THE HANOI OMEGA-AUTOMATA FORMAT

Tomés Babiak!, Frantisek Blahoudek!, Alexandre Duret-Lutz*, Joachim Klein®.
Jan Kfetinsky”, David Miiller’, David Parker?, and Jan Strejcek!

1Fa,culty of Informatics, Masaryk University, Brno, Czech Republic
’ILRDE, EPITA, Le Kremlin-Bicétre, France

)

CAV1D STechnische Universitit Dresden, Germany

YWniversity of Birmingham, UK
IST Austria

i
A transition-based Streett
automaton for GFa — GF b

An alternating co-Biichi
automaton for GFa — GF b

A Rabin automaton for

GFa— GFb

A header that starts with a

HOA: i lowercase letter (such as tool, name, N -

States: 4 Atomic propositions are denoted acc-name, properties...) can be S@fely O.ndetel”mlmstlc nitial states.
Start: O by their indices (0 and 1) in the body: ignored without impact on the semantics. U niversal branching is also possible
AP: 2 "a" "p" HOA: vl mitially. For instance Start: 2&3.
acc—name: Rabin 2 HOA: vl States: b

Acceptance: 4 (Fin([0)&Inf (M) | (Fin(B)&Inf (E1)) tool: "toolname" "1.2.3" (3 Start: O

—--BODY-- name: "GF a -> GF b" y Start: 2

State: 0 {01} States: 1 > 1Y AP: 2 "a" "p" g
(10&1'1] 1 Start: O acc-name: co-Buchi 'a)DD T
0&'1] 0O acc-name: Streett 1 Acceptance: 1 Fin([®]) la

10&1] 3 Acceptance: 2 Fin([@]) | Inf(H) --BODY-- _
0&1] 2 AP: 2 "a" "b" State: 0 "FG(la)" Q G(!a)DDa
State: 1 {f} properties: trans-labels explicit-labels [t] O

(10&11] 1 trans—acc stutter—-invariant complete [10] 1 . QGF(b)DDb
0&!1]1 0 --BODY-- State: 1 "G('a)"

10%1] 3 State: O Optional properties can gi\];e igfodrmation (o] 1 %[3

081] 2 0] 0 L0} b bela vt dnplicit-labels). State: 2 "GF(b)" (irwr 0 D
State: 2 {[El} 11 0 {Hl} ’Eieg .étruf:)ture of the automaton (e.g., determin- [1] 2

(10&'1] 1 t] O istic, complete), and the language recognized [11] 2&3 lb

0%!1] 0 ——END-- (e.g., stutter-invariant). State: 3 "F(b)" {[} (4 true)D -
[10&1] 3 [1] 4

0&1] 2 State: 4 "true"

: - t] 4
S_tate° 3 {HE} Since this automaton 1s Open devel()pment [t]
[10&!1] 1 deterministic and complete, ——END--
0&'1]1 0 the transition labels can be States may be named |
10&1] 3 omitted to shorten the file. The format is developed on GitHub at E..'- E (for display and debugging).
:0&1] 2 https://github.com/adl/hoaf
—_—END—— Feel free to make suggestions or report

bugs on the issue tracker. E

Generic acceptance Tool support

1tl2dstar 0.5.3: creates deterministic automata from LTL or Biichi automata
inputs BA, outputs DRA or DSA.

Where s is an accepting set number smaller than 7, !s denotes the complement of that set. 1t13ba 1.1.2: creates automata from L1L
Fin (resp. Inf) is satisfied when the set is visited finitely (resp. infinitely) often by a run. outputs BA, TGBA, or VWAA.
For alternating automata all branches of a run-tree have to satisfy the condition. 1t13dra 0.2.2: creates deterministic automata from (a subset of) LTL

outputs DRA, TGDRA or MMAA.

Rabinizer 3: creates deterministic automata from LTL

outputs DRA, TDRA, GDRA, or TGDRA.

Acceptance: n acc specifies the acceptance condition using the following grammar:

acc == f |t | Inf(s)| Inf(!s)|Fin(s) | Fin(!s) | acc&acc | acclacc | (acc)

>

Known acceptance conditions can be named with the optional acc-name: header.
Chatterjee et al. (CAV'13)

acc-name: Buchl acc-name: co-Buchi acc-name: all PRISM 4.3: probabilistic LTL model checking using observed order-of-magnitude
Acceptance: 1 Inf(0) Acceptance: 1 Fin(0) Acceptance: 0 T deterministic HOA automata; (generalized) Rabin speedups replacing Rabin acceptance
for MDP, any acceptance for CTMC/DTMC; by generalized Rabin for probabilistic
. model checking with PRISM.
acc-name: Streett 92 scripts for interfacing with the tools above.

acc-name: generalized—Buchi 3 A . .
Acceptance: 3 Inf (0)&Inf (1)&Inf(2) ceptance: 4 (Fin(0) |Inf(1))&(Fin(2) | Inf (3)) Spot 1.99.1: tool suite for LTL/PSL and automata manipulation

can input/output anything that is not alternating; translates between formats (like never
acc-name: generalized-Rabin 2 3 2 claim or LBTT); has several automata transformations; the tool 1tlcross can be used
Acceptan;:e: 7 (Fin(0)&Inf (1)&Inf (2)&Inf (3)) | (Fin(4)&Inf (5)&Inf (6)) to validate translators from LTL/PSL to automata with any acceptance condition.

jhoafparser/cpphoafparser: Java and C++ parser libraries with pretty printers,
. . 5 validation, and convenient transformations, to easily develop new consumer tools;
acc-name: parity min eves in(3) & Inf(4)))) . . .
Acceptance: 5 Inf(0) | (Fin(1) & (Inf(2) | (Fin(jhoafparser is used by PRISM, cpphoafparser is used by 1tl2dstar.

Up-to-date tool support can be found at |
http://adl.github.io/hoaf/support.html If you implement HOA support,

tell us so we can list your tool there.
N L\

Of course acceptance conditions can be created as needed, they do not require a name.

(7 I

Batch processing

e\ B

Trivia

Work on this format
started during the
ATVA’13 conference
in Hanoi (Vietnam).
Hence the name.

The ——-END-- marker allows multiple automata to be chained and be batch-processed by a pipe of several commands.

Generate an 1t13dra -f GFa -> GFb’ > aut.hoa

nfinite number of randaut -n -1 -A’Rabin 2’ -d.1 a b -H | autfilt -n 10 --intersect=aut.hoa --is—unambiguous -H >result.hoa
random “Rabin 927

automata as HOA.
Keep the first 10 that intersect aut .hoa and are

unambiguous; output them in the HOA format. ﬂ

