getelementptr inbounds i8, i8% Y56,

store i8 %55, i8% 60, align 1
br label %61

; <label>:61:
%62 = load

i32, i32*x %8, align 4

%63 = add nsw i32 %62, 1
store 132 %63, i32x %8, align 4
br label %47

; <label>:64:

%65 = load i8%, i8+%x %10, align 4

%66 = load

%67 = getelementptr inbounds i8, i8% %65,

store i8 O,

%68 = load i8%, i8+*x %10, align 4

i32, i32* %9, align 4

i8* 967, align 1

store i8% %68, i8%x %3, align 4
br label %69

; <label>:69:
%70 = load

i8%, i8xx %3, align 4

221

i32 %41
; preds = %35
; preds = %31
; preds = %61, %46
; preds = %47
i32 %53
i32 %59
; preds = %51
; preds = %47
i32 %66

; preds = %64, %22, %17

222 The Tiger Compiler Project Assignment

ret i8* %70
}

; Function Attrs: nounwind readonly
declare i32 @strlen(i8*) #5

; Function Attrs: noinline nounwind optnone
define 132 @tc_ord(i8x*) #1 {
%2 = alloca i32, align 4
%3 = alloca i8%*, align 4
%4 = alloca i32, align 4
store i8% %0, i8*x* I3, align 4
%5 = load i8x, i8*x* %3, align 4
%6 = call i32 @strlen(i8* %5) #7
store 132 %6, i32% 4, align 4
%7 = load i32, i32* %4, align 4
%8 = icmp eq i32 %7, O
br il %8, label %9, label %10

; <label>:9: ; preds = 1
store i32 -1, i32% %2, align 4
br label %15
; <label>:10: ; preds = 1
%11 = load i8%, i8%x %3, align 4
%12 = getelementptr inbounds i8, i8* %11, i32 0
%13 = load i8, i8* %12, align 1
%14 = sext i8 %13 to 132
store 132 %14, i32x %2, align 4
br label %15
; <label>:15: ; preds = %10, %9

%16 = load i32, i32x* %2, align 4
ret 132 %16

; Function Attrs: noinline nounwind optnone
define 132 @tc_size(i8*) #1 {

%2 = alloca i8%*, align 4

store i8* 0, i8* %2, align 4

%3 = load i8%, i8*x %2, align 4

%4 = call i32 @strlen(i8* %3) #7

ret i32 %4

; Function Attrs: noinline nounwind optnone
define i8% @tc_substring(i8*, 132, i32) #1 {
%4 = alloca i8%, align 4
%5 = alloca i8%*, align 4
%6 = alloca i32, align 4
%7 = alloca i32, align 4
58 4

alloca i32, align

Chapter 4: Compiler Stages 223

%9 = alloca i8%, align 4

%10 = alloca i32, align 4

store i8* %0, i8*x* %5, align 4
store 132 %1, i32x% %6, align 4
store 132 %2, 132 J7, align 4
%11 = load i8*, i8* 5, align 4
%12 = call i32 @strlen(i8* %11) #7
store 132 %12, i32x %8, align 4
%13 = load i32, i32* %6, align 4
%14 = icmp sle i32 0, %13

br il %14, label %15, label %24

; <label>:15: ; preds = %3
%16 = load i32, i32* %7, align 4
%17 = icmp sle i32 0, %16
br il %17, label %18, label %24

; <label>:18: ; preds = %15

%19 = load i32, i32* %6, align 4
%20 = load i32, i32* %7, align 4
%21 = add nsw i32 %19, %20
%22 = load i32, i32* %8, align 4
%23 = icmp ule i32 %21, %22
br il %23, label %27, label %24

; <label>:24: ; preds = %18, %15, %3
%26 = load Ystruct._IO_FILE*, %struct._IO_FILE** @stderr, align 4
%26 = call i32 @fputs(i8* getelementptr inbounds ([36 x i8], [36 x i8] @.str.1, i
call void @exit(i32 120) #6

unreachable
; <label>:27: ; preds = %18
%28 = load i32, i32x* %7, align 4
%29 = icmp eq 132 %28, 1
br il %29, label %30, label %38
; <label>:30: ; preds = %27

%31 = load i8%, i8*x Y5, align 4

%32 = load i32, i32* %6, align 4

%33 = getelementptr inbounds i8, i8* %31, 132 %32

%34 = load i8, i8* %33, align 1

%35 = sext i8 %34 to i32

%36 = mul nsw i32 %35, 2

%37 = getelementptr inbounds i8, i8* getelementptr inbounds ([512 x i8], [512 x i8
sts, 132 0, i32 0), 132 %36

store i8% %37, i8*x Y4, align 4

br label %64

; <label>:38: ; preds = %27
%39 = load i32, i32* %7, align 4
%40 = add nsw i32 %39, 1
%41 call noalias i8* @malloc(i32 %40) #0

224 The Tiger Compiler Project Assignment

store i8x 41, i8*x 99, align 4
store i32 0, i32* %10, align 4
br label %42

; <label>:42: ; preds
%43 = load i32, i32* %10, align 4
%44 = load i32, i32* %7, align 4
%45 = icmp slt 132 %43, %44
br il %45, label %46, label %59

%56, %38

; <label>:46: ; preds = %42
%47 = load i8%, i8*x %5, align 4
%48 = load i32, i32% 6, align 4
%49 = load i32, i32* %10, align 4
%50 = add nsw 132 %48, %49
%51 = getelementptr inbounds i8, i8* %47, 132 %50
%52 = load i8, i8* J51, align 1
%563 = load i8+, i8+** 9, align 4
%54 = load i32, i32* %10, align 4
%55 = getelementptr inbounds i8, i8* %53, i32 %54
store i8 %52, i8* Y55, align 1
br label %56
; <label>:56: ; preds = %46
%57 = load i32, i32* %10, align 4
%58 = add nsw i32 %57, 1
store i32 %58, i32% %10, align 4
br label %42
; <label>:59: ; preds = 742
%60 = load i8*, i8** %9, align 4
%61 = load 132, i32% %7, align 4
%62 = getelementptr inbounds i8, i8% %60, i32 %61
store 18 0, i8% 62, align 1
%63 = load i8*, i8** %9, align 4
store i8x 63, i8*x Y4, align 4
br label %64
; <label>:64: ; preds = %59, %30

%65 = load i8*, i8** %4, align 4
ret i8* %65

; Function Attrs: noinline nounwind optnone
define i32 @tc_strcmp(i8*, i8*) #1 {

%3 = alloca i8%*, align 4

%4 = alloca i8*, align 4

store i8% %0, i8*x* 93, align 4

store i8% %1, i8*x J4, align 4

%5 = load i8%, i8*x %3, align 4

%6 = load i8%, i8%* %4, align 4

YAl call i32 @strcmp(i8* 5, i8% %6) #7

Chapter 4: Compiler Stages

ret i32 %7
}

; Function Attrs: nounwind readonly
declare i32 Q@strcmp(i8+*, i8%) #5

; Function Attrs: noinline nounwind optnone
define 132 @tc_streq(i8*, i8%) #1 {

%3 = alloca i8%, align 4

%4 = alloca i8%*, align 4

store i8* 0, i8* %3, align 4

store i8% %1, i8*x* %4, align 4

%5 = load i8x, i8*x* %3, align 4

%6 = load i8%, i8*x* Y4, align 4

%7 = call i32 @strcmp(i8* %5, i8* %6) #7

%8 = icmp eq i32 %7, O

%9 = zext il %8 to i32

ret i32 %9

; Function Attrs: noinline nounwind optnone
define i8% @tc_getchar() #1 {

%1 = alloca i8%, align 4

%2 = alloca i32, align 4

%3 = load %struct._IO_FILE#*, %struct._IO_FILEx* @stdin, align 4

%4 = call i32 @_IO0_getc(%struct._IO_FILEx %3)

store i32 %4, i32% %2, align 4
%5 = load 132, i32% %2, align 4
%6 = icmp eq i32 %5, -1

br il %6, label %7, label %8

; <label>:7:

store i8* getelementptr inbounds ([1 x i8], [1 x i8] @.str.2, i32 0, i32 0), i8%x*

br label %12

; <label>:8:
%9 = load 132, i32* %2, align 4
%10 = mul nsw i32 %9, 2

%11 = getelementptr inbounds i8, i8* getelementptr inbounds ([512 x i8], [512 x i8

sts, 132 0, i32 0), i32 %10
store i8x Y11, i8%x Y1, align 4
br label %12

; <label>:12:
%13 = load i8*, i8%* 1, align 4
ret i8% %13

}

declare i32 @_IO_getc(¥%struct._IO_FILE*) #4

; Function Attrs: noinline nounwind optnone
define void @tc_print(i8*) #1 {

; preds = %0

; preds = %0

; preds = %8, %7

225

226 The Tiger Compiler Project Assignment

%2 = alloca i8%, align 4

store i8* 0, i8** %2, align 4

%3 = load i8%, i8*x* %2, align 4

%4 = call 132 (i8*, ...) @printf(i8* getelementptr inbounds ([3 x i8], [3 x i8]* @
ret void

}
declare i32 @printf(i8x, ...) #4

; Function Attrs: noinline nounwind optnone
define void @tc_print_err(i8*) #1 {
%2 = alloca i8%, align 4
store i8% %0, i8%x 2, align 4
%3 = load %struct._IO_FILE#*, %struct._IO_FILEx* @stderr, align 4
%4 = load i8%, i8** %2, align 4

%5 = call i32 (%struct._I0_FILE*, i8%, ...) @fprintf ()struct._IO_FILE* 3, i8% get
mentptr inbounds ([3 x i8], [3 x i8] @.str.3, i32 0, i32 0), i8* %4)

ret void
}
declare i32 @fprintf(¥)struct._I0_FILEx, i8%, ...) #4

; Function Attrs: noinline nounwind optnone
define void @tc_print_int(i32) #1 {
%2 = alloca i32, align 4
store i32 %0, i32* %2, align 4
%3 = load 132, i32* %2, align 4
%4 = call i32 (i8%*, ...) @printf(i8* getelementptr inbounds ([3 x i8], [3 x i8]* @
ret void

; Function Attrs: noinline nounwind optnone

define void @tc_flush() #1 {
%1 = load %struct._IO_FILE#*, %struct._IO_FILEx* @stdout, align 4
%2 = call i32 @fflush(¥struct._IO_FILE* %1)
ret void

}
declare 132 @fflush(%struct._IO_FILEx) #4

; Function Attrs: noinline nounwind optnone
define 132 @main() #1 {

%1 = alloca i32, align 4

%2 = alloca i32, align 4

store i32 0, i32* %1, align 4

store 132 0, 132* %2, align 4

br label %3

; <label>:3: ; preds = %15, %0
%h4 = load i32, i32% %2, align 4
%5 = icmp slt i32 %4, 512
br il %5, label %6, label %18

Chapter 4: Compiler Stages 227

; <label>:6: ; preds = %3
YA load i32, i32* %2, align 4
%8 = sdiv i32 %7, 2
%9 = trunc i32 %8 to i8
%10 = load i32, i32* %2, align 4
%11 = getelementptr inbounds [512 x i8], [512 x i8]* @consts, 132 0, i32 %10
store i8 %9, i8+ %11, align 1
%12 = load i32, i32* %2, align 4
%13 = add nsw i32 %12, 1
%14 = getelementptr inbounds [512 x i8], [512 x i8]#* @consts, 132 0, 132 %13
store i8 0, i8* %14, align 1
br label %15

; <label>:15: ; preds = 6
%16 = load i32, i32* %2, align 4
%17 = add nsw i32 %16, 2
store 132 %17, i32x %2, align 4
br label %3

; <label>:18: ; preds = %3
call void bitcast (void ()* @tc_main to void (i32)x*) (i32 0)
ret i32 0

attributes #0 = { nounwind }

attributes #1 = { noinline nounwind optnone "correctly-rounded-divide-
sqrt-fp-math"="false" "disable-tail-calls"="false" "less-precise-fpmad"="false" '"no-
frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-
math"="false" "no-jump-tables"="false" "no-nans-fp-math"="false" "no-signed-
zeros—-fp-math"="false" "no-trapping-math"="false" "stack-protector-buffer-

size"="8" "target-cpu"="pentium4" "target-features"="+fxsr,+mmx,+sse,+sse2,+x87" "un
fp-math"="false" "use-soft-float"="false" }

attributes #2 = { nounwind "correctly-rounded-divide-sqrt-fp-math"="false" "disable-
tail-calls"="false" "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-
frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "no
signed-zeros-fp-math"="false" "no-trapping-math"="false" "stack-protector-
buffer-size"="8" "target-cpu"="pentium4" "target-features"="+fxsr,+mmx,+sse,+sse2,+x
fp-math"="false" "use-soft-float"="false" }

attributes #3 = { noreturn nounwind "correctly-rounded-divide-sqrt-fp-

math"="false" "disable-tail-calls"="false" "less-precise-fpmad"="false" "no-
frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-
math"="false" "no-nans-fp-math"="false" "no-signed-zeros-fp-math"="false" "no-
trapping-math"="false" "stack-protector-buffer-size"="8" "target-cpu"="pentium4" "ta
features"="+fxsr,+mmx,+sse,+sse2,+x87" "unsafe-fp-math"="false" "use-soft-
float"="false" }

attributes #4 = { "correctly-rounded-divide-sqrt-fp-math"="false" "disable-
tail-calls"="false" "less-precise-fpmad'"="false" "no-frame-pointer-elim"="true" "no-
frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "no
signed-zeros-fp-math"="false" "no-trapping-math"="false" "stack-protector-
buffer-size"="8" "target-cpu"="pentium4" "target-features"="+fxsr,+mmx,+sse,+sse2,+x
fp-math"="false" "use-soft-float"="false" }

228 The Tiger Compiler Project Assignment

attributes #5 = { nounwind readonly "correctly-rounded-divide-sqrt-fp-
math"="false" "disable-tail-calls"="false" "less-precise-fpmad"="false" "no-
frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-
math"="false" "no-nans-fp-math"="false" "no-signed-zeros-fp-math"="false" "no-
trapping-math"="false" "stack-protector-buffer-size"="8" "target-cpu"="pentium4"
features"="+fxsr,+mmx,+sse,+sse2,+x87" "unsafe-fp-math"="false" "use-soft-
float"="false" }

attributes #6
attributes #7

{ noreturn nounwind }
{ nounwind readonly }

11lvm.ident = !{!0}
!1lvm.module.flags = !{!1, !2}

10 = !{!"clang version 5.0.1-2 (tags/RELEASE_501/final)"}
11 = 1{i32 1, !"NumRegisterParameters", i32 0}
12 = 1{i32 1, !"wchar_size", i32 4}

Example 4.159: tc --1lvm-runtime-display --1lvm-display add-1lvm.tig
$ tc --1llvm-runtime-display --llvm-display add-1lvm.tig >add-1lvm.11
Example 4.160: tc --1lvm-runtime-display --1lvm-display add-1lvm.tig >add-
1lvm.11
$ clang -m32 -oadd-1lvm add-1lvm.11

Example 4.161: clang -m32 -oadd-11vm add-1lvm.11

$./add-11vm
6

Example 4.162: ./add-11vm

4.21.3 TC-L Given Code

Some code is provided along with the code given at TC-5 See Section 3.2.28
[src/llvmtranslate], page 69.

4.21.4 TC-L Code to Write

src/llvmtranslate/escapes-collector.cc

— build_frame Collect all the local variables used in a function. Used in
the escape collector.

— collect_escapes Collect escapes for every function in the ast, and store
them in a map. This is used for Lambda Lifting

Both functions are based on an internal visitor.

src/llvmtranslate/translator. *
This is where all the translation logic goes.
The translation to LLVM IR is using the 11vm: : IRBuilder.

src/1lvmtranslate/llvm-type-visitor.*
Translate type: : Type objects into 11vm: : Type objects.

“ta

Chapter 4: Compiler Stages 229

4.21.5 TC-L raq

The build failed on my machine
If the following error occurs:

CXXLD src/tc
src/.libs/libtc.a(ltl14-translator.o): (.rodata._ZTIN411lvm17GetElementPtrIns
src/.libs/libtc.a(ltl4-translator.o): (.rodata._ZTIN411vm8ICmpInstE[_ZTIN41l
src/.libs/libtc.a(lt14-translator.o): (.rodata._ZTIN411lvm7PHINodeE[_ZTIN411
collect2: error: 1d returned 1 exit status
Makefile:2992: recipe for target ’src/tc’ failed
make: ***x [src/tc] Error 1

then you are using an old version of LivM. The version required is 3.8 or more.

If you still want to use LLvm 3.7, then the LivMm build you are using is compiled
without RTTI.

In order to make it work, you have two choices:

— If you are building Lvm 3.7 from the source code, apply this*” patch to
fix the compilation.

— Build LovMm with RTTI enabled. In order to build LLvMm with RTTI enabled,
follow these steps, assuming the current directory is the root of Livm:

— mkdir _build
— c¢d _build

— cmake .. -DLLVM_REQUIRES_RTTI=0ON -DCMAKE_BUILD_
TYPE=Release

— make install
LLvM builds with rrT1 disabled by default. They use their own rrTI-like system.
Tiger is compiled using rRTTI, and actually uses it quite a lot (dynamic_cast).

In order to make them work together, LLvm has to emit the vtables of its
classes in their own translation unit.

This regression appeared in LLvM 3.7 when a virtual destructor was inlined,
so the vtables were emitted in every translation unit. It was the following
classes: 1lvm: :GetElementPtrInst, 11vm: :ICmpInst and 11lvm: :PHINode.

In order to solve the problem, LLvM uses a dedicated member function called
anchor, that is going to force the emission to happen in its own translation
unit.

As of today, here are some packages of LLvm 3.7 that work/don’t work:
— ArchLinux (pacman) - RTTI enabled.
— OS X (brew) - RTTI enabled.
— OS X (macports) - rTTI disabled. Does not compile.
— Ubuntu (apt) - RTTI enabled.
What is a pHI node?
LLVM instructions are represented in the ssa (Static Single Assignment) form.

Let’s take an example:

let
var v := 10
var a := 1

47 https://github.com/1lvm-mirror/1lvm/commit / fecd8a332e245e2535faf 04de564bba8f7e068d8 .
patch.

https://github.com/llvm-mirror/llvm/commit/fecd8a332e245e2535faf04de564bba8f7e068d8.patch
https://github.com/llvm-mirror/llvm/commit/fecd8a332e245e2535faf04de564bba8f7e068d8.patch

230 The Tiger Compiler Project Assignment

var b := 0
in
if (v < 10) then
a := 2;
b := a
end

The whole point of ssa is to forbid re-assignments, so we cannot assign 2 to
a.
In that case, LLvM is going to create two a’s, and the assignment has to pick
the desired version.
Using a PHI node, the assignment will depend on the original path of the code,
and using that information, it can decide which version of a should be picked.
You can use the opt tool in order to display the control-flow graph.

opt -dot-cfg fact.ll

This generates two files: cfg.tc_main.dot and cfg.fact_18.dot, corre-
sponding to the main function and the fact function.

I don’t understand all the acronyms used in LLvm.
Where can I find their meaning? You can find it in The Livm Lexicon®®.

Can I output the Lovm 1R of a C/C++ program?
Yes, you can. Section 5.6 [Clang], page 250, allows you to do it using the flags
-S —emit-1lvm.
int main(void)
{
int a =1+ 2 * 3;
return a;

}

File 4.99: clang-example.c

$ clang -m32 -S -emit-1lvm -o - clang-example.c
; ModuleID = ’clang-example.c’

source_filename = "clang-example.c"

target datalayout = "e-m:e-p:32:32-f64:32:64-£80:32-n8:16:32-
5128"

target triple = "i386-pc-linux-gnu"

; Function Attrs: noinline nounwind
define i32 @main() #0 {
%1 = alloca i32, align 4
%2 = alloca i32, align 4
store 132 0, 132* %1, align 4
store i32 7, i32% %2, align 4
%3 = load i32, i32% %2, align 4
ret i32 %3
}

attributes #0 = { noinline nounwind "correctly-rounded-divide-
sqrt-fp-math"="false" "disable-tail-calls"="false" "less-precise-

48 http://1lvm.org/docs/Lexicon.html.

http://llvm.org/docs/Lexicon.html

Chapter 4: Compiler Stages 231

fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-
elim-non-leaf" "no-infs-fp-math"="false" "no-jump-tables"="false" '"no-
nans-fp-math"="false" "no-signed-zeros-fp-math"="false" "no-
trapping-math"="false" "stack-protector-buffer-size"="8" "target-
cpu"="pentium4" "target-features"="+fxsr,+mmx,+sse,+sse2,+x87" "unsafe-
fp-math"="false" "use-soft-float"="false" }

I1lvm.module.flags = !{!0}
11lvm.ident = !{!1}

10
1

1{i32 1, !"NumRegisterParameters", i32 0}
!{!"clang version 4.0.1-8 (tags/RELEASE_401/final)"}

Example 4.163: clang -m32 -S -emit-11vm -o - clang-example.c

Your compiler crashes when 11vm: :Linker: :linkModules is called
When using --1lvm-runtime-display, this behavior can occur when the
linker is asked to link two LLvM IR modules that may have been compiled
with two different LLvM IR versions.
Since the runtime is compiled with Section 5.6 [Clang], page 250, from ¢ to
LLVM IR, you have to make sure that the Section 5.6 [Clang], page 250, version
and the LLvM version are exactly the same.

This crash currently occurs with Section 5.6 [Clang], page 250, 3.6 and LLVM
3.8.

4.21.6 TC-L Improvements

Possible improvements include:

Debug information
LLvM has support for debug information. If you want to generate debug infor-
mation, have a look at Adding Debug Information®.
LLVM generates DWARF code.

Start by emitting the locations of your nodes first, then go further with scopes
and variables.

Global variables
As you noticed at Section 4.14 [TC-5], page 132, you can’t have global vari-
ables. LLvM has support for global variables, using the GlobalVariable class.

49 http://11lvm.org/docs/tutorial/LangImpl8.html.

http://llvm.org/docs/tutorial/LangImpl8.html

233

5 Tools

This chapter aims at providing some helpful information about the various tools that
you are likely to use to implement tc. It does not replace the reading of the genuine
documentation, nevertheless, helpful tips are given. Feel free to contribute additional

information.

5.1 Programming Environment

This section lists the tools you need to work in good conditions.

Tool Version Comment

elele) 5.0 See Section 5.5 [GCC], page 249.

Clang 3.8 Optional for TC < 5: See Section 5.6 [Clang],
page 250.

Autoconf 2.64 See Section 5.4 [The GNU Build System], page 247.

Automake 1.14.1 See Section 5.4 [The GNU Build System]|, page 247.

Libtool 2.2.6 See Section 5.4 [The GNU Build System], page 247.

aNU Make 3.81

Boost 1.53 TC >= 5, See [Boost.org], page 237.

Doxygen 1.5.1 See Section 5.16 [Doxygen], page 255.

Python 2.5 See Section 5.15 [Python], page 254.

SWIG 2.0 Optional: See Section 5.14 [SWIG], page 254.

Flex 2.5.35 See Section 5.9 [Flex & Bison]|, page 251.

Bison 3.0.4.19-fbaf See Section 5.9 [Flex & Bison|, page 251.

HAVM 0.27 TC >= 5, See Section 5.10 [HAVM], page 252.

MonoBURG 1.0.6a TC >= 7, See Section 5.11 [MonoBURG], page 252.

Nolimips 0.10 TC >= 7, See Section 5.12 [Nolimips], page 253.

GDB 6.6 See Section 5.7 [GDB], page 250.

Valgrind 3.6 See Section 5.8 [Valgrind], page 250.

Git 1.7

GraphViz 2.26.3 Optional: display poT graphs.

5.2 Modern Compiler Implementation

The Tiger Bible exists in two profoundly different versions.

5.2.1 First Editions

The single most important tool for implementing the Tiger Project is the original book,
Modern Compiler Implementation in C/Java/ML!, by Andrew W. Appel?, published by
Cambridge University Press (New York, Cambridge). 1sBN 0-521-58388-8/.

It is not possible to finish this project without having at least one copy per group.
We provide a convenient mini Tiger Compiler Reference Manual® that contains some
information about the language but it does not cover all the details, and sometimes digging
into the original book is required. This is on purpose, by virtue of due respect to the author
of this valuable book.

Several copies are available at the EpiTA library.

! http://www.cs.princeton.edu/ appel/modern/.
2 http://www.cs.princeton.edu/~appel/.
3 https://www.lrde.epita.fr/ tiger/tiger.html.

http://www.cs.princeton.edu/~appel/modern/
http://www.cs.princeton.edu/~appel/
https://www.lrde.epita.fr/~tiger/tiger.html

234 The Tiger Compiler Project Assignment

There are three flavors of this book:
C

modern
compiler
implementation
in G

andrew w. appel

The code samples are written in C. Avoid this edition, as C is not appropriate
to describe the elaborate algorithms involved: most of the time, the simple
ideas are destroyed with longuish unpleasant lines of code.

Java, First edition
modern
compiler

implementation
in Java

andrew w. appel

The samples are written in Java. This book is the closest to the EpiTa Tiger
Project, since it is written in an object oriented language. Nevertheless, the
modelisation is very poor, and therefore, don’t be surprised if the EPITA project
is significantly different. For a start, there is no Visitors at all. Of course the

main purpose of the book is compilers, but it is not a reason for such a poor
modelisation.

ML

modern
compiler
implementation
in ML

andrew w. appel

Chapter 5: Tools 235

This book, which is the “original”, provides code samples in ML, which is a
very adequate language to write compilers. Therefore it is very readable, even
if you are not fluent in mL. We recommend this edition, unless you have severe
problems with functional programming.

This book addresses many more issues than the sole Tiger Project as we implement
it. In other words, it is an extremely interesting book whose provides insights on garbage
collection, object oriented and functional languages etc.

There is a dozen copies at the EpiTA library, but buying it is a good idea.

Pay extra attention: there are several errors in the books, some of which are reported
on Andrew Appel’s pages (C* Java®, and M%), and others are not.

Because these pages no longer seem to be maintained, additional errors are reported
below. “p. C.245” means page 245 in the C book. Please send us additions.

11.3. Example with Precolored Nodes (p. C.245)
The first interference graph presented for this example lacks the interference
between rl and c.

11.4 Graph Coloring Implementation (p. C.248)
In the first sentence, s/inteference/interference;/.

5.2.2 In Java - Second Edition

modern
compiler
implementation
in Java

rmcond adition

The Second Edition of Modern Compiler Implementation in Java”, by Andrew W.
Appel® and Jens Palsberg?, published by Cambridge University Press (New York, Cam-
bridge), 1sBN 052182060X, is a very different book from the rest of the series.

While, finally, the design s much better, starting with the introduction of the Visitors,
there are many shortcoming for us:

— The language is no longer Tiger, in spite of the cover, but MiniJava, a subset of Java.
It should be noted that, although dressed in oo fashion, the core language addressed
in the first part of the book is no more oo than Tiger. Just as in the first edition, oo
is addressed in Chapter 14 (a good thing mmo).

http://wuw.cs.princeton.edu/ appel/modern/c/errata.html.
http://www.cs.princeton.edu/ appel/modern/java/errata.html.
http://wuw.cs.princeton.edu/ appel/modern/ml/errata.html.
www.cambridge.org/gb/knowledge/isbn/item1170327/.
http://wuw.cs.princeton.edu/ appel/.
http://wuw.cs.ucla.edu/ palsberg/.

© 00 N O Utk

http://www.cs.princeton.edu/~appel/modern/c/errata.html
http://www.cs.princeton.edu/~appel/modern/java/errata.html
http://www.cs.princeton.edu/~appel/modern/ml/errata.html
www.cambridge.org/gb/knowledge/isbn/item1170327/
http://www.cs.princeton.edu/~appel/
http://www.cs.ucla.edu/~palsberg/

236 The Tiger Compiler Project Assignment

— This language seems, at first sight, to have a simpler syntax. In particular, it does not
include the “l-value vs. array instantiation” ambiguity, which is a pity, since that’s a
nice grammar massage exercise.

— The appendix no longer contains the Tiger Language Reference Manual, but the
MiniJava Language Reference Manual. This is a real problem for EpiTA students
who have to produce a compiler for Tiger. This is why our Section “Tiger Language
Reference Manual” in Tiger Compiler Reference Manual is now much more detailed:
so that students can buy the recent version of this book, and still have an access to
the definition of the Tiger language.

— MiniJava, as Java, does not need static links. Although this book does mention static
links (and uses an example in... Tiger!), it contains much less material than the
original edition. This is unfortunate: try to find another version of the book.

— Sometimes the sentence are convoluted because... it would be nice to illustrate using
Tiger... For instance page 151 “Record and Array Creation” begins with “Imagine a
language construct {el, €2, ..., en} that creates an n-element record...”.

Nevertheless, because we don’t encourage book copying, we now provide a complete
definition of the Tiger language in Section “Tiger Language Reference Manual” in Tiger
Compiler Reference Manual.

5.3 Bibliography

Below is presented a selection of books, papers and web sites that are pertinent to the Tiger
project. Of course, you are not requested to read them all, except Section 5.2 [Modern
Compiler Implementation|, page 233. A suggested ordered small selection of books is:

1. Section 5.2 [Modern Compiler Implementation|, page 233,

[C++ Primer], page 238,

[Design Patterns - Elements of Reusable Object-Oriented Software], page 240,
[Effective Modern C++], page 240,

[Effective C++|, page 241,

[Effective STL], page 241,

SR

The books are available at the EpiTa Library: you are encouraged to borrow them there.
If some of these books are missing, please suggest them to the library’s manager. To buy
these books, we recommend Le Monde en “tique”!?, a bookshop that has demonstrated
several times its dedication to its job, and its kindness to EPITA students/members.

Autotools Tutorial — Alexandre Duret-Lutz [Web Site]
The Autotools Tutorial! is the best introduction to Autoconf, Automake, and Libtool,
that we know. It covers also other components of the ayu Build System. You should
read this before diving into the documentation.

Other resources include:
— the Autoconf documentation'?
— the Automake documentation'?

— the Libtool documentation'*

10
11
12
13
14

http://wuw.lmet.fr.
http://wuw.lrde.epita.fr/“adl/autotools.html.
http://www.gnu.org/software/autoconf/manual/index.html.
http://wuw.gnu.org/software/automake/manual/index.html.
http://www.gnu.org/software/libtool/manual/index.html.

http://www.lmet.fr
http://www.lrde.epita.fr/~adl/autotools.html
http://www.gnu.org/software/autoconf/manual/index.html
http://www.gnu.org/software/automake/manual/index.html
http://www.gnu.org/software/libtool/manual/index.html

Chapter 5: Tools

Bjarne Stroustrup

Boost.org

237

— the Goat Book!® covers the whole ¢Nu Build System: Autoconf, Automake and

Libtool.

[Web Site]

Bjarne Stroustrup!® is the author of C++, which he describes as (The C++ Programming
Language'”):

C++ is a general purpose programming language with a bias towards sys-
tems programming that

is a better C

— supports data abstraction

— supports object-oriented programming

— supports generic programming.

His web page contains interesting material on C++, including many interviews. The

interview by Aleksey V. Dolya for the Linux Journa
CH+.

118
For instance:

I think that the current mess of C/C++ incompatibilities is a most unfortu-
nate accident of history, without a fundamental technical or philosophical
basis. Ideally the languages should be merged, and I think that a merger
is barely technically possible by making convergent changes to both lan-
guages. It seems, however, that because there is an unwillingness to make
changes it is likely that the languages will continue to drift apart—to the
detriment of almost every C and C++ programmer. [...] However, there
are entrenched interests keeping convergence from happening, and I'm not
seeing much interest in actually doing anything from the majority that, in
my opinion, would benefit most from compatibility.

His list of C++ Applications!? is worth the browsing.

The

Boost.org web site?® reads:

The Boost web site provides free peer-reviewed portable C++ source li-
braries. The emphasis is on libraries that work well with the C++ Standard
Library. One goal is to establish "existing practice" and provide reference
implementations so that the Boost libraries are suitable for eventual stan-
dardization. Some of the libraries have already been proposed for inclusion
in the C++ Standards Committee’s upcoming C++ Standard Library Tech-
nical Report.

15
16
17
18
19
20

http
http
http
http
http
http

://wuw.sourceware.org/autobook/.
://www.stroustrup.com.
://www.stroustrup.com/C++.html.
://www.linuxjournal.com/article/7099
://www.stroustrup.com/applications.html
://www.boost .org.

contains thoughts about C and

[Web Site]

http://www.sourceware.org/autobook/
http://www.stroustrup.com
http://www.stroustrup.com/C++.html
http://www.linuxjournal.com/article/7099
http://www.stroustrup.com/applications.html
http://www.boost.org

238 The Tiger Compiler Project Assignment

In addition to actual code, a lot of good documentation is available. Amongst libraries,
you ought to have a look at the Spirit object-oriented recursive-descent parser generator
framework?!, the Boost Graph Library??, the Boost Variant Library?® etc.

BURG: Fast Optimal Instruction Selection and Tree Parsing [Paper]
— Christopher W. Fraser, Robert R. Henry, Todd A. Proebsting
SIGPLAN Notices 24(4), 68-76. 1992.

This paper?* is a description of BURG and an introduction to the concept of code gen-
erator generators.

Compilers and Compiler Generators, an introduction with C++ [Book]
— P.D. Terry

Its site reads:

This site?® provides an on-line edition of the text and other material from
the book "Compilers and Compiler Generators - an introduction with C++",
published in 1997 by International Thomson Computer Press. The original
edition is now out of print, and the copyright has reverted to the author.

This book is not very interesting for us: it depends upon tools we don’t use, its C++ is
antique, and its approach to compilation is significantly different from Appel’s.

C++ Primer — Stanley B. Lippman, Josée Lajoie [Book]

Y, 7,
%
K
Of %
%"

Pilme

Tiilzel Zeliclds

Published by Addison-Wesley; 1sBn 0-201-82470-1.

This book teaches C++ for programmers. It is quite extensive and easy to read. Un-
fortunately it is not 100% standard compliant, in particular many std:: are missing.
Weirdly enough, the authors seems to promote using declarations instead of explicit
qualifiers; the page 441 reads:

In this book, to keep the code examples Short, and because many of the
examples were compiled with implementations not supporting namespace,
we have not explicitly listed the using declarations needed to properly
compile the examples. It is assumed that using declarations are provided
for the members of namespace std used in the code examples.

It should not be too much of a problem though. This is the book we recommend to
learn C++. See the Addison-Wesley C++ Primer Page®®.

21
22
23
24
25
26

http://wuw.boost.org/libs/spirit/index.html.
http://www.boost.org/libs/graph/doc/table_of_contents.html.
http://wuw.boost.org/libs/variant/index.html.
http://www-inst.eecs.berkeley.edu/~graham/papers/burg-doc.ps.
http://wuw.scifac.ru.ac.za/compilers/.
http://www.informit.com/store/c-plus-plus-primer-9780201824704.

http://www.boost.org/libs/spirit/index.html
http://www.boost.org/libs/graph/doc/table_of_contents.html
http://www.boost.org/libs/variant/index.html
http://www-inst.eecs.berkeley.edu/~graham/papers/burg-doc.ps
http://www.scifac.ru.ac.za/compilers/
http://www.informit.com/store/c-plus-plus-primer-9780201824704

Chapter 5: Tools 239

Warning: The French translation is L’Essentiel du C++, which is extremely stupid since
Essential C++ is another book from Stanley B. Lippman (but not with Josée Lajoie).

Compilers: Principles, Techniques and Tools — Alfred V. Aho, [Book]
Ravi Sethi, and Jeffrey D. Ullman
The Dragon Book [Book]

Compilers

Privegles, Feshosags
il il ﬁ

Published by Addison-Wesley 1986; 1sBN 0-201-10088-6.

This book is the bible in compiler design. It has extensive insight on the whole archi-
tecture of compilers, provides a rigorous treatment for theoretical material etc. Never-
theless I (Akim) would not recommend this book to EpITA students, because

it is getting old
It doesn’t mention Risc, object orientation, functional, modern optimiza-
tion techniques such as ssa, register allocation by graph coloring?” etc.

it is fairly technical
The book can be hard to read for the beginner, contrary to Section 5.2
[Modern Compiler Implementation], page 233.

Nevertheless, curious readers will find valuable information about historically important
compilers, people, papers etc. Reading the last section of each chapter (Bibliographical
Notes) is a real pleasure for whom is interested.

It should be noted that the French edition, “Compilateurs: Principes, techniques et
outils”, was brilliantly translated by Pierre Boullier, Philippe Deschamp, Martin Jour-
dan, Bernard Lorho and Monique Lazaud: the pleasure is as good in French as it is in
English.

Cool: The Classroom Object-Oriented Compiler [Web Site]
The Classroom Object-Oriented Compiler®®, from the University of California, Berke-
ley, is very similar in its goals to the Tiger project as described here. Unfortunately
it seems dead: there are no updates since 1996. Nevertheless, if you enjoy the Tiger
project, you might want to see its older siblings.

CStupidClassName — Dejan Jelovié [Paper]
This short paper, CStupidClassName?®, explains why naming classes CLikeThis is
stupid, but why lexical conventions are nevertheless very useful. It turns out we follow
the same scheme that is emphasized there.

27 To be fair, the Dragon Book leaves a single page (not sheet) to graph coloring.
28 http://theory.stanford.edu/ aiken/software/cool/cool.html.
29 http://www. jelovic.com/articles/stupid_naming.htm.

http://theory.stanford.edu/~aiken/software/cool/cool.html
http://www.jelovic.com/articles/stupid_naming.htm

240 The Tiger Compiler Project Assignment

Design Patterns: Elements of Reusable Object-Oriented [Book]
Software — Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

e —
Foreword by Grady Booch

Published by Addison-Wesley; 1sBn: 0-201-63361-2.

A book you must have read, or at least, you must know it. In a few words, let’s
say it details nice programming idioms, some of them you should know: the visITOR,
the FLYWEIGHT, the SINGLETON etc. See the Design Patterns Addison-Wesley Page®C.
A pre-version of this book is available on the Internet as a paper: Design Patterns:
Abstraction and Reuse of Object-Oriented Design®!. Surprisingly, The full version of
Design Pattern CD?? is available on the net.

You may find additional information about Design Patterns on the Portland Pattern
Repository33.

Effective Modern C++ — Scott Meyers [Book]
morewy |

N

Effective .,
Modern C++

42 SPECIFIC WAYS TO IMPROVE YOUR USE OF C#+11 AND C++14.

Scott Meyers

336 pages; Publisher: O’Reilly Media; 1st edition (November 2014); 1sBN: 1-491-90399-
6

An amazingly practical book when using C++11 and C++14 (modern C++). These days,
it should be the first book that every new C++ programmer should read. It follows the
same format as [Effective C++|, page 241. Effective Modern C++ O’Reilly Page3*.

In this document, EMcn refers to item n in Effective Modern C++.

30
31
32
33

http://www.informit.com/store/design-patterns-elements-of-reusable-object-oriented-9780201633610.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.2555.
http://www.saeedsh.com/resources/Design’%20Patterns.pdf.
http://c2.com/cgi/wiki?PortlandPatternRepository.

34 http://shop.oreilly.com/product/0636920033707 .do.

http://www.informit.com/store/design-patterns-elements-of-reusable-object-oriented-9780201633610
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.2555
http://www.saeedsh.com/resources/Design%20Patterns.pdf
http://c2.com/cgi/wiki?PortlandPatternRepository
http://shop.oreilly.com/product/0636920033707.do

Chapter 5: Tools 241

Effective C++ — Scott Meyers [Book]

Effective G+
Third Edition

55 Specifi¢ Ways to Improve
Your Programs and Designs

Scott Meyers

*
>
<]
o
z
=
2
2
Z
e}
z
=
=
=
=
=
(3]
z
3

320 pages; Publisher: Addison-Wesley Pub Co; 3rd edition (May 2005); 1sBN: 0-321-
33487-6

An excellent book that might serve as a C++ lecture for programmers. Every C++
programmer should have read it at least once, as it treasures C++ recommended prac-
tices as a list of simple commandments. Be sure to buy the second edition, as the first
predates the C++ standard. See the Effective C++ Addison-Wesley Page®®.

In this document, Ecn refers to item n in Effective C++.

Effective stL — Scott Meyers [Book]

Effective STL

50 Specific \Waysto Improve
Your Use of the Standard
Templaté Library

Scott Meyers:

$31¥3S ONILNAWOD TYNOISSIHO¥d ATISIM-NOSIAAY

Published by Addison-Wesley; 1sBn: 0-201-74962-9

A remarkable book that provides deep insight on the best practice with strL. Not
only does it teach what’s to be done, but it clearly shows why. A book that any C++
programmer should have read. See the Effective str. Addison-Wesley Page3®.

In this document, Esn refers to item n in Effective sTL.

Engineering a simple, efficient code generator generator — [Paper]
Christopher W. Fraser, David R. Hanson, Todd A. Proebsting
AcM Letters on Programming Languages and Systems 1, 3 (Sep. 1992), 213-226.

This paper3” describes iburg, a BURG clone that delay dynamic programming at compile
time (BURG-like programs use dynamic programming to select the optimum tree tiling
during a bottom-up walk).

35 http://www.informit.com/store/effective-c-plus-plus-55-specific-ways-to-improve-your-9780321334879.
36 http://wuw.informit.com/store/effective-st1-50-specific-ways-to-improve-your-use-9780201749625.
37 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.1823&rep=repl&type=pdf.

http://www.informit.com/store/effective-c-plus-plus-55-specific-ways-to-improve-your-9780321334879
http://www.informit.com/store/effective-stl-50-specific-ways-to-improve-your-use-9780201749625
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.1823&rep=rep1&type=pdf

242 The Tiger Compiler Project Assignment

Generic Visitors in C++ — Nicolas Tisserand [Technical Report]
This report is available on line from Visitors Page®®: Generic Visitors in C++39. Tts
abstract reads:

The Visitor design pattern is a well-known software engineering technique
that solves the double dispatch problem and allows decoupling of two inter-
dependent hierarchies. Unfortunately, when used on hierarchies of Com-
posites, such as abstract syntax trees, it presents two major drawbacks:
target hierarchy dependence and mixing of traversal and behavioral code.

cwI’s visitor combinators are a seducing solution to these problems. How-
ever, their use is limited to specific “combinators aware” hierarchies.

We present here Visitors, our attempt to build a generic, efficient C++
visitor combinators library that can be used on any standard “visitable”
target hierarchies, without being intrusive on their codes.

This report is in the spirit of [Modern C++ Design|, page 243, and should probably be
read afterward.

Guru of the Week [News|
Written by various authors, compiled by Herb Sutter

Guru of the Week (GotW) is a regular series of C++ programming problems created
and written by Herb Sutter. Since 1997, it has been a regular feature of the Internet
newsgroup comp.lang.c++.moderated, where you can find each issue’s questions and
answers (and a lot of interesting discussion).

The Guru of the Week Archive?® (the famous GotW) is freely available. In this docu-
ment, GotWn refers to the item number n.

How not to go about a programming assignment — Agustin [Article]
Cernuda del Rio
This paper provides excellent advice on how to succeed an assignment by showing the
converse: how not to go about a programming assignment?*!:

— All about programming, in the strictest sense of the word
— Ignore messages
— Don’t stop to think
— I don’t want any trouble
— If only I could find the words
— Reading
— Writing
— Your relationship with your lecturer
— Don’t ask for help
— Challenge your lecturer
— Be clever using electronic mail
— And, of course...
— Leave it all for the last minute

— Cheat with your assignment

38 http://www.lrde.epita.fr/cgi-bin/twiki/view/Projects/Visitors.

39 http: / / www . 1lrde . epita . fr / cgi-bin / twiki / view / Publications /
20030528-Seminar-Tisserand-Report.

40 http://wuw.gotw.ca/gotw/.

41 http://www.di.uniovi.es/"cernuda/noprog_ENG.html.

http://www.lrde.epita.fr/cgi-bin/twiki/view/Projects/Visitors
http://www.lrde.epita.fr/cgi-bin/twiki/view/Publications/20030528-Seminar-Tisserand-Report
http://www.lrde.epita.fr/cgi-bin/twiki/view/Publications/20030528-Seminar-Tisserand-Report
http://www.gotw.ca/gotw/
http://www.di.uniovi.es/~cernuda/noprog_ENG.html

Chapter 5: Tools 243

Lex & Yacc — John R. Levine, Tony Mason, Doug Brown [Book]
Published by O’Reilly & Associates; 2nd edition (October 1992); 1sBN: 1-565-92000-7.

UNIX Programming Tools

llex & yacc

Jobn R Eevine,

O'REILLY" Tony Mason & Doug Brown

Because the books aims at a complete treatment of Lex and Yacc on a wide range of
platforms, it provides too many details on material with little interest for us (e.g., we
don’t care about portability to other Lexes and Yacces), and too few details on material
with big interest for us (more about exclusive start condition (Flex only), more about
Bison only stuff, interaction with C++ etc.).

Making Compiler Design Relevant for Students who will [Article]
(Most Likely) Never Design a Compiler — Saumya K. Debray
This paper about teaching compilers*? justifies this lecture. This paper is addressing
compiler construction lectures, not compiler construction projects, and therefore it
misses quite a few motivations we have for the Tiger project.

Modern C++ Design -- Generic Programming and Design [Book]
Patterns Applied — Andrei Alexandrescu

Modern C++ Design

Generic Programming
and Design Patterns Applied

Andrei Alexandrescu
Foreword by Scott Meyers
Foreword by John Vlissides

C++ In-Depth Series « Bjarne Stroustrup

Published by Addison-Wesley in 2001; 1sBn: 0-52201-70431-5

A wonderful book on very advanced C++ programming with a heavy use of templates
to achieve beautiful and useful designs (including the classical design patterns, see
[Design Patterns - Elements of Reusable Object-Oriented Software|, page 240). The
code is available in the form of the Loki Library*®. The Modern C++ Design Web Site**
includes pointers to excerpts such as the Smart Pointers*® chapter.

42 https://cs.arizona.edu/ debray/Publications/teaching_compilers.pdf.
43 http://sourceforge.net/projects/loki-1lib/.

44 http://wuw.moderncppdesign.com/book/main.html.

45 http://www.aw.com/samplechapter/0201704315.pdf.

https://cs.arizona.edu/~debray/Publications/teaching_compilers.pdf
http://sourceforge.net/projects/loki-lib/
http://www.moderncppdesign.com/book/main.html
http://www.aw.com/samplechapter/0201704315.pdf

244 The Tiger Compiler Project Assignment

Read this book only once you have gained good understanding of the C++ core language,
and after having read the “Effective C++/STL” books.

Modern Compiler Implementation in C, Java, mr — Andrew W. [Book]
Appel
Published by Cambridge University Press; 1sBN: 0-521-58390-X

modern modern moclern modern

E compiler compiler 5 compiler compiler
implementation implementation implementation B implementation
in C in Java in ML in Java

andrew w. appel andrew w. appel andrew w. appel

See Section 5.2 [Modern Compiler Implementation|, page 233. In our humble opinion,
most books give way too much emphasis to scanning and parsing, leaving little material
to the rest of the compiler, or even nothing for advanced material. This book does not
suffer these flaws.

Object Management Group [Web Site]
omG’s Home Page®®, with a lot of ressources for object-oriented software engineering,
particularly on the Unified Modeling Language®” (umL).

Parsing Techniques -- A Practical Guide — Dick Grune and [Book]
Ceriel J. Jacob
Published by the authors; i1sBN: 0-13-651431-6

A remarkable review of all the parsing techniques. Because the book is out of print, its
authors made it freely available: Parsing Techniques — A Practical Guide*®.

Programming: Principles and Practice Using C++ — Bjarne [Book]
Stroustrup

BJARNE STROUSTRUP

Programming

Principles and Pragtice Using C++

This book targets the “advanced beginner” in C++ and covers a wide range of topics
including non-core C++ subjects such as GUI programming. A recommended lecture
for modern C++ learning.

Published by Addison-Wesley Professional, 2008; 1sBN-13: 978-0321543721.

46 http://wuw.omg.org/.
47 http://wuw.uml.org/.
48 http://dickgrune.com/Books/PTAPG_1st_Edition/.

http://www.omg.org/
http://www.uml.org/
http://dickgrune.com/Books/PTAPG_1st_Edition/

Chapter 5: Tools 245

SPOT : une bibliothéque de vérification de propriétés de [Report]
logique temporelle a temps linéaire — Alexandre Duret-Lutz &
Rachid Rebiha
This report presents spoT, a model checking library written in C++ and Python. Parts
were inspired by the Tiger project, and reciprocally, parts inspired modifications in the
Tiger project. For instance, earlier versions of sSPOT made use of a visitor hierarchy. You
are encouraged to read the sections about the visitor hierarchy and its implementation.
Another useful source of inspiration was the use of Python and Swig to write the
command line interface.

Testing student-made compilers — José de Oliveira Guimaraes [Paper]
AcM s1GesE Bulletin archive Volume 26, Issue 3 (September 1994).

This paper®? gives a classified list of test cases for a small Pascal compiler. It is a good
source of inspiration for any other language.

The Design and Evolution of C++ — Bjarne Stroustrup [Book]

BJARNE STROUSTRUP

The D 1 and Evolution of

Published by Addison-Wesley, 1sBN 0-201-54330-3.

This book is definitely worth reading for curious C++ programmers. I (Roland) find it an
excellent companion to reference C++ books, or even to the C++ standard. Many aspects
of the language that are often criticized find a justification in this book. Moreover, the
book not only tells the history of C++ (up to 1994), but it also explains the design
choices and reflexions of its authors (and Bjarne Stroustrup’s in the first place), which
go far beyond the scope of C++.

However, the book only describes the first 15 years of C++ or so. Recent work on C++
(and especially on the C++0x effort that eventually led to C++ 2011) can be found in
Stroustrup’s papers, available online.

49 http://cyan-lang.org/jose/green/articles/icsel.pdf.

http://cyan-lang.org/jose/green/articles/icse1.pdf

246 The Tiger Compiler Project Assignment

The Elements of Style — William Strunk Jr., E.B. White [Book]

W

NE
EDITION,

WILLIAM

STRUNK=

Che
ELEMENTS
o
STYLE

FOURTH EDITION

FOREWORD BY ROGER ANGELL

Published by Pearson Allyn & Bacon; 4th edition (January 15, 2000); I1SBN:
020530902X.

This little book (105 pages) is perfect for people who want to improve their English
prose. It is quite famous, and, in addition to providing useful writing thumb rules, it
features rules that are interesting as pieces of writing themselves! For instance “The
writer must, however, be certain that the emphasis is warranted, lest a clipped sentence
seem merely a blunder in syntax or in punctuation”.

You may find the much shorter (43 pages) First Edition of The Elements of Style®® on
line.

Thinking in C++ Volume 1 — Bruce Eckel [Book]
Published by Prentice Hall; 1sBn: 0-13-979809-9

Available on the Internet on many Book Download Sites®. For instance, Thinking in
C++ Volume 1 Zipped®2.

Thinking in C++ Volume 2 — Bruce Eckel and Chuck Allison [Book]
Available on the Internet on many Book Download Sites®®. For instance, Thinking in
C++ Volume 2 Zipped®*.

Traits: a new and useful template technique — Nathan C. [Article]
Myers
The first presentation of the traits technique is from this paper, Traits: a new and
useful template technique®. It is now a common C++ programming idiom, which is
even used in the C++ standard.

Writing Compilers and Interpreters -- An Applied Approach [Book]
Using C++ — Ronald Mak
Published by Wiley; Second Edition, 1sBN: 0-471-11353-0
This book is not very interesting for us: the compiler material is not very advanced (no
real AST, not a single line on optimization, register allocation is naive as the translation
is stack based etc.), and the C++ material is not convincing (for a start, it is not

50
51
52
53
54
55

http://wuw.bartleby.com/141/.
http://mindview.net/Books/DownloadSites.
http://wuw.babeuk.net/mirror/book/TICPP-2nd-ed-Vol-one.zip.
http://mindview.net/Books/DownloadSites.
http://wuw.babeuk.net/mirror/book/TICPP-2nd-ed-Vol-two.zip.
http://www.cantrip.org/traits.html.

http://www.bartleby.com/141/
http://mindview.net/Books/DownloadSites
http://www.babeuk.net/mirror/book/TICPP-2nd-ed-Vol-one.zip
http://mindview.net/Books/DownloadSites
http://www.babeuk.net/mirror/book/TICPP-2nd-ed-Vol-two.zip
http://www.cantrip.org/traits.html

Chapter 5: Tools 247

standard C++ as it still uses ‘#include <iostream.h>’ and the like, there is no use of
STL etc.).

st Home [Web site]
scr’s sSTL Home Page®®, which includes the complete documentation on line.

5.4 The gnu Build System

Automake is used to facilitate the writing of power Makefile. Libtool eases the creation of
libraries, especially dynamic ones. Autoconf is required by Automake: we do not address
portability issues for this project. See [Autotools Tutorial], page 236, for documentation.

Using info is pleasant, for instance ‘info autoconf’ on any properly set up system.

5.4.1 Package Name and Version

To set the name and version of your package, change the AC_INIT invocation. For instance,
TC-4 for the bardec_f group gives:
AC_INIT([Bardeche Group Tiger Compiler], 4, [bardec_f@epita.fr],
[bardec_f-tc])

5.4.2 Bootstrapping the Package

If something goes wrong, or if it is simply the first time you create configure.ac or a
Makefile.am, you need to set up the ¢NU Build System. That’s the goal of the simple
script bootstrap, which most important action is invoking;:

$ autoreconf -fvi

The various files (configure, Makefile.in, etc.) are created. There is no need to run
‘make distclean’, or aclocal or whatever, before running autoreconf: it knows what
to do.

Then invoke configure and make (see Section 5.5 [GCC], page 249):
$ mkdir _build
$ cd _build
$../configure CXX=g++-5.0
$ make
Alternatively you may set CC and CXX in your environment:
$ export CXX=g++-5.0
$ mkdir _build
$ cd _build
$../configure && make

This solution is preferred since the value of CC etc. will be used by the configure
invocation from ‘make distcheck’ (see Section 5.4.3 [Making a Tarball], page 247).

5.4.3 Making a Tarball

Once the package correctly autotool’ed and configured (see Section 5.4.2 [Bootstrapping
the Packagel, page 247), run ‘make distcheck’ to build the tarball. Contrary to a simple
‘dist’, ‘distcheck’ makes sure everything will work properly. In particular it:

1. performs some simple checks. For instance, it checks that the NEWS file is about the
current version, i.e., it checks that the second argument given to AC_INIT is in the
top of NEWS, otherwise it fails with ‘NEWS not updated; not releasing’.

2. creates the tarball (via ‘make dist’)

56 http://www.sgi.com/tech/stl/index.html.

http://www.sgi.com/tech/stl/index.html

248 The Tiger Compiler Project Assignment

3. untars the tarball

4. configures the tarball in a separate directory _build (to avoid cluttering the source
files with the built files).

Arguments passed to the top level configure (e.g., ‘CXX=g++-5.0") will not be taken
into account here. Running ‘export CXX=g++-5.0’ is a better way to require these
compilers. Alternatively use DISTCHECK_CONFIGURE_FLAGS to specify the arguments
of the embedded configure:

$ make distcheck DISTCHECK_CONFIGURE_FLAGS=’--without-swig CXX=g++-
4.0’

5. runs ‘make’ (and following targets) in paranoid mode. This mode consists in forbidding
any change in the source tree, because if, when you run ‘make’ something must be
changed in the sources, then it means something is broken in the tarball. If, for
instance, for some reason it wants to run autoconf to recreate configure, or if
it complains that autom4te.cache cannot be created, then it means the tarball is
broken! So track down the reason of the failure.

6. runs ‘make check’

7. runs ‘make dist’ again.

If you just run ‘make dist’ instead of ‘make distcheck’, then you might not notice
some files are missing in the distribution. If you don’t even run ‘make dist’, the tarball
might not compile elsewhere (not to mention that we don’t care about object files etc.).

Running ‘make distcheck’ is the only means for you to check that the project will
properly compile on our side. Not running distcheck is like turning off the type checking
of your compiler: you hide instead of solving.

At this stage, if running ‘make distcheck’ does not create bardec_f-tc-4.tar.bz2,
something is wrong in your package. Do not rename it, do not create the tarball by hand:
something is rotten and be sure it will break on the examiner’s machine.

5.4.4 Setting site defaults using CONFIG_SITE

Another way to pass options to configure is to use a site configuration file. This file will
be “sourced” by configure to set some values and options, and will save you some bytes
on your command line when you’ll invoke configure.

First, write a config.site file:

—*- shell-script —*-

echo "Loading config.site for $PACKAGE_TARNAME"
echo "(srcdir: $srcdir)"
echo

package=$PACKAGE_TARNAME

echo "config.site: $package"
echo

Configuration specific to EPITA KB machines (GNU/Linux on x86-64).
case $package in
tc)
Turn off optimization when building with debugging information

Chapter 5: Tools 249

(the build dir must have ‘‘debug’’ in its name).
case ‘pwd‘ in
debug)
: ${CFLAGS="-ggdb -00"}
: ${CXXFLAGS="-ggdb -00 -D_GLIBCXX_DEBUG"}
esac
Help configure to find the Boost libraries on NetBSD.
if test -f /usr/pkg/include/boost/config.hpp; then
with_boost=/usr/pkg/include
fi

Set CC, CXX, BISON, MONOBURG, and other programs as well.
: ${CC=/u/prof/acu/pub/NetBSD/bin/gcc}

: ${CXX=/u/prof/acu/pub/NetBSD/bin/g++}

: ${BISON=/u/prof/yaka/bin/bison}
${MONOBURG=/u/prof/yaka/bin/monoburg}

A

esac

set +vx

Then, set the environment variable CONFIG_SITE to the path to this file, and run
configure:

$ export CONFIG_SITE="$HOME/src/config.site"
$../configure

or if you use a C-shell:

$ setenv CONFIG_SITE "$HOME/src/config.site"
$../configure

This is useful when invoking make distcheck: you don’t need to pollute your envi-
ronment, nor use Automake’s DISTCHECK_CONFIGURE_FLAGS (see Section 5.4.3 [Making a
Tarball], page 247).

Of course, you can have several config.site files, one for each architecture you work
on for example, and set the CONFIG_SITE variable according to the host/system.

5.5 gcc, The gnu Compiler Collection

We use gce 5.0, which includes both gcc-5.0 and g++-5.0: the C and C++ compilers.
Do not use older versions as they have poor compliance with the C++ standard. You are
welcome to use more recent versions of ccce if you can use one, but the tests will be done
with 5.0. Using a more recent version is often a good means to get better error messages
if you can’t understand what ccc 5.0 is trying to say.

There are good patches floating around to improve ccc. The GCC Bounds Checking
Page®” is an interesting example in this respect. It is however no longer maintained and
we advise you to have a look at mudflap®® instead, which is officially part of GCC.

57 http://williambader.com/bounds/example.html.
58 http://gcc.gnu.org/wiki/Mudflap_Pointer_Debugging.

http://williambader.com/bounds/example.html
http://gcc.gnu.org/wiki/Mudflap_Pointer_Debugging

250 The Tiger Compiler Project Assignment

5.6 Clang, A C language family front end for llvm

Clang is a front end for the LzvM compiler infrastructure supporting the C, C++, Objective
C and Objective C++ languages. LivM provides a modern framework written in C++ for
creating compiler-related projects.

We advise you to check your code with the clang (C) and clang++ (C++) front ends
(version 3.8 or more) in addition to gcc and g++. Clang may indeed report other errors
and warnings. Moreover, Clang’s messages are often easier to read than ccc’s.

You can find more information on Clang, Livm and other related projects on the Lrvm
Home Page®.

5.7 gdb, The gnu Project Debugger

Every serious project development makes use of a debugger. Such a tool allows the pro-
grammer to examine her program, running it step by step, display/change values etc.

GDB is a debugger for programs written in C, C++, Objective-C, Pascal (and other
languages). It will help you to track and fix bugs in your project. Don’t forget to pass
the option -g (or -ggdb, depending on your linker’s abilities to handle ¢DpB extensions) to
your compiler to include useful information into the debugged program.

Pay attention when debugging a libtoolized program, as it may be a shell script wrapper
around the real binary. Thus don’t use

$ gdb tc

or expect errors from GDB when running the program. Use libtool’s --mode=execute
option to run gdb instead:

$ libtool --mode=execute gdb tc
or the following shortcut:
$ libtool exe gdb tc

Detailed explanations can be found in the Libtool manual.

5.8 Valgrind, The Ultimate Memory Debugger

Valgrind is an open-source memory debugger for anu/Linux on x86/x86-64 (and other
environments) written by Julian Seward, already known for having committed Bzip2. It
is the best news for programmers for years. Valgrind is so powerful, so beautifully designed
that you definitely should wander on the Valgrind Home Page®.

In the case of the Tiger Compiler Project correct memory management is a primary
goal. To this end, Valgrind is a precious tool, as is dmalloc®!, but because sTL implemen-
tations are often keeping some memory for efficiency, you might see “leaks” from your
C++ library. See its documentation on how to reclaim this memory. For instance, read-
ing the coc’s C++ Library raQ®?, especially the item “memory leaks” in containers® is
enlightening.

I (Akim) personally use the following shell script to track memory leaks:

#! /bin/sh

exec 3>&1

http://www.llvm.org/.

http://valgrind.org.

http://dmalloc.com.
http://gcc.gnu.org/onlinedocs/libstdc++/faq.html.
http://gcc.gnu.org/onlinedocs/libstdc++/faq.html#faq.memory_leaks.

http://www.llvm.org/
http://valgrind.org
http://dmalloc.com
http://gcc.gnu.org/onlinedocs/libstdc++/faq.html
http://gcc.gnu.org/onlinedocs/libstdc++/faq.html#faq.memory_leaks

Chapter 5: Tools 251

export GLIBCPP_FORCE_NEW=1

export GLIBCXX_FORCE_NEW=1

exec valgrind --num-callers=20 \
--leak-check=yes \
—--leak-resolution=high \
--show-reachable=yes \
"$o" 2>&1 1>&3 3>&— |

sed ’s/7==[0-9]*==/==/> >&2 1>&2 3>&-

File 5.1: v
For instance on File 4.52,

$ v tc -XA 0.tig
/opt/tiger/assignments/v: 6: exec: valgrind: not found

Example 5.1: v tc -XA4 0.tig
Starting with ccc 3.4, GLIBCPP_FORCE_NEW is spelled GLIBCXX_FORCE_NEW.

As in the case of GDB, you should be careful when running a libtoolized program in
Valgrind. Use the following command to make sure that this is your tc binary (and not
the shell) that is checked by Valgrind:

$ libtool exe valgrind tc

You can ask Valgrind to run a debugger when it catches an error, using the --db-
attach option. This is useful to inspect a process interactively.

$ valgrind --db-attach=yes ./tc

The default debugger used by Valgrind is ¢pB. Use the —-db-command option to change
this.

Another technique to make Valgrind and ¢pB interact is to use Valgrind’s gdbserver and
the vgdb command (see Valgrind’s documentation for detailed explanations).

5.9 Flex & Bison

We use Bison 3.0.4.19-fbaff*, that is able to produce a C++ parser combined with modern
features such as GLR, variants and complete symbols. If you don’t use this Bison, you
will be in trouble.

The original papers on Lex and Yacc are:
Johnson, Stephen C. [1975].

Yacc: Yet Another Compiler Compiler®®. Computing Science Technical Re-
port No. 32, Bell Laboratories, Murray hill, New Jersey.

Lesk, M. E. and E. Schmidt [1975].
Lex: A Lexical Analyzer Generator®. Computing Science Technical Report
No. 39, Bell Laboratories, Murray Hill, New Jersey.

These introductory guides can help beginners:

Thomas Niemann.
A Compact Guide to Lex & Yacc®.

An introduction to Lex and Yacc.

64 https://www.lrde.epita.fr/ tiger/download/bison-3.0.4.19-fbaf.tar.xz.
65 http://epaperpress.com/lexandyacc/download/yacc.pdf

66 http://epaperpress.com/lexandyacc/download/lex.pdf.

67 http://www.epaperpress.com/lexandyacc/index.html

https://www.lrde.epita.fr/~tiger/download/bison-3.0.4.19-fbaf.tar.xz
http://epaperpress.com/lexandyacc/download/yacc.pdf
http://epaperpress.com/lexandyacc/download/lex.pdf
http://www.epaperpress.com/lexandyacc/index.html

252 The Tiger Compiler Project Assignment

Collective Work
Programming with ¢NU Software®s.
Contains information about Autoconf, Automake, Gperf, Flex, Bison, and
leleleR

The Bison documentation®, and the Flex documentation™ are available for browsing.

5.10 havm

HAVM is a Tree (HIR or LIR) programs interpreter. It was written by Robert Anisko so that
EPITA students could exercise their compiler projects before the final jump to assembly
code. It is implemented in Haskell, a pure non strict functional language very well suited
for this kind of symbolic processing. HAVM was coined on both Haskell, and vM standing
for Virtual Machine.

Resources:

— Required version is navm 0.27

— uAavMm Home Page™

— uAavM Documentation™

— Feedback can be sent to LRDE’s Projects Address™.

— There are some known bugs that cause HAVM to execute incorrectly HIR programs.
This happens when some jump break the recursive structure of the program, i.e.,
when a jump goes outside its enclosing structure (seq, or eseq etc.).

Examples of Tiger sources onto which HAVM is likely to behave incorrectly include:

while 1 do
print_int ((break; 1))

File 5.2: ineffective-break.tig
or

if 0 | O then O else 1

File 5.3: ineffective-if.tig

See HAVM’s documentation™ for details, node “Known Problems”®.

5.11 MonoBURG

MonoBURG is a code generator generator, a tool that produces a function from a tree-
pattern description of an instruction set. If you think of Bison being a program generating
an AST generator from concrete syntax, you can see MonoBURG as a program generating
an Assem generator from LIR trees.

MonoBURG is named after BURG, a program that generates a fast tree parser using
BURS (Bottom-Up Rewrite System). MonoBURG is part of the Mono Project™ and has
been extended by Michaél Cadilhac for the needs of the Tiger Project.

68
69
70
71
72
73
74
75
76

https://www.lrde.epita.fr/ tiger/doc/gnuprog2/.
http://wuw.gnu.org/software/bison/manual/.
https://westes.github.io/flex/manual/.
http://wuw.lrde.epita.fr/wiki/Havm.

https://www.lrde.epita.fr/ “tiger/doc/havm.html.
mailto:projects@lrde.epita.fr.

https://www.lrde.epita.fr/ “tiger/doc/havm.html.
https://www.lrde.epita.fr/ tiger/doc/havm.html#Known-Problems.
http://www.mono-project.com/.

https://www.lrde.epita.fr/~tiger/doc/gnuprog2/
http://www.gnu.org/software/bison/manual/
https://westes.github.io/flex/manual/
http://www.lrde.epita.fr/wiki/Havm
https://www.lrde.epita.fr/~tiger/doc/havm.html
mailto:projects@lrde.epita.fr
https://www.lrde.epita.fr/~tiger/doc/havm.html
https://www.lrde.epita.fr/~tiger/doc/havm.html#Known-Problems
http://www.mono-project.com/

Chapter 5: Tools 253

Resources:
— Required version is MonoBURG 1.0.6a
— MonoBURG Home Page™
— Feedback can be sent to LRDE’s Projects Address™.
Some papers on code generator generators are available in the bibliography. See [BURG

- Fast Optimal Instruction Selection and Tree Parsing], page 238, and [Engineering a simple
efficient code generator generator|, page 241.

5.12 Nolimips

Nolimips (formerly Mipsy) is a mips simulator designed to execute simple register based
MIPS assembly code. It is a minimalist mips virtual machine that, contrary to other sim-
ulators (see Section 5.13 [SPIM], page 253), supports unlimited registers. The lack of a
simulator featuring this prompted the development of Nolimips.

Its features are:
— sufficient support of MIPs instruction set
— infinitely many registers
It was written by Benoit Perrot as an LRDE member, so that EPITA students could

exercise their compiler projects after instruction selection but before register allocation.
It is implemented in C++ and Python.

Resources:
— Required version is Nolimips 0.10
— Nolimips Home Page™
— Nolimips Documentation®°

— Feedback can be sent to LRDE’s Projects Address®!.

5.13 spim
The spiM documentation reads:

spiM S20 is a simulator that runs programs for the mips R2000/R3000 Rrisc
computers. spiM can read and immediately execute files containing assembly
language. spiM is a self-contained system for running these programs and
contains a debugger and interface to a few operating system services.

The architecture of the mips computers is simple and regular, which makes
it easy to learn and understand. The processor contains 32 general-purpose
32-bit registers and a well-designed instruction set that make it a propitious
target for generating code in a compiler.

However, few years ago, the obvious question was: why use a simulator when
many people have workstations that contain a hardware, and hence signifi-
cantly faster, implementation of this computer? One reason was that these
workstations are not generally available. Another reason was that these ma-
chine will not persist for many years because of the rapid progress leading
to new and faster computers. Unfortunately, the trend is to make computers

7
78
79
80
81

https://www.lrde.epita.fr/wiki/MonoBURG.
mailto:projects@lrde.epita.fr.
http://www.lrde.epita.fr/wiki/Nolimips.
https://www.lrde.epita.fr/"tiger/doc/nolimips.html.
mailto:projects@lrde.epita.fr.

https://www.lrde.epita.fr/wiki/MonoBURG
mailto:projects@lrde.epita.fr
http://www.lrde.epita.fr/wiki/Nolimips
https://www.lrde.epita.fr/~tiger/doc/nolimips.html
mailto:projects@lrde.epita.fr

254 The Tiger Compiler Project Assignment

faster by executing several instructions concurrently, which makes their ar-
chitecture more difficult to understand and program. The mIPs architecture
may be the epitome of a simple, clean Risc machine. Nowadays, the MIPS
architecture is no more a common architecture.

In addition, simulators can provide a better environment for low-level pro-
gramming than an actual machine because they can detect more errors and
provide more features than an actual computer. For example, spim has a X-
window interface that is better than most debuggers for the actual machines.

Finally, simulators are an useful tool for studying computers and the programs
that run on them. Because they are implemented in software, not silicon, they
can be easily modified to add new instructions, build new systems such as
multiprocessors, or simply to collect data.

SPIM is written and maintained by James R. Larus on SourceForge.52.

5.14 swig

Our compiler provides two different user interfaces: one is a command line interface fully
written in C++, using the “Task” system, and the other is a binding of the primary
functions into the Python script language (see Section 5.15 [Python], page 254. This
binding is automatically extracted from our modules using swic.

The swic home page®® reads:

SWIG is a software development tool that connects programs written in C and
C++ with a variety of high-level programming languages. swia is primarily
used with common scripting languages such as Perl, Python, Tcl/Tk, and
Ruby, however the list of supported languages also includes non-scripting lan-
guages such as Java, ocamr and C#. Also several interpreted and compiled
Scheme implementations (Guile, MzScheme, Chicken) are supported. swic is
most commonly used to create high-level interpreted or compiled program-
ming environments, user interfaces, and as a tool for testing and prototyping
C/C++ software. swiG can also export its parse tree in the form of xmL and
Lisp s-expressions. swic may be freely used, distributed, and modified for
commercial and non-commercial use.

5.15 Python

We promote, but do not require, Python as a scripting language over Perl because in our
opinion it is a cleaner language. A nice alternative to Python is Ruby®.

The Python Home Page® reads:

Python is an interpreted, interactive, object-oriented programming language.
It is often compared to Tcl, Perl, Scheme or Java.

Python combines remarkable power with very clear syntax. It has modules,
classes, exceptions, very high level dynamic data types, and dynamic typing.
There are interfaces to many system calls and libraries, as well as to various
windowing systems (X11, Motif, Tk, Mac, Mrc). New built-in modules are
easily written in C or C++. Python is also usable as an extension language for
applications that need a programmable interface.

82 http://spimsimulator.sourceforge.net/.
83 http://www.swig.org/.

84 http://www.ruby-lang.org/en/.

85 http://www.python.org.

mailto:spim@larusstone.org
http://spimsimulator.sourceforge.net/
http://www.swig.org/
http://www.ruby-lang.org/en/
http://www.python.org

Chapter 5: Tools 255

The Python implementation is portable: it runs on many brands of UNIX,
on Windows, OS/2, Mac, Amiga, and many other platforms. If your favorite
system isn’t listed here, it may still be supported, if there’s a C compiler for
it. Ask around on news:comp.lang.python — or just try compiling Python
yourself.

The Python implementation is copyrighted but freely usable and distributable,
even for commercial use.

5.16 Doxygen

We use Doxygen®® as the standard tool for producing the developer’s documentation of the
project. Its features must be used to produce good documentation, with an explanation
of the role of the arguments etc. The quality of the documentation will be part of the
notation. Details on how to use proper comments are given in the Doxygen Manual®”.

The documentation produced by Doxygen must not be included, but the target html
must produce the HTML documentation in the doc/html directory.

86 http://www.doxygen.org/index.html.
87 http://www.stack.nl/"dimitri/doxygen/manual .html.

http://www.doxygen.org/index.html
http://www.stack.nl/~dimitri/doxygen/manual.html

257

Appendix A Appendices

A.1 Glossary

Contributions to this section (as for the rest of this documentation) will be greatly appre-
ciated.

activation block
Portion of dynamically allocated memory holding all the information a (recur-
sive) function needs at runtime. It typically contains arguments, automatic
local variables etc. Implemented by the class frame: :Frame (see Section 4.14
[TC-5], page 132).

build The machine/architecture on which the program is built. For instance, EPITA
students typically build their compiler on GNU/Linux. Contrast with “target”
and “host”.

curriculum

From WordNet: n : a course of academic studies; “he was admitted to a new
program at the university” (syn: “course of study”, “program”, “syllabus”).

Guru of the Week
GotW See Section 5.3 [Bibliography], page 236.

HAVM HAVM is a Tree (HIR or LIR) programs interpreter. See Section 5.10 [HAVM],
page 252.
host The machine/architecture on which the program is run. For instance, EPITA

students typically run their Tiger Compiler on anu/Linux. Contrast with
“build and “target”.

1A-32 The official new name for the i386 architecture.
scholarship
It is related to “scholar”, not “school”! It does not mean “scolarité”.
From WordNet:
— n 1: financial aid provided to a student on the basis of academic merit.
— 2: profound knowledge (syn: “eruditeness”, “erudition”, “learnedness”,
“learning”).

See “schooling” and “curriculum”.

schooling From WordNet:
— n 1: the act of teaching at school.
— 2: the process of being formally educated at a school; “what will you do
when you finish school?” (syn: “school”).
— 3: the training of an animal (especially the training of a horse for dres-
sage).

snippet A piece of something, e.g., “code snippet”.

stack frame
Synonym for “activation block”.

static hierarchy
A hierarchy of classes without virtual methods. In that case there is no (in-
clusion) polymorphism. For instance:

struct A {3}
struct B: A { };

258 The Tiger Compiler Project Assignment

SPIM spiM 520 is a simulator that runs programs for the mips R2R3000 Rrisc com-
puters. See Section 5.13 [SPIM], page 253.

target The machine (or language) aimed at by a compiling tool. For instance, our
target is principally Mips. Compare with “build” and “host”.

traits Traits are a useful technique that allows to write (compile time) functions
ranging over types. See [Traits|, page 246, for the original presentation of
traits. See [Modern C++ Design|, page 243, for an extensive use of traits.

vtable For a given class, its table of pointers to virtual methods.

A.2 GNU Free Documentation License

0.

Version 1.1, March 2000

Copyright (©) 2000 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
free in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the docu-
ment must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited
to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public
is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Docu-
ment that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (For example, if the Doc-
ument is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical connection with
the subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

Appendix A: Appendices 259

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released
under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents
can be viewed and edited directly and straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup has been designed
to thwart or discourage subsequent modification by readers is not Transparent. A copy
that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modifica-
tion. Opaque formats include PostScript, PDF, proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD
and /or processing tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

260

The Tiger Compiler Project Assignment

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added
material, which the general network-using public has access to download anonymously
at no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide
you with an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it
has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on
its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given

Appendix A: Appendices 261

in the Document for previous versions it was based on. These may be placed
in the “History” section. You may omit a network location for a work that
was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may
at your option designate some or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in
the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by you
or by arrangement made by the same entity you are acting on behalf of, you may
not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such
section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any

262

10.

The Tiger Compiler Project Assignment

sections entitled “Acknowledgments”, and any sections entitled “Dedications”. You
must delete all sections entitled “Endorsements.”

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Doc-
ument, then if the Document is less than one quarter of the entire aggregate, the
Document’s Cover Texts may be placed on covers that surround only the Document
within the aggregate. Otherwise they must appear on covers around the whole ag-
gregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with trans-
lations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of
these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that

http://www.gnu.org/copyleft/

Appendix A: Appendices 263

specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

264 The Tiger Compiler Project Assignment

A.2.1 ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts being list.

A copy of the license is included in the section entitled °‘GNU

Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releas-
ing these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

A.3 Colophon
This is version of assignments.texi, last edited on April 16, 2018, and compiled 4 June
2018, using:

$ tc --version
tc (LRDE Tiger Compiler 1.63)
$Id: 6e8714f086£9562cd0e03931a93b8a714£9¢c90a3 $

Akim Demaille Alain Vongsouvanh Alexandre Duret-Lutz
Alexis Brouard Arnaud Fabre Ashkan Kiaie-Sandjie
Axel Manuel Benoit Perrot Benoit Sigoure
Benoit Tailhades Cédric Bail Christophe Duong
Clément Vasseur Cyprien Orfila Daniel Gazard

Fabien Ouy Etienne Renault Francis Maes

Francis Visoiu Mistrih Gilles Walbrou Guillaume Duhamel
Guillaume Marques Jérémie Simon Julien Roussel
Julien Grall Laurent Gourvénec Léo Ercolanelli

Loic Banet Michaél Cadilhac Matthieu Simon
Moray Baruh Nicolas Burrus Nicolas Pouillard
Nicolas Teck Pablo Oliveira Pierre-Louis Dagues
Pierre-Yves Strub Pierre De Abreu Qudc Peyrot

Raphaél Poss Razik Yousfi Roland Levillain
Robert Anisko Sarasvati MoutoucomarapouléSébastien Broussaud
Sébastien Piat Stéphane Molina Théophile Ranquet
Thierry Géraud Valentin David Yann Grandmaitre
Yann Popo Yann Régis-Gianas

Example A.1: tc —--version

$ havm --version
HAVM 0.27
Written by Robert Anisko.

Copyright (C) 2002-2003 Robert Anisko

Appendix A: Appendices 265

Copyright (C) 2003-2007, 2009, 2011-2014 EPITA Research and Development Lab-
oratory (LRDE).

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Example A.2: havm --version

$ nolimips --version
nolimips (Nolimips) 0.10
Written by Benoit Perrot.

Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009, 2010, 2012 Benoit Perrot.
nolimips comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute and modify it
under certain conditions; see source for details.

Example A.3: nolimips --version

A.4 List of Files

File 2.0 temp. CC .ttt 34
File 2.2: temp.hh ... 35
File 2.3: temp-factored.hhi........c.oiiniiiiiii e 35
File 2.4: temp-factored.CC.ttt 36
File 2.5: sample/sample.hh..... ... 36
File 2.6: sample/sample . XXttt e 36
File 4.1: Simple . tig. cvuu ettt e 72
File 4.2: back=zee . tig oottt e 7
File 4.3: postinc.tag. .ot 7
File 4.4: testOl . big. .o ui i 81
File 4.5: unterminated-comment.tig............oiiiii i 81
File 4.6: type—mil . tig . ouvtinttit it e 81
File 4.7 ata . Big ..ottt 82
File 4.8: simple—fact . tig.oonuiiiii e 90
File 4.9: string-escapes.tigot 90
File 4.10: 18-and=28.tigoiuuiitii i 91
File 4.11: f£0r=100D . tag o u vttt e e 91
File 4.12: parens . tig. .. .vouutit i 92
File 4.13: £00-bar . Big .. oottt 92
File 4.14: foo-stop—bar.tig.ooiuiiii 93
File 4.15: fbfsb.tig. . ..o 93
File 4.16: fbfsb-desugared.tigouuuimuiiiiii i 94
File 4.17: multiple-parse—errors.tig.c..cuvvuriiriiiiiii i, 94
File 4.08: me.tag oottt 99
File 4.19: meme . tig. ... 100
File 4.20: nome . tig. ...t 100
File 4.21: Bome . Big. oottt 100
File 4.22: breaks-in-embedded-100psS.tigcovvuiiiiiiiiriiiiiiinnenn. 101
File 4.23: Dreak . tag. ... oottt e 102
File 4.24: Do . Bag ..o oo 102
File 4.25: unknown-field-type.tigoviuuiiiiii i 103

File 4.26: bad-member-bindings . tig........ovviuriiiiiiiiiiiii i, 103

266

File 4.27:
File 4.28:
File 4.29:
File 4.30:
File 4.31:
File 4.32:
File 4.33:
File 4.34:
File 4.35:
File 4.36:
File 4.37:
File 4.38:
File 4.39:
File 4.40:
File 4.41:
File 4.42:
File 4.43:
File 4.44:
File 4.45:
File 4.46:
File 4.47:
File 4.48:
File 4.49:
File 4.50:
File 4.51:
File 4.52:
File 4.53:
File 4.54:
File 4.55:
File 4.56:
File 4.57:
File 4.58:
File 4.59:
File 4.60:
File 4.61:
File 4.62:
File 4.63:
File 4.64:
File 4.65:
File 4.66:
File 4.67:
File 4.68:
File 4.69:
File 4.70:
File 4.71:
File 4.72:
File 4.73:
File 4.74:
File 4.75:
File 4.76:
File 4.77:
File 4.78:

The Tiger Compiler Project Assignment

missing-super-class.tig........... ... il 104
AS . BIg 106
variable-escapes.tig........... ... 108
undefined-variable.tig........... 108
int-plus-string.tig...... ..o 110
assign-loop-var.tig. ... 110
UDKNOWNS . Big . ..ot 110
bad-if.tig ... 111
MUEUALS B v 111
bad-—sSUpPer—tyPe. i . v 112
forward-reference-to-class.tig.......ccovviiiiiiiiiiiian.. 112
is_devil.tig ... 114
string-equality.tig. ... 117
string-less.tig.... ..o 117
simple—for-1o0p.tig. ... 118
SUD . LA . o 119
subscript-read.tig......... ... 120
subscript-write.tig...... ..o 121
SizZes . tig. ..o 123
over—amb.tig.... ... 125
over-duplicate.tig......... ... 125
OVer—-sCoped. Big. . ..vuu 126
empty-class.tig. ... 127
simple-class.tigooviiiiiiiii 128
override.tig..... .o 129
O bdg ot 133
arith.Big. .. o 134
AF 10T BAg o et e 135
While-101.Bdg. oo 136
boolean . tig ... 137
Print—101 . Big. . . 140
print-array.tig......... .. 141
print-record.tig 143
VArS . bdg . o 143
fact b tig o 146
preimcr—1.tig. ... 155
PreincCr—2.Big . .. 159
movVe-MemM.Tig ... i 162
nested-calls.Tig ... 162
SeQ-POINt.Lig. .. 163
1-and-2.tig .o 164
broken-while.tig 165
the-answer . tig.o 169
add.tig . ..o 171
substring-0-1-1.tig.......c i 173
TS . LA . o 175
tens.main. _main.flow.gv i 177
tens.main. _main.liveness.gviiiiiiiiii 178
tens.main._main.interference.gv...........l 179
hundreds.tig 180
hundreds.main._main.liveness.gv.............coiiiiiiiiiiiiiiin. 181

hundreds.main._main.interference.gv........................o.... 182

Appendix A: Appendices 267
File 4.79: 0TS . tag . ottt 182
File 4.80: ors.main. _main.flow.gVt 184
File 4.81: ors.main. _main.liveness . gV.......ouuiuuitimiuiiieniieeinieennnn. 185
File 4.82: ors.main._main.interference.gv............... ... oot 186
File 4.83: and . tagvvnttii it e 187
File 4.84: and.main. _main.livenessS.gV.t uutiirtiniiiieiieiieann 188
File 4.85: seven.tig. ... 189
File 4.86: print-seven.tig.ot 190
File 4.87: print-many . tig.coueunrti it 191
File 4.88: the-answer—-1a32.tig. .. vt iurtinitii i 196
File 4.89: add-1a32.tag ...t vuuiii i 197
File 4.90: substring-0-1-1-1a32.tig.... ..o oottt 200
File 4.91: condjump-1ia32.tig........oiiiiiii 202
File 4.92: the-answer—-arm.tigottt 205
File 4.93: add-arm.Big ... c.vtintti 206
File 4.94: substring-0-1-1-arm.tig........coviumiiimiiiiiiiii i, 208
File 4.95: condjump—arm.tigoouuiiuiiiii 210
File 4.96: print-int-arm.tig........ ... 212
File 4.97: the-answer—-11vIm.Big.utiurtitti it 214
File 4.98: add-11vm. tag ... oouuiittt ittt e e 215
File 4.99: clang-eXample.C. .. .uuutntt ittt 230
File 5. v 251
File 5.2: ineffective-break.tig........ ... 252
File 5.3: ineffective—df . Big ... ovvuuiit i e 252

A Bxahigt40f fessanpiplesg. ... 72
Example 4.2: SCAN=1 PARSE=1 tc -X —-parse simple.tig........................ 7
Example 4.3: tc -X —-parse back-zee.tig.......... ... i 7
Example 4.4: tc -X ——parse postinc.tigcouiuuiiiiiiiiiiiiiiain. 78
Example 4.5: tc —X ——parse testO0l.tig.vuuutinut i 81
Example 4.6: tc -X --parse unterminated-comment.tig........................ 81
Example 4.7: tc -X —-parse type-nil.tigc...ouiiiiiiiiiiiiinianion.. 82
Example 4.8: tc C:/TIGER/SAMPLE . TIGttt 82
Example 4.9: tc -X —--parse-trace —-parse ata.tig..........ccouiiiiiiiiii . 86
Example 4.10: tc XA simple-fact.tigouuunutinuiinit i, 90
Example 4.11: tc -XA string-escapes.tig.ouuuuuiiiiiiniiineanneanneann. 91
Example 4.12: tc XA 15-and=28.tig. ...couuiiuni it 91
Example 4.13: tc -XA 1s-and-2s.tig >output.tig......... ...t 91
Example 4.14: tc =XA output.tigot 91
Example 4.15: t¢ XA £0r=100D.CIg ..t uutit it 92
Example 4.16: tc —XA parens.tigouuuinuiiue i 92
Example 4.17: t€ =b £00=bar.tigottt 92
Example 4.18: tc -b foo—stop—bar.tigccoiiiiiiiiiiiiiiiii, 93
Example 4.19: tc =b £bfsb.tig. ...t 93
Example 4.20: tc multiple-parse—errorsS.tig.c.c.uuuuiuiuiuineninenanennn. 94
Example 4.21: tc -XA multiple-parse-errors.tig.........c.ccouueinueennennn.. 94
Example 4.22: t€ =XbBA ME. TIZ. ..o ittt 99
Example 4.23: tc -XbBAmeme.tigot 100
Example 4.24: tc -bBAnome.tigot 100

Example 4.25: t¢ =bBA tOME. i ..o vttt 101

268

The Tiger Compiler Project Assignment

Example 4.26: tc -XbBA breaks-in-embedded-100ps.tig.........c.ccvvuueuun... 101
Example 4.27: tc =b break.tig.co.oiiuiiiii 102
Example 4.28: tc =XbBA bOoX . Tigot 102
Example 4.29: tc =T boX. tig. ..ot 102
Example 4.30: tc -XbBA unknown-field-type.tig.......c.cvviuiiiiiniuinannnn. 103
Example 4.31: tc -X --object-bindings-compute -BA

bad-member-bindings.tig.......c.c.uuiiii it 103
Example 4.32: tc --object-types-compute bad-member-bindings.tig........ 104
Example 4.33: tc -X --object-bindings-compute -BA

missing—super—class.tIg 104
Example 4.34: tc -X ——rename —A @as.tig........ouiiiiiiiiiiii i 106
Example 4.35: tc -XEAeEA variable-escapes.tig...........cooiviiiiiinn. .. 108
Example 4.36: tc —e undefined-variable.tig...............ooiiiiiiiiin.... 108
Example 4.37: tc int-plus—string.tig.couuumuuimuiminiiinenneennn. 110
Example 4.38: tc -T int-plus—-string.tig.ouuuiiiuinininieniennnennn. 110
Example 4.39: tc -T assign-100p-var.tig.ccouuuiuuiiiuinninnnennnnnnn. 110
Example 4.40: tc -T unknowns.tig.........oouuiiiiiiii i, 111
Example 4.41: tc -T bad-1Ff.tigoouuitii i 111
Example 4.42: tc —Tmutuals.tig . ..couuuimniint i 111
Example 4.43: tc -H mutuals.tig >mutuals.hir.............ooiiinienneon... 111
Example 4.44: havm mutuals.BiT 111
Example 4.45: tc --object-types-compute bad-super-type.tig.............. 112
Example 4.46: tc --object-types-compute

forward-reference-to—ClasSS.tig.cuuuutmmmuuiiaa e, 112
Example 4.47: tc -T is_devil.tig. . ..ouuuiinniit i 114
Example 4.48: tc --desugar-string-cmp

--desugar -A string-equality.tig............ ... i 117
Example 4.49: tc --desugar-string-cmp --desugar -A string-less.tig...... 118
Example 4.50: tc --desugar-for --desugar -A simple-for-loop.tig......... 118
Example 4.51: tc -X ——inline —A sub.tig.......couiiiiiiiiiiii i 119
Example 4.52: tc --bounds-checks-add -A subscript-read.tig............... 121
Example 4.53: tc --bounds-checks-add -L

subscript-read.tig >subscript-read.lir............... il 121
Example 4.54: havm subscript-read.lir........c..couuiiiiiiiiiineeneenneonn. 121
Example 4.55: tc --bounds-checks-add -A subscript-write.tig.............. 122
Example 4.56: tc --bounds-checks-add -S

subscript-write.tig >subscript-write.s........... i, 123
Example 4.57: nolimips -1 nolimips -Nue subscript-write.s................ 123
Example 4.58: tC =Xb S1Z@S. T . vvnitiit it 124
Example 4.59: tc -X --overfun-bindings-compute -BA sizes.tig............. 124
Example 4.60: tc =XO0BA 81Z2€S.TiZot 124
Example 4.61: tc -X0 over—amb.tig..........coiiuiiiiiiiiiiiiiiii 125
Example 4.62: tc -X0 over-duplicate.tig.ouuuuiiiiiiuiinnieanannn... 125
Example 4.63: tc -XOBA over—scoped.tiguuuuuiemiiinininianianeennn.. 126
Example 4.64: tc -X --object-desugar -A empty-class.tig................... 127
Example 4.65: tc -X --object-desugar -A simple-class.tig.................. 129
Example 4.66: tc -—object-desugar -A override.tig......................... 132
Example 4.67: tc --object-desugar -L override.tig >override.lir......... 132
Example 4.68: havm override.lir. 132
Example 4.69: tc ——hir-display 0.tIigc..uiiuuiiiiiiiiiiiiinaennn.. 134
Example 4.70: tc ~Harith.tig. 134
Example 4.71: tc -H arith.tig >arith.hir.......... i, 134

Appendix A: Appendices 269
Example 4.72: havm arith. BRI ... e 134
Example 4.73: havm ——trace arith.hir.............iiiiiiieeeeiiiiiiinnn. 135
Example 4.74: tc —H if-101.tig oo 136
Example 4.75: tc ~H while—101.t3ig.ot 137
Example 4.76: tc ——hir-naive -H boolean.tigc..couuiuiiiuininenn... 139
Example 4.77: tc --hir-naive -H boolean.tig >boolean-1.hir............... 139
Example 4.78: havm —-—profile boolean-1.hircc.oiiiiiniieennnno... 139
Example 4.79: tc ~Hboolean.tigoiuuiiiiiiiiiiii i, 140
Example 4.80: tc -H boolean.tig >boolean—-2.hir...........cceeeiueuinnnnnnn. 140
Example 4.81: havm —-profile boolean-2.hiTc.oiviiriiinennnen.. 140
Example 4.82: tc -H print-101.tig >print-101.hir.............ccviiieonn. 141
Example 4.83: havm print-101.hir.. 141
Example 4.84: tc -H print-array.tigccoouiiiiiiiiiiiiiiiiiiannn... 142
Example 4.85: tc -H print-array.tig >print-array.hir...................... 142
Example 4.86: havm print-array.RiTc..ooiueiiiiiiiinininnnennnennn. 142
Example 4.87: tc ~H vars.tig. ... oo 145
Example 4.88: tc —eH vars.tig. 146
Example 4.89: tc —eH vars.tig >vars.hir............. ..o, 146
Example 4.90: havm vars.RiT.o e 146
Example 4.91: tc —H factlb. tig ... ovnrii et 148
Example 4.92: tc -H fact15.tig >factl1b. hir., 148
Example 4.93: havm fact15.hir e 148
Example 4.94: tc -eH variable-escapes.tigcooiiiiiiiiiiiiiin... 150
Example 4.95: tc —eH preincr—1.tig. ..ottt 157
Example 4.96: tc —eL preincr—1.tig.ouuuiiiii i 159
Example 4.97: tc —eL preincr=2.t3g.t 161
Example 4.98: tc -eH preincr-2.tig >preincr-2.hir 161
Example 4.99: havm preincr-2.hir...... ...t 161
Example 4.100: tc -eL preincr-2.tig >preincr-2.1ir...............c..oo.... 161
Example 4.101: havm preincr—2.10Touuutinneiin i 161
Example 4.102: tc -eL move-mem.tig >move-mem.l1ir.............ccouiueeennn.. 162
Example 4.103: havm move—mem. 11Too i 162
Example 4.104: tc -L nested-calls.tig........oovviiiiiiiiiiiiiiiiiniin..n. 163
Example 4.105: tc -L seq-point.tig >seq-point.1irccoovuui... 163
Example 4.106: havm 8€q-point.1irouuriinniiiiiiii i 164
Example 4.107: tc =L 1-and=2.t3goutintiit i 165
Example 4.108: tc -H broken-while.tig..........cooiiiiiiiiiii ... 166
Example 4.109: tc -L broken-while.tig.........coviiiiiiiiiiiiiiiiiii... 168
Example 4.110: tc —-inst-display the-answer.tig............ccooevuueenn... 169
Example 4.111: tc --nolimips-display the-answer.tig....................... 170
Example 4.112: tc -sI the-answer.tigouuiiiiiiiiiiii i, 171
Example 4.113: tc —e ——inst-display add.tig..............cciiiiiii.. 172
Example 4.114: tc -eR -—nolimips-display add.tig >add.nolimips........... 173
Example 4.115: nolimips -1 nolimips -Nue add.nolimips..................... 173
Example 4.116: tc -e -—nolimips-display substring-0-1-1.tig.............. 174
Example 4.117: tc -eR -—nolimips-display

substring-0-1-1.tig >substring-0-1-1.nolimips 174
Example 4.118: nolimips -1 nolimips -Nue substring-0-1-1.nolimips....... 174
Example 4.119: tC =T tensS . i .« uutuit ittt e 176
Example 4.120: tc =FVUN tens.tig ... couuiinriit i 176
Example 4.121: tc —--callee-save=0 -VN hundreds.tig........................ 180
Example 4.122: tc ——callee-save=0 -I ors.tig............ccoviiiiiiiiian... 183

270 The Tiger Compiler Project Assignment

Example 4.123: tc =FVUN 0FS.tIg ...ttt 183
Example 4.124: tc =sV and.tig........oooiuiiinniii i 187
Example 4.125: tc =sI seVen.tig........oouuiiiiiiii i 189
Example 4.126: tc —S seven.tig >SeVen.S........ccoiiiiiiiiiiiiiiiii, 189
Example 4.127: nolimips -1 nolimips —Ne SEVeN.Sc.ouuueuuueeunenn.. 189
Example 4.128: tc -s —-tempmap-display seven.tig............coooeuueinnn... 190
Example 4.129: tc —sI print-seven.tig...........ouuiiiiiiiiiiiiiinianina... 191
Example 4.130: tc -S print-seven.tig >print-seven.s....................... 191
Example 4.131: nolimips -1 nolimips -Ne print-seven.s..................... 191
Example 4.132: tc -eIs —-tempmap-display -I

——time-report print-many.tig.c.ouiiiiiiiiiiii 195
Example 4.133: tc —--target-ia32 --inst-display the-answer-ia32.tig..... 196
Example 4.134: tc —-target-ia32 -sI the-answer-ia32.tig.................. 197
Example 4.135: tc -e —-target-ia32 --inst-display add-ia32.tig........... 199
Example 4.136: tc -e —-target-ia32 --asm-compute

—-inst-display add-1a32.tig...... ...t 200
Example 4.137: tc -e —-target-ia32 --asm-display

add-ia32.tig >add—1a32.8 ... 200
Example 4.138: gcc -m32 -oadd-ia32 add-1ia32.Sc.cviiiiniiiniiniea.. 200
Example 4.139: ./add=3a32o 200
Example 4.140: tc -e —-target-ia32 --inst-display

substring-0-1-1-1a32.Cig. oot 201
Example 4.141: tc -e ——target-ia32 --asm-compute

--inst-display substring-0-1-1-ia32.tig...........ccciiiiiiiiiiiiiiin. 202
Example 4.142: tc -e —--target-ia32 --asm-display

substring-0-1-1-ia32.tig >substring-0-1-1-ia32.s...................... 202
Example 4.143: gcc -m32 -osubstring-0-1-1-ia32 substring-0-1-1-ia32.s.. 202
Example 4.144: ./substring-0-1-1-1ia32........., 202

Example 4.145: tc -e —-target-ia32 --inst-display condjump-ia32.tig..... 203
Example 4.146: tc -e —-target-ia32 --asm-compute

—-inst-display condjump-1a32.tig. 204
Example 4.147: tc --target-arm --inst-display the-answer-arm.tig........ 206
Example 4.148: tc —-target-arm —-sI the-answer-arm.tig..................... 206
Example 4.149: tc -e --target-arm --inst-display add-arm.tig............. 208
Example 4.150: tc -e —-target-arm --inst-display

substring-0-1-1-arm.tig.ottt 209
Example 4.151: tc -e —--target-arm —--asm-compute

--inst-display substring-0-1-1-arm.tig............, 210
Example 4.152: tc -e —-target-arm --inst-display condjump-arm.tig....... 211
Example 4.153: tc -e —-target-arm --asm-compute

—-inst-display condjump—arm.tig.........couuiiiiiiiiiiiiiiiinn 211

Example 4.154: tc --target-arm -S print-int-arm.tig >print-int-arm.s ... 212
Example 4.155: arm-linux-gnueabihf-gcc-7 -march=armv7-a

—oprint—int print-int—arm.S........ ...t 212
Example 4.156: gemu-arm -L /usr/arm-linux-gnueabihf ./print-int......... 212
Example 4.157: tc —-11vm-display the-answer-1lvm.tig..................... 215
Example 4.158: tc —-1lvm-display add-11vm.tig...........ccoviuiiiniinna ... 217

Example 4.159: tc —--1lvm-runtime-display --1lvm-display add-1lvm.tig... 228
Example 4.160: tc --11vm-runtime-display

--1lvm-display add-1lvm.tig >add-11vm.11............oiiiuiiuneeeeeennn.. 228
Example 4.161: clang -m32 -oadd-11lvm add-1lvm.11........................... 228
Example 4.162: ./add=11VIooiiiiii i e 228

Appendix A: Appendices 271
Example 4.163: clang -m32 -S -emit-11vm -o - clang-example.C.............. 231
Example 5.1: v tc XA 0. b8 ..o 251
Example A.l: £C ==VerSIon . ..ottt 264
Example A.2: BV ==VEIrSION. u ittt et 265
Example A.3: n0limips —=VeISIOMc.uuutiutit ittt 265

A.6 Index

% A

drequire ... 78 ACCEPE . ottt 60

BCCESS . K ittt 64

* ACCESSOTS .o ovv vt 42

activation block.......... oo oo 257

€ et 33 aliasing ... i 41
*.cc: Definitions of functions AT ¢ ettt e 65, 205
and variables........... ..o, 33 Arm-assembly.*.coiiiiiiiiiiiiei... 68

ol oY PP 33 arm—codegen.* 68

.hh: Declarationson 33 arm-layout............... ..l 68

*LNXX . 33

% hxx: Inlined defimitioms . 7 33 ATTAY K. ottt 61

N 189
ASSEIN .o 64

— assembly.*......... ...l 65

DANAINES~COMPUELS « - v veeveeeenereaneeennn 98 attribute.*............ ... 61

——bindings-display ... 08 AUTHORS.EXE..........oooovoiiiniriiii. 55

——bounds-checks-add.oomunuii. 119 Autoconf 247

—-desugar ... 116 Automake ... 247

——desugar—-for..........oovviriiiiiaii. 116 Autotools Tutorialccovevn..... 236

--desugar-string-cmp 116 auxiliary class. ... 38

--escapes-compute.......................... 107 Avoid static class members (EC47) 42

—-escapes-display..........ccoiiiiiiiinian. 107

—-inline ... 119

—=1lvm-computeciiiiiiiii 212

--1llvm-displaycoiiiiiiiiiii 212 B

--llvm-runtime-display.................... 212

--object-bindings-compute.................. 98 basic block.oiiii 164

--object-desugar..................iil 126 Beconcise.............iiii 47

—-object-rename ... 14 pinder.®. oo 61, 62

—-object-types—compute 110 binding ..o 99

--overfun-bindings-compute................ 123 binop.brg...ovviiiii i 66, 67, 68

--overfun-bounds-checks-add 119 .

o OVETfUN-AESUGAT -« . v e e e esee e 116 B}son R LR LR R R RREREERERR 251

——overfun-inline 119 bison++.in...............oool L 56

——overfun-prunel 119 Bjarne Stroustrup......................o... 237

--overfun-types-compute 110, 123 block structure.............. oL 107

SPTUNE oot 119 Bookshop................ ool 236

CmTENAME . . e 106 BOOSt.OTg . 237

—-target-arm...............ooiiiiiiiaiiit 205 bounds-checking-visitor.*.................. 62

-—target-ia32..................e 195 build ... 257

——typed ... 110 builtin-types.*coiuiiiiiiiiieennnnn. 61

--types-compute 110 BURG: Fast Optimal Instruction

e 110 Selection and Tree Parsing............... 238

S e 72

272

C

CH++Primero 238
call.brg....coiiiiiii 66, 67, 68
canonicalization............ol 155
chunk ... o 93, 95
cjump.brg.... ... 66, 67, 68
Clang. ...ovvvi 250
Class. 61
cloner.* il 62
Code duplication.............coiiiiiiianan. 39
codegen.* ...t 65, 66, 67
COLOT . k. 70
comment.*ttt 65
common.hh il 59
commute............. il i 159
Compilers and Compiler Generators, an

introduction with C++.................... 238
Compilers: Principles,

Techniques and Tools..................... 239
conflict graph..........o 175
contract.®......... ..o 56
Cool: The Classroom

Object-Oriented Compiler................ 239
Log o1V TR 65, 66, 67, 68
created_type_seto, 60
CStupidClassName........................... 239
curriculum. ... oo 257

D

default-visitor.*........................... 59
Design Patterns: Elements of Reusable
Object-Oriented Software................ 240
desugar-visitor.*.............. 62
distcheck........coiiiiiiiiiiiiiiiiiian, 247
DISTCHECK_CONFIGURE_FLAGS................. 248
dmalloc.................o i 250
Do not copy tests or test frame works....... 30
Do not declare many variables on one line .. 46
Document classes in their *.hh file........ 49
Document namespaces in 1lib*.hh files....... 49
Don’t hesitate working with other groups... 30
Don’t use inline in declarations 45
Dragon Book oo i 239
driver...... i 59
QUMD .. 43, 58
dynamic_cast............iiiiiiiiii 39

ECIL o oottt it i e 240, 241
Effective C++......... il 241
Effective Modern C++ 240
Effective STL........... 241
Engineering a simple, efficient code
generator generator...................... 241
epilogue.cc........ciiiiiiiiii. 66, 67, 68
EPITA Library oo 236
...................................... 72
LT 0T . K. ettt 57
escapable.*............ ...l 60
@S CAPE . .ttt 57
©8CAPE . K L\ 57

escapes-collector.*......................... 69

The Tiger Compiler Project Assignment

escapes-visitor.*........... 61
escapes::EscapesVisitor................... 109
0732 PP 241
@XP.Drg ..ot 66, 67, 68
exp.hh. 64
Explicit template instantiation............ 33

FDL, GNU Free Documentation License...... 258
field.*. ... o 61
Flex .o 251
flex++.in ool 56
flex-lexer.hh..........t 57
flow graph ... 175
flowgraph.® ... 68
F00_get. . ittt 42
f00_Sebt. ittt 42
fragment.* ool 63, 65
fragments.®...... i 63
frame.*. 64
function.* i 61
fwd.hh: forward declarations............... 36

G

gas-assembly.*........... .. i, 67
gas-layout.® ...t 67
T 249
GDB ettt ettt e e e e 250
Generic Visitors in C++.................... 242
Bel 58
GLIBCPP_FORCE_NEW..........ccoviiiiinnnnnn.. 250
GLIBCXX_FORCE_NEW..........ccoviiiinnnnnn.. 250
GNU Build System ... 247
(€70 0 PP 242
GOtW L 242
graph..... 57
graph.*..... 57
Guard included files (*.hh & *.hxx) 36
Guru of theWeekoiiiun... 242

havIm ..o 134, 252, 257
helperclass...........o i i il 38
Hide auxiliary classes...................... 38
HIR . .ottt ettt it 132
host ... 257
How not to go about a

programming assignment 242
Hunt code duplication....................... 39
Hunt Leaks........cooiiiiiiiiiniiiinn. 39

Appendix A: Appendices

3 195
TA-32 o ettt 195, 257
1a32 .. 65
identifier.*...... il 63
If something is fishy, sayit............... 30
indent.* ... 57
inliner.* 62
INSTR &ttt ettt 168
instr.k. ... 65
instruction selection.............. 168
interference graph.......... L. 175
interference-graph.*........................ 68

K

Keep superclasses on the class
declaration line.......................... 45

label.* ... oo 63, 65
layout.hh.................l 65
Le Monde en Tique ...t 236
Leave no space between a function name and its

argument (s), either formal or actual..... 46
Leave no space between template name and

effective parameters...................... 46
Leave one space between TEMPLATE and

formal parameters......................... 46
devel . k.. 64
Lex. .o 251
Lex&YacC.....ooooiiiiiii i, 243
libassem.*...........l 65
libllvmtranslate.*.......... 69
libmodule.*: Pure interface 37
libparse.hh............l 59
1ibregalloC . . .ottt 70
libtarget.* 65
Libtoolo 247
libtranslate.*.............oooiiiiiiiiii... 64
libtype.* ..o 61
105 155
liveness analysis.............ooiiiiiiiiiia... 175
liveness.* ... 68
51 1 N 250
LLVM IR. oottt ittt ettt ettt 212
1lvm-type-visitor.*......................... 69
location.hh........ ..o 59

M

Making Compiler Design Relevant for Students
who will (Most Likely) Never Design a

Compiler.......c.oviiiiiiiiiiiiiieennnnn 243
MALLOC. vttt 141
mem.brg ... 66, 67, 68
method.* 61
MAiPS ..o 65
RT3 AP 57
misc::scoped_map<Key, Data>................ 58
misc::variant<TO, T1>....................... 58

misc::variant<TO, Ts...>................... 88

273

Modern C++ Design —- Generic Programming and

Design Patterns Applied.................. 243
Modern Compiler Implementation

InC, Java, ML ..ovvirnei e iieieiianennnn 244
Module, namespace, and

directory likethis........................ 37
monoburg++.in.... 56
MonoBURG ... 252
MOVE. K.\ttt 65
move.brg................. 66, 67, 68
move_load.brg............... 66, 67, 68
move_store.brg................ ... 66, 67, 68

N

Name private/protected

members like_this_........................ 37
Name public members like_this 37
Name the parent class super_type 38
Name your classes LikeThis.................. 37
Name your using type alias foo_type 38
named.*. 61
nested function oL 107
NEWS ..o 247
NIl k.o 61
Nolimips...ovvei 253
non-local variable...........o L 107
non-object-visitor.*........................ 60

O

Object Management Group.................... 244
object-visitor.* ... 60
object::Renamerc.coiiin... 114
One class LikeThis per files like-this.*... 32
OPET . k. o 65

Order class members by visibility first.... 44

P

panther.el..............l 56
parsetiger.yy........... ...l 59
Parsing Techniques -- A Practical Guide... 244
Pointers and references are

part of thetype........................... 46
Portland Pattern Repository 240
position.hh...........l 59
Prefer C Comments for Long Comments 49
Prefer C++ Comments for One Line Comments.. 49
Prefer dynamic_cast of references.......... 39
Prefer member functions to algorithms with

the same names (ES44) 44
Prefer standard algorithms to

hand-written loops (ES43) 43
pretty-printer.*......................... 60, 61
Programming: Principles and

Practice Using C++ 244
prologue.hh................ 66, 67, 68
PrUNET.¥ ...ttt 62
PUL 58
Put initializations below the

constructor declaration.................. 47
Python..... ... o 254

TEDOX .« vttt 48, 56
rebox.el 56
TECOTA . ¥ Lttt ittt 61
ref k. 57
regallocator.*............, 70
register allocation............................ 189
TENAMET . K. oottt ittt ie et 61, 62
runtime, Tiger........... ..o 65, 69
runtime-freebsd.s........... ... i, 67
runtime-gnu-linux.s............. 67
runtime.cc......... . il 67
runtime.s.......... . . il 67, 68

S

scantiger.1l... ...t 59
scholarship............. ..o i 257
schooling 257
scope_begin...........ol 58
SCOPE_eNd ...ttt 58
SCOPEAMaAD . % ...\ttt 58
sequence pointol 155
Set . K. 57
snmippet ... 257
Specify comparison types for associative
containers of pointers (Es20)............. 43
SPIM &ttt 253
spim-assembly.*l 66
spim-layout.*.........l 66

SPOT : une bibliothéque de vérification de
propriétés de logique temporelle & temps

linéaire............ooiiiiiiiiiiii 245
stack frame o oL 257
static hierarchy L 257
Stay out of reserved names 37
STLHOME . ..o 247
stm.brg 66, 67, 68
SWIG « v vttt ettt 254
symbol.* 58

tarballname......... oL 247
target. ... 258
target.* ...l 65, 67, 68
tasks.*: Impure interface................... 37
tC . 59
tec.coo 59
temp-set.*l 63
Temp. k... 63
temp.brg 66, 67, 68
test, unit. ... 87
test-flowgraph.cc....................... ... 68
test-regalloc.cC............iiiiiiil, 70
Testing student-made compilers............ 245
Tests are part of the project............... 30
The Design and Evolution of C++............ 245
The Dragon Bookooouin. 239
The Elements of Style....................... 246
Thinking in C++ Volume 1 246
Thinking in C++ Volume 2 246

Thou Shalt Not Copy Code..............couunn. 29

The Tiger Compiler Project Assignment

Thou Shalt Not Possess Thy

Neighbor’s Code............coiiinnnnnnn. 29
tiger-ftdetect.vim..........l 56
tiger-runtime.c...........l 65, 69
tiger-syntax.vim...........l 56
tiger.el 56
timer.®. 58
Braces. ..ot 164
traits ... o 246, 258
Traits: a new and useful

template technique....................... 246
translation.hh................. 64
translator.hh............................ 64, 69
tree.brg....... ... i 66, 67, 68
typable.x 60
type checking 109
type-checker.*..............ooiiiiiina.. 61, 62
type-constructor.®............ooiiiiiiia., 60
BYPe . 61
type::Error.......... ... 114
type::Type* ... 60
type_set ... 60
typeid........ 40
types.hh 61

U

unique.® ... 58
unit test ... 87
Use ‘\directive’........................oo... 49
Use const references in arguments to

save copies (EC22)coviuiiiniann. 41
Use dump as a member function

returning a stream........................ 43
Use dynamic_cast for type cases............. 40
Use foo_get, not get_foo.................... 42
Useoverride..............ooiiuiiiiii .. 45
Use pointers when passing an object together

with its management 41
Use rebox.el to mark up paragraphs.......... 48
Use references for aliasing................. 41
Use the Imperative..............cooiiviiiiin, 48
Use virtual methods, not type cases........ 39

A%

Valgrind ... i 250
variant.........iii e 78
variant.* 58
ViSitor.* . oo 63
visitor.hh oo 59, 65
vtable. 258

A%

Write correct English....................... 47

Write Documentation in Doxygen............. 48

Writing Compilers and Interpreters -- An
Applied Approach Using C++............... 246

Appendix A: Appendices 275

	Introduction
	How to Read this Document
	Why the Tiger Project
	What the Tiger Project is not
	History
	Fair Criticism
	Tiger 2002
	Tiger 2003
	Tiger 2004
	Tiger 2005
	Tiger 2006
	Tiger 2005b
	Tiger 2007
	Tiger 2008
	Leopard 2009
	Tiger 2010
	Tiger 2011
	Tiger 2012
	Tiger 2013
	Tiger 2014
	Tiger 2015
	Tiger 2016
	Tiger 2017
	Tiger 2018
	Tiger 2019
	Tiger 2020

	Instructions
	Interactions
	Rules of the Game
	Groups
	Coding Style
	No Draft Allowed
	Use of Foreign Features
	File Conventions
	Name Conventions
	Use of C++ Features
	Use of stl
	Matters of Style
	Documentation Style

	Tests
	Writing Tests
	Generating the Test Driver

	Submission
	Evaluation
	Automated Evaluation
	During the Examination
	Human Evaluation
	Marks Computation

	Source Code
	Given Code
	Project Layout
	The Top Level
	The build-aux Directory
	The lib Directory
	The lib/misc Directory
	The src Directory
	The src/task Directory
	The src/parse Directory
	The src/ast Directory
	The src/bind Directory
	The src/escapes Directory
	The src/type Directory
	The src/object Directory
	The src/overload Directory
	The src/astclone Directory
	The src/desugar Directory
	The src/inlining Directory
	The src/temp Directory
	The src/tree Directory
	The src/frame Directory
	The src/translate Directory
	The src/canon Directory
	The src/assem Directory
	The src/target Directory
	The src/target/mips Directory
	The src/target/ia32 Directory
	The src/target/arm Directory
	The src/liveness Directory
	The src/llvmtranslate Directory
	The src/regalloc Directory

	Given Test Cases

	Compiler Stages
	Stage Presentation
	PTHL (TC-0), Naive Scanner and Parser
	PTHL Goals
	PTHL Samples
	PTHL Code to Write
	PTHL faq
	PTHL Improvements

	TC-1, Scanner and Parser
	TC-1 Goals
	TC-1 Samples
	TC-1 Given Code
	TC-1 Code to Write
	TC-1 faq
	TC-1 Improvements

	TC-2, Building the Abstract Syntax Tree
	TC-2 Goals
	TC-2 Samples
	TC-2 Pretty-Printing Samples
	TC-2 Chunks
	TC-2 Error Recovery

	TC-2 Given Code
	TC-2 Code to Write
	TC-2 faq
	TC-2 Improvements

	TC-3, Bindings
	TC-3 Goals
	TC-3 Samples
	TC-3 Given Code
	TC-3 Code to Write
	TC-3 faq
	TC-3 Improvements

	TC-R, Unique Identifiers
	TC-R Samples
	TC-R Given Code
	TC-R Code to Write
	TC-R faq

	TC-E, Computing the Escaping Variables
	TC-E Goals
	TC-E Samples
	TC-E Given Code
	TC-E Code to Write
	TC-E faq
	TC-E Improvements

	TC-4, Type Checking
	TC-4 Goals
	TC-4 Samples
	TC-4 Given Code
	TC-4 Code to Write
	TC-4 Options
	TC-4 faq
	TC-4 Improvements

	TC-D, Removing the syntactic sugar from the Abstract Syntax Tree
	TC-D Samples

	TC-I, Function inlining
	TC-I Samples

	TC-B, Array bounds checking
	TC-B Samples
	TC-B faq

	TC-A, Ad Hoc Polymorphism (Function Overloading)
	TC-A Samples
	TC-A Given Code
	TC-A Code to Write

	TC-O, Desugaring object constructs
	TC-O Samples

	TC-5, Translating to the High Level Intermediate Representation
	TC-5 Goals
	TC-5 Samples
	TC-5 Primitive Samples
	TC-5 Optimizing Cascading If
	TC-5 Builtin Calls Samples
	TC-5 Samples with Variables

	TC-5 Given Code
	TC-5 Code to Write
	TC-5 Options
	TC-5 Bounds Checking
	TC-5 Optimizing Static Links

	TC-5 faq
	TC-5 Improvements

	TC-6, Translating to the Low Level Intermediate Representation
	TC-6 Goals
	TC-6 Samples
	TC-6 Canonicalization Samples
	TC-6 Scheduling Samples

	TC-6 Given Code
	TC-6 Code to Write
	TC-6 Improvements

	TC-7, Instruction Selection
	TC-7 Goals
	TC-7 Samples
	TC-7 Given Code
	TC-7 Code to Write
	TC-7 faq
	TC-7 Improvements

	TC-8, Liveness Analysis
	TC-8 Goals
	TC-8 Samples
	TC-8 Given Code
	TC-8 Code to Write
	TC-8 faq
	TC-8 Improvements

	TC-9, Register Allocation
	TC-9 Goals
	TC-9 Samples
	TC-9 Given Code
	TC-9 Code to Write
	TC-9 faq
	TC-9 Improvements

	TC-X, ia-32 Back End
	TC-X Goals
	TC-X Samples
	TC-X Given Code
	TC-X Code to Write
	TC-X faq
	TC-X Improvements

	TC-Y, arm Back End
	TC-Y Goals
	TC-Y Samples
	TC-Y Given Code
	TC-Y Code to Write
	TC-Y faq
	TC-Y Improvements

	TC-L, llvm ir
	TC-L Goals
	TC-L Samples
	TC-L Given Code
	TC-L Code to Write
	TC-L faq
	TC-L Improvements

	Tools
	Programming Environment
	Modern Compiler Implementation
	First Editions
	In Java - Second Edition

	Bibliography
	The gnu Build System
	Package Name and Version
	Bootstrapping the Package
	Making a Tarball
	Setting site defaults using CONFIG_SITE

	gcc, The gnu Compiler Collection
	Clang, A C language family front end for llvm
	gdb, The gnu Project Debugger
	Valgrind, The Ultimate Memory Debugger
	Flex & Bison
	havm
	MonoBURG
	Nolimips
	spim
	swig
	Python
	Doxygen

	Appendices
	Glossary
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Colophon
	List of Files
	List of Examples
	Index

