
Capabilities of some C++ image processing libraries

Giovanni Palma, Niels van Vliet

Technical Report no0414, November 2004
revision 572

This report compares several image processing libraries. The comparison of libraries are generally based
on their functionalities. The functionalities are the tools which are directly available to the user. For
example, in image processing, some libraries propose 3D binary images, or the rotation of 2D images. On
the contrary, this report compares some C++ libraries on their capabilities. It is their capacity to be adapted
by a user to his particular need. For example, if circular images are not present in the library, is it simple
to add this feature ? The goal of this comparison is to improve the design of Olena, the LRDE C++ image
processing library.

Ce rapport compare plusieurs bibliothèques de traitement d’images. On compare généralement les bi-
bliothèques selon les fonctionnalités proposées. Par fonctionnalités nous entendons des outils directement
utilisables par l’utilisateur. Par exemple dans le cadre des bibliothèques de traitement d’images, certaines
d’entre elles proposent des images 3D binaires, ou la rotation d’une image en 2D. Au contraire ce rapport
compare les bibliothèques en fonction de leur capacité à s’adapter à des utilisations originales. Par exemple
s’il n’y a pas d’image circulaire, est-il facile pour l’utilisateur d’ajouter cette fonctionnalité ? L’objectif étant
d’améliorer l’architecture de la bibliothèque Olena développée au sein du LRDE, les bibliothèques com-
parées sont écrites en C++.

Keywords
Image processing libraries, C++, Design, Capabilities, Genericity

Laboratoire de Recherche et Développement de l’Epita
14-16, rue Voltaire – F-94276 Le Kremlin-Bicêtre cedex – France

Tél. +33 1 53 14 59 47 – Fax. +33 1 53 14 59 22
lrde@lrde.epita.fr – http://www.lrde.epita.fr/

lrde@lrde.epita.fr
http://www.lrde.epita.fr/

2

Copying this document

Copyright c© 2004 LRDE.
Permission is granted to copy, distribute and/or modify this document under the terms of

the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with the Invariant Sections being just “Copying this document”, no Front-
Cover Texts, and no Back-Cover Texts.

A copy of the license is provided in the file COPYING.DOC.

Contents

1 Functionalities vs. Capabilities 5
1.1 Functionalities . 5
1.2 Capabilities . 6

2 Image processing libraries 8
2.1 Overview of the libraries . 8
2.2 Capabilities comparison . 9

2.2.1 n Dimensions . 9
2.2.2 Value of the pixel . 12
2.2.3 Grids . 13
2.2.4 Iterators . 14
2.2.5 Storage . 18
2.2.6 Specialization . 18
2.2.7 Bug reporting / strong typing . 20
2.2.8 Adding new algorithms . 21

3 What can be improved in Olena 24
3.1 Value type of the pixels . 24
3.2 Accessors and iterators . 25
3.3 Storage . 25
3.4 nD images and Grids . 25
3.5 Environment and new algorithms . 26

4 Bibliography 28

Introduction

Since 1999, an image processing library is developed at LRDE1. This library, Olena2, aims at
being a generic one. It provides algorithms which work as well on one dimension gray images
as on three dimensions color images.

An important criterion for potential users of a library is the number of functionalities pro-
vided. Some image processing libraries implement a large number of algorithms, or propose
different ways to store an image in memory. Our goal today is to release a stable version of
Olena. Thus the functionalities are not a priority. Instead we want to build a core which pro-
vides interesting capabilities, and which is easy to extend. For example, we will not implement
4 dimensions images, or sparse images yet, but such extensions must be easy to create either by
us or by a user.

This technical report compares the capabilities of several existing C++ libraries. First we
explain what is the goal of a library and the difference between the functionalities and the
capabilities. Then the libraries used in the comparison are presented. In the third part, the
comparison of their capabilities is made. Finally we focus on what can be improved in Olena.

1EPITA Research and Development Laboratory
2http://www.lrde.epita.fr/olena

Chapter 1

Functionalities vs. Capabilities

A library is a collection of tools which are useful in a given domain. For a given field, most of
the time different libraries exist and are not compatible. The user has to choose among them.
This chapter explains two different criteria. The first one is the number of functionalities, the
second one is the facility to adapt the library to a particular usage.

1.1 Functionalities

Most of the time, the user chooses the library that provides the maximum of functionalities.
The library factors the work needed by several users. The functionalities are what is directly
available; without any piece of work.

The algorithms provided by libraries are functionalities. For example, it is the case for the ro-
tation or the copy of images. Reading JPEG images, or having conversion between several color
spaces are also common functionalities. The quality of the algorithm to compute a functions is
also important. Functions must be efficient.

The functionalities are not only the functions provided but also the types which are directly
available. For example some image processing libraries provide RGB images1, other do not.

Because most of the choices of users are often based on the number of functionalities, one
approach is to try to cover all functionalities that the user may need. That is why the libraries
usually provide:

• 1 to 3D images,

• all the built-in data types (bool, short, int, float. . .), and vectors of these types (float[3]. . .),

• a large number of algorithms.

But sometimes, users need to adapt the library for a particular usage. All the functionalities
can not be added to every libraries. The reason is that the amount of time is too high to build
such a library. Even if it were possible, the library would be huge, and it would certainly yield
to problems.

1RGB stands for Red Green Blue, RGB images are color images.

1.2 Capabilities 6

1.2 Capabilities

A capability is the availability to extend more or less easily a library. If a functionality is not
available, most of the time this new feature can be added. In some cases, it can be limited by the
conception of the library. That is why it is needed to take a look at the capabilities of libraries.

The user may need to use existing algorithms with his own types. For example, he might
appreciate a library, but he might need to change the storage of images because the default
storage loads the whole image in memory whereas his own images do not fit into this one.
Another example is circular images: the user might need to have the lefts pixels connected to
the right pixels in an image. As you can see, the user might want to use his own types with the
existing tools, but he might also want to use the existing types with his new algorithms.

The capabilities of the library are linked to the limitations imposed by its design. Some li-
braries provide an easy and elegant way to extend this one without knowing all about the
technical part of them. It is always possible to add any feature to a library, but sometimes you
just need to re-write the library from zero. Thus in this report, only the capabilities that are easy
to write by a user are considered. A new functionality is easy to add if:

• the amount of work is limited,

It means that is takes less than one day to adapt the library.

• the programmer is not an expert,

The programmer must be good. He does not have to be able to decipher unusual error
messages, or to know tricks such as the Barton and Nackman (1994) one2, but he must
have the level and the will to learn one or two things.

• it keeps the backward compatibility,

• the adaptation does not lead to drawbacks.

For example, functions must not run much slower on home-made images (circular ones
for example) than on built-in images. Furthermore, the modification of the library must
keep its homogeneity. Error messages must not be obfuscated.

Several techniques exist to allow extensions such as Object Oriented Programming and Generic
Programming. This report does not deal with technical aspects [see Burrus et al. (2003) and
Eichelberger et al. (2000)]. We will focus on the design of the libraries. It is hard to propose a
good design, because it is a compromise between the capabilities and the:

• complexity of the core,

It is easier to write a library which works only with 2D images than several different
dimensions. The complexity of the core might also increase the complexity of the error
messages.

• complexity to add a new feature (algorithm, data structure, . . .),

So as to be generic, the user might need to write some functions. For example, in the case
of STL, in order to use a std::map on a new type, a specialization of the std::less class must
be written.

2This trick is used to have static hierarchies.

7 Functionalities vs. Capabilities

• efficiency,

Some methods can be used to ease the adaptation of a library, but lead to poor perfor-
mances. It is the case of virtual functions.

• environment,

Genericity often obfuscates error messages, and leads to compilation that are time con-
suming.

• specific and very large field.

The library must not be too general. It must focus on its field in order to be user friendly.

In this report, we compare the design of different libraries. We do not compare libraries in
term of functionalities, but rather in term of capabilities. The reason is that we want to be sure
that the core of our library, Olena, has a suitable design. Later, additional functionalities will be
added to please users.

Chapter 2

Image processing libraries

In this chapter some C++ libraries are going to be compared. First a quick overview of these
libraries is given, then their capabilities are compared.

2.1 Overview of the libraries

The compared libraries are: Cimg, Vigra, Horus and Olena. Several good libraries are written
in Java, OCaml or other languages, but we focus on libraries written in C++. The reason is that
the goal of our comparison is to improve our C++ library.

There are many C++ image libraries. A large part of them is actually written in a C-style.
Because of their lack of genericity, it is hard to enlarge their capabilities. Some image libraries
are generic, but their paradigm seems too far from our library to improve it. An example is
Pandore1 which uses a new preprocessor and macros to have genericity.

The capabilities of several libraries are going to be presented in the next section. Here is the
list and a quick overview of these libraries.

• Cimg: the simplicity.

Cimg stands for Cool Image. It has been started by David Tschumperlé during its PhD
thesis in 1999 at INRIA Sophia Antipolis. This library is under GPL (Gnu General Public
License).

Cimg has been designed to be simple to use, and efficient [Tschumperlé (2004)]. It consists
only of a single huge file, which provides as well input output functions, based classes or
advanced algorithms. It is highly portable.

Its design is inspired from STL. All the tricks that can be useful but that obfuscate the
library are avoided. All images are 4D and the data type is a parameter of the template.

• Vigra: the genericity ’a la STL’.

Vigra stands for Vision with Generic Algorithms. It is under a license “which is modeled
after the Perl Artistic License and thus more liberal than the GPL”, and has been developed
by Köthe (2000) during its PhD thesis.

The goal of this library is to be easily adapted to the needs of the user, without a cost at
execution time.

1http://www.greyc.ensicaen.fr/ regis/Pandore

9 Image processing libraries

It uses template techniques similar to those used in the C++ Standard Template Library [Köthe
(2004)].

This library is made for 2D images. As STL does, Vigra proposes containers, and basic
functions, but does not offer to the user many complex algorithms.

• Horus: a mature and commercial software.

Horus is developed by the Intelligent Sensory Information Systems (ISIS) Group.

It is designed for image and video analysis. CORBA (Common Object Request Broker
Architecture) is used to allow interaction in a pool of computers.

Horus wants to be efficient by a heavy use of the C++ template mechanism,

It is not a free software.

• Olena: the genericity.

Olena is the LRDE generic image processing library. Olena is free software: it is released
under the conditions of the GNU General Public License version 2.

It has been developed since 1999, and aims at being generic with respect to the data types,
but also to the dimension of the image.

Furthermore, performances have not to be forgotten, that is why it is based on the SCOOP
[Burrus et al. (2003)] paradigm which proposes an efficient usage of static hierarchies.

2.2 Capabilities comparison

In this section, the previously presented libraries will be compared on several criteria. These
criteria have been chosen in order to show what can be wanted, in an extensibility point of view,
when a library is used.

2.2.1 n Dimensions

Most of images are 2D, or 1D (a 1D image is a signal). 3D images are also used in medical image
processing applications. Some libraries work only for a given dimension. Other libraries use a
high dimension, and use the default value 0, for the dimensions that are not used. Like it will
be shown, a better approach seems to have the dimension within the type of the image.

Cimg

Cimg provides only 4D images. By default, the depth and the hight are set to 1, for example
in the constructor or the operator(). Adding a new dimension would change a large number of
function prototypes and the core of the function. Moreover it rises problems of typing. 1 to 4D
images are an instance of common class Cimg<V>. A list of image (Cimg) can hold as well 1D
image and 4D images.

The good point is that the code is well factored in macros. So as to avoid writing 4D loops
or 4D manipulations of data, macros are used. The figure 2.1 presents an example of a piece of
code extracted from the function get_erode.

Cimg_mapV is used to run the algorithm on all the channels (for example the red one, the
green one, and so one). cimg_map3x3x3 (*this,x,y,z,k,I) loops on the image using x, y, and z. It

2.2 Capabilities comparison 10

CImg dest(*this);
cimg_mapV(*this,k)

cimg_map3x3x3(*this,x,y,z,k,I)
if (!Iccc && (Incc || Ipcc || Icnc || Icpc || Iccn || Iccp))

dest(x,y,z,k) = tmax;

Figure 2.1: Neighborhoods and loops in Cimg.

assigns to many variables a point in the image. For example Icnc corresponds to the point that
has the following position2: (x + 0, y − 1, z + 0).

These macros can be easily changed, but each time a dimension is added, most algorithms
become slower. In the previous example, in 1D the points of the structuring element that are
not on the Y and the Z axis appear in the loop. It slows the computation.

But the cost of this design is compensated by the simplicity of the code. Knowing the number
of dimensions allows the library to unroll some loops using macros.

Vigra

Vigra is made for 2D images. It does not provide function or data types for other dimensions.
But we think that its design enables a programmer to add these features. All the types, such as
PixelType(point), Iterator, or size_type are defined by a typedef in the image class, and it should
be easy to make 3D image types compatible with this paradigm. Unfortunately, because the li-
brary is 2D only, most of the algorithms do not use the typedef, but use directly the underlying
type. For example difference_type is often replaced by Diff2D (simpleSharpening, differenceOf-
ExponentialEdgeImage, differenceOfExponentialCrackEdgeImage, moveDCToCenter are some
concrete examples). In addition, algorithms are written using double loops (rows and columns)
and should be changed to work in another dimension.

Even if this version of Vigra only works with 2D images, its design provides enough tools to
allow to write a core that works in any dimension. But the algorithms are written only for 2D
images, using for example a loop on the columns, and a loop on the rows. Thus it is difficult to
adapt and modify Vigra so as to use 3D or 1D images.

Horus

Horus is designed to work on 1D, 2D and 3D images. An extension of the library to support
nD images may be difficult because of the complexity of the hierarchy. Furthermore, even if the
maintainers try to do it, it seems very intrusive in the core of the library.

Figure 2.2: Image modeling in Horus.

As a matter of fact, all the images in Horus are represented by the HxImageRep class (Fig. 2.2).
All the algorithms take this type in input, make dynamic checks using its signature to be sure the

2c stands for center and n for negative.

11 Image processing libraries

image has good properties before doing their job. This signature aims at providing informations
about what is really the image (Fig. 2.3).

Figure 2.3: Image signatures in Horus.

It can be difficult to add new signatures that are compatible with the existing code: for ex-
ample the code of factories used to create images should take into account the new signatures.
Furthermore, the greatest part of the library source code is not available (because of the license),
it is a problem when you have to be intrusive in the code.

Olena

Olena has been designed to be generic with the data type used, but also with the dimension of
the image. Thus 1D, 2D and 3D images are natively supported.

Nonetheless, the nD image type is not implemented. Actually, there is a specific implementa-
tion for each dimension of the image, but none for dimension greater than three. It would have
been more interesting to provide an implementation for nD and to use it for the common di-
mensions (1, 2 and 3). Moreover, the specialization could have been used to provide optimized
version for critical method of these dimensions. But this is not really a problem, because most
of people do not use images with a dimension greater than 3.

Despite this aspect, algorithms are written to be generic with the value and the dimension.
Thus, even if 4D images, are not implemented, if someone does it, the existing algorithms will
work with this new type. Doing such a thing is not really difficult because of the design: it is
one of its goals.

The approach of Olena has several advantages. First some errors can be detected at compile
time. For example, the piece of code of the figure 2.4 will not compile:

image3d ima;
ima(x, z) = 4; //error, ima is not a 2d image.

Figure 2.4: Invalid assignment in Olena.

If the dimension is part of the type, it is also possible to statically specialize a function. It is
possible to write a rotation which works only for 2D images. Furthermore, if a high dimension
is used such as in Cimg, only the access based on iterators are efficient in small dimensions. The
access based on operators such as (x, y) are slow, because what is actually written is (x, y, 0, 0).
If the dimension is a part of the type, the access is efficient in all cases.

2.2 Capabilities comparison 12

2.2.2 Value of the pixel

Depending on what you are working on, different types of value are used. Some libraries pro-
pose only a few pre-defined types, such as unsigned char or float. Other libraries let the user use
his own types. You will see how difficult it is to introduce a new type in the different libraries.

Cimg

The type of value of pixels is the parameter of the Cimg class (the image class of the library).
There is no trait that uses the type. It enables a good portability, and it is not necessary to write
traits in order to use the library with a new type.

But the library assumes that many operations can be called on the type of the value of the
pixels. For example the addition, the 0 and 1 values are expected in many algorithms. These
operations have no prior meanings for some type: what does true - true means?

There is no specialization, and no assertion. For example, the erosion is an algorithm which
works with gray level images or binary images. In this library, if it is called on a color images,
it is ran on all channels, one after the others. Once again, Cimg provides a simple solution, not
too far from MatLab.

Vigra

The images are templated by the value type. Some traits allows to promote the types. For
example if a mean is done on a large set of data, it is useful to make sure it is done using a
floating point type to compute the sum. It is easy to add traits, and to add your own types.

As it will be shown in the subsection 2.2.4, the access to a pixel is suitable. It separates the
reading and the writing of values. This is useful in some cases. For example, it is possible to
have different assertions in the two cases.

Here are two examples of situations in which it useful. If a user needs to write a data type that
has the following behavior: it is equal to 0 by default, but the user can not set it to 0. Another
example is to automatically threshold the value set by the user to a pixel.

Horus

Horus separates the semantic, the representation, and the implementation of objects [Koelma
and other ISIS members (2003)]. The implementation is the storage of the data. The representa-
tion provides a neutral view of a concept. It provides functionalities to deal with a concept. The
semantic gives properties to the pixels. For example, a representation of an image of unsigned
integer, can have several meanings: an image of intensity of a monochrome light, or a distance
in a distance map. The following items are presented by Koelma and other ISIS members (2003)
in their web site as being semantics in Horus:

• intensity images: the pixel value indicates a monochrome light intensity,

• color images: the pixel value represents a color (RGB, HSI, etc.),

• X-ray, ultrasound, or electron microscope images: a pixel value depends on object density
or another physical phenomena,

• satellite images: the pixel value represents a recording of up to 7 spectral bands,

• range images: the pixel value indicates a distance,

13 Image processing libraries

• characteristic images: the pixel value indicates whether the pixel is element of a set,

• flow fields: the pixel value represents a motion vector,

• complex images: FFT domain.

The separation of semantic and representation can prevent some bugs. For example it avoids
mixing range images and intensity images.

The representation of a pixel value in Horus is a scalar value or a vector of n scalar values. A
scalar value is represented by one of the following [Koelma and other ISIS members (2003)]:

• a k bits integer value (bit, byte, short, int, ...),

• a k bits floating point value (float, double, ...),

• a complex number.

Horus separates data types and arithmetic data types. It provides more data types than arith-
metic data types (16 vs. 7). For example, the arithmetic data type HxScalarInt is used for several
data types, such as short, int or unsigned char. Having small data types such as unsigned char or
float allows to use images that require less memory. Having less arithmetic data types reduces
the number of template that must be instantiated. Furthermore, the operations with large data
types (for example int) do not significantly cost more CPU time than smaller one (for example
short).

Cast are available for all data types. For example it is possible to cast a Complex d = (d1, d2)T

to a Vec3Double. In this case, the Vec3Double is equal to (d1, d2, 0)T .
A lot of operations are defined for all arithmetic data types. For example square root or tangent

are defined even for vectors.This makes the creation of a generic function easier. Only the
complement is defined only for a set of type (integer types).

It seems hard to add a data type to Horus. If it is not compatible with an existing arithmetic
data type, a new arithmetic data type must be added. It might not be a good idea to have a lot
of arithmetic data types, because it increases the number of instantiations.

Olena

Olena aims at being generic with the data types of the images. That is why there is no problem
to use it with either pre-defined data types, or user’s own types. In the last case, the user may
have to define some traits to make them compatible with the existing code. For example, if
an algorithm needs to know the max value of the data type, the user will have to define the
corresponding traits (optraits<user_type>).

Furthermore, Olena comes with a library of types named Integre. This library provides safe
basic types that go from int_u8 (integer coded on eight bits) to rgb_u8 (vector of three int_u8
components). The main difference with the C++ pre-defined types (unsigned char, integer, float,
etc.) is that these types provide checks. For example if there is an overflow, the user will be
warned. This may help him to debug his program. Moreover, the behavior of these types can
be changed: you can choose to work on a modular type (Z/Z128), or saturated ones (when the
limit is reached, it will stay to the extremum value).

2.2.3 Grids

Most of the time images are based on rectangular grids. It explains why most libraries do not
give other implementations. But some none rectangular grids exist such as hexagonal ones.

2.2 Capabilities comparison 14

More common needs are neighborhood relationships that are different from the standard
ones. For example, it is often useful to have circular images.

Horus

The abstraction of the algorithms should allow to use other kinds of grid. Horus has algorithms
such as ‘for all points, for all neighbor do F’.

Vigra

Vigra is done for 2D rectangular grids. It is possible to add another kind of grid, but like for
the dimension, the algorithms must be re-written. Furthermore, some modifications have to be
done to the core, and a large amount of additional code has to be written.

Olena

Adding new grid in Olena can be done by implementing images, points, dpoints compatibles
with this new grid. It should be easy to insert it into the existing hierarchy, and thus to make
the existing algorithms work with. Nonetheless, this is not a trivial task since a large amount of
code have to be written in the core of the library. Even if it can be easy to a developer familiar
with Olena, if a simple user wants to do it, he may have many difficulties to do it cleanly.

2.2.4 Iterators

Another critical step is the way data are retrieved from the image. Most of the time several
kinds of iterators are proposed, such as forward and backward ones. It can be interesting to let
users propose new iterators. For example an iterator which goes only through the points that
match a criterion.

Cimg

The operator() can be used to read or write the data of an image. There is no structures for points.
A direct access to the underlying buffer is possible using an unsigned integer.

The Cimg library avoids a class of iterators and points. It makes the library more simple. It
avoids all problems linked to iterators, for example invalid pointers.

To iterate on images, a lot of macros are used. For example the macro cimg_mapXZ(img,x,z)
(Fig. 2.5) is used to iterate on the x and z axis:

#define cimg_mapX(img,x) for (int x=0; x<(int)((img).width); x++)
#define cimg_mapZ(img,z) for (int z=0; z<(int)((img).depth); z++)
#define cimg_mapXY(img,x,y) cimg_mapY(img,y) cimg_mapX(img,x)

Figure 2.5: Cimg macros used to traverse an image.

It makes it hard to run an algorithm with a new iterator.

15 Image processing libraries

Vigra

The iterators used in Vigra are described by Köthe (1998). This paper explains that the STL
iterators are not suitable for several kinds of storage of images. A solution is proposed to solve
the problem of the references to the pixels.

The first problem, the difficulty to return a value by reference, will be explained using the
example of Köthe (1998). This example deals with color images. Let us define the RGB color
type (Fig. 2.6) which represents the red, green and blue layer.

struct rgb
{

rgb(float r, float g, float b): r(r), g(g), b(b) {}
float r, g, b;

};

Figure 2.6: RGB data structure.

There are two different ways to store an image of RGB pixels as shown in figures 2.7 and 2.8.

struct image_of_rgb
{

vector<rgb> vec;
[...]

};

struct image_of_rgb
{

vector<float> red;
vector<float> green;
vector<float> blue;
[...]

};

Figure 2.7: Different implementations of a color image.

Figure 2.8: Graphical representation of data structures of the figure 2.7.

2.2 Capabilities comparison 16

Our goal is not to discuss in which case one is more efficient than the other, we focus on the
data access. In the first case, it is easy to return values by reference (Fig. 2.9).

struct image_of_rgb
{

vector<rgb> vec;

[...]
public:

rgb //by value
operator[](index i) const {return vec[i];}
rgb& // by reference
operator[](index i) {return vec[i];}

};

Figure 2.9: Pixel accessor returning a valid reference.

But in the second case, the RGB value is computed on the fly. After the call to the method,
the object is destroyed. Thus the reference points on an invalid address as it can be seen in the
figure 2.10.

struct multi_band
{

vector<float> red;
vector<float> green;
vector<float> blue;
rgb operator[](index i) const {

return rgb(red[i], green[i], blue[i]); //By value. OK.
}

rgb& operator[](index i) const {
return rgb(red[i], green[i], blue[i]); //By reference. FAIL.

}
};

Figure 2.10: Pixel accessor returning an invalid reference.

It is possible to use a set method and a get method to avoid the return by reference. It
would also be possible to return by copy a proxy that holds a reference on the data. But it
has many drawbacks: it slows down the function, it is difficult to write and hardly usable by
the user [Köthe (1998)].

Vigra proposes a solution that allows to change the way the value are set or gotten: the acces-
sors. The figure 2.11 presents an example.

In this example, iterators src and dest are used to iterate on the image. But in contrary to STL,
the iterators are not used directly to read or write the data. They are used through the accessors
destacc and srcacc. This method is powerful, because the same algorithm can be used to copy
all the values of the pixels or to copy only a component of a color image: only the accessors

17 Image processing libraries

template <class SrcIter, class SrcAcc,
class DestIter, class DestAcc>

void copy(SrcIter src, SrcIter srcend, SrcAcc srcacc,
DestIter dest, DestIter destacc)

{
for(; src != srcend; ++src, ++dest)

destacc.set(srcacc(src), dest);
}

Figure 2.11: Copy algorithm in Vigra.

must be modified.

Olena

Olena provides iterators to traverse an image. These are quite different form STL ones because
they do not behave in the same way. Here the iterators iterate through a set of points, a domain.
Thus they do not have a reference to the data. They hold the domain of the image, and the
current point instead. This current point is used to read or write the data in the image. An
iterator can be used for several images, with a restriction: the images must have a domain
which includes the domain of the iterator. This is an interesting thing because an iterator can be
used to iterate through several images which have the same size.

It has similarities to the Vigra approach, with the accessors, but in Olena, the accessor is the
operator[] of the image. Vigra allows to use different accessors. For example it is possible to use
an accessor which returns only the red channel of a color image. In Olena, this can be done by
changing the operator[]. This can be done using morphers.

The Vigra approach is interesting because the access to the data and the image are not corre-
lated, which is not the case here. In Olena, a reference to a pixel is returned. Most of the time
it is fine, but when the data do not physically exist, it might be a problem like it has been seen
previously. For example, a RGB image can be viewed as a gray scale one, if a function which
convert RGB to gray scale is defined. This encapsulation can be seen in figure 2.12. A shell
translates every access to the data into the output format. If you want to assign a gray value to
a pixel (each of the RGB components has to be set to this value), you will not be able to easily
use pointers or references. A solution to this problem, is to return a proxy or to use set and get
methods.

Figure 2.12: Point access problem for Olena.

2.2 Capabilities comparison 18

2.2.5 Storage

The common storage is a vector, but different implementations exist, for example implemen-
tations based on hash tables. It might be interesting to use the storage of another library, for
example the containers of STL or an image type of another library.

Cimg

The grid is based on a vector. Even if images are 4D, the operator[] can be used with an integer
that is the index in the buffer. The vector is a “T*”. This is simple, and it can be easily binded
with the LAPACK (Linear Algebra PACKage) library [Anderson et al. (1999)].

Once again, the library is simple and provides an efficient access to the image, but it is hard
to change it.

The Cimg has the approach of MatLab or LAPACK. The user know what the data represent.
For example an integer can represent a frequency. The user knows the goal of the algorithms
and the data that it expects. For example only positive values. The user is also aware of the
numerical problems, for example integer overflows. In exchange, the code is simple, and pro-
totypes can be written quickly. It has no cost at execution time.

Vigra

The storage in Vigra is done using a buffer in the BasicImage class. The allocator is a parameter
of the class like the STL containers. Thus, this library does not provide any tools to change
the storage. You must write a new image class for each different storage. This code has to
implement some functions that are not specific to your storage. An example is size, which does
not really depends on the underlying storage. But the good point is that it does not modify
neither the core nor the algorithm3. It is the same using STL, for example std::sort can be easily
used on a container that has only little to do with STL containers (no inheritance from a STL
container).

Horus

The storage mode used in Horus is very basic. Actually, it is a simple array of the value type
used. Furthermore, even if the way to iterate through the data does not assume anything about
its real representation in memory, it is not an easy task to make the library support another way
to store data. Like it has be seen for the nD images, such changes would result in rewriting
some piece of existing code.

Olena

In Olena, the storage and the interface of the images are separated. Thus the design allow to
easily implement a new image type based on another storage mode.

2.2.6 Specialization

The specialization is useful to have different implementations of an algorithm depending on
the input images. For example, if the image is stored in a linear buffer, the copy of this image
can be done using memcpy which is efficient. The user might want to use specializations on any

3Of course, the implementation must have the same interface than BasicImage

19 Image processing libraries

criterion of the image. He might want to use several criteria as well, for example a version of a
function which works on images that are 2D and binary.

The specialization can be used to restrict the entry types of a function, but this point will be
discussed in the next section.

Horus

The choice of the algorithms that have to be called in Horus is done at the execution time. This
principle is quite unusual and is presented in the figure 2.13. To call a function on an image, you
will have to know what kind of operation you are working on4, then you will have access to the
database of the concerned functors. In another hand the image will give its signature5, which
combined to the function name will generate a key. This key is used to get the good functor in
the previously retrieved database. Then this functor can be called on the image to get the result
of the process. Thus to give a specialized version of an algorithm, you have to refer it in the
good database with a key corresponding to a signature.

Figure 2.13: Dynamic specialization using Horus.

Vigra

The specialization with Vigra, can be done in the same way it is done with STL. Like in STL, it
is possible to specialize a function using template specialization.

Olena

Olena proposes a hierarchy of images with diamond inheritance. This kind of inheritance is
used to have several orthogonal discriminants in the hierarchy. Thus, image, vectorial image, im-
age 2D are abstract classes that can be used to restrict the prototype of a function. Furthermore,
the SCOOP paradigm [Burrus et al. (2003)] used in Olena allows to reinterpret statically the

4The authors of Horus give an exhaustive list of every kind of operator (meta-algorithms) that can be used in image
processing: binOp, UnaryOp, . . .

5Every information that is related to the image: its dimension, information on its pixels, . . .

2.2 Capabilities comparison 20

type of an object. It is then easy to use the C++ overloading to choose the optimized version of
an algorithm.

An example of such a procedure is presented in the figure 2.14. The user calls algo on his
image, the function will then retrive the real type of the image (go to the leaf of the image
hierarchy), to call the implementation corresponding to that type. In the example, if algo is
called with an image2d<int_u8>, the called version of the algorithm will be the first one. On the
contrary, if an image2d<bin> is used, the second version will be called.

template <typename Exact>
void impl_algo(abstract::image<Exact> &im)
{

// Basic version of the algorithm (slow)
}

template <typename Exact>
void impl_algo(binary_image<Exact> &im)
{

// Specialized version of the algorithm (fast)
}

template <typename Exact>
void algo(abstract::image<Exact> &im)
{

impl_algo(im.exact()); // Call the algorithm on im casted
// to its real type.

}

Figure 2.14: Algorithm specialization in Olena.

2.2.7 Bug reporting / strong typing

Often, the genericity obfuscates error messages produced by the compiler.
Another problem are bugs in templated functions. Some of them are not detected by the

developers, and appears when the user calls the function with his own data type.
You will see in this section how the restrictions on algorithm prototypes are done.

Cimg

The Cimg is not strong typed. It is difficult to make some checks at compile time. But Cimg is
simple. Only a few base classes are available. Thus, the user easily understand the library.

Olena

The SCOOP paradigm [Burrus et al. (2003)], which is used in Olena, aims at providing more
restrictions than the STL way of programming. Actually, there is a representation of the image
hierarchy which is used to restrict the input of generic algorithms. On contrary to STL, the user

21 Image processing libraries

will not be able to call an algorithm with something that is not an image. This check is useful,
to avoid some wrong function calls that would result in obfuscating error messages.

Furthermore, It has been said in the subsection 2.2.6 that the image hierarchy of Olena takes
into account several orthogonal discriminants. Thus, this property can be used to check the
input of a function. If the image does not verify some properties, there will be no matching
function prototype, and the error message will be human-readable (it will appears in the function
call, and not in the core of the function).

An example of such a prototype is presented in the figure 2.15. Here the compiler will not
complain about not finding a method on the data type. Instead, it will just yield that there is no
matching function called opening that takes a vectorial image. This last type has been deduced
automatically from the rgb_u8 type.

template<class I, class E>
oln_concrete_type(I)
opening(const abstract::non_vectorial_image<I>& input,

const abstract::struct_elt<E>& se);

int main()
{

oln::image2d<ntg::rgb_u8> im;

opening(im, win_c4p());
}

Figure 2.15: Example of type restriction using Olena.

2.2.8 Adding new algorithms

If the image processing library works only with 2D images of unsigned char, it is intuitive for a
developer to write a new function. If the library is generic, the developer has to do some effort
to change the way he writes algorithms. This capability is subjective but is one of the most
important.

Cimg

Cimg focuses on the user, and is designed to let him write easily a new algorithm. Even if it is
hard to change the image class, it is easy to add a new algorithm. Macros are provided to factor
the code.

Most users are satisfied by 1 to 4D images that support float, integer, arrays, and other simple
types. Cimg provides these functionalities, and is fast.

Horus

Horus uses several meta-algorithms to write its algorithm. The meta-algorithms of Horus are
[Koelma and other ISIS members (2003)]:

• Unary pixel operation. An unary function is applied to each pixel (ex: threshold).

2.2 Capabilities comparison 22

• Binary pixel operation. An operation combines two pixels at the same point in two images
(ex: sum).

• Reduce operation. A function takes the value of the pixels and return a value (ex: maxi-
mum of an image).

• Neighborhood operation. At each point computes a function that depends on a neighbor-
hood (ex: median).

• Generalized convolution. It is a neighborhood operation that can be written using two
binary functions (ex: gauss).

• Operation on the domain (ex: rotation).

So as to add a new algorithm, a functor must be written. This functor is linked to one of these
meta-algorithms (inserted in the corresponding database), and instantiated for the set of types
used in Horus. For more details on how to write practically an algorithm in Horus, you can see
the user’s guide [Koelma and other ISIS members (2003)].

Olena

To add an algorithm to Olena, you can write it either in a generic way or in a specialized way.
The second way to process is the simpler one but is also the less interesting. Actually, it can be
assimilated as using the library.

To write a generic algorithm, you will need to have knowledge about the way to do it. It is
easy write a semi-generic piece of code. The figure 2.16 presents such a case: the function foo aims
at setting an image to zero. The problem here is the zero value (understood as a neutral element)
may vary depending on the data type the function is instantiated for (for example, an user type
representing a monoid with a neutral element not equal to zero).

template <typename E>
void foo(abstract::image<E> &im)
{

oln_iter_type(E) it(im);

forall(it)
im[it] = 0; // <-- There is a problem here.

}

Figure 2.16: Wrong implementation of a generic algorithm in Olena.

Instead of using directly 0 in the code, a good implementation (Fig. 2.17) get this value by
asking it to the type. In this case, the previously introduced user type will be usable by the
algorithm (the trait called by ntg_zero_val has to be written before).

Furthermore, the error messages you may encounter can be more obfuscating than the one a
simple user may have.

23 Image processing libraries

template <typename E>
void foo(abstract::image<E> &im)
{

oln_iter_type(E) it(im);

forall(it)
im[it] = ntg_zero_val(oln_value_type(E));
// ^
// |-- There is no problem anymore.

}

Figure 2.17: Good implementation of a generic algorithm in Olena.

Chapter 3

What can be improved in Olena

The goal of this chapter is to give some idea on what can be improved in our image processing
library, Olena.

3.1 Value type of the pixels

Olena provides many data types that make possible to have strong typed value types. It is
possible to express that the value of the pixels are between 0 and 100 for example. In our
opinion this is fine, and doing better is not a priority.

The important thing is the semantic layer that stands on the top of these value types. An
example is given in the figure 3.1. Generally, a color image is not a label image. The type of the
components can be a float for example. But it is also possible that an image associates a label to
a color. This is the case for some file formats such as GIF, which have a palette of colors. We
want to express in the type that this image is an image of color an also an image of label. Thus
the user can save it like a color image, and can run an algorithm that returns the number of
occurrences of each label.

Figure 3.1: Label and color image with a color palette.

In Olena 0.10, if a new value type is used, it is easy to make it belongs to a given semantic type.
For example, if the user wants to use the std::vector<bool> as a value type, he just needs to write
a specialization of a trait which specifies that the std::vector<bool> is a vectorial type. The image
of std::vector<bool> will automatically inherits from the vectorial image type. But in Olena 0.10,

25 What can be improved in Olena

it is quite intrusive to add a new kind of semantic. The header image_with_type_with_dim.hh
must be changed. It is not a huge problem, but is could be a good thing to ease this process.

Right now, the semantics are general such as vectorial images, or scalar images. It could be
interesting to add more specific semantics. Among these new types of images, gray tone images
or color images could be useful.

3.2 Accessors and iterators

The accessors of Olena are the most intuitive of those presented in our comparison. They are
safe and can be use on different images just like points.

The main problem with the accessors is the reference given by the non-const operator[] and
operator() operators. It could be possible to return a proxy, but this method could yields to many
problems [Köthe (1998)]. Using set and get operator makes everything very simple and solves
the problem. But it is less human readable.

The morpher design pattern will be used in Olena 1.0 to re-use a given type of image, chang-
ing only a few properties, such as the type of the iterators. This can be used for example to have
iterators which iterate only on the points given by a binary mask (figure 3.2).

Figure 3.2: Domain of the image defined by a mask.

3.3 Storage

Several kinds of storage must be proposed to link our library with other ones. For example, it
could be interesting for many users to have a binding with MatLab. The method used in Cimg
could be used. In fact, we just have to check that the type of the pixels and the dimension is
compatible with MathLab, to use a buffer for the storage, and to have access to the address of
this buffer. The storage can also be used to wrap on external libraries such as fftw1.

Furthermore, some morphers can be seen as images using other images as implementation.
Because Olena 1.0 relies on a heavy use of such structures, an easy way to change the data
storage has to be found.

3.4 nD images and Grids

There is no real nD images in Olena 0.10. Actually, the design of Olena 0.10 allows nD structures
but they have not been implemented yet. Furthermore, it would be a good way to factor the
code for images, points and vectors (dpoint) for the existing dimensions (1D, 2D and 3D) in a
nD type.

1The fftw library can be used to compute a discrete Fourier transform. It is a free software.

3.5 Environment and new algorithms 26

In the current version of Olena, to use hexagonal grids, you have to specify a neighborhood
that varies depending on the location of the point. For a given 2D image, it is possible to call
two times an algorithm, the first time with a rectangular neighborhood, the second time with a
hexagonal one. In other words, the neighborhood does not depend on the image. This approach
can be assimilated to the float approach for data types (an image of float can be considered as
a gray scale image or a percentage image). Olena aims at being a strong typed library, thus
images and their possible neighborhoods should be correlated.

Nonetheless, so as to implement hexagonal images, it is possible to re-use the code of rectan-
gular images, changing the neighborhood type using a morpher. The resulting image is strong
typed, which is not the case in Olena 0.10.

Olena 1.0 should implement rectangular grids and grids based on graphs, to check that the
design support non-rectangular grids.

3.5 Environment and new algorithms

Olena 0.10 provides already meta-algorithms such as Horus. They are rarely used. But in fact,
it is because the iterators of Olena are simple. It is shorter to write a loop using the iterators
of Olena than to write a functor. The documentation must explain clearly the way these meta-
algorithms works with examples in order to push developers to use them.

The specialization of algorithms is implicitly handled by overloading. It works well in Olena 0.10
and it gives human readable error messages; which is not the case for STL.

Olena uses meta-code and many templates to be generic. This yields to two problems. The
first one is the high compilation time. Several tricks can be used to solve this problems. Today,
the compilers can compile the header once, and thus avoid to parse huge headers many times.
It could be a good thing to use this pre-processed header trick. The second problem is that
Olena works only with recent compilers. For example, Olena does not compile using Microsoft
Visual 6. Once again it is not really a problem because Olena uses standard C++, and today the
compiler manufacturers are working to release compilers which parse standard C++.

Conclusion

Two different ways to compare libraries have been presented: the functionalities and the ca-
pabilities. Our goal is to improve the core and the capabilities of the image processing library
Olena. Thus, we have compared the facility to adapt several libraries to particular needs. Sev-
eral points of view have been discussed. Cimg proposes a limited genericity but is simple.
Vigra takes the drawbacks and advantages of STL. It also proposes clever solutions to retrieve
the data. Horus clearly defines each concepts, and is built to be user friendly. But adding a new
functionality may be a quite difficult task.

The design of Olena is relevant in comparison to other libraries. Some difficult functionalities
can rely on morphers, which provides a way to modify the types without being intrusive. The
core of Olena is big in comparison to other libraries, and the core must be factored. Because
Olena is generic in regard of many concepts, it is important to clearly defined each of them
like Horus does. For example, the user must know if an iterator can go through a point more
than once in an iteration. Finally, Olena 0.10 offers a lot of genericity, without obfuscating error
messages but also a complex core. It is a good thing and Olena must be simple, in order to be
easily developed and accepted by the users.

Chapter 4

Bibliography

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Green-
baum, A., Hammarling, S., McKenney, A., and Sorensen, D. (1999). LAPACK Users’ Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, third edition.

Barton, J. J. and Nackman, L. R. (1994). Scientific and Engineering C++. Addison-Wesley, Read-
ing, MA.

Burrus, N., Duret-Lutz, A., Géraud, T., Lesage, D., and Poss, R. (2003). A static C++ object-
oriented programming (scoop) paradigm mixing benefits of traditional oop and generic pro-
gramming. In Proceedings of the Workshop on Multiple Paradigm with OO Languages (MPOOL’03),
Anaheim, California.

Eichelberger, H., Wolff, J., and v. Gudenberg (2000). UML description of the STL. In First
Workshop on C++ Template Programming, Erfurt, Germany.

Koelma, D. and other ISIS members (2003). Horus user guide, version 2.0.

Köthe, U. (1998). On data access via iterators. Technical report. This technical report explains
well the design pattern used in Vigra to access to the data, and why this design has been
chosen.

Köthe, U. (2000). Generische Programmierung für die Bildverarbeitung. PhD thesis. In this thesis
the design of Vigra is described; but we did not read it.

Köthe, U. (2004). Vision with generic algorithms (vigra).

Tschumperlé, D. (2004). The cimg library.

List of Figures

2.1 Neighborhoods and loops in Cimg. 10
2.2 Image modeling in Horus. 10
2.3 Image signatures in Horus. 11
2.4 Invalid assignment in Olena. 11
2.5 Cimg macros used to traverse an image. 14
2.6 RGB data structure. 15
2.7 Different implementations of a color image. 15
2.8 Graphical representation of data structures of the figure 2.7. 15
2.9 Pixel accessor returning a valid reference. 16
2.10 Pixel accessor returning an invalid reference. 16
2.11 Copy algorithm in Vigra. 17
2.12 Point access problem for Olena. 17
2.13 Dynamic specialization using Horus. 19
2.14 Algorithm specialization in Olena. 20
2.15 Example of type restriction using Olena. 21
2.16 Wrong implementation of a generic algorithm in Olena. 22
2.17 Good implementation of a generic algorithm in Olena. 23

3.1 Label and color image with a color palette. 24
3.2 Domain of the image defined by a mask. 25

	1 Functionalities vs. Capabilities
	1.1 Functionalities
	1.2 Capabilities

	2 Image processing libraries
	2.1 Overview of the libraries
	2.2 Capabilities comparison
	2.2.1 n Dimensions
	2.2.2 Value of the pixel
	2.2.3 Grids
	2.2.4 Iterators
	2.2.5 Storage
	2.2.6 Specialization
	2.2.7 Bug reporting / strong typing
	2.2.8 Adding new algorithms

	3 What can be improved in Olena
	3.1 Value type of the pixels
	3.2 Accessors and iterators
	3.3 Storage
	3.4 nD images and Grids
	3.5 Environment and new algorithms

	4 Bibliography

