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VAUCANSON is an extensive C++ library for the manipulation of finite state machines. User feedback
shows that VAUCANSON is slow and that the library interface for direct automaton manipulation is com-
plex. To enhance VAUCANSON, the development team is making major changes to simplify the interface
over the AUTOMATA data structure and reinstate a sane modeling for the underlying implementation. A
consequence of these changes is that the algorithms available in the VAUCANSON library must be adapted
to the new interface.

Adapting algorithms is an opportunity to study the impact of the recent interface and implementation
changes on performance and accessibility. Because the new interface over automata is simpler, possible
optimizations are more apparent.

VAUCANSON est une bibliothèque C++ de manipulation d’automates finis. Le feedback utilisateur mon-
tre que VAUCANSON est lent et que l’interface de la bibliothèque qui permet de manipuler les automates
directement est complexe. Pour améliorer VAUCANSON, l’équipe de développement met en place une
interface simplifiée sur la structure de données AUTOMATA et réinstaure une modélisation saine de l’im-
plémentation sous-jacente. Une conséquence de ces changements est que les algorithmes disponibles dans
VAUCANSON doivent être adaptés à la nouvelle interface.

L’adaptation de ces algorithmes donne l’opportunité d’étudier l’impact des changements récents sur les
performances et l’accessibilité de VAUCANSON. Grâce à la simplicité de la nouvelle interface, les optimi-
sations possibles deviennent plus visibles.
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Introduction

Compared to other finite state machine manipulation libraries such as OPENFST (Allauzen et-
~al., 2007), VAUCANSON (Lombardy et~al., 2004) has important performance issues and a fairly
complex interface. To enhance VAUCANSON, major changes were designed early 2009: The
generic but heavy data structure used to store automata would be declined in several versions,
referred to as kinds (Galtier, 2010), an old design that never was implemented. Additionally, the
AUTOMATA interface would be reworked.

Since August 2009, the developement of VAUCANSON is focusing on rewriting a new AU-
TOMATA interface, implementing the LAL kind (see Glossary), and adapting algorithms the the
new interface.

As of January 6th 2010, the work on this project is not complete. The preliminary results
show a large performance gain, but only part of the library is functional, and much still has to
be done.

This reports presents the most visible part of the major changes in VAUCANSON: the rewriting
of algorithms and the benchmarking results obtained so far. Deep changes in the library are
presented in a parallel technical report by Jérôme Galtier (Galtier, 2010).

Since the rewriting of all algorithms in VAUCANSON will be not be complete before a new
team takes over the development, much of this report is written as a guide to help the new
team continue the development. Because VAUCANSON is currently in an unstable state between
versions 1.3 and 2.0, the information presented in this report may become outdated quickly,
although the general organization of the algorithms and benchmarks should remain the same.

Part 1 describes how algorithms are written in regards to the ELEMENT design pattern and
how to write specialized version of an algorithm for a specific kind of automaton.

Part 2 lists the available opportunities to improve algorithm performance by rewriting part
of their code and gives examples for eval, product, and determinize.

Part 3 describes the benchmarking process in VAUCANSON, some considerations about the
compilation process, and the results obtained so far in terms of performance.

This report is based on the assumption that the reader is familiar with basic automata theory,
C++ programming, and VAUCANSON. The work presented here is previously introduced in
technical reports from May 2009 (Galtier, 2009) (D’Halluin, 2009b). Some terms are used in a
specific manner throughout this report. They are listed separately at the end of the report, in
the Glossary.



Part 1

Algorithm specialization and the
AUTOMATA interface

This part presents the ELEMENT design pattern from a practical point of view, as it is used in
VAUCANSON, then explains how algorithms are written first in their generic form, then on a
specific kind of automaton.

Section 1.1 describes the ELEMENT design pattern from a practical point of view.

Section 1.2 shows how generic algorithms are written in VAUCANSON.

Section 1.3 explains how to write specialized version of an algorithm on a given kind.

The need to rewrite algorithms is a consequence of the major changes in VAUCANSON on
the AUTOMATA interface and on the implementation of the kinds (Galtier, 2010). The interface
changes cause simple modifications of the algorithms, mostly replacing calls to the old functions
by calls to the new functions. The implementation of the kinds, however, often require bigger
changes: in LEGACY (VAUCANSON 1.3, see Glossary), algorithms are generic templated code
written only once. Static and dynamic preconditions filter the input automata with respect
to the properties they must have. With the kinds, each algorithm can have a unique, specific
implementation for each kind. Some algorithms, such as eval, product and determinize,
are only defined on certain kinds (LAL), while others (accessible) have one generic version
that works with all the kinds.

VAUCANSON contains 98 functions on automata, including variations of the same core algo-
rithm. Few core algorithms are currently rewritten:

• eval (LAL)

• product (LAL)

• determinize (LAL)

• realtime (LAL version only)

• accessible (All kinds)
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Because the major changes in VAUCANSON will not be complete before the development
team changes, this chapter is written to serve as a guide for the rewriting of the remaining algo-
rithms. The examples are taken directly from VAUCANSON an illustrate some of the situations
encountered.

1.1 The ELEMENT design pattern in VAUCANSON

ELEMENT is a design pattern that separates an object into two entities:

• Structure: an instance of a class or type that defines the element’s interface and how it
can be manipulated. The structure of an element is instanciated at run time and can hold
dynamic information.

• Value or implementation: the data container for the element. It contains the object’s con-
tent or values.

Simply put, an element can be seen as an instance of an object of dynamic type: its structure
defines the type, therefore two elements with the same structure have the same dynamic type;
its value, or implementation, is the data that is modified in algorithms.

ELEMENT is central to the design of VAUCANSON because in many places there is a need for
dynamic type structures. Within algorithms, the most used element contains automata: Each
automaton is defined on a specific alphabet, which contains a finite set of letters (from "ab" to
a full ASCII or Unicode set). The alphabet is part of a monoid, which, associated with a semiring,
forms a series. A series defines the operations on the inner components of an automaton: letters,
words, and weights. A series is completed by a kind to define the structure of an automaton. Kinds
describe the type of data that is stored on transitions, from single letters to rational expressions.
Automata of different kinds have different properties (Galtier, 2009).

An automaton cannot be created without a specific series and kind, and since all possible
alphabets (each defining a different series) cannot be statically instanciated during compilation,
there is a need for dynamic type structures.

All automata in VAUCANSON are elements. Their structure inheritates from AutomataBase
and their implementation from AutomataImplBase. Through static inheritance, more pre-
cise types are defined. Within algorithms, the type of implementation does not matter, and in
practice, automata are typed as shown in Listing 1.1.

Listing 1.1 – Type definition of an automaton for use in algorithms.

1 template<typename Series, typename Kind, typename AutomataImpl>
2 typedef Element<Automata<Series, Kind>, AutomataImpl> automaton_t;
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1.2 Using templates to write the generic version of an algo-
rithm

There is currently no new algorithm to add to VAUCANSON. However, the current algorithms
have to be rewritten to fit with the new interface and kind system. All algorithms are composed
of two parts:

• A front-end function that checks types and preconditions, instanciates empty data struc-
tures for storing results, then starts a task in the benchmarking system and calls the algo-
rithm core. This is the function listed in the library’s interface, and its prototype must be
precisely defined.

• The algorithm core, a function or functor that makes all computations and constructions.
It may be called by several front-end functions and may assume all parameters correct.

The rewriting process can be divided into 5 steps:

• Clarify the interface.

• Check for preconditions in the front-end function.

• Adapt the algorithm core to the new interface.

• Reorganize and optimize the core of the algorithm.

• Test and benchmark the algorithm.

All algorithms are located in include/vaucanson/algorithms. The algorithms included
in the VAUCANSON libraries can be listed using the command shown in Listing 1.2.

Listing 1.2 – Listing the algorithms in vaucanson.

$ git grep -E ".*NTERFACE:.*[^n]Automaton.*"
L i s t of algorithm function d e c l a r a t i o n s .
INTERFACE : Currently a c t i v e algorithm .
XNTERFACE: Currently deact ivated algorithm .

Clarify the interface.

Many algorithms in LEGACY are written using generic templates and do not mention series
or kind. In order to clarify the code, all front-end functions must define types as shown in
Listing 1.1.

Listing 1.3 shows the expected prototype of front-end functions.
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Listing 1.3 – Prototype of the eval algorithm.

1 template<typename S, typename K, typename AI>
2 typename Element<Automata<S, K>, AI>::semiring_elt_t
3 eval(const Element<Automata<S, K>, AI>& a,
4 const typename Element<Automata<S, K>, AI>::monoid_elt_t& word);

Check for preconditions in the front-end function.

Front-end functions are named <algorithm>(...), while algorithm cores are usually func-
tions named do_<algorithm>(...) or functors.

Most preconditions are already in place, but new checks on the automaton kind have to be set
up for algorithms restricted to certain kinds. This is performed by static assertion, as shown in
Listing 1.4.

Listing 1.4 – Static assertion on a kind of automaton.

1 static_assertion_((misc::static_eq<K, labels_are_letters>::value),
2 eval_is_only_defined_on_labels_are_letters);

Adapt the algorithm core to the new interface.

Calls to methods of the AUTOMATA structure can be found within the algorithm code. The
definition of the AUTOMATA interface is currently being finalized by Jacques Sakarovitch and
Sylvain Lombardy and the most significant methods are already implemented. New methods
with significant differences from the LEGACY versions are prefixed with new_ and should be
called when available. Some simple methods, such as add_state(), remain unchanged.

The interface guide is not distributed publicly at the moment. Ask the team about it.

Calls that may have to be changed include:

• Operations on transitions: add_transition() and similar methods.

• Iterators: use the factories make_delta_iterator() and similar methods.

• Loops: loop macros, such as for_all_states() remain functional, but if the loop is to
be rewritten entirely, use iterators explicitely.

Reorganize and optimize the core of the algorithm.

Many algorithms have stranded or disabled pieces of code that can be cleaned up. Functor
algorithms can be changed into functions and vice-versa if it makes the code clearer. In some
algorithms, straightforward optimizations will be apparent. For others, Jacques Sakarovitch
and Sylvain Lombardy can suggest optimizations.
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Keep in mind that the performance of an algorithms is limited by a few (often one) bottle-
necks, and there is no need to optimize lines of code that only have a small influence on perfor-
mance. Keeping the code clear and readable is often preferable to a small but confusing tweak.
Part 2 details the cause of some bottlenecks encountered in VAUCANSON and how to optimize
them.

Test and benchmark the algorithm.

As of now, testing algorithms is difficult because the working version of VAUCANSON is not
in a stable state, some algorithms used in preconditions are missing, and the test suite is too
complex to be used for small changes.

The most practical way to test algorithms is currently to use TAF-KIT, available for LAL for
the contexts lal_boolean_automaton and lal_z_automaton. Basic tests are performed
as follows:

• Set up two clones of the VAUCANSON repository, one on exp/algos, the other one first
on yavgui, compile YAVGUI, then switch to exp/libbench and compile TAF-KIT.

• Activate the algorithm in the library by changing XNTERFACE into INTERFACE at the top
of the header (only for Automaton, not GenAutomaton).

• Compile the library needed for the TAF-KIT version you want to test on, then compile
TAF-KIT.

• Run algorithms using TAF-KIT in both repository clone.

• Visualize and compare results using YAVGUI in <build dir>/yavgui/src.

• Add relevant tests in the TAF-KIT test scripts (taf-kit/tests).

The benchmarking system is described in Part 3. Benchmarks are available for the most im-
portant algorithms, but a LAL version will sometimes have to be written:

• Duplicate the code from a *bench.hh file

• Change the context to lal_boolean_automaton or similar, then modify the benchmark
information and output directory to reflect the change.

• Run src/bench/generate_bench.sh all to generate the corresponding *bench.cc
file.

• Compile the new benchmark in the build dir.

Follow the process described in Part 3 to execute the benchmark.
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1.3 Using template specialization to write an algorithm on a
specific kind of automaton

Some algorithms operate only on a specific kind of automaton (eval, product, determinize),
or have different implementations for different kinds (realtime). A separate algorithm core is
written for each specific version of an algorithm. The front-end function remains the same and
performs a dispatch. In effect, one version of the front-end function is instanciated through the
template mechanism for each kind of automaton, therefore the dispatch is static.

Specific algorithm cores are templates specialized on a given kind. The only difference with
the generic algorithm core is that the kind parameter is explicitely named. Listing 1.5 shows the
implementation of realtime on LAL automata, which is a no-op since the automaton has no
epsilon transitions and all transitions are labeled by letters.

Listing 1.5 – Specialization of realtime on LAL.

1 // Specialization on LAL
2 template<typename S, typename AI>
3 void
4 do_realtime_here(const Automata<S, labels_are_letters>&,
5 Element<Automata<S, labels_are_letters>, AI>&,
6 misc::direction_type)
7 {
8 // A LAL automata is realtime
9 return;

10 }



Part 2

Optimizing algorithms

This part presents examples of optimizations made during the major changes in VAUCANSON.
Most of these optimizations can be applied on algorithms working with LAL automata.

Section 2.1 explains the consequences of changes in the automaton data structures and the
resulting performance gain.

Section 2.2 shows modifications performed on algorithms and how they improve perfor-
mance.

2.1 Design level

The major changes in VAUCANSON started as an effort to improve the performance of the li-
brary. Compared to its main competitor, OPENFST, VAUCANSON (LEGACY) has severe perfor-
mance issues: determinize is 6 times slower than the OPENFST version (D’Halluin, 2009b).
Compared with versions from other libraries, eval has a higher complexity.

While all causes of such performance issues in LEGACY are not clear, the high memory con-
sumption of the generic automaton structure was identified as a possible cause: In order to
maintain a high degree of genericity, all automata in LEGACY store maps of words and weights
on every transition. In practice, many automata and algorithms only require a letter and a
weight on each transition.

The goal of the main optimization at the design level is thus to allow lightweight data struc-
tures to be defined and used whenever applicable. This was formalized as a list of kinds, each
kind defining specific properties on automata that could allow data structures and algorithms
to be simplified (Galtier, 2009).

The algorithm accessible benefits directly from the design changes. It uses iterators on
successors to select all the states reachable from all initial states. While it does not perform any
operations on transition labels, a simpler data structure still yields a 20% gain in execution time
on large automata (see benchmarks in Part 3, Figure 3.8).
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2.2 Algorithm level

At algorithm level, three main optimizations are to be considered:

• Moving costly calls outside of loops.

• Reducing the use of series.

• Using optimized data structures.

Moving costly calls outside of loops.

In several algorithms, unnecessary computations are made within loops while they could ad-
vantageously be moved outside of loops. Listing 2.1 is a code excerpt from VAUCANSON illus-
trating a recurrent situation in algorithms. Listing 2.2 shows a more efficient way to achieve the
same result, as the construction of a monoid is moved outside the loop. Note that these cases
are not always bottlenecks, i.e. will not result in a huge boost of performance, but in the past, the
correction of a similar errors in quotient resulted in a 40% gain in execution time (D’Halluin,
2009b).

Listing 2.1 – Expensive loop in determinize, before optimization.

1 for_all_const_ (subset_t, j, s)
2 {
3 for (delta_iterator t = input.make_delta_iterator(*j);
4 ! t.done(); t.next())
5 {
6 monoid_elt_t w(input . s e r i e s _ o f (∗ t ) . s t r u c t u r e ( ) . monoid ( ), *e);
7 // Work
8 }
9 }

Listing 2.2 – Optimized loop in determinize.

1 monoid_t monoid ( input . s e r i e s ( ) . s t r u c t u r e ( ) . monoid ( ) ) ;
2 for_all_const_ (subset_t, j, s)
3 {
4 for (delta_iterator t = input.make_delta_iterator(*j);
5 ! t.done(); t.next())
6 {
7 monoid_elt_t w(monoid, *e);
8 // Work
9 }

10 }
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Reducing the use of series.

On LAL automata, series seldom have to be constructed, since each transition is labeled with
only one letter. Tests such as the one listed in Listing 2.3 can be rewritten as in Listing 2.4, which
is more efficient.

Listing 2.3 – Expensive test in determinize, before optimization.

1 monoid_elt_t w(monoid, *e);
2 if (input . s e r i e s _ o f (∗ t ) . get (w) != zero)
3 {
4 // Work
5 }

Listing 2.4 – Optimized test in determinize.

1 if ( t . label ( ) == ∗e && t . weight ( ) != zero)
2 {
3 // Work
4 }

In some cases, iterations on the support of a series can be completely avoided. In product,
when series are stored of transitions, a costly test is performed on pairs of transitions. When
only letters are stored on transitions, this test becomes much simpler. As a result, product is
65% faster on LAL automata than on series automata (Part 3, Figure 3.6) and determinize is
60% faster (Part 3, Figure 3.7), although some of the gain comes from lighter automata struc-
tures, as discussed in Section 2.1.

Using optimized data structures.

In some cases, data structures used in algorithms to store temporary results are not optimal. In
LEGACY eval, a vector is used to store temporary weigths. The size of this vector is equal to n
the number of states of the automaton on which a word is evaluated. The vector is traversed m
times, with m the size of the word, resulting in a complexity of O(n×m).

In many cases, and especially when the automata on which eval is called is deterministic,
the vector used to store weights is sparse. Replacing it with a map is more efficient, and the
complexity in practice becomes O(m) on determinisitic automata and O(a × log(a) ×m), with
a << n (on automata with a transition between any two states, a = n, but automata with many
states rarely have this property).

The optimized version of eval has a linear complexity on deterministic automata and is
much more efficient than the LEGACY version (Part 3, Figure 3.5).



Part 3

Benchmarks and version comparison

This part contains the measure of the performance impact of the changes made to VAUCANSON.

Section 3.1 describes the benchmarking process and how to reproduce the results presented
in the report.

Section 3.2 presents some considerations related to the use of gcc and optimization flags.

Section 3.3 gathers the benchmarks related to the rewriting of VAUCANSON’s structure, inter-
face and algorithms.

3.1 Benchmarking in VAUCANSON

This section describes the architecture of the benchmarking system and provides examples on
how to use it to evaluate the impact of changes in VAUCANSON.

The benchmarking system is located in src/bench. The file src/bench/README contains
information that is not covered in this section. The benchmarks are available in the branch
exp/libbench (before the major changes) and exp/algos (during the major changes).

3.1.1 Organization

The benchmarking system is centered around a collection of programs that run the most sig-
nificant algorithms in VAUCANSON on a set of predefined input automata. These programs are
generated from the cource code files in src/bench/<dir> where <dir> is the name of an
algorithm.

Each directory contains one or several *bench.hh files that contain the benchmark code
equipped with CBS macros. For each *bench.hh file, a corresponding *bench.cc file is gen-
erated during the bootstrap step or by calling ./generate_bench.sh all from src/bench.

The current benchmarks cover the 8 most important algorithms in VAUCANSON. Until all
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the rewriting is done, there is no need to add benchmarks on other algorithms. For more in-
formation on how to write benchmarks, see the description of CBS (D’Halluin, 2009b): http://
lrde.epita.fr/~d-halluin/include/files/csi-techrep/200905-benchmarking.
pdf.

Each benchmark program is run several times for increasing values of a parameter n, which
in most cases refers to the size of the automaton used during the run. In each directory the file
Makefile.bench shows the default range used for n so that all the runs of a benchmark take
a few minutes or less on a 2GHz Intel Centrino with 1GB of RAM.

3.1.2 Input automata

Each benchmark is run on a predefined automaton. The description of each predefined au-
tomaton is located in src/bench/common/README_AUTOMATA. The most used predefined
automata are:

• aut_ladybird: non-deterministic automaton on the ‘abc’ alphabet, has n states in its origi-
nal form and 2n states once determinized. This is the most used benchmarking automaton.

• aut_dnk: deterministic automaton with n states and k (typically 17) transitions for each
state. For the state i, the jth transition goes to the state i+j and is labeled by the jth letter of
the input alphabet (the letters a-z). This automata can be used as an alternative reference
for tests on a deterministic automaton when neither determinized nor product are
available. In the eval benchmark, the automaton is constructed with 2n states instead of
n.

• aut_b: A simple automaton that counts the number of ‘b’ in words that are evaluated.
Benchmarks using this automaton take the nth power of the automaton.

3.1.3 Basic use

In the branch exp/libbench, all benchmarks can be run sequentially by using make bench
from the build dir or separately by using make bench in <build dir>/src/bench/<dir>.

In the branch exp/algos, only part of the benchmarks are currently available (those on LAL
automata). They have to be compiled and run one by one. Listing 3.1 shows how to compile
and run a benchmark.

Listing 3.1 – Compiling and running benchmarks.

$ pwd
/home/fre/work/vaucanson/vaucanson/_build-listg/src/bench/eval
$ mkdir aut_dnk_lal
$ make eval_aut_dnk_lal_bench
$ for n in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15; do
./eval_aut_dnk_lal_bench $n; done;

http://lrde.epita.fr/~d-halluin/include/files/csi-techrep/200905-benchmarking.pdf
http://lrde.epita.fr/~d-halluin/include/files/csi-techrep/200905-benchmarking.pdf
http://lrde.epita.fr/~d-halluin/include/files/csi-techrep/200905-benchmarking.pdf
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When benchmarks are run, results are printed on the standard output and written to files
in separate subdirectories (one per benchmark). The output files can be processed to extract
parameters and results in GNUPLOT format, allowing plots to be generated easily. Listing 3.2
is an example of gnuplot script that gives an appearance similar to the benchmark plots is this
report. Listing 3.3 shows how to extract the benchmark data and plot the results. Figure 3.5 is
the resulting image file.

Listing 3.2 – Example of GNUPLOT script file.

$ cat eval_dnk.plot
set term postscript eps enhanced
set output "eval_dnk.eps"
set size 0.7,0.7

set title "Benchmark for eval (Automaton D_n_k)"
set xlabel "Automaton complexity"
set ylabel "CPU time (ms)"
set key top left
plot ’eval_dnk_map.data’ using 1:2 title "Map implementation" smooth

unique w linespoints pt 5 lc 2 lw 2 lt 1, \
’eval_dnk_vector.data’ using 1:2 title "Vector implementation"

smooth unique w linespoints pt 5 lc 1 lw 2 lt 1

Listing 3.3 – Plotting result data.

$ pwd
/home/fre/work/vaucanson/vaucanson/_build-listg/src/bench/eval
$ mkdir aut_dnk_lal

Run benchmark on aut_dnk_lal ( vector version )
$ mv aut_dnk_lal aut_dnk_lal_vector
$ mkdir aut_dnk_lal

Run benchmark on aut_dnk_lal (map version )
$ mv aut_dnk_lal aut_dnk_lal_map
$ ../../../../cbs/bin/plot.pl -p "_n_" -r "time" -d aut_dnk_lal_map
> eval_dnk_map.data
$ ../../../../cbs/bin/plot.pl -p "_n_" -r "time" -d

aut_dnk_lal_vector
> eval_dnk_vector.data
$ gnuplot eval_dnk.plot
$ display eval_dnk.eps&
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3.2 Compilers and optimization flags

This section shows some of the effect of compilation flags for different versions of gcc on the
performance of algorithms.

3.2.1 Recommendation for default flags

VAUCANSON has default optimization flags set to -g -O2, which is the Autotools default value.
With -O2, functions are not inlined without the inline keyword. Since VAUCANSON relies
heavily on wrappers and on the construction of small objects, and the inline keyword is rarely
used in the library, this leads to a significant difference in performance between algorithms
compiled with -O2 and algorithms compiled with -O3. Figure 3.6 and Figure 3.7 illustrate this
point, with performance gains of up to 30% in the -O3 version.

Therefore, it is recommended to set the default flags in VAUCANSON to -O3. Should the de-
velopment of new features require the use of other flags, these can be set during the compilation
step by adding CXXFLAGS="-g -O2" when calling configure.

The negative impact on compilation time of using the -O3 flag was not measured precisely,
but was not perceived when compiling small parts of the library separately.

Note that the benchmarks made on LEGACY (D’Halluin, 2009b) used the default -g -O2
flags. They were run again with -O3 and showed the same performance gain as the exam-
ples in Figure 3.6 and Figure 3.7. E-mail florent.dhalluin@gmail.com for details. These
benchmarks can also be reproduced on seattle from the exp/libbench branch.

3.2.2 Other observations

Inlining plays such an important role in the performance of compiled code in VAUCANSON that
execution can take twice as long if automatic inlining (when using -O3) is improperly done.
Jérôme Galtier studied the effect of inlining on code performance and this subsection presents
some of his results. The benchmarks are based on eval (vector version), on aut_dnk with
n = 217 and k = 17.

Previous benchmarks showed a significant performance difference between LISTG and BMIG
(D’Halluin, 2009b), but the cause of this gap remained unclear. Figure 3.4 shows that the com-
piler version and automatic inlining efficiency may have a more significant influence on BMIG
than on LISTG.

Also, using CBS to profile algorithms (D’Halluin, 2009b) has an overhead cost. This cost
varies on the version of gcc and compilation flags used. For some versions on gcc, inlining
plays an important role in the overhead cost because the calls to the benchmark measures are
not inlined as they should be. Figure 3.4 shows lower performance when CBS is used, but with
optimized inlining, the cost of the measures becomes low (< 5%, while in some cases it could
reach 150%).

Note that in this context, using CBS refers to equipping parts of the algorithms, including
loops, with calls to the CBS timer. In the benchmarks, calls to CBS are only wrapped around
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algorithms, at an unsignificant cost.

Profile-Guided Optimization (PGO)

Older versions of gcc produce less optimized, slower code than more recent versions. Indeed,
automatic inlining appears to be less efficient with old versions of gcc. To optimize inlining
during compilation, the profile of function calls can be generated beforehand using the gcc
option --fprofile-generate and used with --fprofile-use. This is refered to as Profile-
Guided Optimization (PGO) and has a positive influence on performance (Figure 3.4).

With PGO enabled, LISTG and BMIG have similar performance on this test.

Compiler version Use of CBS PGO Time (BMIG) Time (LISTG)
g++ 4.4 × × 26s 24s

× 25s 23s
g++ 4.4 × 60s 57s

60s 57s
g++ 4.3 × 65s 62s

25s 25s
g++ 4.2 × 58s 71s

67s 24s

Figure 3.4 – Comparison of compilation options on the performance of eval.

3.3 Results

This section contains the benchmark results run on VAUCANSON’s algorithms at several stages
of the rewriting process. They illustrate the gain of performance exhibited in the report.

The benchmarks were run on an Intel Centrino 2GHz laptop with 1GB of RAM. More bench-
marks were run on different hardware configurations (the seattle machine at LRDE and a desk-
top Intel QuadCore) prior to the major rewriting of VAUCANSON (D’Halluin, 2009b). They are
to be run again once VAUCANSON reaches a stable state (see /work/d-halluin/vaucanson
on seattle).

Figure 3.5 through Figure 3.8 were generated using the method presented in Section 3.1. To
get the complete benchmark output data, e-mail florent.dhalluin@gmail.com.
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3.3.1 Eval

Figure 3.5 shows benchmark runs for eval on the automaton aut_dnk. As detailed in Sec-
tion 2.2, using a vector to store the intermediate weights during the evaluation of a word on
an automaton is in numerous cases very expensive compared to using a map. The map im-
plementation lowers the complexity of the algorithm and the benchmark shows an important
performance gain as the input automaton and word grow larger. Note that in the benchmark
runs, the automaton has 2n states and the input word 2n letters.
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3.3.2 Product

Figure 3.6 shows benchmarks runs for product on the automaton B1 in the boolean context.
While the optimization flags used have an influence on the algorithm’s performance and some
code optimizations were made, the most significant gain comes from the lightweight LAL struc-
tures.
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3.3.3 Determinize

Figure 3.7 shows benchmark runs for determinize on the Ladybird automaton. When using
the best optimization flags available with the LAL structures, the performance of determinize
is close to the OPENFST version. Note that during a benchmark run on OPENFST, loading
and saving the input automaton from the hard disk in included in the execution time, while
the VAUCANSON benchmarks only measure the algorithm execution time. Nevertheless, the
performance gain obtained through the rewriting process is significant.

Most of the gain comes from the LAL structures and from the removal of series, as the rewrit-
ing was straightforward, with some cleaning up but no other code optimization.
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3.3.4 Accessible

Figure 3.8 shows benchmark runs for accessible on a automaton with a transition between
any two states (complete graph with n vertices). The accessible algorithm is a pure graph
function, which means it only depends on the underlying graph implementation. Even so, there
is a small performance gain with the LAL implementation. The prototype of the algorithm was
cleaned up but the algorithm core was not changed in any other way.
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Conclusion

As of January 6th 2010, VAUCANSON is still in an unstable state between two major versions.
This report is written from the point of view of the development team, as a short guide to the
work in progress. It focuses on the visible part of the major changes ongoing in VAUCANSON,
algorithm rewriting and benchmarks.

Adapting VAUCANSON algorithms to a simple AUTOMATA interface is a task on several lev-
els. Algorithms operating on the graph structure require no change in the core algorithm; only
the prototype of the front-end function should be adapted to the preferred way of declaring
ELEMENT types. Algorithms that manipulate series must be adapted to the new automaton
kinds: most of them can be rewritten to directly access words and weights, which improves
their execution time by up to 60%. The complexity of some algorithms may be improved by
replacing temporary data structure with more efficient ones: the complexity of eval improved
from O(m×n) (m = word length and n = automaton states) to O(m) on deterministic automata
by using a map to store weights instead of a vector.

This adaptation and optimization of algorithms takes longer than expected because tests are
difficult to run. Benchmarks are also not thorough: they should be performed on more input
automata in order to give a better picture of the performance of VAUCANSON. As of January
6th 2010, only 5 of the 30 to 40 algorithms in VAUCANSON are fully adapted to the kind system,
with several more rewritten but not tested thorougly.

Nevertheless, the results obtained so far are good: algorithms that take advantage of the
lightweight data structures for the LAL kind (eval, product, determinize) run 60% faster,
and even pure graph algorithms (accessible) run 20% faster. Many opportunities to optimize
algorithm code were identified and more should appear in the remaining 20 to 30 different core
algorithms that have yet to be rewritten.

Observations about compiler versions and compilation options shed some light on the impor-
tance of inlining in VAUCANSON. Automatic inlining, as performed when specifying the -O3
compilation flag, may improve performance by up to 30%. Better heuristics for automatic in-
lining are available through Profile Guided Optimization, although its impact on performance
was only measured on one specific case that gave positive results of limited scope.

The results obtained so far show that the performance of VAUCANSON can be improved while
maintaining genericity: efficient data structures and algorithms can be designed for automata
that verify specific properties, while all other automata can still be manipulated through expen-
sive but less restrictive data structures and algorithms.
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Branch.
Branch on the VAUCANSON git repository. master contains LEGACY (with an outdated
benchmarking system). exp/libbench contains LEGACY and the latest benchmarking
system. exp/algos contains the current latest state of the rewriting process. exp/kinds
and exp/interface contain different parts of the rewriting process already integrated
into exp/algos (double check this). The other branches are not related to the rewriting
process. yavgui contains the C++ GUI for VAUCANSON.

CBS.
CBS is a benchmarking library developed for VAUCANSON. It is used to measure execu-
tion time and memory usage, and to present benchmarks in a readable form (D’Halluin,
2009b).

Current version, currently.
Refers to the state of the branch exp/algos at the time this report is written (January 6th
2010). Most of the work is still in progress and VAUCANSON is in an unstable state.

Kind.
Refers to the set of properties of an automaton (restrictions on the labels and weigths
stored on transitions, behavior of some algorithms). Four kinds are defined (LAL, LAA,
LAW, LAS), but currently, only LAL is available. See the definition of the kinds (Galtier,
2009), and the glossary entry for LAL.

LAL.
The only new kind of automaton currently implemented. Labels are stored using the type
char, while weights remain dependent on the semiring on which that automaton is de-
fined (Galtier, 2010).

LEGACY.
The implementation of VAUCANSON before the major changes to the interface, the imple-
mentation of the LAL kind, and the rewriting of algorithms.
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Major changes.
Refers to the changes in VAUCANSON designed early 2009 and worked on since July 2009.
They include the implementation of the kinds, the interface changes and the rewriting of
algorithms in progress since LEGACY.
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