
A Type System for Weighted Automata
and Rational Expressions?

Akim Demaille1, Alexandre Duret-Lutz1, Sylvain Lombardy2,
Luca Saiu3,1 and Jacques Sakarovitch3

1 LRDE, EPITA, {akim,adl}@lrde.epita.fr
2 LaBRI, Institut Polytechnique de Bordeaux, Sylvain.Lombardy@labri.fr

3 LTCI, CNRS / Télécom-ParisTech, {saiu,sakarovitch}@telecom-paristech.fr

Abstract. We present a type system for automata and rational expres-
sions, expressive enough to encompass weighted automata and transduc-
ers in a single coherent formalism. The system allows to express useful
properties about the applicability of operations including binary hetero-
geneous functions over automata.
We apply the type system to the design of the Vaucanson 2 platform,
a library dedicated to the computation with finite weighted automata,
in which genericity and high efficiency are obtained at the lowest level
through the use of template metaprogramming, by letting the C++ tem-
plate system play the role of a static type system for automata. Between
such a low-level layer and the interactive high-level interface, the type
system plays the crucial role of a mediator and allows for a cleanly-
structured use of dynamic compilation.

1 Introduction

Vaucanson4 is a free software5 platform dedicated to the computation of and
with finite automata. It is designed with several use cases in mind. First and
foremost it must support experiments by automata theory researchers. As a
consequence, genericity and flexibility have been goals since day one: automata
and transducers must support any kind of semiring of weights, and labels must
not be restricted to just letters. In order to demonstrate the computational
qualities of algorithms, performance must also be a main concern. To enforce
this we aim, eventually, at applying Vaucanson to linguistics, whose problems
are known for their size; on this standpoint we share goals with systems such
as OpenFST [2]. Finally our platform should be easy to use by teachers and
students in language theory courses (a common goal with FAdo [3]), which also
justifies our focus on rational expressions.

? This is not the officially submitted “final” version of the paper, despite the content
being the same but for an important correction in Fig. 4, added after publication
and hence absent in the “final” version. The final publication is available at http:

//link.springer.com/chapter/10.1007%2F978-3-319-08846-4_12.
4 Work supported by ANR Project 10-INTB-0203 VAUCANSON 2.
5 http://vaucanson.lrde.epita.fr

http://link.springer.com/chapter/10.1007%2F978-3-319-08846-4_12
http://link.springer.com/chapter/10.1007%2F978-3-319-08846-4_12
http://vaucanson.lrde.epita.fr

Among our goals flexibility and efficiency are potentially in conflict. The
main objective of this work is demonstrating how to reconcile them, and how to
use a type system to manage such complexity.

Aiming at both efficiency and flexibility essentially dictates the architecture:
the software needs to be rigidly divided into layers, varying in comfort and speed.

The bottom layer (named static) is a C++ library. For the sake of efficiency
the classical object-oriented run-time method dispatch (associated to the C++

virtual keyword) is systematically avoided, instead achieving compile-time code
generation by using template metaprogramming [1]. This results in a closed
world : new types of automata require the compilation of dedicated code.

At the opposite end of the spectrum, the topmost layer is based on IPython [6].
It is visual (automata are displayed on-screen) and, most importantly, interac-
tive: the user no longer needs to write a C++ or even a Python program, and
instead just interacts with the system using Python as a command language. In
such a high-level environment the closed-world restriction would be unaccept-
able, resulting as it would in error messages such as “this type of automaton is
not supported; please recompile and rerun”. To address this issue Vaucanson
uses on-the-fly generation and compilation of code, relying on our type system
in a fundamental way.

This paper builds on top of ideas introduced last year [4]6. However, in
that work contexts were partitioned and entities of different types could not
be mixed together. In particular algorithms such as the union of automata were
“homogenous”: operands had all the same type, which was that of the result.
The contribution of this paper is to introduce support for heteregeneous types:
the definition of a type calculus, its implementation and, to gain full benefit from
it, dynamic code generation.

This paper is structured as follows. In Sec. 2 we describe the types of weighted
automata, rational expressions and their components. Then, in Sec. 3, we study
how types relate to one another and how to type operations over automata. We
introduce the implementation counterpart of types in Sec. 4, which also explains
how run-time compilation reconciles performances and flexibility. Sec. 5 discusses
the pros and cons of the current implementation.

2 Typing Automata and Rational Expressions

Computing with weighted automata or rational expressions entails reasoning
about types. We should have a system strong enough to detect some unmet pre-
conditions (for instance applying subset construction on an automaton weighted
in Z), and at the same time expressive enough to encompass many different kinds
of automata, including transducers.

6 Names and notations have slightly changed. We now name “Value/ValueSet” the core
design principle in Vaucanson, rather than “Element/ElementSet”. For consistency
with POSIX regular expression syntax, curly braces now denote power: ‘a{2}’ means
aa instead of a·2, which is now written ‘a<2>’. Similarly, ‘a(*min,max)’ is now written
‘a{min,max}’.

2

2.1 Weighted Automata

Usually a weighted automaton A is defined as a sextuple (A,K, Q, I, F,E), A
being an alphabet (a finite set of symbols), K a semiring, Q a finite set of states,
I/F initial/final (partial) functions Q→ K, and E a (partial) function in Q×A×
Q→ K. With such a definition, the generalization to transducers involves turning
the sextuple into a septuple by adding a second output alphabet, changing the
transition function domain to also take output labels into account, among the
rest. Independently from transducers, definitions also need variants for many
alternative cases, such as admitting the empty word as an input or output label.
In Vaucanson this variability is captured by contexts, each composed of one
LabelSet and one WeightSet.

Different LabelSets model multiple variations on labels, members of a monoid:

letterset Fully defined by an alphabet A, its labels being just letters. It is
simply denoted by A. It corresponds to the usual definition of an NFA.

nullableset Denoted by A?, also defined by an alphabet A, its labels being
either letters or the empty word. This corresponds to what is often called
ε-NFAs.

wordset Denoted by A∗, also defined by an alphabet A, its labels being (pos-
sibly empty) words on this alphabet.

oneset Denoted by {1}, containing a single label: 1, the empty word.
tupleset Cartesian product of LabelSets, L1 × · · · × Ln. This type implements

the concept of transducers with an arbitrary number of “tapes”.

In the implementation LabelSets define the underlying monoid operations, and
a few operators such as comparison.

A WeightSet is a semiring whose operations determine how to combine
weights when evaluating words. Examples of WeightSets include 〈B,∨,∧〉, the
family 〈N,+,×〉, 〈Z,+,×〉, 〈Q,+,×〉, 〈R,+,×〉 and tropical semirings such as
〈Z∪{∞},min,+〉; moreover tuplesets also allow to combine WeightSets, making
weight tuples into weights.
In the implementation a WeightSet defines the semiring operations and compar-
ison operators, plus some feature tests such as “star-ability” [5].

We may finally introduce contexts, and the definition of automata used in
Vaucanson — a triple corresponding to its type (context), its set of states and
its set of transitions.

Definition 1 (Context). A context C is a pair (L,W), denoted by L → W ,
where:
– L is a LabelSet, a subset of a monoid,
– W is a WeightSet, a semiring.

Definition 2 ((Typed, Weighted) Automaton). An automaton A is a triple
(C,Q,E) where:
– C = L→W is a context;
– Q is a finite set of states;

3

A1

Pre p q Post
$

〈 1
2
〉a
〈 1
3
〉b

〈 1
3
〉b

〈 1
2
〉a

$

A2

r s

〈y + z〉b
〈x∗〉a

〈x∗〉a

〈y + z〉b

Fig. 1: Two (typed) automata: A1, whose context is C1 = {a, b, c} → Q, and
A2, whose context is C2 = {a, b, d} → RatE[{x, y, z} → B], i.e., with rational
expressions as weights. In A1 we reveal the Pre and Post hidden states.

– E is a (partial) function whose domain represents the set of transitions, in:
(Q× L×Q) ∪ ({Pre} × {$} ×Q) ∪ (Q× {$} × {Post})→ (W \ {0}).

Notice that the initial and final functions are embedded in the definition
of E through two special states —the pre-initial and post-final states Pre and
Post— and a special label not part on L and only occurring on pre-transitions
(transitions from Pre) and post-transitions (transitions from Post). This some-
what contrived definition actually results in much simpler data structures and
algorithms: with a unique Pre and a unique Post there is no need to deal with
initial and final weights in any special way. On Fig. 1, automaton A1 is drawn
with explicit Pre and Post states, while A2 is drawn without them.

2.2 Rational Expressions

Definition 3 ((Typed, Weighted) Rational Expression). A rational ex-
pression E is a pair (C,E) where:

– C = L→W , is a context,
– E is a term built from the following abstract grammar

E := 0 | 1 | ` | E + E | E · E | E∗ | 〈w〉E | E〈w〉

where ` ∈ L is any label, and w ∈W is any weight.

The set of rational expressions of type L→ W is denoted by RatE[L→ W],
and called a ratexpset. With a bit of caution rational expressions can be used as
weights, as exemplified by automaton A2 in Fig. 1: equipped with the sum of
rational expressions as sum, their concatenation as product, 0 as zero, and 1 as
unit, it is very close to being a semiring7.

Rational expressions may also serve as labels, yielding what is sometimes
named Extended Finite Automata [3], a convenient internal representation to
perform, for example, state elimination, a technique useful to extract a rational
expression from an automaton. So, just like tuplesets, ratexpsets can be used as
either a WeightSet or a LabelSet.

7 Ratexpset do not constitute a semiring for lack of, for instance, equality between
two rational expressions; however rational expressions provide an acceptable approx-
imation of rational series [7, Chap. III], the genuine corresponding semiring.

4

〈context〉 ::= 〈labelset〉 "→" 〈weightset〉
〈labelset〉 ::= "{1}" | 〈alphabet〉 | 〈alphabet〉 "?" | 〈alphabet〉 "*"

| 〈ratexpset〉 | 〈labelset〉 × · · · × 〈labelset〉
〈weightset〉 ::= "B" | "N" | "Z" | "Q" | "R" | "Zmin"

| 〈ratexpset〉 | 〈weightset〉 × · · · × 〈weightset〉
〈ratexpset〉 ::= "RatE" 〈context〉

Fig. 2: A Grammar of Types

Fig. 2 shows the precise relation among the different entities introduced up
to this point: LabelSets, WeightSets, contexts, ratexpsets.

3 The Type System

3.1 Operations on Automata

Several binary operations on automata exist: union, concatenation, product,
shuffle and infiltration products, to name a few. To demonstrate our purpose we
consider the simplest one, i.e., the union of two automata, whose behavior is the
sum of the behavior of each operand.

Definition 4 ((Homogeneous) Union of Automata). Let A1 = (C,Q1, E1)
and A2 = (C,Q2, E2) be two automata of the same type C. A1 ∪ A2 is the
automaton (C,Q1 ∪Q2, E1 ∪ E2).

Def. 4 is simple, but has the defect of requiring the two argument automata
to have exactly the same type. Overcoming this restriction and making opera-
tions such as automata union more widely applicable is a particularly stringent
requirement in an interactive system (Sec. 4.3).

Automata union can serve as a good example to convey the intuition of
heterogeneous operation typing: if its two operands have LabelSets with differ-
ent alphabets, the result LabelSet should have their union as alphabet; if one
operand is an NFA and the other a ε-NFA, their union should also be a ε-NFA.
It is also reasonable to define the union between an automaton with spontaneous
transitions only (oneset) and an NFA (letterset) as a ε-NFA (nullableset) — a
type different from both operands’, and intuitively “more general” than either.

Much in the same way, some WeightSets are straightforward to embed into
others: Z into Q, and even Q into RatE[L → Q]. Then, let two automata have
weights in Q and RatE[L → Z]; their union should have weights in the least
WeightSet that contains both Q and RatE[L→ Z], which is to say RatE[L→ Q].
Once more the resulting type is new: it does not match the type of either operand.

3.2 The hierarchy of types

The observations above can be captured by introducing a subtype relation as
a partial order on LabelSets, WeightSets and contexts, henceforth collectively

5

denoted as ValueSets. We write V1 <: V2 to mean that V1 is a subtype of V2; in
this case each element of V1 may be used wherever an element of V2 would be
expected, and we have in particular that V1 ⊆ V2. Notice that this makes our
relation reflexive, so for every ValueSet V we have that V <: V .

For simplicity we will focus on free monoids only. Let A,B be any alphabets
such that A ⊆ B. Then we define:

{1} <: A? A <: A? A? <: A∗

A <: B A? <: B? A∗ <: B∗

For WeightSets, if the WeightSet W1 is a sub-semiring of W2, it trivially
holds that W1 <: W2; therefore N <: Z <: Q <: R. The WeightSet B, as the
WeightSet of language recognizers, is worthy of special treatment; in particular
it is convenient to allow heterogeneous operations between automata over B and
automata over other WeightSets, which yields:

B <: N <: Z <: Q <: R B <: Zmin (1)

This allows for instance to restrict the domain of a series realized by a weighted
automaton to the rational language described by a Boolean automaton. For this
reason it is desirable to have B at the bottom of the WeightSet hierarchy, so
that it can be promoted to any other WeightSet simply by mapping false to
the WeightSet zero, and true to its unit. However such conversion requires care
and should not be used blindly; in particular converting an ambiguous Boolean
automaton to another WeightSet leads in general to an automaton which does
not realize the characteristic series of the language recognized by the original.

A context C1 is a subtype of a context C2 if C1 has a LabelSet and a Weight-
Set which are respectively subtypes of the LabelSet and WeightSet of C2.

(L1 →W1) <: (L2 →W2) iff L1 <: L2 and W1 <: W2 (2)

As of today tuples of ValueSets do not mix with other values:

(V1 × · · · × Vn) <: (V ′1 × · · · × V ′n) iff (Vi <: V ′i) for all 1 ≤ i ≤ n (3)

Interestingly, rational expressions can play the role of both labels and weights:

RatE[C1] <: RatE[C2] iff C1 <: C2

L1 <: RatE[L2 →W2] iff L1 <: L2

W1 <: RatE[L2 →W2] iff W1 <: W2

(4)

The subtype relations between LabelSets are summarized in Fig. 3. If two
LabelSets L1 and L2 admit a least upper bound (resp. a greatest lower bound),
we call it the join (resp. the meet) of these two LabelSets and we denote it
by L1 ∨ L2 (resp. the L1 ∧ L2). The cases where no join or meet exists cor-
respond in practice to compilation errors about undefined cases. The join and
meet operations extend naturally to other ValueSets such as WeightSets, tuples,

6

A B

A ∩B

A ∪B

A? B?

(A ∩B)?

(A ∪B)?

A∗ B∗

(A ∩B)∗

(A ∪B)∗

{1}

Fig. 3: The Hasse diagram of the LabelSets generated by the two alphabets A
and B showing, for instance, that A? ∨ B = (A ∪B)?.

contexts and rational expressions, as per Equations (1) to (4)). For instance, for
any LabelSet L1, L2 and any WeightSet W1,W2:

RatE[L1 →W1] ∨ L2 := RatE[(L1 ∨ L2)→W1]

RatE[L1 →W1] ∨W2 := RatE[L1 → (W1 ∨W2)]

RatE[L1 →W1] ∨ RatE[L2 →W2] := RatE[(L1 →W1) ∨ (L2 →W2)]

At this point we are ready to describe typing for binary operations on hetero-
geneous automata more formally. An operation on two automata with contexts
L1 →W1 and L2 →W2 will yield a result with context (L1 ∨ L2)→ (W1 ∨W2).
As an example we can extend Def. 4 into:

Definition 5 (Heterogeneous Union of Automata). Let A1 = (C1, Q1, E1)
and A2 = (C2, Q2, E2) be two automata. A1∪A2 := (C1 ∨ C2, Q1∪Q2, E1∪E2).

3.3 Type restriction

The specific semantics of some binary operations let us characterize the result
type more precisely. For instance spontaneous-transition-removal applied to an
automaton with LabelSet A? returns a proper automaton, i.e., an automaton
with LabelSet A. Another interesting example is the product of automata labeled
by letters8, whose behavior is the Hadamard product of series of the behavior of
each operand, if the WeightSet is commutative.

Definition 6 (Product of Automata). Let A1 = ((L1 → W1), Q1, E1) and
A2 = ((L2 → W2), Q2, E2) be two automata, where L1 and L2 are lettersets.
A1 &A2 is the accessible part of the automaton (C&, Q&, E&) where C& = (L1 ∧
L2)→ (W1 ∨W2), Q& = Q1 ×Q2, and

((q1, q2), `, (q′1, q
′
2)) ∈ Dom(E&) iff

{
(q1, `, q

′
1) ∈ Dom(E1),

(q2, `, q
′
2) ∈ Dom(E2);

E&((q1, q2), `, (q′1, q
′
2)) = E1(q1, `, q

′
1) · E2(q2, `, q

′
2).

8 The product operation can actually be extended to nullablesets, using a more com-
plex algorithm related to weighted transducer composition.

7

p, r

q, r

p, s

q, s

〈F〉b

〈E〉a

〈F〉b
〈E〉a

〈E〉a

〈F〉b

〈E〉a

〈F〉b

Fig. 4: A3 = A1 &A2 (see Fig. 1), with
E = 〈 12 〉x

∗ and F = 〈 13 〉(y + z). Its type is
C3 = {a, b} → RatE[{x, y, z} → Q].

Like for other binary operations it would be correct to describe the type of
the result of a product as the join of its operand types; however in this case
the specific operation semantics permits us to be more precise: a product result
transition is created if and only if labels match in the two argument automata,
and therefore the result LabelSet happens to lie in the meet of the argument
LabelSets. By contrast, each weight is computed as the product of argument
weights, in general belonging to two different WeightSets: the WeightSet of the
product hence lies in the join of the argument WeightSets.

Fig. 4 shows the heterogeneous product of A1 and A2 from Fig. 1.

4 Implementation Facet

4.1 The Value/ValueSet Design Principle

The implementation of Vaucanson closely follows its algebraic design illus-
trated in Sec. 2 in terms of labels, weights, automata and rational expressions.
Other entities not shown here also exist, such as polynomials.

In a typical object-oriented implementation each of these concepts would be
implemented as a class, possibly templated. For instance a Boolean weight would
be an instance of some class boolean weight having a bool attribute. However
some of these concepts require run-time meta-data; for instance a letterset needs
a set of letters, so a letter label would aggregate not only a char for the
label, but also the whole alphabet, as a char vector. As a context aggregates
a LabelSet and a WeightSet it requires run-time meta-data as well, and since
rational expressions can also be used as weights, they, too, depend on run-time
meta-data. Therefore weights and LabelSets both need to be associated to meta-
data at run time.

However it would result in an unacceptable penalty to have every instance
carry even a mere pointer to meta-data such as an alphabet (a simple char label,
because of alignment, would then require at least eight bytes, a 8× space penalty
on a 32-bit architecture!). To cut this Gordian knot, as a design principle, we
split traditional values into Value/ValueSet pairs. The value part is but the
implementation of a datum; the ValueSet, on the other hand, stores only one
copy of the meta-data related to the type (such as the alphabet) and performs

8

the operations on values (such as + for Z and min for Zmin) without relying on
dynamic dispatch.

This design is asymmetric: ValueSets implement the operations on their Val-
ues; conversely from a Value there is no means to reach the corresponding Val-
ueSet. Values may in fact ultimately come down to plain data types like int or
char.

Following the Value/ValueSet design principle, Vaucanson implements La-
belSets such as oneset, letterset<generatorset>9, nullableset<generatorset>,
wordset<generatorset>, and WeightSets such as b, z, . . . , ratexpset<context>;
finally, tupleset<ValueSet1, ..., ValueSetn> implements Cartesian prod-
ucts.

4.2 Computations on Types

Two different sets of routines are needed to support heterogeneous operations
such as the product and sum of automata or rational expressions: first a com-
putation on types based on join and meet, then a conversion of values to these
types.

The computation of joins and meets on basic types is straightforward.

r join(const r&, const b&) { return r(); }

r join(const r&, const z&) { return r(); }

r join(const r&, const q&) { return r(); }

The code snippet above states that R ∨ W := R for W ∈ {B,Z,Q}. Compos-
ite types such as rational expressions, tuples or even contexts follow the same
pattern, but are computed recursively.

Some features new to C++11 let us express the product context computation
(as per Def. 6) quite cleanly, as follows:

template <typename LhsLabelSet, typename LhsWeightSet,

typename RhsLabelSet, typename RhsWeightSet>

auto product_ctx(const context<LhsLabelSet, LhsWeightSet>& lhs,

const context<RhsLabelSet, RhsWeightSet>& rhs)

-> context<decltype(meet(lhs.LabelSet(), rhs.LabelSet())),

decltype(join(lhs.WeightSet(), rhs.WeightSet()))>

{

auto ls = meet(lhs.LabelSet(), rhs.LabelSet());

auto ws = join(lhs.WeightSet(), rhs.WeightSet());

return {ls, ws};

}

Two WeightSets are involved in the process of value conversions: the source
one, which is used below as a key to select the proper conv routine, and the

9 generatorset provides type and value information on the monoid generators; in
practice this corresponds to the type of characters and the alphabet, as a vector of
characters of the appropriate type.

9

destination one (r in the following example). Type conversion may require run-
time computation such as the floating-point division below, or even something
more substantial like the construction of a rational expression in other cases.

class r {

using value_t = float;

...

value_t conv(b, b::value_t v) { return v; }

value_t conv(z, z::value_t v) { return v; }

value_t conv(q, q::value_t v) { return value_t(v.num)/value_t(v.den); }

...

};

The process generalizes in a natural way to the case of composite types.
The join, meet and conv functions are used in the implementation of binary

operations such as the product, shown below as an example10; the idea is to first
compute the result type ctx, and then use it to create the result automaton res.

template <typename Ctx1, typename Ctx2>

auto product(const automaton<Ctx1>& lhs, const automaton<Ctx2>& rhs)

-> ...

{

auto ctx = product_ctx(lhs.context(), rhs.context());

auto res = make_automaton(ctx);

auto ws = res.WeightSet(); // a shorthand to the resulting WeightSet.
...

return res;

}

The core of the algorithm consists in an iteration over each reachable left-right
pair of states (lhs src, rhs src); for each pair of transitions with the same label
from lhs src and rhs src, it adds a transition from the source state pair to the
destination state pair, with the same label and the product of weights as weight.

for (auto lhs_trans : lhs.out(lhs_src))

for (auto rhs_trans : rhs.out(rhs_src, lhs_trans.label))

{

auto weight = ws.mul(ws.conv(lhs.WeightSet(), lhs_trans.weight),

ws.conv(rhs.WeightSet(), rhs_trans.weight));

res.add_transition({lhs_src, rhs_src}, {lhs_trans.dst, rhs_trans.dst},

lhs_trans.label, weight);

}

Three WeightSets play a role in the computation of the resulting weight: first
ws.conv(lhs.WeightSet(), lhs trans.weight) promotes the left-hand side
weight from its original WeightSet lhs.WeightSet() to the resulting one ws,
and likewise for the second weight; finally the resulting WeightSet multiplies the
weights (ws.mul(...)). For instance in Fig. 4 there is a transition from state

10 In the following code excerpts some details have been omitted for clarity.

10

(p, r) to state (p, s) with label a, and whose weight is the product of 1
2 and x∗. The

conversion of the first weight corresponds to ‘C3.W.conv(C1.W, 1
2)’, which re-

sults in 〈 12 〉1; likewise for the second weight: ‘C3.W.conv(C2.W, 〈111〉x∗) = 〈 11 〉x
∗’.

The resulting WeightSet, C3 then multiplies them: ‘C3.W.mul(〈 12 〉1, 〈
1
1 〉x
∗))’, i.e.,

〈 12 〉x
∗.

4.3 On-the-Fly Compilation

Code snippets shown so far are all part of the static layer, the statically-typed,
lowest-level Application Program Interface (API) of Vaucanson, which strictly
follows the Value/ValueSet principle. As long as this API is used the compiler
will take care of generating the appropriate versions of the routine for the types
at hand, with no run-time overhead. Programming at this level however offers
little flexibility: the program is written and then compiled, period. Moreover,
types have to be explicitly spelled out in the program.

On top of this static layer, the dyn API takes care of the template parame-
ter book-keeping, memory allocation and deallocation, and even re-unites split
objects: for example a dyn::ratexp aggregates both a (static-level) rational ex-
pression and its (static-level) ratexpset. By design dyn only includes a handful of
types such as dyn::context, dyn::automaton, dyn::weight and dyn::label:
all the wide variety of static-level entities is collapsed into a few categories of
objects carrying their own run-time type information (exposed to the user as
dyn::context objects), so that operations can automatically perform their own
conversions without exposing the user to the type system.

The static/dyn bridge works with registries, one per algorithm. They play
a role similar to virtual tables in C++: to select the precise implementation
of an algorithm that corresponds to the effective type of the operands. These
registries are just dictionaries, mapping each given list of argument types to
the corresponding specific (static) implementation. This mechanism and other
details on the static/dyn bridge have been described in a previous work [4,
Sec. 4.2]; its complete treatment is beyond the scope of this paper.

Several commonly-used basic contexts are precompiled — in other words
registries are initially loaded for some specific types. However, not only the
number of contexts is too large to permit a “complete” precompilation (24:
4 basic LabelSets times 6 WeightSets), but tupleset and ratexpset also let the
user define an unbounded number of composite ones. Moreover, as demonstrated
in Fig. 4, some operation results belong to contexts that were not even in the
operands. For these reasons only some select contexts can be precompiled, which
will certainly frustrate some users.

On top of dyn Vaucanson offers IPython support (see Fig. 5). IPython is an
enhanced interactive Python environment [6]. Thanks to specific hooks, entities
such as rational expressions feature nice LATEX-based rendering, and automata
are rendered as pictures. This binding of dyn features the familiar Python object-
oriented flavor as in “automaton.minimize()”, and operator overloading as in
“automaton & automaton ”. In such an interactive environment (similar to what

11

Code Cell Toolbar: None

 (/tree/) CIAA 2014 Last Checkpoint: May 15 09:16 (autosaved)

File Edit View Insert Cell Kernel Help

! + # $ % & ' () *

In [3]:

In [4]:

In [5]:

In [6]:

0 1<1/3>b
<1/3>b

Out[3]: {a, b} → "#$%[{x, y, z} → ℚ]

Out[4]: {a, b} → "#$%[{x, y, z} → ']

Out[5]: ⟨y + z⟩ a(⟨ ⟩ b)x∗ ∗ (⟨ ⟩ b + ⟨y + z⟩ a ⟨y + z⟩ a)x∗ (⟨ ⟩ b)x∗ ∗ ∗

Out[6]:

0

2

<<1/2>ε>a

1<<1/3>ε>b
<<1/3>ε>b

<<1/2>ε>a

<x*>b

3<y+z>a
<y+z>a

<x*>b

vcsn.context('lal_char(ab)_ratexpset<lal_char(xyz)_q>')

ctx = vcsn.context("lal_char(ab)_ratexpset<lal_char(xyz)_b>"); ctx

r2 = ctx.ratexp('(<x*>b)*<y+z>a(<x*>b+<y+z>a(<x*>b)*<y+z>a)*'); r2

a2 = r2.derived_term().minimize()
a1|a2

Fig. 5: The computation of
A1∪A2 in the IPython note-
book interface of Vaucan-
son. The symbol ε denotes
the empty word. Weights in
Q such as 1

2 have been lifted
into the WeightSet of C3:
〈 12 〉ε ∈ RatE[{x, y, z} → Q].

formal mathematics environments offer), working with just a finite, predefined
set of types would be unacceptable.

To address these limitations Vaucanson’s dyn layer features run-time code
generation, compilation, and dynamic object loading. The code generation is
a simple translation from the context object into C++ code instantiating the
existing algorithms for a given context and then entering into the appropri-
ate registries. Once the context-plugin is successfully compiled and linked, it is
loaded into the program via dlopen; however, differently from the usual prac-
tice, we do not need dlsym calls to locate plugin functions one by one; rather,
when a plugin is loaded, its initialization code simply adds its functions to the
registries. In other words a plugin compiled on the fly and loaded at run-time is
treated exactly like precompiled contexts.

Because a call in IPython eventually resolves into a call in the static library,
one benefits from both flexibility and efficiency — when C++ algorithms take
most of the time; of course Python-heavy computations would be a different
matter.

5 Future Work and Improvements

The subtype relation among semirings we introduced is natural; however a closer
look at these definitions reveals that several mechanisms are involved, which may
deserve more justification.

12

5.1 Syntactic and Semantic Improvements of Contexts

Contexts proved to be a powerful concept; however some early design decisions
resulted in limitations, to be lifted in the near future.

First, the concrete syntax the user must use to define the context is cum-
bersome. For instance C3 = {a, b} → RatE[{x, y, z} → Q] has to be written
lal char(ab) ratexpset<lal char(xyz) q> (see Fig. 5); a syntax closer to the
mathematical notation would be an improvement.

Second, the quantifiers ‘?’ and ‘*’ should probably apply to an entire La-
belSet, and not just to an alphabet like in Fig. 2:

〈labelset〉 ::= "{1}" | 〈alphabet〉 | 〈labelset〉 "?" | 〈labelset〉 "*"

| 〈ratexpset〉 | 〈labelset〉 × · · · × 〈labelset〉

which would allow to define, for instance, two-tape transducers whose labels are
either a couple of letters, or the empty (two-tape) word: ({a, b} × {x, y})?.

Third, our implementation of automata does not follow the Value/ValueSet
pattern, which prevents us from using them like other entities.

5.2 Dynamic Compilation Granularity

The compilation of plugins today is coarse-grained, in that we compile “all” the
existing algorithms for a given context. This is at the same time too much, and
not enough.

It is too much as it may suspend an interactive IPython session for half a
minute even on a fast laptop, to compile and load the given context library;
caching compiled code however makes this cost a one-time penalty.

It is not enough because algorithms such as union have an open set of pos-
sible signatures. The resulting type of the union of two automata might not be
precompiled, in which case, for lack of support for the resulting context, the com-
putation would fail. An unpleasant but effective workaround consists in warning
the system, at runtime, that a given context will be needed.

To address both shortcomings we plan to support fine-grained plugins able
to generate, compile and load code for one function with one signature.

6 Conclusion

We presented a type system for weighted automata and rational expressions —
a novel feature to the best of our knowledge— currently implemented in our
Vaucanson 2 system, but not coupled to any particular platform.

Types lie at the very foundation of our design. At the lowest level, where
performance concerns are strong, we follow the Value/ValueSet principle and
types parameterize C++ template structures and functions; there a calculus on
types based on a subtype relation allows to define operations on automata of
different types and handles value conversions. At a higher level types make up
the bridge between the static low-level API and a dynamic one built on top of it.

13

Finally, run-time translation of types into C++ code allows to compile, generate,
and load plugins during interactive sessions, for instance under IPython.

Vaucanson 2 is free software. Its source code is available at http://vaucanson.
lrde.epita.fr, along with virtual machine images to let users experiment and
play with the system without need for an installation.

Acknowledgements

We wish to thank the anonymous reviewers for their helpful and constructive
suggestions.

References

1. A. Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns
Applied. Addison-Wesley, 2001.

2. C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri. OpenFst: A general
and efficient weighted finite-state transducer library. In CIAA’07, vol. 4783 of LNCS,
pp. 11–23. Springer, 2007. http://www.openfst.org.

3. A. Almeida, M. Almeida, J. Alves, N. Moreira, and R. Reis. FAdo and GUItar. In
CIAA’09, vol. 5642 of LNCS, pp. 65–74. Springer, 2009.

4. A. Demaille, A. Duret-Lutz, S. Lombardy, and J. Sakarovitch. Implementation
concepts in Vaucanson 2. In CIAA’13, vol. 7982 of LNCS, pp. 122–133, July 2013.
Springer.

5. S. Lombardy and J. Sakarovitch. The validity of weighted automata. Int. J. of
Algebra and Computation, 23(4):863–914, 2013.

6. F. Pérez and B. E. Granger. IPython: a system for interactive scientific computing.
Computing in Science and Engineering, 9(3):21–29, May 2007. http://ipython.

org.
7. J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.

Corrected English translation of Éléments de théorie des automates, Vuibert, 2003.

14

http://vaucanson.lrde.epita.fr
http://vaucanson.lrde.epita.fr
http://www.openfst.org
http://ipython.org
http://ipython.org

	A Type System for Weighted Automata and Rational Expressions

