
RUMINATIONS ON TARJAN’S UNION-FIND
ALGORITHM AND CONNECTED OPERATORS

Thierry Géraud
EPITA Research and Development Laboratory (LRDE)
14-16 rue Voltaire, F-94276 Le Kremlin-Bicêtre, France
Phone: +33 1 53 14 59 47, Fax: +33 1 53 14 59 22
thierry.geraud@lrde.epita.fr

Abstract This papers presents a comprehensive and general form of the Tarjan’s union-
find algorithm dedicated to connected operators. An interesting feature of this
form is to introduce the notion of separated domains. The properties of this form
and its flexibility are discussed and highlighted with examples. In particular, we
give clues to handle correctly the constraint of domain-disjointness preservation
and, as a consequence, we show how we can rely on “union-find” to obtain
algorithms for self-dual filters approaches and levelings with a marker function.

Keywords: Union-find algorithm, reconstructions, algebraic openings and closings, domain-
disjointness preservation, self-dual filters, levelings.

Introduction
Connected operators have the important property of simplifying images

while preserving contours. Several sub-classes of these operators have been
formalized having stronger properties [8] and numerous applications have been
derived from them, e.g., scale-space creation and feature analysis [17], video
compression [14], or segmentation [10]. The behavior of connected operators
is to merge most of the flat zones of an input image, thus delivering a partition
which is much coarser than the input one. In that context, a relevant approach
to implement such operators is to compute from an input image the resulting
partition. The Tarjan’s Union-Find Algorithm, union-find for short, computes
a forest of disjoint sets while representing a set by a tree [16]. A connected
component of points or a flat zone is thus encoded into a tree; a point becomes
a node and a partition is a forest. union-find has been used to implement some
connected operators; among them, connected component labeling [2], a wa-
tershed transform [6], algebraic closing and opening [19], and component tree

2 Ruminations on Tarjan’s Union-Find Algorithm and Connected Operators

computation [4, 11]. A tremendous advantage of union-find lies in its sim-
plicity. However, the descriptions of morphological operators relying on this
algorithm are usually spoiled by the presence of too many implementation de-
tails.

This paper intends to provide the image processing community with a sim-
ple and general form of union-find, which is highly adaptable to the large
class of connected operators. We show that the description of a given operator
with union-find is actually straightforward, comprehensive, and takes very few
code. We also present how union-find can be used for the connected opera-
tors θ which verify a domain disjointness preservation property. Consequently
we show that union-find is a simple way to get algorithms for folding induced
self-dual filters [5], the inf-semilattice approach to self-dual morphology [3],
and levelings defined on two functions [10].

In order to keep implementation details away from algorithmic considera-
tions, we do not address any single optimization issue. Moreover, we do not
enter into a comparison between union-find-based algorithms and other ap-
proaches; for those subjects, the reader can refer to [13, 7]. We claimed in [1]
that our generic C++ image processing library, Olena [12], has been designed
so that algorithms can easily be translated into programs while remaining very
readable. To sustain this claim, programs given in this paper rely on our library
and, thanks to it, they efficiently run on various image structures (signals, 2D
and 3D images, graphs) whatever their data types (Boolean, different integer
encodings, floating values, etc.)

In the present document we start from the simplest operator expressed with
union-find, namely a connected component labeling, in order to bring to the
fore the properties of union-find-based algorithms (Section 1). We stress on the
notions of domains and of disjointness-preservation and we present a general
formulation of union-find (Section 2). In the second part of this document
we give a commented catalogue of connected operators with the help of that
formulation (Section 3). Last we conclude (Section 4).

1. Practicing on Connected Component Labeling
In union-find, a connected component is described as a tree. At any time of

the algorithm computation, each existing component has a canonical element,
a root point at the top of the tree. A link between a couple of nodes within
a tree is expressed by a parent relationship. A convenient way to handle the
notion of “parent” is to consider that parent is an image whose pixel values are
points—given a point x, parent[x] is a point—and that a root point is its own
parent. Finding the root point of a component recursively goes, starting from a
point of this component, from parent to parent until reaching the root point.

Practicing on Connected Component Labeling 3

Let us practice first on connected component labeling. The union-find al-
gorithm is composed of an initialization followed by two passes. The first one
aims at computing the tree forest and the second one aims at labeling.

void init() {
is_processed = false; // that is, for all points
cur_label = 0;
O = false; // background is the default value

}

void first_pass() {
bkd_scan p(D); // R_D is the bkd scan
nbh_scan n(nbh);
for_all (p)

if (is_in_I(p)) { // "body 1.1"
make_set(p); // so {p} is a set
for_all_neighbors (n, p)

if (D.holds(n)) // n belongs to D
if (is_processed[n])

do_union(n, p);
is_processed[p] = true;

}
}

void second_pass() {
fwd_scan p(I); // versus bkd in 1st pass
for_all (p)

if (is_in_I(p)) { // "body 2.1"
if (is_root(p))

set_O_value(p); // new label
else

O[p] = O[parent[p]]; // propagation
}

}
In the first pass, points of the input set I are browsed in a given order. In

the case of image processing, the domain D of the input image includes I .
Practically, I is represented by its membership function defined over D and is
encoded as a binary image. A convenient way to browse elements of I is thus
performed by a classical forward or backward scan of the points p of D and
testing if p is in I is required. Let us denote by RD the ordering of points
of D which corresponds to the way we browse D during the first pass. The
current point p is first turned into a set: {p}. Neighbors of p are then inspected

4 Ruminations on Tarjan’s Union-Find Algorithm and Connected Operators

to eventually merge p with an existing tree. Let us denote by n a neighbor
of p such as n ∈ I (actually we have to ensure that n actually lies in the
image domain D to prevent problems when p happens to belong to the internal
boundary of D). If n has not been processed yet, it does not make sense to
inspect n since it does not belong to a tree structure. In the other case, we
proceed to the union of {p} and of the set to which n belongs.

A key point of union-find lies in this task; performing the union of a couple
of trees is a single simple operation: linking their respective root points, say
r1 and r2 with r1 RD r2, so that the parent of r1 is r2. This rule ensures a
very strong property: when processing p in the first loop, ∀p′ such as p′RD p,
we have p′RD parent(p′) and parent(p′)RD p. Adding the point p to the
connected component that contains n is then as simple as setting to p the parent
of r, where r is the root point of ΓI(n).

The second pass of union-find browses points of D in the reverse order,
R−1

D , as compared to the first pass. Thanks to parenthood construction, the
following two properties hold. 1) For any component (or flat zone) computed
during the first pass, the first point of this component visited during the second
pass is the root point. 2) In the second pass, a point is always visited after its
parent. So, for each point p ∈ I using R−1

D , we assign p a new label in the
output image O if p is root, otherwise we assign p the same label as its parent.

bool is_in_I(point p) { return I[p] == true; }

void make_set(point p) { parent[p] = p; }

bool is_root(point p) { return parent[p] == p; }

point find_root(point x) {
if (is_root(x)) return x;
else return (parent[x] = find_root(parent[x]));

}

void set_parent(point r, point p) { parent[r] = p; }

void do_union(point n, point p) {
point r = find_root(n);
if (r != p)

set_parent(r, p);
}

L set_O_value(point p) { return ++cur_label; }

Introducing Domains and Disjointness-Preservation 5

00 0 00 0 00 000 0
00 0
00 0

00 0
00 00 00

00 0 0 00 0 0
00

1 1
2 2 2

1
2 2
2

1 1
2
2 2

20
00 0 0 00

0

p
nr nr

p p r
n

pr n
p

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�����
�����
�����
�����

�����
�����
�����
�����

input: RD :
2
4 3

1

5

second pass iterations:

first pass iterations:

p p

Figure 1. Connected component (8-connectivity) labeling using union-find: arrows represent
parenthood and circles depict root points.

Both passes of connected component labeling using union-find are illus-
trated in Figure 1.

2. Introducing Domains and Disjointness-Preservation
The main characteristic of union-find appears to be in its overall structure.

First, let us take a partition of the image domain D into m + 1 disjoint sets
defined by: D = D′ ∪ D′′ with D′ = (∪m

i=1
Di) . In this partition D′′ is the

set of points of D that are not subject to forest computation.
A requirement about D′′ is therefore that, ∀p ∈ D′′, the value O[p] can

be directly computed from the operator input. So we compute O over D ′′ as
a whole in the initialization part of union-find (set_default_O routine). Also
note that we will never have proper values for parenthood in D′′.

A sub-domain Di with i = 1..m can have its own definition of forest com-
putation, different from the ones of Dj with j 6= i. Consider for instance the
simultaneous connected component labeling of both object and background
in a binary 2D image; obviously we have D′′ = ∅, D1 = I , and D2 = Ic.
Processing two forests then allows us to rely on two distinct neighborhoods
so that topological inconsistency is avoided. Keeping this idea in mind, the
description of union-find mutes into a more general form depicted in Figure 2.
Both first and second passes process in an independent way the domains Di

thanks to a test is_in_Di; that gives rise to the “body 1.i” and “body 2.i” sec-
tions. Furthermore, some variations between bodies in a same pass are now
conceivable.

6 Ruminations on Tarjan’s Union-Find Algorithm and Connected Operators

void init() {
is_processed = false;
set_default_O();

}

void first_pass() {
// declarations are removed
for_all (p)

if (is_in_D1(p)) // body 1.1
else if (is_in_D2(p)) // body 1.2
// other bodies 1.i ...

}

void second_pass() {
// declarations are removed
for_all (p)

if (is_in_D1(p)) // body 2.1
else if (is_in_D2(p)) // body 2.2
// other bodies 2.i ...

}

// with body 1.i being:
{

make_set(p);
for_all_neighbors(n, p)

if (D.holds(n))
if (is_in_Di(n) and is_processed[n])

do_union(n, p);
// optional:
else visit_extB_of_Di(n, p);

set_processed(p);
}

// with body 2.i being:
{

if (is_root(p)) set_O_value_in_Di(p);
else O[p] = O[parent[p]];

}

Figure 2. General form of union-find with domains.

Introducing Domains and Disjointness-Preservation 7

Preserving domain disjointness. A strong assumption is implicitly man-
aged in the writing of “body 1.i” due to the tests “is_in_Di(n)”: we are preserv-
ing disjointness over domains, that is, each connected component (or flat zone)
Γ created by such an algorithm cannot cross domains frontiers. We have:

∀Γ ∈ O, ∃i such as Γ ⊆ Di and ∀j 6= i, Γ ∩Dj = ∅.

Visiting domain boundaries. During the first pass, while processing a
neighbor n of p, if we do not enter component computation, that means that n
does not belong to Di. If m ≥ 2, that also means that n can have already been
processed or not. Since p ∈ Di, n belongs to the external boundary Bext(Di)
of Di and, when the first pass is completed, we have visited all the points of
Bext(Di). This general version of union-find thus get us the ability of fetching
information from Bext(Di) (through the visit_extB_of_Di routine).

Attaching auxiliary data to components. A connected component en-
coded as a tree is represented by its root point. If one intends to implement
with union-find a particular operator which requires information on compo-
nents, some auxiliary data just have to be attached to every root points. Fur-
thermore, we have the ability to attach to components a distinct type of data
per domain. So we have to adapt the routines which deal with parenthood in
the first pass:

void make_set_in_Di(point p) {
parent[p] = p; // creation of {p}
init_data_in_Di(p); // so p has data

}
void set_parent_in_Di(point r, point p) {

parent[r] = p; // 2 components are now connected
merge_data_in_Di(r, p); // so p carries data

}
Last, please remark that updating data is possible while visiting boundaries
Bext(Di) (first pass) and that data are usually expected to influence the operator
output (second pass, routine set_O_value_in_Di, called when p is root).

Extension to morphology on functions. In the field of morphology on
grey-level functions, given a function f , two trivial orderings between points
of D can be derived from RD and from the one of the complete lattice frame-
work: pR↑p′ ⇔ f(p) < f(p′) or (f(p) = f(p′) and pRD p

′) and its
reverse ordering R↓. If we choose R↑ for the first pass of union-find, the evo-
lution of connected components during this pass mimics a flooding of f and
we get an extensive behavior of the connected operator. By duality, we ob-
tain an anti-extensive behavior with R↓. In the literature about implementing
connected operators with union-find, namely algebraic openings and closings

8 Ruminations on Tarjan’s Union-Find Algorithm and Connected Operators

in [19, 7], the notion of domains is absent and the whole image domain is pro-
cessed. We actually have D = D′ (so D′′ = ∅) and at first glance that seems
relevant. A novelty here appears during the first pass: connected components
can grow even by merging flat zones of the input image. The expansion of a
component is stopped when a given increasing criterion is no more satisfied;
this component then turns “inactive”. That leads us to:

void init_data_in_Di(point p) {
is_active[p] = true; // and handle other data...

}
void do_union_in_Di(point n, point p) {

point r = find_root(n);
if (r != p)

if (is_flat_in_Di(r, p) or equiv_in_Di(r, p))
set_parent_in_Di(r, p);

}
bool equiv_in_Di(point r, point p) {

if (not is_active[r] or not is_active[p])
return false;

if (not satisfies_criterion_in_Di(r, p)) {
is_active[p] = false;
return false;

}
return true;

}

Connected operators relying on two functions. So far, just notice that,
changing the overall structure of union-find from the first way of browsing
points of D to the second one (see below) does not affect the result of the
algorithm thanks to the domain disjointness preservation property.

// first way of browsing points
for_all (p)

if (is_in_D1(p)) // body ∗.1
else if (is_in_D2(p)) // body ∗.2
// ...

// second way of browsing points
for_all (p_in_D1) // body ∗.1
for_all (p_in_D2) // body ∗.2
// ...

A Catalogue of Union-Find-Based Connected Operators 9

3. A Catalogue of Union-Find-Based Connected
Operators

In the previous section, we have presented a general form for union-find that
relies on a separation between domains. We then just have to fill the holes of
this form to get algorithms that implement some connected operators.

Morphology on Sets with Union-Find
Let us first take as an example the reconstruction by dilation operator, Rδ ,

which applies on a two sets, a marker F and a mask G such as F ⊆ G. In the
following, given a setX and a point x ∈ X , we will denote by ΓX a connected
component of X . Denoting O = Rδ

G(F), we have the property O ⊂ G and,
since Rδ is a connected operator with respect to the mask, {ΓO} ⊆ {ΓG}.
A first obvious idea for using union-find is then to compute the connected
components of G and search for those that belong to O. So we have D ′ = G

and ΓD′ are computed. However, we can consider the operator input as a
four-valuated function IF,G defined on D, such as the value IF,G(p) indicates
whether p ∈ D is included in F ∩G, F ∩Gc, F c ∩G, or F c ∩Gc. That leads
to different ways of using union-find to implement reconstructions depending
on the choice of a partition of D into D′ ∪D′′.

default init(p) border(n, p) merge(r, p)

Rδ obvious version: D′ = G Ã (ΓD′ ⊆ O ⇔ ∃p ∈ ΓD′ , p ∈ F)

O = false; O[p] = F[p]; O[p] = O[r] or O[p];
Rδ alternative version: D′ = F c ∩G Ã (ΓD′ ⊆ O ⇔ ∃n ∈ Bext(ΓD′), n ∈ F)

O = F; O[p] = false; if (F[n]) O[p] = true; O[p] = O[r] or O[p];
Rε dual version of “Rδ with D′ =G ”: D′ = Gc

Ã (ΓD′ ⊆ O ⇔ ∀p ∈ ΓD′ , p ∈ F)

O = true; O[p] = F[p]; O[p] = O[r] and O[p];
Rε alternative version: D′ = F ∩Gc

Ã (ΓD′ ⊆ O ⇔ ∀n ∈ Bext(ΓD′), n ∈ F)

O = G; O[p] = true; if (not F[n]) O[p] = false; O[p] = O[r] and O[p];

The table above presents for several operators the respective definitions of
the following routines (from left to right): set_O_default_in_Di, init_data_in_Di,
visit_extB_of_Di, and merge_data_in_Di. Last, when the only auxiliary data
required to implement an operator represent the Boolean evaluation of [ΓD′ ⊆
O], the output image can store these data as an attachment to root points and
set_O_value has nothing left to perform. From our experiments, an appropri-
ate choice for D′—depending on a priori knowledge about F and G—makes
the union-find-based approach a serious competitor of the efficient hybrid al-
gorithm proposed in [18]. Last, the case of regional extrema identification is
summarized in the table below.

10 Ruminations on Tarjan’s Union-Find Algorithm and Connected Operators

default init(p) border(n, p) merge(r, p)

Regional minima identification of a function f with D′ = D (with either R↓ or R↑)
O[p] = true; if (f[n] < f(p)) O[p] = false; O[p] = O[r] and O[p];

Regional minima identification with D′ = D which relies on R↓

O[p] = true; if (is_processed[n] O[p] = O[r] and O[p];
and f[n] != f(p)) O[p] = false;

Extension to Functions
For some connected operators on functions that deliver functions, the ta-

ble below recaps their corresponding definitions with union-find; the columns
crit and value respectively depict the result returned by satisfies_criterion
and the body of set_O_value. For reconstructions, f and g being the input
marker and mask functions, we compute flat zones from g, which is flattened
by the operator, is_flat(r,p) returns g[r] == g[p].
init(p) merge(r, p) crit(r, p) value(p)

Rδ (f marker and g mask such as f ≤ g); R↓ is mandatory since g is lowered
o[p] = f[p]; o[p] = max(o[r], o[p]); g[p] >= o[r] if (not is_active[p]) o[p] = g[p];
Rε (f marker and g mask such as f ≥ g); R↑ is mandatory since g is “upper-ed”
o[p] = f[p]; o[p] = min(o[r], o[p]); g[p] <= o[r] if (not is_active[p]) o[p] = g[p];
Area opening (resp. closing) of a function f ; R↓ (resp. R↑) is mandatory
area[p] = 1; area[p] = area[r] + area[p]; area[r] < λ o[p] = f[p];
Volume opening (resp. closing) of f ; R↓ (resp. R↑) is mandatory
area[p] = 1; vol[p] = vol[r] + vol[p] + (area[p] ∗ abs(f[r]−f[p]))
vol[p] = 1; area[p] = area[r] + area[p]; vol[r] < λ o[p] = f[p];

Operators Relying on Two Functions
Many morphological operators over two functions, f and g, have been de-

fined from a couple of connected operators, ϕ extensive and ψ anti-extensive,
following the general formulation [8, 5, 3]:

[θ(f, g)](p) =

[ϕ(f, g)](p) if p ∈ D↑(f, g)
[ψ(f, g)](p) if p ∈ D↓(f, g)
f(p) otherwise.

under the constraint of being disjointness-preservative regarding D↑(f, g) and
D↓(f, g), the domains of D where θ is expected to be respectively extensive
and anti-extensive. Let us denote by D◦(f, g) = (D↑(f, g) ∪ D↓(f, g))c the
domain where θ is expected to be constant. In the following we will elude in
domain names the dependence upon f and g since that does not lead to any
ambiguity. By extension, let us introduce D↓◦ = D↓ ∪D◦ and D↑◦ = D↑ ∪D◦.

Relying on union-find to get an algorithm starts with choosing domains such
asD = D′∪D′′ = (∪iDi)∪D

′′ and ∀j 6= i, Dj ∩Di = ∅. As a constraint we

Conclusion 11

do not want to use the ability of union-find to visit domain boundaries. Since θ
is not disjointness-preservative with respect to D↑ and D◦, and to D↓ and D◦,
we cannot obtain a correct result with union-find when we consider setting the
domains Di with any combination of D↑, D◦, and D↓. So far we are in a dead
end.

Let us imagine that we relax the disjointness constraint of union-find (!) to
form D1 = D↑◦ and D2 = D↓◦. The only weird aspect of this idea is that points
of D◦ have to be processed twice during the first pass of union-find. For that,
we just have to add a “refresh” step for the points of D◦ just after handling
D↑◦ during the first pass, so that D↓◦ can be properly processed. This single
modification is handled as follows:

for_all (p_in_D_upper_or_equal)
// body 1.1

for_all (p_in_Do)
is_processed[p] = false; // so p can be handled again

for_all (p_in_D_lower_or_equal)
// body 1.2

and the second pass as described in Figure 2 remains unchanged. Although we
have introduced a bond between domains (we have D1 ∩D2 6= ∅), we do not
have introduced any inconsistency in parenthood. Put differently, this modified
version of union-find does not compute irrelevant components or flat zones.

We can now reuse the descriptions given previously of union-find-based
operators to build levelings with markers as defined in [9], a domain-preserving
self-dual reconstruction, and partial self-dual operators defined with the inf-
semilattice approach in [3]. Results are summarized in the table below.

D↑◦ D↓◦

RD sub-domain sub-operator RD sub-domain sub-operator
some levelings g′ of g given a function f such as g′ ∈ Inter(g, f) (see [10])
R↓ on g f(p) ≤ g(p) γ, any R↑ on g f(p) ≥ g(p) φ, any

lower leveling upper leveling
domain-preserving self-dual reconstruction with f marker and g mask
R↓ on g f(p) ≤ g(p) Rδ

g(f) R↑ on g f(p) ≥ g(p) Rε
g(f)

inf-semilattice approach (input function is f) with any anti-extensive operator ψ
R↓ on −f f(p) ≤ 0 −ψ(−f) R↓ on f f(p) ≥ 0 ψ(f)

4. Conclusion
We have presented a general formulation of Tarjan’s union-find algorithm

so that many connected operators can be straightforwardly mapped into algo-
rithms; we definitely believe that this particular formulation can ease to express
new segmentation methods using connected operators relying on union-find.

12 Ruminations on Tarjan’s Union-Find Algorithm and Connected Operators

References
[1] J. Darbon, T. Géraud, and A. Duret-Lutz. Generic implementation of morphological image

operators. In Mathematical Morphology, Proc. of ISMM, pages 175–184. Sciro, 2002.
[2] M. Dillencourt, H. Samet, and M. Tamminen. A general approach to connected-

components labeling for arbitrary image representations. Journal of the ACM, 39(2):253–
280, 1992.

[3] H. Heijmans and R. Keshet. Inf-semilattice approach to self-dual morphology. Journal of
Mathematical Imaging and Vision, 17(1):55–80, 2002.

[4] W. H. Hesselink. Salembier’s min-tree algorithm turned into breadth first search. Informa-
tion Processing Letters, 88(1–2):225–229, 2003.

[5] A. Mehnert and P. Jackway. Folding induced self-dual filters. In Mathematical Morphology
and its Applications to Image and Signal Processing, pages 99–108, 2000.

[6] A. Meijster and J. Roerdink. A disjoint set algorithm for the watershed transform. In
EUSIPCO IX European Signal Processing Conference, pages 1665–1668, 1998.

[7] A. Meijster and M. Wilkinson. A comparison of algorithms for connected set openings
and closings. IEEE Trans. on PAMI, 24(4):484–494, 2002.

[8] F. Meyer. From connected operators to levelings. In Mathematical Morphology and its
Applications to Image and Signal Processing, pages 191–198. Kluwer, 1998.

[9] F. Meyer. The levelings. In Mathematical Morphology and its Applications to Image and
Signal Processing, pages 199–206. Kluwer, 1998.

[10] F. Meyer. Levelings, image simplification filters for segmentation. Journal of Mathemat-
ical Imaging and Vision, 20(1–2):59–72, 2004.

[11] L. Najman and M. Couprie. Quasi-linear algorithm for the component tree. In IS&T/SPIE
Symposium on Electronic Imaging, In Vision Geometry XII, pages 18–22, 2004.

[12] Olena. Generic C++ image processing library, http://olena.lrde.epita.fr, free
software available under GNU Public Licence, EPITA Research and Development Labo-
ratory, France, 2005.

[13] J. B. Roerdink and A. Meijster. The watershed transform: Definitions, algorithms and
parallelization strategies. Fundamenta Informaticae, 41(1-2):187–228, 2000.

[14] P. Salembier and J. Ruiz. On filters by reconstruction for size and motion simplification.
In Mathematical Morphology, Proc. of ISMM, pages 425–434. Sciro Publishing, 2002.

[15] P. Soille. Morphological Image Analysis. Springer-Verlag, 1999.
[16] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the ACM,

22(2):215–225, 1975.
[17] C. Vachier. Morphological Scale-Space Analysis and Feature Extraction. In IEEE Intl.

Conf. on Image Processing, volume 3, pages 676–679, October 2001.
[18] L. Vincent. Morphological grayscale reconstruction in image analysis: Applications and

efficient algorithms. IEEE Trans. on Image Processing, 2(2):176–201, 1993.
[19] M. Wilkinson and J. Roerdink. Fast morphological attribute operations using tarjan’s

union-find algorithm. In Mathematical Morphology and its Applications to Image and
Signal Processing, Proc. of ISMM, pages 311–320, 2000.

