
LATEX TikZposter

The Hanoi Omega-Automata Format

Tomáš Babiak1, Frantǐsek Blahoudek1, Alexandre Duret-Lutz2, Joachim Klein3,
Jan Křet́ınský5, David Müller3, David Parker4, and Jan Strejček1

1Faculty of Informatics, Masaryk University, Brno, Czech Republic
2LRDE, EPITA, Le Kremlin-Bicêtre, France
3Technische Universität Dresden, Germany

4University of Birmingham, UK
5IST Austria

The Hanoi Omega-Automata Format

Tomáš Babiak1, Frantǐsek Blahoudek1, Alexandre Duret-Lutz2, Joachim Klein3,
Jan Křet́ınský5, David Müller3, David Parker4, and Jan Strejček1

1Faculty of Informatics, Masaryk University, Brno, Czech Republic
2LRDE, EPITA, Le Kremlin-Bicêtre, France
3Technische Universität Dresden, Germany

4University of Birmingham, UK
5IST Austria

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt
oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *
A
E
C

A Rabin automaton for

GF a → GF b

HOA: v1

States: 4

Start: 0

AP: 2 "a" "b"

acc-name: Rabin 2

Acceptance: 4 (Fin(0)&Inf(1))|(Fin(2)&Inf(3))

--BODY--

State: 0 {0}

[!0&!1] 1

[0&!1] 0

[!0&1] 3

[0&1] 2

State: 1 {1}

[!0&!1] 1

[0&!1] 0

[!0&1] 3

[0&1] 2

State: 2 {0 3}

[!0&!1] 1

[0&!1] 0

[!0&1] 3

[0&1] 2

State: 3 {1 3}

[!0&!1] 1

[0&!1] 0

[!0&1] 3

[0&1] 2

--END--

A transition-based Streett

automaton for GF a → GF b

HOA: v1

tool: "toolname" "1.2.3"

name: "GF a -> GF b"

States: 1

Start: 0

acc-name: Streett 1

Acceptance: 2 Fin(0) | Inf(1)

AP: 2 "a" "b"

properties: trans-labels explicit-labels

trans-acc stutter-invariant complete

--BODY--

State: 0

[0] 0 {0}

[1] 0 {1}

[t] 0

--END--

Open development

The format is developed on GitHub at
https://github.com/adl/hoaf

Feel free to make suggestions or report
bugs on the issue tracker.

An alternating co-Büchi

automaton for GF a → GF b

HOA: v1

States: 5

Start: 0

Start: 2

AP: 2 "a" "b"

acc-name: co-Buchi

Acceptance: 1 Fin(0)

--BODY--

State: 0 "FG(!a)"

[t] 0

[!0] 1

State: 1 "G(!a)"

[!0] 1

State: 2 "GF(b)"

[1] 2

[!1] 2&3

State: 3 "F(b)" {0}

[1] 4

State: 4 "true"

[t] 4

--END--

Generic acceptance

Acceptance: n acc specifies the acceptance condition using the following grammar:

acc ::= f | t | Inf(s) | Inf(!s) | Fin(s) | Fin(!s) | acc&acc | acc|acc | (acc)

Where s is an accepting set number smaller than n, !s denotes the complement of that set.
Fin (resp. Inf) is satisfied when the set is visited finitely (resp. infinitely) often by a run.
For alternating automata all branches of a run-tree have to satisfy the condition.

f

Known acceptance conditions can be named with the optional acc-name: header.

Of course acceptance conditions can be created as needed, they do not require a name.

Tool support

ltl2dstar 0.5.3 : creates deterministic automata from LTL or Büchi automata
inputs BA, outputs DRA or DSA.

ltl3ba 1.1.2 : creates automata from LTL
outputs BA, TGBA, or VWAA.

ltl3dra 0.2.2 : creates deterministic automata from (a subset of) LTL
outputs DRA, TGDRA or MMAA.

Rabinizer 3 : creates deterministic automata from LTL
outputs DRA, TDRA, GDRA, or TGDRA.

PRISM 4.3 : probabilistic LTL model checking using
deterministic HOA automata; (generalized) Rabin
for MDP, any acceptance for CTMC/DTMC;
scripts for interfacing with the tools above.

Spot 1.99.1 : tool suite for LTL/PSL and automata manipulation
can input/output anything that is not alternating; translates between formats (like never
claim or LBTT); has several automata transformations; the tool ltlcross can be used
to validate translators from LTL/PSL to automata with any acceptance condition.

jhoafparser/cpphoafparser : Java and C++ parser libraries with pretty printers,
validation, and convenient transformations, to easily develop new consumer tools;
jhoafparser is used by PRISM, cpphoafparser is used by ltl2dstar.

Up-to-date tool support can be found at
http://adl.github.io/hoaf/support.html

Batch processing

The --END-- marker allows multiple automata to be chained and be batch-processed by a pipe of several commands.

ltl3dra -f ’GFa -> GFb’ > aut.hoa

randaut -n -1 -A’Rabin 2’ -d.1 a b -H | autfilt -n 10 --intersect=aut.hoa --is-unambiguous -H >result.hoa

Trivia

Work on this format
started during the
ATVA’13 conference
in Hanoi (Vietnam).
Hence the name.

Present
ed at CAV’15

Atomic propositions are denoted

by their indices (0 and 1) in the body.

0
0

1
1

2
0 3

3
1 3

ab̄

āb̄

ab
āb

āb̄

āb̄

āb

ab

ab

āb̄

āb

āb̄
āb

āb̄
āb̄

ab

Since this automaton is

deterministic and complete,

the transition labels can be

omitted to shorten the file.

A header that starts with a

lowercase letter (such as tool, name,

acc-name, properties...) can be safely

ignored without impact on the semantics.

0

a
0

b1

>

Optional properties can give information

about the syntax used in the body

(e.g., explicit-labels vs. implicit-labels),

the structure of the automaton (e.g., determin-

istic, complete), and the language recognized

(e.g., stutter-invariant).

0 FG(!a)

1 G(!a)

2 GF(b)

3 F(b) 0

4 true

>

ā

ā

b

b̄

b

>

>

Nondeterministic initial states.
Universal branching is also possibleinitially. For instance Start: 2&3.

States may be named

(for display and debugging).

acc-name: Buchi

Acceptance: 1 Inf(0)

acc-name: co-Buchi
Acceptance: 1 Fin(0)

acc-name: all

Acceptance: 0 t

acc-name: generalized-Buchi 3

Acceptance: 3 Inf(0)&Inf(1)&Inf(2)

acc-name: Streett 2
Acceptance: 4 (Fin(0)|Inf(1))&(Fin(2)|Inf(3))

acc-name: generalized-Rabin 2 3 2

Acceptance: 7 (Fin(0)&Inf(1)&Inf(2)&Inf(3))|(Fin(4)&Inf(5)&Inf(6))

acc-name: parity min even 5

Acceptance: 5 Inf(0) | (Fin(1) & (Inf(2) | (Fin(3) & Inf(4))))

Chatterjee et al. (CAV’13)

observed order-of-magnitude

speedups replacing Rabin acceptance

by generalized Rabin for probabilistic

model checking with PRISM.

If you implement HOA support,
tell us so we can list your tool there.

Generate an
infinite number of
random “Rabin 2”
automata as HOA.

Keep the first 10 that intersect aut.hoa and are

unambiguous; output them in the HOA format.

