
Tiger Compiler Reference Manual
Edition January 23, 2018

Akim Demaille and Roland Levillain

This document presents the EPITA version of the Tiger language and compiler. This
revision, , was last updated January 23, 2018.

Copyright c© 2002-2007 Akim Demaille.

Copyright c© 2005-2010, 2012-2014 Roland Levillain.

Copyright c© 2014-2015 Akim Demaille.

Copyright c© 2016-2018 Etienne Renault.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover texts and with the no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License.”

1

The Tiger Project

This document describes the Tiger project for epita students as of January 23, 2018. It is
available under various forms:

− Tiger manual in a single html file1.

− Tiger manual in several html files2.

− Tiger manual in pdf3.

− Tiger manual in text4.

− Tiger manual in Info5.

More information is available on the epita Tiger Compiler Project Home Page6.

Tiger is derived from a language introduced by Andrew Appel7 in his book Modern
Compiler Implementation8. This document is by no means sufficient to produce an actual
Tiger compiler, nor to understand compilation. You are strongly encouraged to buy and
read Appel’s book: it is an excellent book.

There are several differences with the original book, the most important being that
epita students have to implement this compiler in C++ and using modern object oriented
programming techniques. You ought to buy the original book, nevertheless, pay extreme
attention to implementing the version of the language specified below, not that of the book.

1 https://www.lrde.epita.fr/~tiger//tiger.html.
2 https://www.lrde.epita.fr/~tiger//tiger.split.
3 https://www.lrde.epita.fr/~tiger//tiger.pdf.
4 https://www.lrde.epita.fr/~tiger//tiger.txt.
5 https://www.lrde.epita.fr/~tiger//tiger.info.
6 http://tiger.lrde.epita.fr/.
7 http://www.cs.princeton.edu/~appel/.
8 http://www.cs.princeton.edu/~appel/modern/.

https://www.lrde.epita.fr/~tiger//tiger.html
https://www.lrde.epita.fr/~tiger//tiger.split
https://www.lrde.epita.fr/~tiger//tiger.pdf
https://www.lrde.epita.fr/~tiger//tiger.txt
https://www.lrde.epita.fr/~tiger//tiger.info
http://tiger.lrde.epita.fr/
http://www.cs.princeton.edu/~appel/
http://www.cs.princeton.edu/~appel/modern/

i

Table of Contents

The Tiger Project . 1

2

1 Tiger Language Reference Manual

This document defines the Tiger language, derived from a language introduced by Andrew
Appel in his “Modern Compiler Implementation” books (see Section “Modern Compiler
Implementation” in The Tiger Compiler Project). We insist so that our students buy this
book, so we refrained from publishing a complete description of the language. Unfortunately,
recent editions of this series of book no longer address Tiger (see Section “In Java - Second
Edition” in The Tiger Compiler Project), and therefore they no longer include a definition
of the Tiger compiler. As a result, students were more inclined to xerox the books, rather
than buying newer editions. To fight this trend, we decided to publish a complete definition
of the language. Of course, the definition below is not a verbatim copy from the original
language definition: these words are ours.

1.1 Lexical Specifications

Keywords ‘array’, ‘if’, ‘then’, ‘else’, ‘while’, ‘for’, ‘to’, ‘do’, ‘let’, ‘in’, ‘end’, ‘of’,
‘break’, ‘nil’, ‘function’, ‘var’, ‘type’, ‘import’ and ‘primitive’

Object-related keywords
The keywords ‘class’, ‘extends’, ‘method’ and ‘new’ are reserved for object-
related constructions. They are valid keywords when the object extension of
the language is enabled, and reserved words if this extension is disabled (i.e.,
they cannot be used as identifiers in object-less syntax).

Symbols ‘,’, ‘:’, ‘;’, ‘(’, ‘)’, ‘[’, ‘]’, ‘{’, ‘}’, ‘.’, ‘+’, ‘-’, ‘*’, ‘/’, ‘=’, ‘<>’, ‘<’, ‘<=’, ‘>’,
‘>=’, ‘&’, ‘|’, and ‘:=’

White characters
Space and tabulations are the only white space characters supported. Both
count as a single character when tracking locations.

End-of-line
End of lines are ‘\n\r’, and ‘\r\n’, and ‘\r’, and ‘\n’, freely intermixed.

Strings The strings are ansi-C strings: enclosed by ‘"’, with support for the following
escapes:

‘\a’, ‘\b’, ‘\f’, ‘\n’, ‘\r’, ‘\t’, ‘\v’
control characters.

\num The character which code is num in octal. Valid character codes
belong to an extended (8-bit) ascii set, i.e. values between 0 and
255 in decimal (0 and 377 in octal). num is composed of exactly
three octal characters, and any invalid value is a scan error.

\xnum The character which code is num in hexadecimal (upper case or
lower case or mixed). num is composed of exactly 2 hexadecimal
characters. Likewise, expected values belong to an extended (8-bit)
ascii set.

‘\\’ A single backslash.

‘\"’ A double quote.

Chapter 1: Tiger Language Reference Manual 3

\character
If no rule above applies, this is an error.

All the other characters are plain characters and are to be included in the string.
In particular, multi-line strings are allowed.

Comments
Like C comments, but can be nested:

Code

/* Comment

/* Nested comment */

Comment */

Code

Identifiers Identifiers start with a letter, followed by any number of alphanumeric charac-
ters plus the underscore. Identifiers are case sensitive. Moreover, the special
‘_main’ string is also accepted as a valid identifier.

id ::= letter { letter | digit | ‘_’ } | ‘_main’
letter ::=

‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘g’ | ‘h’ | ‘i’ | ‘j’ | ‘k’ | ‘l’ |
‘m’ | ‘n’ | ‘o’ | ‘p’ | ‘q’ | ‘r’ | ‘s’ | ‘t’ | ‘u’ | ‘v’ | ‘w’ | ‘x’ |
‘y’ | ‘z’ |
‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ | ‘I’ | ‘J’ | ‘K’ | ‘L’ |
‘M’ | ‘N’ | ‘O’ | ‘P’ | ‘Q’ | ‘R’ | ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ |
‘Y’ | ‘Z’

digit ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

Numbers There are only integers in Tiger.

integer ::= digit { digit }
op ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘=’ | ‘<>’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’ | ‘&’ | ‘|’

Invalid characters
Any other character is invalid.

1.2 Syntactic Specifications

We use Extended bnf, with ‘[’ and ‘]’ for zero or once, and ‘{’ and ‘}’ for any number of
repetition including zero.

program ::=

exp

| decs

Chapter 1: Tiger Language Reference Manual 4

exp ::=

Literals.

‘nil’

| integer

| string

Array and record creations.

| type-id ‘[’ exp ‘]’ ‘of’ exp

| type-id ‘{ ’[id ‘=’ exp { ‘,’ id ‘=’ exp }] ‘} ’

Object creation.

| ‘new’ type-id

Variables, field, elements of an array.

| lvalue

Function call.

| id ‘(’ [exp { ‘,’ exp }] ‘)’

Method call.

| lvalue ‘.’ id ‘(’ [exp { ‘,’ exp }] ‘)’

Operations.

| ‘-’ exp

| exp op exp

| ‘(’ exps ‘)’

Assignment.

| lvalue ‘:=’ exp

Control structures.

| ‘if’ exp ‘then’ exp [‘else’ exp]

| ‘while’ exp ‘do’ exp

| ‘for’ id ‘:=’ exp ‘to’ exp ‘do’ exp

| ‘break’

| ‘let’ decs ‘in’ exps ‘end’

lvalue ::= id

| lvalue ‘.’ id

| lvalue ‘[’ exp ‘]’

exps ::= [exp { ‘;’ exp }]

Chapter 1: Tiger Language Reference Manual 5

decs ::= { dec }

dec ::=

Type declaration.

‘type’ id ‘=’ ty

Class definition (alternative form).

| ‘class’ id [‘extends’ type-id] ‘{ ’ classfields ‘} ’

Variable declaration.

| vardec

Function declaration.

| ‘function’ id ‘(’ tyfields ‘)’ [‘:’ type-id] ‘=’ exp

Primitive declaration.

| ‘primitive’ id ‘(’ tyfields ‘)’ [‘:’ type-id]

Importing a set of declarations.

| ‘import’ string

vardec ::= ‘var’ id [‘:’ type-id] ‘:=’ exp

classfields ::= { classfield }

Class fields.

classfield ::=

Attribute declaration.

vardec

Method declaration.

| ‘method’ id ‘(’ tyfields ‘)’ [‘:’ type-id] ‘=’ exp

Types.

ty ::=

Type alias.

type-id

Record type definition.

| ‘{ ’ tyfields ‘} ’

Array type definition.

| ‘array’ ‘of’ type-id

Class definition (canonical form).

| ‘class’ [‘extends’ type-id] ‘{ ’ classfields ‘} ’

tyfields ::= [id ‘:’ type-id { ‘,’ id ‘:’ type-id }]

type-id ::= id

op ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘=’ | ‘<>’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’ | ‘&’ | ‘|’

Precedence of the op (high to low):

* /

+ -

>= <= = <> < >

&

|

Chapter 1: Tiger Language Reference Manual 6

Comparison operators (<, <=, =, <>, >, >=) are not associative. All the remaining oper-
ators are left-associative.

1.3 Semantics

1.3.1 Declarations

import An import clause denote the same expression where it was (recursively) replaced
by the set of declarations its corresponding import-file contains. An import-file
has the following syntax (see Section 1.2 [Syntactic Specifications], page 3, for
a definition of the symbols):

import-file ::= decs

Because the syntax is different, it is convenient to use another extension. We
use *.tih for files to import, for instance:

/* fortytwo-fn.tih. */

function fortytwo() : int = 42

/* fortytwo-var.tih. */

import "fortytwo-fn.tih"

var fortytwo := fortytwo()

/* fortytwo-main.tig. */

let

import "fortytwo-var.tih"

in

print_int(fortytwo); print("\n")

end

is rigorously equivalent to:

let

function fortytwo() : int = 42

var fortytwo := fortytwo()

in

print_int(fortytwo); print("\n")

end

There can never be a duplicate-name conflict between declarations from differ-
ent files. For instance:

/* 1.tih */

function one() : int = 1

let

import "1.tih"

import "1.tih"

in

one() = one()

end

Chapter 1: Tiger Language Reference Manual 7

is valid although

let

function one() : int = 1

function one() : int = 1

in

one() = one()

end

is not: the function one is defined twice in a row of function declarations.

Importing a nonexistent file is an error. A imported file may not include itself,
directly or indirectly. Both these errors must be diagnosed, with status set to
1 (see Section 4.2 [Errors], page 35).

When processing an import directive, the compiler starts looking for files in the
current directory, then in all the directories of the include path, in order.

name spaces
There are three name spaces: types, variables and functions. The original
language definition features two: variables and functions share the same name
space. The motivation, as noted by Sbastien Carlier, is that in FunTiger, in
the second part of the book, functions can be assigned to variables:

let

type a = {a : int}

var a := 0

function a(a : a) : a = a{a = a.a}

in

a(a{a = a})

end

Three name spaces support is easier to implement.

1.3.1.1 Type Declarations

arrays The size of the array does not belong to the type. Index of arrays starts from
0 and ends at size - 1.

let

type int_array = array of int

var table := int_array[100] of 0

in

...

end

Arrays are initialized with the same instance of value. This leads to aliasing
for entities with pointer semantics (strings, arrays and records).

let

type rec = { val : int }

type rec_arr = array of rec

var table := rec_arr[2] of rec { val = 42 }

in

table[0].val := 51

Chapter 1: Tiger Language Reference Manual 8

/* Now table[1].val = 51. */

end

Use a loop to instantiate several initialization values.

let

type rec = { val : int }

type rec_arr = array of rec

var table := rec_arr[2] of nil

in

for i := 0 to 1 do

table[i] := rec { val = 42 };

table[0].val := 51

/* table[1].val = 42. */

end

records Records are defined by a list of fields between braces. Fields are described as
“fieldname : type-id” and are separated by a coma. Field names are unique for
a given record type.

let

type indexed_string = {index : int, value : string}

in

...

end

classes (See also Section 1.3.1.4 [Method Declarations], page 18.)

Classes define a set of attributes and methods. Empty classes are valid. At-
tribute declaration is like variable declaration; method declaration is similar to
function declaration, but uses the keyword method instead of function.

There are two ways to declare a class. The first version (known as canonical)
uses type, and is similar to record and array declaration :

let

type Foo = class extends Object

{

var bar := 42

method baz() = print("Foo.\n")

}

in

/* ... */

end

The second version (known as alternative or Appel’s) doesn’t make use of type,
but introduces classes declarations directly. This is the syntax described by
Andrew Appel in his books:

let

class Foo extends Object

{

var bar := 42

method baz() = print("Foo.\n")

Chapter 1: Tiger Language Reference Manual 9

}

in

/* ... */

end

For simplicity reasons, constructs using the alternative syntax are considered
as syntactic sugar for the canonical syntax, and are desugared by the parser
into this first form, using the following transformation:

‘class’ Name [‘extends’ Super] ‘{ ’ Classfields ‘} ’

=> ‘type’ Name ‘=’ ‘class’ [‘extends’ Super] ‘{ ’ Classfields ‘} ’

where Name, Super and Classfields are respectively the class name, the super
class name and the contents of the class (attributes and methods) of the class.

In the rest of the section, Appel’s form will be often used, to offer a uniform
reading with his books, but remember that the main syntax is the other one,
and Appel’s syntax is to be desugared into the canonical one.

Declarations of class members follow the same rules as variable and function
declarations: consecutive method declarations constitute a block (or chunk)
of methods, while a block of attributes contains only a single one attribute
declaration (several attribute declarations thus form several blocks). An extra
rule holds for class members: there shall be no two attributes with the same
name in the same class definition, nor two methods with the name.

let

class duplicate_attrs

{

var a := 1

method m() = ()

/* Error, duplicate attribute in the same class. */

var a := 2

}

class duplicate_meths

{

method m() = ()

var a := 1

/* Error, duplicate method in the same class. */

method m() = ()

}

in

end

Note that this last rule applies only to the strict scope of the class, not to the
scopes of inner classes.

let

type C = class

{

var a := 1

method m() =

Chapter 1: Tiger Language Reference Manual 10

let

type D = class

{

/* These members have same names as C’s, but this is allowed

since they are not in the same scope. */

var a := 1

method m() = ()

}

in

end

}

in

end

Objects of a given class are created using the keyword new. There are no
constructors in Tiger (nor destructors), so the attributes are always initialized
by the value given at their declaration.

let

class Foo

{

var bar := 42

method baz() = print("Foo.\n")

}

class Empty

{

}

var foo1 : Foo := new Foo

/* As for any variable, the type annotation is optional. */

var foo2 := new Foo

in

/* ... */

end

The access to a member (either an attribute or a method) of an object from
outside the class uses the dotted notation (as in C++, Java, C#, etc.). There
are no visibility qualifier/restriction (i.e., all attributes of an object accessible
in the current scope are accessible in read and write modes), and all its methods
can be called.

let

class Foo

{

var bar := 42

method baz() = print("Foo.\n")

}

var foo := new Foo

in

print_int(foo.bar);

Chapter 1: Tiger Language Reference Manual 11

foo.baz()

end

To access to a member (either an attribute or a method) from within the class
where it is defined, use the self identifier (equivalent to C++’s Or Java’s this),
which refers to the current instance of the object.

let

class Point2d

{

var row : int := 0

var col : int := 0

method print_row() = print_int(self.row)

method print_col() = print_int(self.col)

method print() =

(

print("(");

self.print_row();

print(", ");

self.print_col();

print(")")

)

}

in

/* ... */

end

The use of self is mandatory to access a member of the class (or of its super
class(es)) from within the class. A variable or a method not preceded by ‘self.’
won’t be looked up in the scope of the class.

let

var a := 42

function m() = print("m()\n")

class C

{

var a := 51

method m() = print("C.m()\n")

method print_a() = (print_int(a); print("\n"))

method print_self_a() = (print_int(self.a); print("\n"))

method call_m() = m()

method call_self_m() = self.m()

}

var c := new C

in

Chapter 1: Tiger Language Reference Manual 12

c.print_a(); /* Print ‘42’. */

c.print_self_a(); /* Print ‘51’. */

c.call_m(); /* Print ‘m()’. */

c.call_self_m() /* Print ‘C.m()’. */

end

self cannot be used outside a method definition. In this respect, self cannot
appear in a function or a class defined within a method (except within a method
defined therein, of course).

let

type C = class

{

var a := 51

var b := self /* Invalid. */

method m () : int =

let

function f () : int =

self.a /* Invalid. */

in

f() + self.a /* Valid. */

end

}

var a := new C

in

a := self /* Invalid. */

end

self is a read-only variable and cannot be assigned.

The Tiger language supports single inheritance thanks to the keyword extends,
so that a class can inherit from another class declared previously, or declared
in the same block of class declarations. A class with no manifest inheritance
(no extends statement following the class name) automatically inherits from
the built-in class Object (this feature is an extension of Appel’s object-oriented
proposal).

Inclusion polymorphism is supported as well: when a class Y inherits from a
class X (directly or through several inheritance links), any object of Y can be
seen as an object of type X. Hence, objects have two types: the static type,
known at compile time, and the dynamic (or exact) type, known at run time,
which is a subtype of (or identical to) the static type. Therefore, an object of
static type Y can be assigned to a variable of type X.

let

/* Manifest inheritance from Object: an A is an Object. */

class A extends Object {}

/* Implicit inheritance from Object: a B is an Object. */

class B {}

/* C is an A. */

Chapter 1: Tiger Language Reference Manual 13

class C extends A {}

var a : A := new A

var b : B := new B

var c1 : C := new C

/* When the type is not given explicitly, it is inferred from the

initialization; here, C2 has static and dynamic type C. */

var c2 := new C

/* This variable has static type A, but dynamic type C. */

var c3 : A := new C

in

/* Allowed (upcast). */

a := c1

/* Forbidden (downcast). */

/* c2 := a */

end

As stated before, a class can inherit from a class1 declared previously (and
visible in the scope), or from a class declared in the same block of type decla-
rations (recall that a class declaration is in fact a type declaration). Recursive
inheritance is not allowed.

let

/* Allowed: A declared before B. */

class A {}

class B extends A {}

/* Allowed: C declared before D. */

class C {}

var foo := -42

class D extends C {}

/* Allowed: forward inheritance, with E and F in the same

block. */

class F extends E {}

class E {}

/* Forbidden: forward inheritance, with G and H in different

blocks. */

class H extends G {}

var bar := 2501

class G {}

/* Forbidden: recursive inheritance. */

class I extends J {}

1 A super class can only be a class type, and not another kind of type.

Chapter 1: Tiger Language Reference Manual 14

class J extends I {}

/* Forbidden: recursive inheritance and forward inheritance

with K and L in different blocks. */

class K extends L {}

var baz := 2097

class L extends K {}

/* Forbidden: M inherits from a non-class type. */

class M extends int {}

in

/* ... */

end

All members from the super classes (transitive closure of the “is a” relationship)
are accessible using the dotted notation, and the identifier self when they are
used from within the class.

Attribute redefinition is not allowed: a class cannot define an attribute with the
same name as an inherited attribute, even if it has the same type. Regarding
method overriding, see Section 1.3.1.4 [Method Declarations], page 18.

Let us consider a block of type definitions. For each class of this block, any of
its members (either attributes or methods) can reference any type introduced
in scope of the block, including the class type enclosing the considered members.

let

/* A block of types. */

class A

{

/* Valid forward reference to B, defined in the same block

as the class enclosing this member. */

var b := new B

}

type t = int

class B

{

/* Invalid forward reference to C, defined in another block

(binding error). */

var c := new C

}

/* A block of variables. */

var v : t := 42

/* Another block of types. */

class C

{

}

in

Chapter 1: Tiger Language Reference Manual 15

end

However, a class member cannot reference another member defined in a class
defined later in the program, in the current class or in a future class (except
if the member referred to is in the same block as the referring member, hence
in the same class, since a block of members cannot obviously span across two
or more classes). And recall that class members can only reference previously
defined class members, or members of the same block of members (e.g., a chunk
of methods).

let

/* A block of types. */

class X

{

var i := 1

/* Valid forward reference to self.o(), defined in the same

block of methods. */

method m() : int = self.o()

/* Invalid forward reference to self.p(), defined in another

(future) block of methods (type error). */

method n() = self.p()

/* Valid (backward) reference to self.i, defined earlier. */

method o() : int = self.i

var j := 2

method p() = ()

var y := new Y

/* Invalid forward reference to y.r(), defined in another

(future) class (type error). */

method q() = self.y.r()

}

class Y

{

method r() = ()

}

in

end

To put it in a nutshell: within a chunk of types, forward references to classes
are allowed, while forward references to members are limited to the block of
members where the referring entity is defined.

recursive types
Types can be recursive,

let

Chapter 1: Tiger Language Reference Manual 16

type stringlist = {head : string, tail : stringlist}

in

...

end

or mutually recursive (if they are declared in the same chunk) in Tiger.

let

type indexed_string = {index : int, value : string}

type indexed_string_list = {head : indexed_string, tail :

indexed_string_list}

in

...

end

but there shall be no cycle. This

let

type a = b

type b = a

in

...

end

is invalid.

type equivalence
Two types are equivalent iff they are issued from the same type construction
(array or record construction, or primitive type). As in C, unlike Pascal, struc-
tural equivalence is rejected.

Type aliases do not build new types, hence they are equivalent.

let

type a = int

type b = int

var a := 1

var b := 2

in

a = b /* OK */

end

let

type a = {foo : int}

type b = {foo : int}

var va := a{foo = 1}

var vb := b{foo = 2}

in

va = vb

end

is invalid, and must be rejected with exit status set to 5.

Chapter 1: Tiger Language Reference Manual 17

1.3.1.2 Variable Declarations

variables

There are two forms of variable declarations in Tiger: the short one and the
long one.

In the short form, only the name of the variable and the initial value of the
variable are specified, the variable type is “inferred”.

let

var foo := 1 /* foo is typed as an integer */

in

...

end

In the long form, the type of the variable is specified. Since one cannot infer
a record type for nil, the long form is mandated when declaring a variable
initialized to nil.

let

type foo = {foo : int}

var bar : foo := nil /* Correct. */

var baz := nil /* Incorrect. */

in

...

end

1.3.1.3 Function Declarations

functions To declare a function, provide its return value type:

let

function not (i : int) : int =

if i = 0 then

1

else

0

in

...

end

A procedure has no value return type.

let

function print_conditional(s : string, i : int) =

if i then

print(s)

else

print("error")

in

print_conditional("foo", 1)

end

Chapter 1: Tiger Language Reference Manual 18

Functions can be recursive, but mutually recursive functions must be in the
same sequence of function declarations (no other declaration should be placed
between them).

See the semantics of function calls for the argument passing policy (see
Section 1.3.2 [Expressions], page 20).

primitive A primitive is a built-in function, i.e., a function which body is provided by the
runtime system. See Section 3.2 [Predefined Functions], page 28, for the list of
standard primitives. Aside from the lack of body, and henceforth the absence of
translation, primitive declarations behave as function declarations. They share
the same name space, and obey the same duplicate-name rule. For instance:

let

primitive one() : int

function one() : int = 1

in

...

end

is invalid, and must be rejected with exit status set to 4.

1.3.1.4 Method Declarations

Overriding methods
When a method in a class overrides a method of a super class, the overridden
method (in the super class) is no longer accessible. Dynamic dispatch is per-
formed, using the exact type of the object (known at run time) to select the
method according to this exact type.

However, the interface of the accessible attributes and callable methods remains
restricted to the static interface (i.e., the one of the static type of the object).

let

class Shape

{

/* Position. */

var row := 0

var col := 0

method print_row() = (print("row = "); print_int(self.row))

method print_col() = (print("col = "); print_int(self.col))

method print() =

(

print("Shape = { ");

self.print_row();

print(", ");

self.print_col();

print(" }")

Chapter 1: Tiger Language Reference Manual 19

)

}

class Circle extends Shape

{

var radius := 1

method print_radius() = (print("radius = "); print_int(self.radius))

/* Overridden method. */

method print() =

(

print("Circle = { ");

self.print_row();

print(", ");

self.print_col();

print(", ");

self.print_radius();

print(" }")

)

}

/* C has static type Shape, and dynamic (exact) type Circle. */

var c : Shape := new Circle

in

/* Dynamic dispatch to Circle’s print method. */

c.print();

/* Allowed. */

c.print_row()

/* Forbidden: ‘print_radius’ is not a member of Shape (nor of its

super class(es)). */

/* c.print_radius() */

end

Method invariance
Methods are invariant in Tiger: each redefinition of a method in a subclass
shall have the exact same signature as the original (overridden) method. This
invariance applies to

1. the number of arguments,

2. the types of the arguments,

3. the type of the return value2.

let

class Food {}

2 Which is not the case in C++, where methods have covariant return values.

Chapter 1: Tiger Language Reference Manual 20

class Grass extends Food {}

class Animal

{

method eat(f : Food) = ()

}

class Cow extends Animal

{

/* Invalid: methods shall be invariant. */

method eat(g : Grass) = ()

}

in

end

1.3.2 Expressions

L-values The ‘l-values’ (whose value can be read or changed) are: elements of arrays,
fields of records, instances of classes, arguments and variables.

Valueless expressions
Some expressions have no value: procedure calls, assignments, ifs with no else
clause, loops and break. Empty sequences (‘()’) and lets with an empty body
are also valueless.

Nil The reserved word nil refers to a value from a record or a class type. Do
not use nil where its type cannot be determined.

let

type any_record = {any : int}

var nil_var : any_record := nil

function nil_test(parameter : any_record) : int = ...

var invalid := nil /* no type, invalid */

in

if nil <> nil_var then

...

if nil_test(nil_var) then

...

if nil = nil then ... /* no type, invalid */

end

Integers An integer literal is a series of decimal digits (therefore it is non-negative).
Since the compiler targets 32-bit architectures, since it needs to handle signed
integers, a literal integer value must fit in a signed 32-bit integer. Any other
integer value is a scanner error.

Booleans There is no Boolean type in Tiger: they are encoded as integers, with the same
semantics as in C, i.e., 0 is the only value standing for “false”, anything else
stands for “true”.

Chapter 1: Tiger Language Reference Manual 21

Strings A string constant is a possibly empty series of printable characters, spaces or
escapes sequences (see Section 1.1 [Lexical Specifications], page 2) enclosed
between double quotes.

let

var s := "\t\124\111\107\105\122\n"

in

print(s)

end

Record instantiation
A record instantiation must define the value of all the fields and in the same
order as in the definition of the record type.

Class instantiation
An object is created with new. There are no constructors in Tiger, so new takes
only one operand, the name of the type to instantiate.

Function call
Function arguments are evaluated from the left to the right. Arrays and records
arguments are passed by reference, strings and integer are passed by value.

The following example:

let

type my_record = {value : int}

function reference(parameter : my_record) =

parameter.value := 42

function value(parameter : string) =

parameter := "Tiger is the best language\n"

var rec1 := my_record{value = 1}

var str := "C++ rulez"

in

reference(rec1);

print_int(rec1.value);

print("\n");

value(str);

print(str);

print("\n")

end

results in:

42

C++ rulez

Boolean operators
Tiger Boolean operators normalize their result to 0/1. For instance, because
& and | can be implemented as syntactic sugar, one could easily make ‘123 |

456’ return ‘1’ or ‘123’: make them return ‘1’. Andrew Appel does not enforce
this for ‘&’ and ‘|’; we do, so that the following program has a well defined
behavior:

Chapter 1: Tiger Language Reference Manual 22

print_int("0" < "9" | 42)

Arithmetic
Arithmetic expressions only apply on integers and return integers. Available
operators in Tiger are : +,-,* and /.

Comparison
Comparison operators (‘=’, ‘<>’, and ‘<=’, ‘<’, ‘>=’, ‘>’) return a Boolean value.

Integer and string comparison
All the comparison operators apply to pairs of strings and pairs of
integers, with obvious semantics.

String comparison
Comparison of strings is based on the lexicographic order.

Array and record comparison
Pairs of arrays and pairs of records of the same type can be com-
pared for equality (‘=’) and inequality (‘<>’). Identity equality ap-
plies, i.e., an array or a record is only equal to itself (shallow equal-
ity), regardless of the contents equality (deep equality). The value
nil can be compared against a value which type is that of a record
or a class, e.g. ‘nil = nil’ is invalid.

Arrays, records and objects cannot be ordered: ‘<’, ‘>’, ‘<=’, ‘>=’
are valid only for pairs of strings or integers.

Void comparison
In conformance with A. Appel’s specifications, any two void entities
are equal.

Assignment
Assignments yield no value. The following code is syntactically correct, but
type incorrect:

let

var foo := 1

var bar := 1

in

foo := (bar := 2) + 1

end

Note that the following code is valid:

let

var void1 := ()

var void2 := ()

var void3 := ()

in

void1 := void2 := void3 := ()

end

Chapter 1: Tiger Language Reference Manual 23

Array and record assignment
Array and record assignments are shallow, not deep, copies. Therefore aliasing
effects arise: if an array or a record variable a is assigned another variable b of
the same type, then changes on b will affect a and vice versa.

let

type bar = {foo : int}

var rec1 := bar{foo = 1}

var rec2 := bar{foo = 2}

in

print_int(rec1.foo);

print(" is the value of rec1\n");

print_int(rec2.foo);

print(" is the value of rec2\n");

rec1 := rec2;

rec2.foo = 42;

print_int(rec1.foo);

print(" is the new value of rec1\n")

end

Polymorphic (object) assignment
Upcasts are valid for objects because of inclusion polymorphism.

let

class A {}

class B extends A {}

var a := new A

var b := new B

in

a := b

end

Upcasts can be performed when defining a new object variable, by forcing the
type of the declared variable to a super class of the actual object.

let

class C {}

class D extends C {}

var c : C := new D

in

end

Tiger doesn’t provide a downcast feature performing run time type identifica-
tion (rtti), like C++’s dynamic_cast.

let

class E {}

class F extends E {}

var e : E := new F

var f := new F

in

/* Invalid: downcast. */

Chapter 1: Tiger Language Reference Manual 24

f := e

end

Polymorphic (object) branching
Upcast are performed when branching between two class instantiations.

Since every class inherits from Object, you will always find a common root.

let

class A {}

class B extends A {}

in

if 1 then

new A

else

new B

end

Sequences A sequence is a possibly empty series of expressions separated by semicolons
and enclosed by parenthesis. By convention, there are no sequences of a single
expression (see the following item). The sequence is evaluated from the left to
the right. The value of the whole sequence is that of its last expression.

let

var a := 1

in

a := (

print("first exp to display\n");

print("second exp to display\n");

a := a + 1;

a

) + 42;

print("the last value of a is : ");

print_int(a);

print("\n")

end

Parentheses
Parentheses enclosing a single expression enforce syntactic grouping.

Lifetime Records and arrays have infinite lifetime: their values lasts forever even if the
scope of their creation is left.

let

type bar = {foo : int}

var rec1 := bar{foo = 1}

in

rec1 := let

var rec2 := bar{foo = 42}

in

rec2

end;

25

print_int(rec1.foo);

print("\n")

end

if-then-else
In an if-expression:

if exp1 then

exp2

else

exp3

exp1 is typed as an integer, exp2 and exp3 must have the same type which will
be the type of the entire structure. The resulting type cannot be that of nil.

if-then In an if-expression:

if exp1 then

exp2

exp1 is typed as an integer, and exp2 must have no value. The whole expression
has no value either.

while In a while-expression:

while exp1 do

exp2

exp1 is typed as an integer, exp2 must have no value. The whole expression
has no value either.

for The following for loop

for id := exp1 to exp2 do

exp3

introduces a fresh variable, id, which ranges from the value of exp1 to that of
exp2, inclusive, by steps of 1. The scope of id is restricted to exp3. In particular,
id cannot appear in exp1 nor exp2. The variable id cannot be assigned to. The
type of both exp1 and exp2 is integer, they can range from the minimal to the
maximal integer values. The body exp3 and the whole loop have no value.

break A break terminates the nearest enclosing loop (while or for). A break must
be enclosed by a loop. A break cannot appear inside a definition (e.g., between
let and in), except if it is enclosed by a loop, of course.

let In the let-expression:

let

decs

in

exps

end

decs is a sequence of declaration and exps is a sequence of expressions separated
by a semi-colon. The whole expression has the value of exps.

26

2 Language Extensions

Numerous extensions of the Tiger language are defined above. These extensions are not
accessible to the user: if he uses one of them in a Tiger program, the compiler must reject
it. They are used internally by the compiler itself, for example to desugar using concrete
syntax. A special flag of the parser must be turned on to enable them.

2.1 Additional Lexical Specifications

Additional keywords and identifiers.

‘_cast’ Used to cast an expression or a l-value to a given type.

‘_decs’, ‘_exp’, ‘_lvalue’, ‘_namety’
These keywords are used to plug an existing ast into an ast being built by
the parser. There is a keyword per type of pluggable ast (list of declarations,
expression, l-value, type name).

Reserved identifiers
They start with an underscore, and use the same letters as standard identifiers.
These symbols are used internally by the compiler to name or rename entities.
Note that ‘_main’ is still a valid identifier, not a reserved one.

reserved-id ::= ‘_’ { letter | digit | ‘_’ }

2.2 Additional Syntactic Specifications

Grammar extensions
In addition to the rules of the standard Tiger grammar (see Section 1.2 [Syn-
tactic Specifications], page 3), extensions adds the following productions.

A list of decs metavariable

decs ::= ‘_decs’ ‘(’ integer ‘)’ decs

exp ::=

Cast of an expression to a given type

‘_cast’ ‘(’ exp ‘,’ ty ‘)’

An expression metavariable

| ‘_exp’ ‘(’ integer ‘)’

lvalue ::=

Cast of a l-value to a given type

‘_cast’ ‘(’ lvalue ‘,’ ty ‘)’

A l-value metavariable

| ‘_lvalue’ ‘(’ integer ‘)’

A type name metavariable

type-id ::= ‘_namety’ ‘(’ integer ‘)’

Metavariables
The ‘_decs’, ‘_exp’, ‘_lvalue’, ‘_namety’ keywords are used as metavariables,
i.e., they are names attached to an (already built) ast. They don’t create new

Chapter 2: Language Extensions 27

ast nodes, but are used to retrieve existing nodes, stored previously. For in-
stance, upon an _exp(51) statement, the parser fetches the tree attached to
the metavariable 51 (an expression) from the parsing context (see the imple-
mentation for details).

2.3 Additional Semantics

Casts A _cast statement changes the type of an expression or an l-lvalue to a given
type. Beware that the type-checker is forced to accept the new type as is, and
must trust the programmer about the new semantics of the expression/l-value.
Bad casts can raise errors in the next stages of the back-end, or even lead to
invalid output code.

Casts work both on expressions and l-values. For instance, these are valid casts:

_cast("a", int)

_cast(a_string, int) := 42

(Although these examples could produce code with a strange behavior at exe-
cution time.)

Casts are currently only used in concrete syntax transformations inside the
bounds checking extension and, as any language extension, are forbidden in
standard Tiger programs.

28

3 Predefined Entities

These entities are predefined, i.e., they are available when you start the Tiger compiler, but
a Tiger program may redefine them.

3.1 Predefined Types

There are three predefined types:

‘int’ which is the type of all the literal integers.

‘string’ which is the type of all the literal strings.

‘Object’ which is the super class type on top of every class hierarchy (i.e., the top-most
super class in the transitive closure of the generalization relationship).

3.2 Predefined Functions

Some runtime function may fail if some assertions are not fulfilled. In that case, the program
must exit with a properly labeled error message, and with exit code 120. The error messages
must follow the standard. Any difference, in better or worse, is a failure to comply with
the (this) Tiger Reference Manual.

[string]chr (code : int)
Return the one character long string containing the character which code is code. If
code does not belong to the range [0..255], raise a runtime error: ‘chr: character

out of range’.

[string]concat (first: string, second: string)
Concatenate first and second.

[void]exit (status: int)
Exit the program with exit code status.

[void]flush ()
Flush the output buffer.

[string]getchar ()
Read a character on input. Return an empty string on an end of file.

[int]not (boolean: int)
Return 1 if boolean = 0, else return 0.

[int]ord (string: string)
Return the ascii code of the first character in string and -1 if the given string is empty.

[void]print (string: string)
Print string on the standard output.

[void]print_err (string: string)
Note: this is an EPITA extension. Same as print, but the output is written to the
standard error.

29

[void]print_int (int: int)
Note: this is an EPITA extension. Output int in its decimal canonical form (equiva-
lent to ‘%d’ for printf).

[int]size (string: string)
Return the size in characters of the string.

[int]strcmp (a: string, b: string)
Note: this is an EPITA extension. Compare the strings a and b: return -1 if a < b, 0
if equal, and 1 otherwise.

[int]streq (a: string, b: string)
Note: this is an EPITA extension. Return 1 if the strings a and b are equal, 0
otherwise. Often faster than strcmp to test string equality.

[string]substring (string: string, first: int, length: int)
Return a string composed of the characters of string starting at the first character
(0 being the origin), and composed of length characters (i.e., up to and including the
character first + length - 1).

Let size be the size of the string, the following assertions must hold:

• 0 <= first

• 0 <= length

• first + length <= size

otherwise a runtime failure is raised: ‘substring: arguments out of bounds’.

30

4 Implementation

4.1 Invoking tc

Synopsis:

tc option... file

where file can be ‘-’, denoting the standard input.

Global options are:

-?

--help Display the help message, and exit successfully.

--version

Display the version, and exit successfully.

--task-list

List the registered tasks.

--task-selection

Report the order in which the tasks will be run.

The options related to the file library (TC-1) are:

-p

--library-prepend

Prepend a directory to include path.

-P

--library-append

Append a directory to include path.

--library-display

Report the include search path.

The options related to scanning and parsing (TC-1) are:

--scan-trace

Enable Flex scanners traces.

--parse-trace

Enable Bison parsers traces.

--parse Parse the file given as argument (objects forbidden).

--prelude=prelude

Load the definitions of the file prelude before the actual argument. The result
is equivalent to parsing:

let

import "prelude"

in

/* The argument file. */

Chapter 4: Implementation 31

end

To disable any prelude file, use no-prelude. The default value is builtin,
denoting the builtin prelude.

-X

--no-prelude

Don’t include prelude.

The options related to the ast (TC-2) are:

-o

--object Enable object constructs of the language (class and method declarations, object
creation, method calls, etc.).

--object-parse

Same as --object --parse, i.e. parse the file given as argument, allowing
objects.

-A

--ast-display

Display the ast.

-D

--ast-delete

Reclaim the memory allocated for the ast.

The options related to escapes computation (TC-3) are:

--bound Make sure bindings (regular or taking overloading or objects constructs into
account) are computed.

-b

--bindings-compute

Bind the name uses to their definitions (objects forbidden).

-B

--bindings-display

Enable the bindings display in the next --ast-display invocation. This option
does not imply --bindings-compute.

--object-bindings-compute

Bind the name uses to their definitions, allowing objects. consistency.

The options related to the renaming to unique identifiers (TC-R) are:

--rename Rename identifiers (objects forbidden).

The options related to escapes computation (TC-E) are:

-e

--escapes-compute

Compute the escapes.

Chapter 4: Implementation 32

-E

--escapes-display

Enable the escape display. This option does not imply --escapes-compute, so
that it is possible to check that the defaults (everybody escapes) are properly
implemented. Pass -A afterward to see its result.

The options related to type checking (TC-4) are:

-T

--typed Make sure types (regular or taking overloading or objects constructs into ac-
count) are computed.

--types-compute

Compute and check (regular) types (objects forbidden).

--object-types-compute

Compute and check (regular) types, allowing objects.

The options related to desugaring (TC-D) are:

--desugar-for

Enable the translation of for loops into while loops.

--desugar-string-cmp

Enable the desugaring of string comparisons.

--desugared

Make sure syntactic sugar (regular or taking overloading into account) has been
removed from the ast.

--desugar

Remove syntactic sugar from the ast. Desired translations must be enabled
beforehand (e.g. with --desugar-for or --desugar-string-cmp).

--overfun-desugar

Like --desugar but with support for overloaded functions (see TC-A).

The options related to the inlining optimization (TC-I) are:

--inline Inline bodies of (non overloaded) functions at call sites.

--overfun-inline

Inline bodies of functions (overloaded or not) at call sites.

--prune Remove unused (non overloaded) functions.

--overfun-prune

Remove unused functions (overloaded or not).

The options related to the bounds checking instrumentation (TC-B) are:

--bounds-checks-add

Add dynamic bounds checks.

Chapter 4: Implementation 33

--overfun-bounds-checks-add

Add dynamic bounds checks, with support for overloading.

The options related to overloading support (TC-A) are:

--overfun-bindings-compute

Binding variables, types, and breaks as usual, by bind function calls to the set
of function definitions baring the same name.

-O

--overfun-types-compute

Type-check and resolve (bind) overloaded function calls. Implies --overfun-
bindings-compute.

The options related to the desugaring of object constructs (TC-O) are:

--object-desugar

Translate object constructs from the program into their non object counter-
parts, i.e., transform a Tiger program into a Panther one.

The options related to the high level intermediate representation (TC-5) are:

--hir-compute

Translate to hir (objects forbidden). Implies --typed.

-H

--hir-display

Display the high level intermediate representation. Implies --hir-compute.

The options related to the LLVM IR translation (TC-L) are:

--llvm-compute

Translate to LLVM IR.

--llvm-runtime-display

Enable runtime displaying along with the LLVM IR.

--llvm-display

Display the LLVM IR.

The options related to the low level intermediate representation (TC-6) are:

--canon-trace

Trace the canonicalization of hir to lir.

--canon-compute

Canonicalize the lir fragments.

-C

--canon-display

Display the canonicalized intermediate representation before basic blocks and
traces computation. Implies --lir-compute. It is convenient to determine
whether a failure is due to canonicalization, or traces.

Chapter 4: Implementation 34

--traces-trace

Trace the basic blocks and traces canonicalization of hir to lir.

--traces-compute

Compute the basic blocks from canonicalized hir fragments. Implies --canon-
compute.

--lir-compute

Translate to lir. Implies --traces-compute. Actually, it is nothing but a nice
looking alias for the latter.

-L

--lir-display

Display the low level intermediate representation. Implies --lir-compute.

The options related to the instruction selection (TC-7) are:

--inst-compute

Convert from lir to pseudo assembly with temporaries. Implies
--lir-compute.

-I

--inst-display

Display the pseudo assembly, (without the runtime prologue). Implies --inst-
compute.

-R

--runtime-display

Display the assembly runtime prologue for the current target.

The options related to the liveness information (TC-8) are:

-F

--flowgraphs-dump

Save each function flow graph in a Graphviz file. Implies --inst-compute.

-V

--liveness-dump

Save each function flow graph enriched with liveness information in a Graphviz
file. Implies --inst-compute.

-N

--interference-dump

Save each function interference graph in a Graphviz file. Implies --inst-

compute.

The options related to the target are:

--callee-save=num

--caller-save=num

Set the maximum number of callee/caller save registers to num, a positive
number. Note that (currently) this does not reset the current target, hence to
actually change the behavior, one needs ‘--callee-save=0 --target-mips’.

Chapter 4: Implementation 35

--target-mips

Set the target to Mips.

--target-ia32

This optional flag sets the target to ia-32.

--target-default

If no target is selected, select Mips. This option is triggered by all the options
that need a target.

--target-display

Report information about the current target.

The options related to the register allocation are:

--asm-coalesce-disable

Disable coalescence.

--asm-trace

Trace register allocation.

-s

--asm-compute

Allocate the registers.

-S

--asm-display

Display the final assembler, runtime included.

4.2 Errors

Errors must be reported on the standard error output. The exit status and the standard
error output must be consistent: the exit status is 0 if and only if there is no output at all
on the standard error output. There are actually some exceptions: when tracing (scanning,
parsing, etc.) are enabled.

Compile errors must be reported on the standard error flow with precise error location.
The format of the error output must exactly be

location: error message

where the location includes the file name, initial position, and final position. There is no
fixed set of error messages.

Examples include:

$ echo "1 + + 2" | ./tc -

error standard input:1.4: syntax error, unexpected "+"

error Parsing Failed

and

$ echo "1 + () + 2" | ./tc -T -

error standard input:1.0-5: type mismatch

error right operand type: void

error expected type: int

Chapter 4: Implementation 36

Warning: The symbol error is not part of the actual output. It is only used in this
document to highlight that the message is produced on the standard error flow. Do not
include it as part of the compiler’s messages. The same applied to ⇒.

The compiler exit value should reflect faithfully the compilation status. The possible
values are:

0 Everything is all right.

1 Some error which does not fall into the other categories occurred. For instance,
malloc or fopen failed, a file is missing etc.

An unsupported option must cause tc to exit 64 (EX_USAGE) even if related to
a stage option otherwise these optional features will be tested, and it will most
probably have 0. For instance, a TC-5 delivery that does not support bounds
checking must not accept --bounds-checking.

2 Error detected during the scanning, e.g., invalid character.

3 Parse error.

4 Identifier binding errors such as duplicate name definition, or undefined name
use.

5 Type checking errors (such as type incompatibility).

64 (EX_USAGE)
The command was used incorrectly, e.g., with the wrong number of arguments,
a bad flag, a bad syntax in a parameter, or whatever. This is the value used by
argp.

When several errors have occurred, the least value should be issued, not the earliest. For
instance:

(let error in end; %)

should exit 2, not 3, although the parse error was first detected.

In addition to compiler errors, the compiled programs may have to raise a runtime error,
for instance when runtime functions received improper arguments. In that case use the exit
code 120, and issue a clear diagnostic. Because of the basic mips model we target which
does not provide the standard error output, the message is to be output onto the standard
output.

4.3 Extensions

A strictly compliant compiler must behave exactly as specified in this document and in
Andrew Appel’s book, and as demonstrated by the samples exhibited in this document and
in see Section “Assignments” in assignments.

Nevertheless, you are entirely free to extend your compiler as you wish, as long as this
extension is enabled by a non standard option. Extensions include:

ansi Colors
Do not do that by default, in particular without checking if the output isatty,
as the correction program will not appreciate.

37

Language Extensions
If for instance you intend to support loop-expression, the construct must be
rejected (as a syntax error) if the corresponding option was not specified.

In any case, if you don’t implement an extension that was suggested (such as --hir-

use-ix, then you must not accept the option. If the compiler accepts an option, then the
effect of this option will be checked. For instance, if your compiler accepts --hir-use-ix
but does not implement it, then be sure to get 0 on these tests.

38

5 The Reference Implementation

The so-called “reference compiler” is the compiler the lrde develops to (i) prototype what
students will have to implement, and to (ii) control the output from student compilers.
It might be useful to some to see the name we gave to our options. The following is
informative only, the exact contract for a conforming implementation of a Tiger compiler
is defined above, Chapter 4 [Implementation], page 30.

$ tc --help

Tiger Compiler, Copyright (C) 2004-2018 LRDE.:

0. Tasks:

--task-list list registered tasks

--task-graph show task graph

--task-selection list tasks to be run

--time-report report execution times

1. Parsing:

--scan-trace trace the scanning

--parse-trace trace the parse

--prelude STRING name of the prelude. Defaults to

"builtin" denoting the builtin prelude

-X [--no-prelude] don’t include prelude

--parse parse a file

--library-display display library search path

-P [--library-append] DIR append directory DIR to the search path

-p [--library-prepend] DIR prepend directory DIR to the search path

2. Abstract Syntax Tree:

-A [--ast-display] display the AST

--ast-dump dump the AST

--tikz-style enable TikZ-style output in AST dumping

2.5 Cloning:

--clone clone the Ast

3. Bind:

--bound default the computation of bindings to

Tiger (without objects nor overloading)

-b [--bindings-compute] bind the identifiers

-B [--bindings-display] enable bindings display in the AST

--rename rename identifiers to unique names

3. Callgraph:

--escapes-sl-compute compute the escaping static links and the

functions requiring a static link

--escapes-sl-display enable static links’ escapes in the AST

--callgraph-compute build the call graph

Chapter 5: The Reference Implementation 39

--callgraph-dump dump the call graph

--parentgraph-compute build the parent graph

--parentgraph-dump dump the parent graph

3. Escapes:

-e [--escapes-compute] compute the escaping variables and the

functions requiring a static link

-E [--escapes-display] enable escape display in the AST

--escapes-check check that escape tags are correct

--escapes-necessary-check check that tagged variables are escaping

--escapes-sufficient-check check that escaping variables are tagged

--escapes-tags-display enable escape tags display in the AST

4. Type checking:

-T [--typed] default the type-checking to Tiger

(without objects nor overloading)

--types-compute check for type violations

4.5 Type checking with overloading:

--overfun-bindings-compute bind the identifiers, allowing function

overloading

-O [--overfun-types-compute] check for type violations, allowing

function overloading

5. Translation to High Level Intermediate Representation:

--hir-compute translate to HIR

-H [--hir-display] display the HIR

--hir-naive don’t use "Ix" during the translation

5.5. Translation to LLVM Intermediate Representation:

--llvm-compute translate to LLVM IR

--llvm-runtime-display enable runtime displayingalong with the

LLVM IR

--llvm-display display the LLVM IR

6. Translation to Low Level Intermediate Representation:

--canon-compute canonicalize

--canon-trace trace the canonicalization of the LIR

-C [--canon-display] display the canonicalized IR

--traces-compute make traces

--traces-trace trace the traces computation

--lir-compute translate to LIR (alias for

--trace-compute)

-L [--lir-display] display the low level intermediate

representation

7. Target selection:

Chapter 5: The Reference Implementation 40

-i [--inst-compute] select the instructions

-R [--runtime-display] display the runtime

--inst-debug enable instructions verbose display

--rule-trace enable rule reducing display

--garbage-collection enable garbage collection

-I [--inst-display] display the instructions

-Y [--nolimips-display] display Nolimips compatible instructions

(i.e., allocate the frames and then

display the instructions

--targeted default the target to MIPS

--target-mips select MIPS as target

--target-ia32 select IA-32 as target

--target-arm select ARM as target

--target-display display the current target

--callee-save NUM max number of callee save registers

--caller-save NUM max number of caller save registers

--argument NUM max number of argument registers

8. Liveness:

-F [--flowgraph-dump] dump the flowgraphs

-V [--liveness-dump] dump the liveness graphs

-N [--interference-dump] dump the interference graphs

9. Register Allocation:

--asm-coalesce-disable disable coalescence

--asm-trace trace register allocation

-s [--asm-compute] allocate the registers

-S [--asm-display] display the final assembler

Desugaring and bounds-checking:

--desugar-for desugar ‘for’ loops

--desugar-string-cmp desugar string comparisons

--desugared Default the removal of syntactic sugar

from the AST to Tiger (without

overloading)

--desugar desugar the AST

--overfun-desugar desugar the AST, allowing function

overloading

--raw-desugar desugar the AST without recomputing

bindings nor types

--bounds-checks-add add dynamic bounds checks

--overfun-bounds-checks-add add dynamic bounds checks with support

for overloading

--raw-bounds-checks-add add bounds-checking to the AST without

recomputing bindings nor types

Inlining:

Chapter 5: The Reference Implementation 41

--inline inline functions

--overfun-inline inline functions with support for

overloading

--prune prune unused functions

--overfun-prune prune unused functions with support for

overloading

Object:

-o [--object] enable object extensions

--object-parse parse a file, allowing objects

--object-bindings-compute bind the identifiers, allowing objects

--object-types-compute check for type violations, allowing

objects

--object-rename rename identifiers to unique names,

allowing objects

--object-desugar remove object constructs from the program

--raw-object-desugar remove object constructs from the program

without recomputing bindings nor types

--overfun-object-bindings-compute bind the identifiers, allowing function

overloading with object

--overfun-object-types-compute check for type violations, allowing

function overloading with object

--overfun-object-rename rename identifiers to unique names,

allowing function overloading with

objects

--overfun-object-desugar remove object constructs from the

programallowing function overload-

ing with

objects

Temporaries:

--tempmap-display display the temporary table

-? [--help] Give this help list

--usage Give a short usage message

--version Print program version

Chapter 5: The Reference Implementation 42

Example 5.1: tc --help

Chapter 5: The Reference Implementation 43

[File]Tasks dependency diagram

	The Tiger Project

