
Theory of objects and application to the C++ language

Ignacy Gawędzki

Technical Report no0219 - October 2002

Many concepts described in the OOP literature are used in generic programming paradigms. The C++ language, though
ubiquitous in industrial applications, does not natively provide the constructs to express these concepts naturally and
forces programmers to use heavy template meta-programming techniques. While this permits the application of these
concepts, it also renders the code very difficult to maintain.

We present an effort to augment a subset of the C++ language by adding natural support for simple constructs that
enable the application of the wanted concepts. Besides, we establish simple rewriting rules to convert this extended
subset to standard heavily-templated C++, implementable using code transforming tools.

De nombreux concepts décrits dans la littérature POO sont utilisés dans les paradigmes de programmation générique.
Bien qu’il soit un langage répandu dans l’industrie, le C++ ne permet pas d’exprimer ces concepts naturellement et oblige
le programmeur à utiliser des techniques de méta-programmation par utilisation lourde de templates. Ces techniques
permettent l’application de ces concepts mais rendent le code difficile à maintenir.

Nous présentons une approche qui consiste à augmenter un sous-ensemble du C++ en ajoutant le support syn-
taxique naturel permettant d’exprimer les concepts voulus. Par ailleurs, nous établissons un ensemble de règles simples
de conversion vers du C++ standard, en vue de les implémenter à l’aide d’outils de transformation de programmes.

Keywords
Syntactic sugar, object-oriented programming, scientific computing, generic programming, static meta-programming,
advanced C++

Laboratoire de Recherche et Développement de l’Epita
14-16, rue Voltaire – F-94276 Le Kremlin-Bicêtre cedex – France

Tél. +33 1 53 14 59 47 – Fax. +33 1 53 14 59 22
lrde@epita.fr – http://www.lrde.epita.fr

lrde@epita.fr
http://www.lrde.epita.fr

Contents

1 Introduction 3
1.1 The context . 3
1.2 Implications . 3
1.3 Existing answers . 4
1.4 Our goals . 4
1.5 Report outline . 4

2 Typing in objects theory 5
2.1 Typing basics . 5
2.2 Subsumption and subtyping . 5
2.3 Object typing . 7
2.4 Objects’ types and objects’ classes . 7
2.5 Subclassing (inheritance) . 7
2.6 Some practical examples . 7
2.7 The relation of matching . 9
2.8 Match-bounded parametric polymorphism . 10
2.9 F-bounded parametric polymorphism . 11
2.10 Virtual types . 12

3 Typing in C++ 14
3.1 The C++ as it was designed . 14
3.2 What we can do with it . 15

3.2.1 Recurring static hierarchies . 15
3.2.2 Rewriting the Point/ColorPoint code . 16
3.2.3 Using match-bounded parametric polymorphism . 18
3.2.4 Using virtual types . 18

3.3 How it could look like . 20
3.3.1 Rewriting Point/ColorPoint . 21
3.3.2 Rewriting Circle/ColorCircle . 21
3.3.3 Rewriting Cow/ . 22

4 Transformation rules 23
4.1 Information gathering . 23
4.2 Scope resolution . 23
4.3 Implementation in Stratego . 23
4.4 Transformation examples . 24

5 Conclusion 26
5.1 Project status and perspectives . 26
5.2 Personal conclusion . 26

6 Bibliography 27

Chapter 1

Introduction

The design of a programming language can be a lengthy process, depending on the goals one wants to
achieve. It is clear that an efficient compiler implementation precedes widespread use of a language and is
time consuming as it requires maturing through testing and optimization. Meanwhile, language theorists go
forward in formalizing new concepts that are very attractive for software engineers.

In the field of software engineering for scientific computing, the application of these new concepts is
desirable, as we shall see later, but the design of a new language from the ground up out of reach or simply
pointless for the reasons given above.

1.1 The context

First of all, we set ourselves in the realm of static generic programming in C++ which is very much desirable
in the field of scientific computing.

Generic programming The reasons for the preference of generic programming are simple and pretty much
the same for any field of software engineering: code factorization and reusability. Generic code is written at
a higher level of abstraction in respect to some input data as some data types, structures and/or parameters.
Therefore, the bet is that the process of specialization of the generic code for some given input data will
be simpler and faster — in fact in most of the cases it can be automated — than the writing of the whole
code anew. It derives from this point that the simple fact of abstracting some algorithm is a process of code
factorization: the same code can be used for various data inputs. It is then clear that code factorization allows
simpler code reuse, as the specialization can be applied later and in other contexts.

Static programming The reasons for the preference of static programming are more specifically related to
the field of scientific computing, which often implies huge amounts of data to process. The primary goal is
then to produce efficient code, in order to perform the huge computation tasks as fast as possible. Compil-
ers are required to perform specializations given the static information about input data and then optimize
the code as much as possible, in order to achieve code efficiency comparable to dedicated code. The other
important aspect of static programming is security. The compiler is given all the typing information and
guarantees that if the code compiles, it is type-sound and no dynamic type error can ever happen. This has
the interesting implication that the compiler can thus remove any dynamic typing checks from the resulting
code, rendering the execution even more efficient.

The C++ language It has the advantage of being a widespread industrial class language. The compilers
benefit from the experience acquired for C compilers and thus can produce efficient code. In addition, it
happens that it is possible to write static generic programs in it, so it is an interesting choice for scientific
applications.

1.2 Implications

The use of C++ presents some annoying drawbacks: writing code in C++ using static genericity paradigms
implies heavy use of template meta-programming techniques.

1.3 Existing answers 4

Lengthy compilations Compilation times tend to be very long. This is caused by the requirement of the
compiler to execute the meta-programming clauses, which means lots of template instantiations. In other
words, it take a long time for the compiler to specialize and optimize the generic code we have written.

Cryptic error messages Error messages become cryptic, because errors can have consequences buried deeply
into template instantiation.

Cryptic code Worse point of all, the code that one has to write in order to apply static genericity paradigms
is very complicated, making it more difficult to maintain and leading more easily to errors.

1.3 Existing answers

The problem of lengthy compilations is not really a concern in scientific computing, since we can ever as-
sume that computing time is longer by several orders of magnitude. In other words, we can afford lengthy
compilations.

The problem of cryptic error messages is not our concern in this report, but is addressed in some efforts (see
[7] for example). Addtitional static checks allows for errors to be detected very early in the instantiation
process, hence shorter error messages that can even be customized to some extent.

Throughout this report, we focus on the last point, as we present an effort to “augment” a subset of the C++
language, by adding support for new constructions, in order to let us write code that is more readable.

1.4 Our goals

Observations First, we obviously will not change the C++ standard, as any slight change proposal takes a
long time to make it into the standard and our concerns are unfortunately not the standard makers’ priority.
Second, the concepts of object-oriented programming we want to use are simple, as we shall see in chapter 2.
Lastly, we have powerful tools for the application of program transformation (see [3]).

Decision It becomes clear that we want to transform some sort of “augmented” C++ into standard C++ as
described in [1]. We thus benefit from mature C++ compilers and let us switch them as they change or evolve.

1.5 Report outline

We first present some interesting concepts presented throughout the literature on objects theory. Then we
present the C++ features as they have been provided by its designers, the twisted way in which we can use
them and the way we would like them to be. Lastly, we present the way in which we can transform this
“augmented” C++ into standard C++.

Chapter 2

Typing in objects theory

2.1 Typing basics

Typing in object oriented languages has been a topic of great interest during the last decade.
The type checking rules of a given language define the way code soundness has to be checked to prevent

obviously bad instructions from being evaluated. For an extensive introduction to typing theory, please refer
to [6] and [2].

In its simplest form, a type can be seen as the set of all values that have that type.

A

For example, Int can be defined to be the set of integers, Float can be defined as the set of floating-point
values.

To say that a particular variable a belongs to a particular set, i.e. that it is of type A, we can simply write:

a : A

The type of a tuple, similarly as in set theory, is a product of several types.

(a1, a2, . . . , an) : A1 ×A2 × · · · ×An

For example, consider the couples where the first member is an integer and the second is a floating-point
value. The type of the couple is simply Int × Float .

Record types are similar to tuples, as they are a type composition of the members’ types, up to the fact
that order does not matter (not from a typing standpoint).

{a1, a2, . . . , an} : {A1, A2, . . . , An}

Formally, functions are also variables, but their type includes the type of the arguments — all the argu-
ments can be seen as a tuple — and the type of the returned values.

f : A1 ×A2 × · · · ×An → B

2.2 Subsumption and subtyping

To apply generic programming paradigms, we want support for polymorphism, i.e. functions that can be
applied to values of several different types in order to achieve reusability. There are several forms of poly-
morphism that can coexist in a given language, as shown by Cardelli and Wegner in [6]. Its simplest form is
inclusion polymorphism which is based on subsumption, i.e. the ability of values of some type to be seen
as values of another type. Consider, for example, a function that takes one argument, an integer encoded on
16 bits and returns a boolean (that function could for example check if the value is positive, or if the number
is a prime number). From a practical standpoint, the difference between integers encoded on 16 bits and inte-
gers encoded on 8 bits is only the range of values they can hold, but the way other operations are performed
does not change. Suppose we want to apply the function on values encoded on 8 bits. We know that in terms
of range, any value encoded on 8 bits also fits in a 16 bits variable. Therefore, we have the guaranty that

2.2 Subsumption and subtyping 6

any value encoded on 8 bits can be encoded on 16 bits without loss. Then we say that 8 bits values subsume
16 bits values.

If we consider types instead of values, we are talking about subtyping, which is expressed in the following
manner:

A <: B ⇐⇒ (a : A =⇒ s : B),∀a

We say that “A is a subtype of B”.
Let Short be the type of integers encoded on 8 bits and Long the type of integers encoded on 16 bits.

Another way of saying that values of type Short subsume values of type Long is to say that Short is a subtype
of Long .

If we consider tuples, subtyping for composite types is defined as follows:

A×A′ <: B ×B′ ⇐⇒ A <: B or A′ <: B′

Here, we see that the × operator does not change the direction of the subtyping relation for both of its
members. It is said to be covariant in respect to the <: relation for both members, because their types must
change along with the composite type.

Similarly, we define subtyping for record types:

{A1, . . . , An} <: {A′
1, . . . , A

′
m} ⇐⇒ m < n and ∀i1≤i≤m, Ai <: A′

i

Note that a record type’s subtype can have more members, as long as it provides at least those of the
original type. This is illustrated by figure 2.1.

A'A1 1

A'2

A'3

A

A

A

A

2

3

4

5

Figure 2.1: Subsumption of record types

The subtyping relation is also defined for function types:

S → E <: S′ → E′ ⇐⇒ S′ <: S and E <: E′

The → is covariant in for the return type (the second member) but not for the arguments’ type. It is said
to be contravariant for its arguments’ type, because it is required to change in the opposite direction than the
function type.

f

f '

S'

S'

S E E'

E'

Figure 2.2: Subsumption of function types: we want f <: f ′.

This behavior may seem counterintuitive at first glance but can be explained easily. If we bear in mind
that subtyping comes from the need for subsumption, we must remember that any value of a subtype of the
original type must fit where a value of the original type is expected. The covariance of the return type is due

7 Typing in objects theory

to the fact that whatever the function returns must fit into the assumed return type (i.e. the return member
of the original type). The contravariance of the arguments’ type is simply due to the fact that it must hold at
least all the possible values that fit into the original arguments’ type (see figure 2.2).

If we look at some variable that can be updated (i.e. not only read but also written to), we see that its type
is in fact invariant, i.e. it has no non-trivial1 subtypes. This comes from the fact that the value can be read,
implying covariance and written to, implying contravariance, hence invariance (see figure 2.3).

A A'

Figure 2.3: Subsumption of mutable variable types

2.3 Object typing

Now let’s go a bit further and see how we can consider objects’ types. An object’s type is what is seen from
the outside, i.e. it must take into account only public members. An object’s type is in fact a record type of the
public attributes and methods:

o : {A1, . . . , An,M1, . . . ,Mm}
Then, object type subtyping is exactly the same as record type subtyping.

2.4 Objects’ types and objects’ classes

So far, we have talked about values/objects and types, but nothing about classes. It is time to present some
distinctions that are used in the object typing literature. In OOP, there are two kinds of languages: object-
oriented and class-oriented.

In the first kind, there are constructions that allow ad hoc object construction. One can either create a
wholly new object by composition of its attributes and methods or create a new object by taking an existing
object and by changing or adding some attribute(s) or method(s).

In the second kind, objects are created by class instantiation. One must be careful not to mix up types
and classes. These are utterly different concepts. As we have said before, a object’s type is its external
“appearance” (sometimes called signature or interface), whereas its class is a description of its structure,
which comprises not only public but also private type information and initial values for all the members.

2.5 Subclassing (inheritance)

Having introduced classes, we can now present another important concept: class inheritance (denoted <C).
It is the ability to define new classes by reusing some existing class, in a way similar to object creation by
reuse in object-based languages. Therefore, one must remember that inheritance does not mean subtyping
and that inheritance does absolutely not imply subtyping. It happens that some languages (to which C++
belongs) require subclasses to produce objects in subtyping relation and thus bringing only confusion to
programmers.

2.6 Some practical examples

To introduce some additional concepts, we shall see some examples that exhibit problems solved by these
concepts. The following code examples are written in a pseudo language, bearing resemblances to pseudo-
languages used in the literature (the example is taken from [4]).

Suppose we want to define a class Point used to produce objects of type PointType.
1Trivial subtypes exist for record types: they only differ by the order of the members.

2.6 Some practical examples 8

class Point
2 var

x := 0 : Int;
4 y := 0 : Int

methods
6 function eq(rhs : PointType) : Bool

begin
8 return x = rhs.x & y = rhs.y

end
10 end class ;

This class is interesting because it has a binary method, i.e. a method that takes an argument of the same
type as objects generated by the currently defined class.

As we see in the code above, the dereferences on line 8 are legal, because rhs being of the type of the
objects generated by the current class is guaranteed to have the x and y attributes.

Now suppose we want to reuse that code in order to define another class called ColorPoint , supposing
that we are allowed to change the method’s type. This is very convenient for classes with binary method
as we would like to assume that the argument provides the same attributes and methods as the currently
defined class.

class ColorPoint inherits Point
12 var

c := black : ColorType
14 methods

function eq(rhs : ColorPointType) : Bool
16 begin

return x = rhs.x & y = rhs.y & c = rhs.c
18 end

end class ;

By writing, on line 11, that ColorPoint inherits from Point , we say that we want the class ColorPoint to
contain all the attributes and methods of Point . But here, we redefine the eq() method to take into account
the additional attribute.

On line 17, we can see that the dereferences are correct, provided that rhs has the type ColorPointType as
requested (we have the x , y and c attributes).

Although the two classes are by definition in the subclass relation,

ColorPoint <C Point

the types of the generated objects are not in the subtype relation:

PointType = {Int , Int ,PointType → Bool}
ColorPointType = {Int , Int ,ColorType,ColorPointType → Bool}

PointType ≮: ColorPointType
ColorPointType ≮: PointType

The first clause is evident, because PointType has less attributes than ColorPointType. Then if ColorPointType
where a subtype of PointType, we would have to have the following relation:

ColorPointType → Bool <: PointType → Bool

Then by application of the subtyping relation on functions for the method eq() , we see that we would
have to have:

9 Typing in objects theory

PointType <: ColorPointType

Which we have proved false, hence the second clause.

Then, we are forbidden to write the following code:

20 var
p1 : PointType;

22 p2 : ColorPointType
begin

24 p2.eq(p1);
p1.eq(p2)

26 end

The method calls on lines 24 and 25 are not type-sound, because PointType ≮: ColorPointType and
ColorPointType ≮: PointType respectively. This is good if we do not plan to compare Points with ColorPoints.

Now suppose we would like to reuse the method defined in the parent class in the body of the redefined
method in the child class without having to re-write it entirely. We could use the super keyword to access the
parent class’s method eq() . But we would not be allowed to call it within the body of the redefined method
with the rhs argument. This is simply because the eq() method of the parent class takes an argument of type
PointType and we want to apply it on an argument of type ColorPointType. This fact is pretty annoying since
we know that the idea is sensible, as all the required attributes are present in the argument for a successful
execution of the parent class’s method.

2.7 The relation of matching

To allow easy handling of binary methods, we have first to introduce a special type called SelfType (dubbed
MyType by Bruce in [4]). It stands for the type of the objects generated by the currently defined class. Now
we simply replace the type of the method’s argument with SelfType.

class Point
2 var

x := 0 : Int;
4 y := 0 : Int;

methods
6 function eq(rhs : SelfType) : Bool

begin
8 return x = rhs.x & y = rhs.y

end
10 end class ;

class ColorPoint inherits Point
12 var

c := black : ColorType
14 methods

function eq(rhs : SelfType) : Bool
16 begin

return super .eq(rhs) & c = rhs.c
18 end

end class ;

For the purpose of typechecking, SelfType is valid only in method definitions and nowhere else. It is
supposed to be an unconstrained free type variable.

Now, the code on lines 8 and 17 is valid.

2.8 Match-bounded parametric polymorphism 10

We can now introduce the relation of matching (denoted <#): relation of subtyping with the supposition
that SelfType matches the type of the objects generated by the currently defined class.

Thus we have a straightforward implication, if we suppose we cannot change methods’ types in sub-
classes.

C <C C ′ =⇒ ObjectType(C) <# ObjectType(C ′)

Another implication is of course that subtyping implies matching:

A <: A′ =⇒ A <# A′

Thanks to the matching relation, the above code is correctly typed and prevents us from comparing Points
with ColorPoints.

On the other hand, we are stuck here if we want polymorphism over Points and ColorPoints. Inclusion
polymorphism is not enough.

2.8 Match-bounded parametric polymorphism

To solve this, we have parametric polymorphism. It is a way of explicitly abstracting some parameters
such as type or integer variables in a function or class definition in order to express identity relations on
the parameters that the use of inclusion polymorphism does not allow. The C++ language allows the use of
parametric polymorphism with the use of templates.

Without parametric polymorphism, we have been required to write some code twice, one for PointType
and one for ColorPointType.

function foo(p1 : PointType, p2 : PointType) : Bool
2 begin

return p1.eq(p2)
4 end

function foo(p1 : ColorPointType, p2 : ColorPointType) : Bool
6 begin

return p1.eq(p2)
8 end

This seems a bit silly, since it would only require the compiler to know that p1 and p2 are of the same
type to factorize this into one polymorphic function.

function foo(PType, p1 : PType, p2 : PType) : Bool
2 begin

return p1.eq(p2)
4 end

If a function has two parameters of the same type, inclusion polymorphism allows the application of the
function on two objects whose types may be subtypes of the required type independently. One cannot express,
for example, that the two exact types have to be the same.

Moreover, parametric polymorphism allows polymorphism on types that are in no relation at all. In the
theoretical case, this has the bad property of not being typecheckable without prior specialization of the code
for the specific types it is applied on. This is the way C++ compilers do to typecheck templates. This is due
to the fact that no assumption can be made about the parameters, since they are presented as completely
abstract types.

To overcome this problem, theorists have introduced a way to constrain the parameters in order to allow
typechecking to be performed on the partially abstracted code: bounded parametric polymorphism. It is
done by simply bounding the parameter, constraining it to be a subtype of a given known type. This way, the
parameter is guaranteed to provide at least methods and attributes of the bound.

11 Typing in objects theory

Unfortunately, this does not solve in turn the case where we want to abstract over types of objects with
binary methods. This requires us to use the matching relation to express the bound, hence match-bounded
parametric polymorphism.

Now we can rewrite the foo() function to be polymorphic on types that match PointType:

function foo(PType <# PointType, p1 : PType, p2 : PType) : Bool
2 begin

return p1.eq(p2)
4 end

With this code, we prohibit the use of foo() with two parameters of different type or of type that does
not match PointType.

Another example often cited in the literature is the following:

class Circle(CenterType <# PointType, origpoint : CenterType)
2 var

center := origpoint : CenterType;
4 radius := 1 : Int

methods
6 function getcenter() : CenterType

begin
8 return center

end;
10 procedure setcenter(newcenter : CenterType)

begin
12 center := newcenter

end
14 end class ;

class ColorCircle(CenterType <# ColorPointType, origpoint : CenterType)
16 inherits Circle(CenterType, origpoint)

var
18 color := red : ColorType

methods
20 function getcolor() : ColorType

begin
22 return color

end;
24 procedure setcolor(newcolor : ColorType)

begin
26 color := newcolor

end
28 end class ;

Here, the interesting thing is that we parameterize classes to allow clever changes in the types of attributes
and methods. This way, we do not only allow for easy definition of binary methods, but also for other
methods and attributes which type change along inheritance. The ColorCircle class inherits all the attributes
and methods of Circle but binds the CenterType parameter tighter.

2.9 F-bounded parametric polymorphism

F-bounded parametric polymorphism, introduced for OO programming by Canning et al. in [5], is another
way of solving the problem of polymorphism over types that exhibit some interesting aspects. This time,

2.10 Virtual types 12

the bound is a type function applied on the parameter itself. It allows to express structural constrains on the
parameter without intrusion into the classes’ definitions.

A good example is the following code:

ftype Movable(Type)
2 begin

move : Real * Real -> Type
4 end;

procedure translate(PType <: Movable(PType), point : PType, x : Real, y : Real)
6 begin

point.move(x, y)
8 end;

We first define a function over types that produces a type that provides a method move() which takes
two reals as arguments and returns the type itself. It allows us to then define a translate function that can
only assume that the point parameter has the move() method that has the type Real × Real → PType.

2.10 Virtual types

The introduction of SelfType allowed to change binary methods’ argument type covariantly while ensuring
the good usage of the methods. If we extend this trick to any type, we can then change any argument’s type
covariantly in a secure way. This is where virtual types come in handy (see [10], for more information on
static virtual types).

A virtual type can be seen as a partial type definition inside a class. Nevertheless it has to be completely
defined in the exact class, otherwise there is no way to produce concrete objects.

The typical example used to illustrate this is the following code. We first define a Food hierarchy:

class Food
2 ...

end class ;
4 class Grass inherits Food

...
6 end class ;

class Meat inherits Food
8 ...

end class ;

Then we define the Animal hierarchy that contains (see line 12) the definition of a virtual type FType that
is initially match-bounded to FoodType , the type of objects generated by the Food class.

Then in the Cow class, FType is definitely set to GrassType (see line 19), the type of objects generated by
the Grass class.

10 class Animal
types

12 FType <# FoodType
methods

14 procedure eat(f : FType);
...

16 end class ;
class Cow inherits Animal

18 types
FType = GrassType;

20 methods

13 Typing in objects theory

...
22 end class ;

Then we write a procedure that takes some Animal and applies its eat() method on an object of its own
FType .

procedure keeper(a : Animal)
24 begin

a.eat(new a.FType)
26 end

The code on line 25 is type-sound because the method eat() wants one argument of type FType and
we give it exactly this. Whatever be the concrete type of a, it is guaranteed that new a.FType produces an
object which type matches FType .

If we try to write incorrect code, it is not type-sound.

procedure badfarmer(c : Cow)
28 begin

c.eat(new Meat)
30 end

This is caused by the fact that the type of objects generated by the Meat class does not match c.FType .
For typechecking purposes, we can assume, as for SelfType that a virtual type is a free unconstrained variable.

Chapter 3

Typing in C++

Having seen all these interesting theoretical concepts, let’s see what is the position of the C++ language.

3.1 The C++ as it was designed

Class-based typing The typing of the C++ language is based on class definitions. That means that sub-
sumption with inclusion polymorphism is based on labels and not structure. If one wants to be able to use
one instance of a class where an instance of another class is required, she has to make the former inherit from
the latter. Therefore, we can say that in C++, subtyping implies subclassing.

Covariant method return types Since 1998, the C++ standard allows covariant change to methods’ return
types in child classes. This allows narrowing of the return type that is in accordance with the subsumption
property for objects generated by the classes.

Invariant method argument types A method’s signature is not allowed to change in any way from the
parent class to the child class.

No virtual types Only methods can be partially defined in classes, which gives birth to abstract methods
and thus abstract classes. Any type used inside a class must be known, so partial type definitions are forbid-
den.

Static unbounded parametric polymorphism The templates were introduced to allow for parametric poly-
morphism on classes and functions. Unfortunately, parameters are unbound, hence the typechecking pass is
done after template instantiation.

Limited expressiveness Even in case of simple requirements, these limitations force the programmer to
write explicit dynamic type checks that slow the code down and do not catch static type errors at compile
time, letting an exception be thrown at run time.

Let’s look at a simple example:

class A {
2 int _attr;

public :
4 virtual bool eq(const A& rhs) const {

return _attr == rhs._attr;
6 }

// ...
8 };

class B : public A {
10 int _otherattr;

15 Typing in C++

public :
12 virtual bool eq(const A& rhs) const {

B* rhsp;
14 if (!(rhsp = dynamic_cast <B*>(&rhs)))

throw bad_typeid ;
16 return A::eq(rhs) &&

_otherattr == rhsp->_otherattr;
18 }

// ...
20 };

As said before, the argument types are invariant, forcing us to define B::eq() as taking an argument of
type const A&. But we would like to restrict the use of this method to arguments of exact type const B&,
so we have to perform a dynamic type cast (line 14) in order to check the type conformance and dereference
the _otherattr attribute. If the first condition does not hold, we have to throw an exception (line 15).

If we write the following code:

int main()
22 {

A a;
24 B b;

b.eq(a);
26 return 0;

}

the execution will fail unconditionally, throwing each time the bad_typeid exception.
This is really a shame because the compiler knows the exact type of a and b at compile time and could

prevent such errors at compile time.

3.2 What we can do with it

First discovered by Erwin Unruh (see [11]), template meta-programs allow execution of arbitrary code at
compile time (see [13] and [12]). Indeed, the template instantiation and specialization mechanisms turned
out to provide a static programming level that is turing complete. Therefore, the C++ can be seen as a two-
level language which allows meta-programming. So it is possible to make the compiler perform additional
checking and optimization tasks at compile time.

Besides, template specialization comes in handy to define functions over types, called traits. In this way,
we can store additional static type information useful for template meta-programs for type handling.

In the specific case of closed-world compilation, which is the case for static generic programming paradigms,
every object’s exact type is known statically and no object with unknown type can ever appear.

3.2.1 Recurring static hierarchies

One way of informing the compiler on objects’ exact types is the use of recurring static hierarchies: each
class is in fact a meta-class parameterized by its child class or the special class Bottom .

A

Inf

Figure 3.1: Recurring static hierarchies

3.2 What we can do with it 16

This way, it is possible to recover the exact class of any object statically, by unrolling the hierarchy until
the class is parameterized by Bottom , which indicates that the class is the exact class.

A<B<C<Bottom>>>

B<C<Bottom>>

C<Bottom>

A<B<D<Bottom>>>

B<D<Bottom>>

D<Bottom>

A

B

C D

Figure 3.2: Unrolled hierarchies

Let’s see a concrete example:

// definition of meta-programming tools
2 // ...

template <class > A_;
4 template <class Inf>

struct vt_trait< A_<Inf> > {
6 typedef Inf InferiorType;

};
8 template <class Inf = Bottom>

class A_ : public Top {
10 public :

typedef A_<Inf> SelfType;
12 // ...

};
14 typedef A_<> A;

template <class > B_;
16 template <class Inf>

struct vt_trait< B_< A_<Inf> > > : public vt_trait< A_<Inf> > {
18 typedef Inf InferiorType;

};
20 template <class Inf = Bottom>

class B_ : public A_< B_<Inf> > {
22 public :

typedef B_<Inf> SelfType;
24 // ...

};
26 typedef B_<> B;

// ...

This is the static skeleton of a very simple hierarchy, namely a base class A and a child class B.

3.2.2 Rewriting the Point/ColorPoint code

Let’s see how the example of Point and ColorPoint looks like when written with this model:

17 Typing in C++

#define Dispatch(Meth) to_exact(this)->Meth ## _impl
2 template <class Inf = Bottom>

class Point_ : public Void< Point_<Inf> > {
4 public :

typedef Point_<Inf> SelfType;
6 bool eq(const SelfType& rhs) const {

return Dispatch(eq)(to_exact(rhs));
8 }

bool eq_impl(const SelfType& rhs) const {
10 return x == rhs.x && y == rhs.y;

}
12 // ...

private :
14 int x;

int y;
16 };

template <class Inf = Bottom>
18 class ColorPoint_ : public Point_< ColorPoint_<Inf> > {

public :
20 typedef ColorPoint_<Inf> SelfType;

typedef Point_<SelfType> SuperType;
22 bool eq_impl(const SelfType& rhs) const {

return SuperType::eq_impl(rhs) && c == rhs.c;
24 }

// ...
26 private :

Color c;
28 };

The definitions of the to_exact() function and the traits are omitted for the sake of clarity, see [8] for
an extensive talk on the matter. The noteworthy aspects are that the base class implements a dispatching
method that calls, on line 7, the method’s implementation in the exact classes, defined on lines 9 and 22.

This code is strictly equivalent to the code presented in 2.7. We can check it with this simple code:

int main()
30 {

Point p1, p2;
32 ColorPoint cp1, cp2;

34 p1.eq(p2);
p2.eq(p1);

36 cp1.eq(cp2);
cp2.eq(cp1);

38 p1.eq(cp1); // error
cp1.eq(p1); // error

40

return 0;
42 }

The compiler does not allow code on lines 38 and 39 to compile and outputs the following errors:

In function ‘int main()’:
38: no matching function for call to ‘Point_<Bottom>::eq (ColorPoint &)’
candidates are: bool Point_<Bottom>::eq(const Point_<Bottom> &) const
39: no matching function for call to ‘ColorPoint_<Bottom>::eq (Point &)’
candidates are: bool Point_<ColorPoint_<Bottom> >::eq(const

3.2 What we can do with it 18

Point_<ColorPoint_<Bottom> > &) const

Indeed, it is telling us that it can only compare Points with Points and ColorPoints with ColorPoints.

3.2.3 Using match-bounded parametric polymorphism

We can also use some kind of match-bounded parametric polymorphism.

template <class T>
2 bool foo(Point_<T>& p1, Point_<T>& p2)

{
4 return p1.eq(p2);

}

We have expressed the requirement that p1 and p2 be of the same exact type.
Let’s write some valid and invalid code:

6 int main()
{

8 Point p1, p2;
ColorPoint cp1, cp2;

10

foo(p1, p2);
12 foo(cp1, cp2);

foo(p1, cp1); // error
14 foo(cp1, p1); // error

16 return 0;
}

The compiler prevents the errors on lines 13 and 14 and outputs the following errors:

In function ‘int main()’:
13: no matching function for call to ‘foo (Point &, ColorPoint &)’
14: no matching function for call to ‘foo (ColorPoint &, Point &)’

This works thanks to C++’s type inference rules for template parameters.

3.2.4 Using virtual types

We can take the example from section 2.10 and express virtual types by means of traits.

First the Food hierarchy:

template <class > class Food_;
2 template <class Inf>

struct vt_trait< Food_<Inf> > {
4 typedef Inf InferiorType;

};
6 template <class Inf = Bottom>

class Food_ : public Void< Food_<Inf> > {
8 public :

typedef Food_<Inf> SelfType;
10 // ...

};

19 Typing in C++

12 typedef Food_<> Food;
template <class > class Grass_;

14 template <class Inf>
struct vt_trait< Grass_<Inf> > :

16 public vt_trait< Food_< Grass_<Inf> > > {
typedef Inf InferiorType;

18 };
template <class Inf = Bottom>

20 class Grass_ : public Food_< Grass_<Inf> > {
public :

22 typedef Grass_<Inf> SelfType;
// ...

24 };
typedef Grass_<> Grass;

26 template <class > class Meat_;
template <class Inf>

28 struct vt_trait< Mean_<Inf> > :
public vt_trait< Food_< Meat_<Inf> > > {

30 typedef Inf InferiorType;
};

32 template <class Inf = Bottom>
class Meat_ : public Food_< Meat_<Inf> > {

34 public :
typedef Meat_<Inf> SelfType;

36 // ...
};

38 typedef Meat_<> Meat;

Then the Animal hierarchy.

template <class > class Animal_;
40 template <class Inf>

struct vt_trait< Animal_<Inf> > {
42 typedef Inf InferiorType;

typedef Food FoodType;
44 };

template <class Inf = Bottom>
46 class Animal_ : public Void< Animal_<Inf> > {

public :
48 typedef Animal_<Inf> SelfType;

typedef vt(FoodType) FType;
50 void eat(const FType& f) const {

Dispatch(eat)(to_exact(f));
52 }

// ...
54 };

typedef Animal_<> Animal;
56 template <class > class Cow_;

template <class Inf>
58 struct vt_trait< Cow_<Inf> > :

public vt_trait< Animal_< Cow_<Inf> > > {
60 typedef Inf InferiorType;

typedef Grass FoodType;
62 };

template <class Inf = Bottom>
64 class Cow_ : public Animal_< Cow_<Inf> > {

3.3 How it could look like 20

public :
66 typedef Cow_<Inf> SelfType;

typedef vt(FoodType) FType;
68 void eat_impl(const FType& f) const {

// ...
70 }

// ...
72 };

typedef Cow_<> Cow;

Notice the additional entries in the vt_trait<> hierarchy, on lines 43 and 61.

Now some good and bad code.

74 template <class T>
void keeper(const Animal_<T>& a)

76 {
a.eat(* new vt_trait<Exact(a)>::FoodType);

78 }
template <class T>

80 void badfarmer(const Cow_<T>& c)
{

82 c.eat(* new Meat);
}

84 int main()
{

86 Cow c;
keeper(c);

88 badfarmer(c);

90 return 0;
}

The compiler complains about the bad code and tells us the following:

In function ‘void badfarmer<Bottom>(const Cow_<Bottom> &)’:
88: instantiated from here
82: no matching function for call to ‘Cow_<Bottom>::eat (Meat_<Bottom> &) const’
50: candidates are: void Animal_<Cow_<Bottom> >::eat(const Grass_<Bottom> &) const

In fact, it is telling us that it does not know how to make a Cow eat Meat and that it only can make it eat
Grass .

3.3 How it could look like

We have seen that in fact many fancy theoretical concepts can be expressed in an obfuscated manner in
standard C++ and that they actually are in some projects where static genericity is needed using C++.

The first thing we notice is that we use very obscure tricks and techniques to express concepts that are
simple in essence. The second is that much of the added obscure code is very much the same for each class
or function definition. Writing programs this way, we keep in mind the higher-level concepts and apply by
hand the tricks and techniques to express them in standard C++. There is a strong feeling that this task could
be partially automated: we would like to write programs in a clear, readable form that would be transformed
into static C++.

Thanks to the work of Anisko and Tisserand (see [3] and [9]), we have the necessary tools to parse simple
C++ code and to manipulate it (we are using the Stratego and XT package, see [16], [15] and [14] for more

21 Typing in C++

information). Moreover, these tools are very easily modifiable, so we can adapt them to process input code
written in an “augmented” form of C++ that would exhibit natural constructs to express the wanted concepts.
Then it would be pretty simple to output standard C++ code. We feel that the augmented form should be as
close to standard C++ as possible, to let the transformation rules remain simple and most of the functional
code be simply passed along.

3.3.1 Rewriting Point/ColorPoint

The C++ language could be augmented to include a selftype keyword that would have the meaning of
SelfType and a supertype that would represent the parent class.

Then the Point/ColorPoint example would look like this:

class Point {
2 public :

virtual bool eq(const selftype & rhs) const {
4 return _x = rhs._x && _y == rhs._y;

}
6 // ...

private :
8 int _x;

int _y;
10 };

class ColorPoint {
12 public :

virtual bool eq(const selftype & rhs) const {
14 return supertype ::eq(rhs) && _c == rhs._c;

}
16 // ...

private :
18 Color _c;

};

3.3.2 Rewriting Circle/ColorCircle

Match-bound parametric polymorphism could be expressed by introducing the bound in the template pa-
rameter list.

template <class CenterType : Point>
2 class Circle {

public :
4 const CenterType& getcenter() const {

return _center;
6 }

void setcenter(CenterType& newcenter) {
8 _center = newcenter;

}
10 // ...

private :
12 CenterType _center;

int _radius;
14 };

template <class CenterType : ColorPoint>
16 class ColorCircle : public Circle<CenterType> {

public :

3.3 How it could look like 22

18 const ColorType& getcolor() const {
return _color;

20 }
void setcolor(ColorType& newcolor) {

22 _color = newcolor;
}

24 // ...
private :

26 ColorType _color;
};

Notice the : construct in the template parameter list on lines 1 and 15.

3.3.3 Rewriting Cow/ . . .

Virtual types could be supported by the addition of the virtual qualifier to typedef lines inside classes.

class Food {};
2 class Grass : public Food {};

class Meat : public Food {};
4 class Animal {

public :
6 virtual typedef Food FType;

virtual void eat(FType& f) = 0;
8 };

class Cow : public Animal {
10 public :

virtual typedef Grass FType;
12 virtual void eat(FType& f) {

// ...
14 }

// ...
16 };

void keeper(Animal& a)
18 {

a.eat(* new a.FType);
20 }

void badfarmer(Cow& c)
22 {

c.eat(* new Meat);
24 }

Notice that the instruction on line 19 requests an instantiation of the type a.FType which looks rather
like a member of the object a. We do not want to write a::FType since a is not a class scope and FType is
really, though static, a type inside the object a. There is no better way to express the link between the instance
and the type since we don’t know, while writing the code, what the exact type of a is, we only know that it
matches Animal .

Chapter 4

Transformation rules

First, a whole bunch of meta-programming tools that never change, whatever the code, can be put in a
separate .hh file.

The choice of augmenting a subset of C++ instead of using a wholly different language as input to the
transformation process was motivated by the wish to keep the transformation simple. We want the rules to
be as local as possible, to allow as much of the code as possible to be passed along. This way, we hope that
the rules will remain simple.

4.1 Information gathering

We need to track every class definition as we don’t know at which time we will need information about their
structure, as inheritance can happen almost anywhere. In other words, the reason for information gathering
about class definition is that any class is potentially a base class.

Conversely, when we encounter a child class definition, we don’t know if a given method is virtual or
not. We have to look into the parent classes’ definitions. If the method is virtual and is the first one in the
hierarchy (traversing the hierarchy from the top down), it requires then to generate a dispatching method and
an implementation. If the method has already been defined upper in the hierarchy, we need only generate
the implementation, as the dispatch is handled some parent class.

Similarly, virtual type usage in any place needs the information about virtual type definitions inside
classes.

Therefore, we need two things. First, we need some internal data structures to store information about
class definitions. Second, we need a way to support namespace separation while storing the information for
later retrieval.

4.2 Scope resolution

When specifying base clause in class definitions, we may have to resolve the effective base class referred to.
The same need appears when transforming virtual type instantiation statements.

Hence, we need to implement a scope resolution algorithm functionally identical to the one implemented
in C++ compilers but handling our internal data structures.

4.3 Implementation in Stratego

The choice of the Stratego language as a program transformation tool arises from the fact that we already
have a powerful parser for simple C++ code that can easily be adapted to our “augmented” C++ syntax. The
advantage of having a parser is that we can write transformation rules that will be applied on the abstract
syntax tree, which is pretty convenient, as its very structure bears part of the needed information. Besides,
the standard library is rich enough to allow us to quickly implement a simple working prototype.

The drawback is that the transformation tool will be tightly tied to the C++-flavored languages, as the
transformation rules act on the abstract syntax tree that is very C++-specific.

4.4 Transformation examples 24

4.4 Transformation examples

What follows is a small set of examples of transformation written in concrete syntax. Because of the complex
structure of the standard C++ grammar, a comprehensive set of transformation rules in concrete syntax is
beyond our reach right now. Besides, rules alone would not suffice to complete the transformation task. The
framework is therefore composed of rules and strategies that combine with each other in order to achieve it.

For a simple base class definition, we would have the following transformation:

class A {
2 ...

};
=⇒

template <class > class A_;
2 template <class Inf>

struct vt_trait< A_<Inf> > {
4 typedef Inf InferiorType;

...
6 };

template <class Inf = Bottom>
8 class A_ : public Void< A_<Inf> > {

public :
10 typedef A_<Inf> selftype;

private :
12 ...

};
14 typedef A_<> A;

For a child class definition, the transformation is just a bit more complicated:

class B : public A {
2 ...

};
=⇒

template <class > class B_;
2 template <class Inf>

struct vt_trait< B_<Inf> > :
4 public vt_trait< A_< B_<Inf> > > {

typedef Inf InferiorType;
6 ...

};
8 template <class Inf = Bottom>

class B_ : public A_< B_<Inf> > {
10 public :

typedef B_<Inf> selftype;
12 typedef A_<selftype> supertype;

private :
14 ...

};
16 typedef B_<> B;

Here comes the transformation of a function definition which comes in two flavors. The choice is triggered
by the introduction of a static keyword to distinguish between polymorphism over the class hierarchy
starting at that class or no polymorphism at all. This construct is somewhat similar to the class qualifier in
Ada. It is an accessory feature that is so easy to implement that it would be a shame not to use it.

25 Transformation rules

sometype foo(A& a)
2 {

...
4 }

sometype bar(static A& a)
6 {

...
8 }

=⇒

template <class T>
2 sometype foo(A<T>& a)

{
4 ...

}
6 sometype foo(A& a)

{
8 ...

}

Chapter 5

Conclusion

5.1 Project status and perspectives

A first prototype is currently under development. Its purpose is to set the general transformation framework
that is to be extended in future versions.

The planned features are the transformation of class hierarchies to static recurring flavor with support of
selftype and supertype and the static qualifier for function arguments.

Then, pretty quickly, we want to implement support for virtual types and parametric polymorphism. The
problem with parametric polymorphism is that the C++ parser we intend to use is not ready for parsing
templates. Its author’s goal was to write a C++ parser able to validate C++ code with respect to the standard
grammar, but this requires unfortunately the implementation of the template instantiation mechanisms which
is a pretty tedious task. We plan to bend the C++ standard grammar to circumvent this requirement and parse
templates in a slightly modified way.

On a longer schedule, we plan to support F-bounded and match-bounded parametric polymorphism
and some additional sugar that is not so urgent for the moment (conditional inheritance, polymorphism on
template parameters, etc).

The ultimate plan is to be able to rewrite generic algorithms in the Olena project.

5.2 Personal conclusion

Much reading was necessary to grasp the essence of what we wanted from theory to be supported. Besides,
the literature often sinks into deep formalism which is not necessarily easy to link to concrete imperative
language constructs.

The field was new for me and allowed me to embrace a lot of the current challenges in modern OO
languages and applications.

Next steps seem very interesting as they comprise diving into development in the Stratego language and
tighter collaboration with other members of the LRDE.

Chapter 6

Bibliography

[1] International Standard of C++, September 1998. ISO/IEC 14882:1998(E).

[2] Martín Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer Science Series. Springer-
Verlag, 1996.

[3] Robert Anisko. Program transformation and the C++ language. Technical report, LRDE, October 2002.
Séminaire LRDE.

[4] Kim B. Bruce. Typing in object-oriented languages: Achieving expressibility and safety. Tutorial T12 at
the 12th European Conference on Object-Oriented Programming (ECOOP), July 1998.

[5] Peter Canning, William Cook, Walter Hill, and Walter Olthoff. F-bounded polymorphism for object-
oriented programming. In Proceedings of the International Conference on Functional Programming and Com-
puter Architecture, pages 273–280, London, UK, September 1989. ACM.

[6] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism. Com-
puting Surveys, 17(4):471–522, December 1985.

[7] Brian McNamara and Yannis Smaragdakis. Static interfaces in C++. In First Workshop on C++ Template
Programming, Erfurt, Germany, October 10 2000.

[8] Raphaël Poss. Techniques for implementing oo paradigms in static c++. Technical report, LRDE, May
2002. Séminaire LRDE.

[9] Nicolas Tisserand. Tools for C++ programs transformations. Technical report, LRDE, September 2002.
Séminaire LRDE.

[10] Mads Torgersen. Virtual types are statically safe. In Proceedings of the 5th Workshop on Foundations of
Object-Oriented Languages (FOOL), San Diego, CA, January 1998.

[11] Erwin Unruh. Prime number computation, 1994. ANSI X3J16-94-0075/ISO WG21-462.

[12] Todd L. Veldhuizen. Expression templates. C++ Report, 7(5):26–31, June 1995.

[13] Todd L. Veldhuizen. Techniques for scientific C++, August 1999.

[14] E. Visser. The stratego library, 2000.

[15] E. Visser. The stratego reference manual, 2002.

[16] E. Visser. The stratego tutorial, 2002.

	1 Introduction
	1.1 The context
	1.2 Implications
	1.3 Existing answers
	1.4 Our goals
	1.5 Report outline

	2 Typing in objects theory
	2.1 Typing basics
	2.2 Subsumption and subtyping
	2.3 Object typing
	2.4 Objects' types and objects' classes
	2.5 Subclassing (inheritance)
	2.6 Some practical examples
	2.7 The relation of matching
	2.8 Match-bounded parametric polymorphism
	2.9 F-bounded parametric polymorphism
	2.10 Virtual types

	3 Typing in C++
	3.1 The C++ as it was designed
	3.2 What we can do with it
	3.2.1 Recurring static hierarchies
	3.2.2 Rewriting the Point/ColorPoint code
	3.2.3 Using match-bounded parametric polymorphism
	3.2.4 Using virtual types

	3.3 How it could look like
	3.3.1 Rewriting Point/ColorPoint
	3.3.2 Rewriting Circle/ColorCircle
	3.3.3 Rewriting Cow/…

	4 Transformation rules
	4.1 Information gathering
	4.2 Scope resolution
	4.3 Implementation in Stratego
	4.4 Transformation examples

	5 Conclusion
	5.1 Project status and perspectives
	5.2 Personal conclusion

	6 Bibliography

