
Improvements to ltlsynt

Florian Renkin
LRDE/EPITA

Le Kremlin-Bicêtre, France
renkin@lrde.epita.fr

Philipp Schlehuber
LRDE/EPITA

Le Kremlin-Bicêtre, France
philipp@lrde.epita.fr

Alexandre Duret-Lutz
LRDE/EPITA

Le Kremlin-Bicêtre, France
adl@lrde.epita.fr

Adrien Pommellet
LRDE/EPITA

Le Kremlin-Bicêtre, France
adrien@lrde.epita.fr

Abstract
We summarize ltlsynt’s evolution since 2018.

1 Introduction and History
The tool ltlsynt, distributed in the Spot library [6] since
version 2.5, was originally developed by Thibaud Michaud
and Maximilien Colange. They submitted it to the 2017 and
2018 [10] editions of SYNTCOMP. This short document sum-
marizes the improvements brought to ltlsynt since then.

While both original authors left the project mid-2018 Max-
imilien had startedworking on an alternative approach called
LAR (described below) that was eventually included in the
Spot 2.7 release. Without any submission of ltlsynt to
SYNTCOMP’19, the organizers installed the latest version
distributed with Spot 2.7.4 themselves, and uncovered a bug
caused by an incorrect optimization in the LAR approach.

This optimization was reverted in Spot 2.8, and we started
working on an optimized reimplementation of LAR for Spot
2.9, adding other improvement to ltlsynt along the way.

A quick summary of all versions submitted to SYNTCOMP
over the years is given in Table 1. Note that since the release
calendar of Spot is not aligned with SYNTCOMP, most sub-
missions are development version containing unreleased
patches applied to a previous release.

2 Technical Details
We describe ltlsynt’s general approach in Figure 1. Let us
ignore the decompose box and the bypass above the blue area
for now. The main step of the synthesis process is to con-
vert the LTL specification constraining the input and output
signals into a deterministic parity automaton (DPA) where
transitions labeled by Boolean combinations of input signals
are followed by transitions labeled by Boolean combinations
of output signals. This step is shown in the blue-colored
box and discussed in Section 2.1. This DPA uses a transition-
based max-odd parity acceptance. We then interpret this
DPA as a game between two players (the environment play-
ing the input signals and the controller playing the output
signals) and search a winning strategy for the controller us-
ing a transition-based version of Zielonka’s algorithm [14],
then encode this strategy as an AIGER circuit.

2.1 Determinization pipelines
The algorithm used by ltlsynt to convert the LTL input
into a DPA suitable for game solving depends on the --algo
command-line argument. The first two options, ds and sd,
correspond to pipelines that appeared in ltlsynt’s very first
release. With --algo=ds, LTL inputs are first converted to
non-deterministic Büchi automata, then determinized to DPA
using a variant of Safra. At this point, transitions are labeled
by a mix of input and output signals, so transitions of the
form 𝑖1∧𝑖2∧𝑜1∧𝑜2 are split into 𝑖1∧𝑖2 𝑜1∧𝑜2 .
To preserve determinism, we ensure that multiple transitions
sharing the same inputs end up sharing the same new in-
termediate state. In the pipeline --algo=sd, we perform
this split before determinizing the automata. Intuitively, this
choicemay be explained by realizing that the determinization
function, in order to compute the successors of a given state,
has to consider all compatible assignments of the atomic
propositions used by transitions leaving said state: in ds,
theremight be up to 2 |𝐼 |+ |𝑂 | assignments to consider, whereas
in sd a given state has either 2 |𝐼 | or 2 |𝑂 | successors at most.
Option --algo=lar.old in Spot 2.9 used to be called

--algo=lar in versions 2.7 and 2.8, and relies on Spot’s ability
to translate LTL formulas into automata with Emerson-Lei
acceptance condition (i.e., any acceptance condition). To do
so, this algorithm decomposes the input LTL formula on
Boolean operators, translates sub-formulas into determin-
istic automata (possibly using algorithms specialized for a
particular class of formulas), recombines the resulting au-
tomata using synchronous products, then applies the rele-
vant Boolean operations on the acceptance conditions. If we
are lucky enough, we may avoid Safra-based determiniza-
tion entirely. However, the resulting deterministic automaton
may feature some arbitrary conditions that have yet to be
paritized. Therefore, we use a transition-based adaptation
of the state appearance record algorithm, typically used to
convert state-based Muller acceptance to state-based parity.
This option was named LAR as a reference to the latest ap-
pearance record family of algorithms to which SAR belongs
(some variants of SAR are often called LAR). We called our
variant CAR, for color appearance record as it tracks only the
colors but neither the states nor the transitions.

Florian Renkin, Philipp Schlehuber, Alexandre Duret-Lutz, and Adrien Pommellet

Year Spot version Main news in ltlsynt

2017 pre-2.4? + patches first implementation
2018 2.5.3 + patches optimizations to determ., and game solving; incr. determ. approach
2019 2.7.4 (bogus) LAR; improved LTL translation; incr. determ. removed
2020 2.9 + patches reimplemented LAR, split, and game solving; parity minimization
2021 2.9.7 + patches input decomposition; strategy simplification; specialized strategy construction

Table 1. Versions of Spot on which ltlsynt submissions to SYNTCOMP were based.

translate
to NBA

split I/O determinize
to DPA

translate
to NBA

determinize
to DPA

split I/O

translate
to DELA

paritize
(pure CAR)

translate
to DELA

paritize
(CAR,IAR,...)

translate
to DPA

--
al
go
=s

d
(2017)

--a
lgo

=ds (2017)

--algo=lar.old

(lar in 2019)--algo=lar

(2020)

--algo=ps

(2020)

decompose

LTL
input

solve
parity game

Y/N
output

AIGER
output

encode in
AIGER

simplify
strategy

--a
iger

--
re

al
iz

ab
il

it
y

specialized strategy construction for formulas of the form G(𝑏1) ∧ (𝜑 ↔ GF𝑏2)(2021)

(2
02
1)

(2
02
1)

Figure 1. Architecture of ltlsynt. The blue zone shows different pipelines for building a parity game, selected by option
--algo. For some types a formulas, a strategy can be constructed directly from a DBA, bypassing the game construction. If the
input is decomposed in multiple conjuncts, recomposition occurs during AIGER encoding.

The CAR implementation in Spot 2.7 featured an optimiza-
tion that reduced the number of colors tracked by computing
the classes of symmetric colors in the acceptance condition
(two colors are symmetric if swapping them in the accep-
tance formula results in an equivalent formula). The intent
was to keep track of a smaller number of acceptance classes
instead of colors, but this optimization was found to be incor-
rect during SYNTCOMP’19. This optimization was removed
from Spot 2.8 for correctness sake, then replaced by many
new optimizations in Spot 2.9 [12].
Option --algo=lar now triggers the new implementa-

tion of the paritization procedure [12]. It combines CAR (a
generic transformation to parity) with IAR (a conversion
of Rabin-like or Streett-like acceptance conditions to par-
ity) as well as a partial-degeneralization (in order to reduce
conjunctions of Inf or disjunctions of Fin that occur in the
acceptance condition to a single term, as intended by the
original symmetry-based optimization) and multiple simpli-
fications of the acceptance conditions. All these transfor-
mations are performed on each SCC separately, and it may
for instance happen that one SCC is paritized using CAR

while another SCC is partially degeneralized to produce an
acceptance condition that can be paritized with IAR. Our
benchmarks performed on data from SYNTCOMP’17 sug-
gest that the option --algo=lar often produces significantly
smaller DPAs than --algo=lar.old [12].

A new option available since Spot 2.9.1 is --algo=ps. This
is a close variant of --algo=ds, that relies on the translation
code that powers ltl2tgba -P -D to obtain a DPA. This
procedure splits the top-level LTL formulas on Boolean op-
erators in order to translate subformulas corresponding to
obligations formulas separately. The remaining subformulas
are separately translated to NBA, determinized using Safra
if needed, then combined back with the obligation part. Our
preliminary experiments showed this option to be inferior to
the other methods, and since we had to pick three configura-
tions for this year’s competition, we excluded this procedure.
In the future it could be improved by tagging the subformu-
las based on their corresponding acceptance conditions, as
performed by Strix [9].

Improvements to ltlsynt

2.2 Various optimizations
We now discuss other optimizations introduced since 2018.
LTL decomposition If the input specification can be seen as
a conjunction𝜓1 ∧𝜓2 ∧ . . .∧𝜓𝑛 of subformulas with disjoint
output variables, then a strategy for each𝜓𝑖 can be computed
separately, as suggested by Finkbeiner et al. [8]. Unlike in
their experiments, we recompose the different strategies
during the AIGER encoding, in case they may share gates.
Translation Since Spot 2.7, the LTL translation engine (that
stands behind the “translate to𝑥𝑥A” boxes in Figure 1) learned
to split the input formula on Boolean operators in order to
separately translate parts to automata then combine these
to produce the desired result. This is similar to the process
used by the delag tool [11], but we use slightly improved
algorithms. Extracting obligations subformulas is beneficial
because those can be converted to minimal weak determinis-
tic automata [5]. Subformulas of the form GF(guarantee) or
FG(safety) can be converted to DBA or DCA using dedicated
algorithms (our implementation is a crossover between two
different works [7, 11]). Finally, the products combining the
resulting automata handle weak-automata and suspendable
properties [2] specifically. The heuristics used depend on
the type of automata to produce. For instance, in order to
generate NBA or DBA, we only split the LTL formula on
conjunctions. The post-Spot-2.9 version submitted to SYNT-
COMP also deals with xor and equivalence operators while
converting to DELA (following Strix’s footsteps [9]).
Parity minimization Spot 2.8 features a function that min-
imizes the number of colors in a DPA [4], now called in
ltlsynt once a DPA is produced, before merging states with
identical successors.
Split — from automata to arenas The split operation de-
scribed above transforms an automaton into a two-player
arena. Even though this step is merely a technicality, bench-
marks on Spot 2.9 have shown that it can consume up to 20%
of the total run time. In the submitted version, this process
has been optimized thanks to caching operations, as labels
are often shared among multiple transitions. Moreover, the
number of edges and states has been reduced by sharing the
introduced intermediate states.
Solving the game Since 2020, the parity game solver of
ltlsynt is a transition-based adaptation of the one from van
Dijk [13]. It supports (non-recursive) SCC decomposition,
parity compression (a.k.a. priority compression) and detec-
tion of sub-arenas having a single parity. In the majority
of the SYNTCOMP benchmarks, solving the parity game is
not the bottleneck of ltlsynt, but nonetheless remains a
crucial step as it also determines the strategy which directly
influences the size of the resulting AIGER circuit.
Bypassing the game For inputs of the form G(𝑏1) ∧ (𝜑 ↔
GF𝑏2), where 𝑏1 is a synthetizable Boolean formula, 𝜑 is a
DBA-realizable property (a.k.a. recurrence) using only input

variables, and 𝑏2 is a Boolean formula using only output vari-
ables, a strategy can be constructed directly from the DBA
by “anding” each transition with: 𝑏1 ∧ ¬𝑏2 if the transition
can belong to a rejecting cycle, 𝑏1 ∧ 𝑏2 if it always belong to
an accepting cycle, or 𝑏1 if it cannot belong to any cycle. (If
a “false” transition is created, the formula is unrealizable.)
Strategy simplification The winning strategy of a game
can be seen an incompletely specifiedMealymachine (ISMM):
the value of output variables might be unspecified when it
does not matter.We implement two algorithms for the simpli-
fication of such ISMM. One is a variant of Spot’s simulation-
based reduction based on BDD signatures [2], where to
states whose signature are equivalent up-to-unspecified out-
puts, can be merged. A second out own reimplementation of
MeMin’s SAT-based minimization algorithm for ISMM [1].
Optimizing the output circuit For the synthesis track
submission, the AIGER output of ltlsynt is run through
abc for simplification [3]. This is done in the driver script
for starexec, not by ltlsynt itself.

References
[1] A. Abel and J. Reineke. MeMin: SAT-based exact minimization of

incompletely specified Mealy machines. In ICCAD’15, pp. 94–101.
IEEE Press, 2015.

[2] T. Babiak, T. Badie, A. Duret-Lutz, M. Křetínský, and J. Strejček. Com-
positional approach to suspension and other improvements to LTL
translation. In SPIN’13, LNCS 7976, pp. 81–98. Springer, 2013.

[3] R. Brayton and A. Mishchenko. Abc: An academic industrial-strength
verification tool. In CAV’10, pp. 24–40. Springer, 2010.

[4] O. Carton and R. Maceiras. Computing the Rabin index of a parity
automaton. Informatique théorique et applications, 33(6):495–505, 1999.

[5] C. Dax, J. Eisinger, and F. Klaedtke. Mechanizing the powerset con-
struction for restricted classes of𝜔-automata. In ATVA’07, LNCS 4762.
Springer, 2007.

[6] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and
L. Xu. Spot 2.0 — a framework for LTL and 𝜔-automata manipulation.
In ATVA’16, LNCS 9938, pp. 122–129. Springer, 2016.

[7] J. Esparza, J. Křetínský, and S. Sickert. One theorem to rule them all:
A unified translation of LTL into𝜔-automata. In LICS’18, pp. 384–393.
ACM, 2018.

[8] B. Finkbeiner, G. Geier, and N. Passing. Specification decomposition
for reactive synthesis. In NFM’21, 2021. To appear. https://arxiv.org/
abs/2103.08459.

[9] M. Luttenberger, P. J. Meyer, and S. Sickert. Practical synthesis of
reactive systems from LTL specifications via parity games. Acta
Informatica, 57:3—-36, 2020.

[10] T. Michaud and M. Colange. Reactive synthesis from LTL specification
with Spot. In SYNT’18, 2018. URL http://www.lrde.epita.fr/dload/
papers/michaud.18.synt.pdf.

[11] D. Müller and S. Sickert. LTL to deterministic Emerson-Lei automata.
In GandALF’17, vol. 256 of EPTCS, pp. 180–194, 2017.

[12] F. Renkin, A. Duret-Lutz, and A. Pommellet. Practical “paritizing” of
Emerson-Lei automata. InATVA’20, LNCS 12302, pp. 127–143. Springer,
2020.

[13] T. van Dijk. Oink: An implementation and evaluation of modern parity
game solvers. In TACAS’18, pp. 291–308. Springer, 2018.

[14] W. Zielonka. Infinite games on finitely coloured graphs with applica-
tions to automata on infinite trees. Theoretical Computer Science, 200
(1):135–183, 1998.

https://arxiv.org/abs/2103.08459
https://arxiv.org/abs/2103.08459
http://www.lrde.epita.fr/dload/papers/michaud.18.synt.pdf
http://www.lrde.epita.fr/dload/papers/michaud.18.synt.pdf

	Abstract
	1 Introduction and History
	2 Technical Details
	2.1 Determinization pipelines
	2.2 Various optimizations

	References

