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Factor Analysis model considers the variability of the Gaussian mixture model as a linear combination of
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Introduction

Nowadays, in a lot of secure applications, people have to prove their own identity to go into
a critical system. Most of these applications are based on password authentications as in bank
cash points or in the access of some protected buildings. However in such systems, a robber can
easily find the password and use it to gain access to the critical area. For this reason, more and
more authentication systems are based on biometrical features like fingerprints, iris or voice
which present more inviolable features. Indeed, the study of these biometrical features is an
expanding research field. Furthermore, it is known that fingerprints have been used extensively
in criminal investigations for a long time. Today, voice recognition systems are beginning to
have a legal status in some countries as a proof to authenticate a speaker on a tape recording.
In this report, we consider the problem of voice authentication, generally called the speaker
verification problem. More precisely, we focus on the text-independent speaker verification i.e
we do not consider the uttered text.

In our speaker verification task, speakers are first modelled from enrolment data coming
from phone recordings. During the verification task, these models enable to check whether
a segment of speech is uttered by a hypothesised speaker. For a few years, the community
has been more and more interested in resolving this verification problem even if the enrolment
conditions are different during the training step and the testing step. In this report, we are
particularly interested in dealing with the problem of channel compensation, that is to cope with
channel variations between training and testing step. Typically, imagine the problem arising
when a speaker is enrolled on a cellular phone while the test utterance comes from a landline
phone. Actually, the channel adds its own noise in the speaker models, and thus it is very
hard to authenticate the speaker of an utterance enrolled on a different channel. Cancelling the
channel effects also seems to be a good way to improve the verification system.

This report describes the factor analysis model proposed by Kenny et al. (2005) and developed
in the LRDE Speaker Verification framework in order to enhance the current LRDE system and
to have a channel compensation system. In the first chapter, we discover that the state-of-the-
art system presents some limits. It constitutes a motivation to develop a new system that will
be presented in a second time. This model is based on a factor analysis which is able to deal
with the channel effects. Finally, we will introduce the results obtained by the experiments
which compare the baseline system and the system obtained by the factor analysis based LRDE
Speaker Verification tool.



Chapter 1

The limits of the probabilistic
approach

The state-of-the-art system in speaker verification is built on three main parts as described on
Figure 1.1. The first one aims at building a model of the speaker population, commonly called
the world model. This one represents the speech behaviour of the studied population in order to
model the non-target speakers (or impostors). Typically, the world model is trained from a large
amount of speech data which presents speaker and channel variabilities in order to consider all
acoustic events and their variations. Moreover, the world model is also used in the enrolment
step. Actually, given a short training speech utterance coming from a speaker, a client model is
obtained by adaptation of the world model. This adaptation is performed in order to deal with
the few amount of available data and with the unseen events. Finally, during the testing step,
given a testing speech utterance and a target speaker, a decision score is calculated with respect
to the target and the non-target model.

Figure 1.1: Baseline system
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As illustrated on Figure 1.1, this chapter focuses on the enrolment step of the client speaker
and more precisely on the adaptation procedure used in the baseline system. First of all, the
probabilistic models fitting the distribution of the acoustic events will be defined. Then, the
Maximum A-Posteriori (MAP) adaptation will be described with the common modification
used in speaker verification. Finally, we will discuss about the limits of the MAP adaptation
in order to introduce a new model based on a factor analysis.

1.1 Speaker models based on Gaussian Mixture Models (GMM)

In speaker verification, a Gaussian Mixture Model (GMM) is used to characterise the target and
the non-target speakers. A GMM is a probability density function (p.d.f) fitting the distribution
of the acoustic events. In this report, we assume that the acoustic events are represented by
cepstral vectors xt of size F and their distributions are modelled by GMMs. These GMMs are
assumed to have C mixture components which are multivariate Gaussian distributions. Then,
a GMM λ is characterised by a set of C triplets

λ = (ωc, µc, σc)1≤c≤C (1.1)

where ωc is a weight associated to the c-th components, and µc and σc are respectively a F -
dimensional vector and a F × F diagonal matrix representing the mean and the covariance
matrix associated to the c-th multivariate Gaussian distribution. In order to be a p.d.f, the
weights of a GMM have to respect the constraint

∑C
c=1 ωc = 1. Finally, given a cepstral vector

xt, the likelihood to be uttered by a speaker λ is given by

p(xt|λ) =
C∑

c=1

ωcN (xt, µc, σc) (1.2)

where N (x, µ, σ) denotes the multivariate Gaussian distribution having the mean µ and the
covariance matrix σ.

1.2 Maximum A Posterior (MAP) adaptation

Generally, in the speaker verification task, there is a few amount of data to train a client speaker.
According to the different tasks, the speech enrolments last between 10 seconds and 5 minutes.
Given the high degree of freedom of GMMs (C and F are quite big) and the few amount of
training data, a speaker model based on GMM cannot be directly estimated with the Expecta-
tion Maximisation (EM) algorithm (Dempster et al., 1977). For this reason, the world model is
used as a prior knowledge of a speaker in the Maximum A Posteriori (MAP) adaptation. In this
section we present the MAP adaptation used in speaker verification which estimates a client
model from the world model and a short training utterance (Reynolds et al., 2000).

In MAP adaptation, the client model is derived from the world model by considering a short
training utterance. As a variant of the EM algorithm, the MAP adaptation iteratively updates
the parameters of the GMM λ = (ωc, µc, σc)1≤c≤C such that the total likelihood for an enrolment
utterance x1, . . . , xT is maximised

T∏
t=1

p(xt|λnew ) ≥
T∏

t=1

p(xt|λ) (1.3)



7 The limits of the probabilistic approach

The mixture components are updated by a tradeoff between fitting the corresponding acoustic
events and the prior knowledge given by the world model. The problem arising from here,
and also from the EM algorithm, is to determine which cepstral vectors correspond to a given
mixture component. This latent information could be given by estimating the alignment statis-
tics (Baum-Welch or Viterbi statistics) as described in Appendix B.1. The alignment statistics
tell us how a set of cepstral vectors reacts on each mixture component. Figure 1.2 describes the
Baum-Welch statistics where the colours of the cepstral vectors indicate the alignment on each
Gaussians. These statistics are used to assess whether a component is responding or not. If a
component is highly responding, then it could be adapted on the corresponding acoustic events.
In another way, if a component is not responding, this one corresponds to an unseen event, and
the information will be given by the world model. Finally if the component is fairly responding,
the component will be updated by a weighted sum between the corresponding acoustic events
and the world model. The convergence speed is determined by a relevance factor τ .

Figure 1.2: Baum-Welch statistics

In speaker verification, Reynolds et al. (2000) present a different version of the MAP adapta-
tion to build the speaker models. Actually, they proved experimentally that best performances
are obtained by only updating the mean vectors µc and by fixing the weights ωc and covariance
matrices σc associated to each Gaussian. As just mean vectors are updated during MAP adap-
tation, the weights and the covariance matrices could be shared between all speaker models.
Therefore, the difference between the speaker models only lies in the mean vectors. Thus, a
speaker model could be reduced to a CF -dimensional vector built on the concatenation of the
F -dimensional mean vectors coming from the C mixture components. This CF -dimensional
vector is commonly named the supervector of a speaker. Now, the MAP adaptation can be ex-
pressed as the estimation of a supervector M by considering a short speech enrolment and a
prior supervector extracted from the world model.
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1.3 The limits of the MAP adaptation

In the Maximum A Posteriori (MAP) adaptation, an estimate of the speaker supervector is ob-
tained from a short speech enrolment and a prior supervector. Working on the text-independent
speaker verification task, we want to build speaker supervectors which are independents from
the uttered text and all the enrolment conditions. However, in MAP adaptation it is not clear to
have the same estimate from different utterances for a given speaker. There are different ways
to explain this source of variability. First, the speech of an individual is continuously changing
whether it is during a short time (as a day) or a long time (as a year) that is called the speaker
variability. However, the main source of variation is for sure the session variability, that is to
say the whole phenomena which are speaker-independent and impair the speaker supervector
estimates. A well-known source of session variability occurs when different channels are used,
this is precisely the channel variability.

The limits of the MAP adaptation originate from this uncertainty to produce a well-estimated
supervector. For this reason, the information about uncertainty has to be considered in the
speaker representation in order to have a more robust model and to cope with speaker and
channel variabilities. For instance, instead of modelling a speaker by using a supervector, the
uncertainty should be estimated by modelling a speaker-dependent and channel-dependent
utterance with a random supervector M (Kenny et al., 2005). In fact, the variance of its random
supervector M should indicate the uncertainty during the MAP adaptation. That is the main
idea of the factor analysis decomposition presented in the next chapter.

Maximum A
Posteriori

World Model

Supervector space

Different estimates

Different data Normal distribution

Figure 1.3: Uncertainty during MAP adaptation

The scheme in Figure 1.3 summarises the limits of the MAP adaptation. It is shown that the
world model is used as a prior knowledge of the speaker supervector. This model is represented
as a supervector which lies in the supervector space. Then, given different short speech enrol-
ments, different speaker supervectors are estimated. Finally, it is clear that an utterance could
be represented as a random supervector M where its variance is assumed to follow a normal
distribution.



Chapter 2

A factor analysis modeling for
channel compensation

This chapter describes how to perform channel compensation by modelling a speaker with a
factor analysis decomposition of the speaker-dependent and channel-dependent random super-
vector M (Kenny et al., 2005). A first reason of using a such model is presented in the Chapter
1. Moreover, this new model is also used to deal with channel effects by taking advantage of
the available information of channel variability. First, the factor analysis based speaker models
will be described. Then, we will explain how to compute the decision score which tells whether
a speech utterance is really uttered by a hypothesised speaker. Finally, the different algorithms
used to estimate the factor analysis parameters will be explained. Note that this approach is
implemented in the LRDE Speaker Verification framework as described in the Appendix A.

2.1 Factor analysis based speaker and channel models

As mentioned in Chapter 1, a speaker-dependent and channel-dependent model is charac-
terised by a CF -dimensional random supervector M in which the variation indicates the un-
certainty during the estimation procedure. We first assumed that this uncertainty comes from
both speaker and channel variabilities. Then, the random supervector M could be expressed as
a factor analysis of a speaker-dependent component s and a channel-dependent component c
given by

M = s + c (2.1)

where s and c are CF -dimensional latent vectors. Observe that a factor analysis is used in-
stead of a Principal Component Analysis (PCA) since the random vector M is not observable
or hidden, there is no analytic solution to estimate s and c. In the Equation 2.1, the fact that the
channel component has an additive effect is a common assumption in speaker verification. This
additive effect comes from the extraction procedure of the cepstral vectors performed on the
input speech signal to design the acoustic events. Moreover, it is also assumed that the speaker
and channel effects lie in different and orthogonal subspaces of the supervector space. Actually,
without a such assumption, it would be impracticable to perform a such factor analysis. The
subspaces spanned by the speaker component s and the channel component c are respectively
called the speaker space and the channel space.
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Figure 2.1 illustrates the factor analysis decomposition of the random supervector M. There
are a speaker component s lying in the speaker space, and a channel component c lying in the
channel space. In this figure the channel space and the speaker space are two-dimensional and
together they span the three-dimensional supervector space. Thus, any supervector M could
be decomposed as a sum of a latent speaker component s and a latent channel component c.

Figure 2.1: Speaker and channel subspaces

In this report, we focus on the factor analysis based on the classical MAP and the eigenchan-
nel MAP assumptions (Kenny et al., 2007). Under the classical MAP assumption, the speaker
component s lies in the supervector space. The classical MAP assumption is opposed to the
eigenvoice MAP assumption under which the speaker space is a low dimensional subspace of
the supervector space. Using classical MAP instead of eigenvoice MAP has some restrictions in
practice. In classical MAP, if the number C of components is large, the speaker space is a high
dimensional space and therefore it presents a high degree of freedom. Thus, in order to estimate
properly the speaker space, a large amount of speech is required. Unlikely, in speaker verifica-
tion just a few amount of data is available to train client speaker models. On the contrary, in
the eigenvoice MAP the speaker is a low dimensional subspace and can be well-estimated with
a small amount of data. However there are several motivations to use classical MAP instead
of using eigenvoice MAP. First, in the classical MAP, the estimation of the speaker space is less
computationally expensive and is guaranteed to converge to a correct solution. In another way,
Shou-Chun (2006) proposes a progressive speaker adaptation in which test data could be used
to reestimate the speaker space. That enables to deal with the problem of the few number of
enrolment data. Finally, the classical MAP assumption was also selected because it is easier to
implement for the first version of the factor analysis based LRDE Speaker Verification tool.

As in eigenvoice MAP, in eigenchannel MAP the channel space is assumed to be a low Rc-
dimensional subspace of the CF -dimensional supervector space where Rc � CF . This as-
sumption is based on the design of the supervectors. Indeed, in speaker verification, GMMs are
built with respect to the speaker information. The aim is to model the speaker features only.
Thus, a supervector gives very few pieces of information about the channel component. That is
the main reason to assume that the channel space dimension is very low.
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Now, on the basis of the classical MAP and the eigenvoice MAP, the form of the factor analysis
could be introduced as

M = m + dz︸ ︷︷ ︸
s

+ ux︸︷︷︸
c

(2.2)

where

m is a CF -dimensional supervector
d is a CF × CF diagonal matrix
z is a CF -dimensional latent vector
u is a CF ×Rc full rectangular matrix
x is a Rc-dimensional latent vector

and z and x are both assumed to follow a normal distribution (Kenny et al., 2007). As men-
tioned in the Equation 2.2 and according to the Equation 2.1, the speaker component s is equal
to m + dz and the channel component c is ux. The components of z are speaker factors and the
components of x are channel factors. A factor analysis model of a speaker and channel depen-
dent random supervector M is illustrated in Figure 2.2. It is important to notice that the latent
random vector z and x are represented as centred on zero. Thus, the random supervector M
is distributed around the supervector m. The matrix d defined the orientation of the speaker
space. This matrix is supposed to be diagonal since all components of the supervector space are
assumed to be independents. The latent random vector z corresponds to the distribution of the
speaker component in the speaker space. The matrix u defines the channel space. This matrix
performs a mapping between a low dimensional vector of the channel space to the supervec-
tor space. Finally, the latent random vector x corresponds to the distribution of the channel
component in the channel space.

Figure 2.2: Factor analysis decomposition

In our approach, given a set of training utterances, we want to model the specific speaker
space and the specific channel space by the set of hyperparameters Λ = (m,d,u). The vector
m and the matrix d are speaker-dependent and channel-independent hyperparameters. The
matrix u is a speaker-independent and channel-dependent hyperparameter. Modelling speaker
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and channel space only by hyperparameters holds by fitting the distributions of the latent vari-
ables z and x on a standard normal distribution N (0, 1). Such a representation enables to es-
timate the likelihood of an utterance during the speaker verification task and indeed, evaluate
the decision score. Actually, given a test speech segment, the more the estimates of the latent
variables x and z have a standard normal distribution, the more the speech segment utterance
is likely uttered by the hypothesised speaker.

The factor analysis model considers both speaker variability and channel variability in a set
of speech utterances. This variabilities are reflected by the latent random variables z and x. The
form of the factor analysis as a sum of the speaker component s and the channel component
c seems to be an appropriate way to deal with the channel effects. That enables to perform
channel compensation to produce better decision scores during the verification task. In the next
section, the way to estimate the decision score and to cope with the channel effects is described.

2.2 Decision score estimation

In this section, we will explain how to answer to the verification task in the case of using the
factor analysis model. The goal is to tell whether a hypothesised speaker, modelled by the hy-
perparameter set Λ, is really the author of a test utterance χ. Generally, in speaker verification,
this decision is given by a score θ. Then, the final answer is obtained by comparing the decision
score θ with a threshold. As in the baseline speaker verification system, the decision score is
defined by the following likelihood ratio

θ =
P (χ|Λ)
P (χ|Λ0)

(2.3)

where χ is the set of the observations, Λ is the target speaker model and Λ0 is the non-target
speaker model. At this point, it is important to notice that channel effects are dealt by using the
likelihood ratio. As mentioned in the 2.3.3, the estimate of the channel space is the same for the
target model Λ and the non-target model Λ0 since the channel space is speaker independent.
Thus, the channel component is compensated in the likelihood ratio. Therefore, the decision
score is more relevant than the likelihood ratio used in the baseline system.

In order to calculate the decision score θ, the likelihood P (χ|Λ) of an observation χ given
a speaker model Λ has to be defined. In our approach, the hyperparameter set Λ models the
speaker and channel spaces. As mentioned in 2.1, that holds by assuming that the distributions
of the latent variables z and x in Equation 2.2 have a standard normal distribution N (0, 1) for
utterances coming from same speaker and same channel. Then, the likelihood P (χ|Λ) could
be defined by evaluating how far this distribution from the standard normal distribution is.
Kenny (2005) defines it by writing the likelihood P (χ|Λ) as a sum of conditional probabilities
according to the Bayesian formula

P (χ|Λ) =
∫
z,x

P (χ|Λ, z,x)P (z,x) dzdx (2.4)

where the marginal probability P (z,x) = N (z,x|0, I) = N (z|0, I) N (x|0, I). The function
N (.|0, I) refers to the Gaussian kernel function which measures the proximity to the standard
normal distribution. In practice, this integral calculus cannot be evaluated directly. To avoid
this problem, the likelihood function is expressed with a different form by using some algebraic
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transformations. Then, the likelihood function is given from the estimate of the distribution of
the latent variables z and x of the observation χ on the hyperparameter set Λ. The details of the
likelihood calculus are given in the Appendix B.3.

Given the hyperparameters of the target model, the hyperparameters of the non-target model,
and a test utterance, the decision score for speaker verification task could be calculated from
the estimate of the distributions of the latent variables z and x. Now, the estimation of the
distributions of the latent variables, of the independent-speaker hyperparameters (non-target
speaker model) and of the dependent-speaker hyperparameters (target speaker model) have to
be introduced. That is the purpose of the next section where the different algorithms to estimate
properly the parameters of the factor analysis model are described.

2.3 Factor analysis parameter estimation

This section describes the methods to estimate the different parameters of the factor analysis
approach. First, the estimation of the distributions of the latent variables z and x is presented.
Then, the speaker-independent hyperparameter estimation is described. Finally, we show how
to estimate the speaker-dependent hyperparameters.

2.3.1 Distribution estimation of the latent variables

In the Equation 2.1, the factor analysis is formed by a sum of a speaker-dependent and channel-
independent component s and a speaker-independent and channel-dependent component c. In
this section, the estimation of the distributions of the latent variables s and c defined in (Kenny
et al., 2007) is presented. This one has to be performed on acoustic event observations that is
to say cepstral vector observations. Unfortunately, in cepstral vectors the information about
speaker and channel effects is hidden, so it is not possible to measure s and c directly. Moreover
the channel effects cannot be ignored in estimating s and s is not known in estimating c. Thus,
the distributions of the latent variables s and c have to be jointly estimated.

Set of enrollments

Hyperparameters
m, d and u

Distributions
of z and x

Figure 2.3: Distribution estimation

In order to estimate the joint distribution of the latent variables s and c, the prior estimate
of the speaker and channel space are given by the hyperparameter set Λ = (m,d,u). As men-
tioned above, the hyperparameter set Λ describes the speaker and channel spaces by assuming
that the latent variables z and x have a standard normal distribution in the Equation 2.2. Now,
given this prior estimate and a set of cepstral vectors, the purpose is to jointly reestimate the
distribution of the latent variables z and x as illustrated on Figure 2.3. That is performed by
first calculating the alignment statistics of the cepstral vectors on the GMM centred on m as
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described in Appendix B.1. These alignment statistics enable to study the behaviour of the ut-
terances on the current estimate of the hyperparameter set Λ. Then, the joint distributions of
the latent variables z and x could be estimated as described in Appendix B.2. Since the distri-
butions of z and x are assumed to be normally distributed, only the estimations of E[z], E[x],
Cov(z, z) and Cov(x,x) are required.

2.3.2 Speaker-independent hyperparameter estimation

In this section, we want to estimate a speaker-independent factor analysis model from a large
set of speech in which many utterances of different speakers are available and in which each
speaker is enrolled on several different channels (Kenny, 2005). This speaker-independent
model is designed in order to model the non-target speakers (or impostors) and also to have
a prior knowledge of the client speakers for the same reasons as mentioned in 1.2. In the factor
analysis model, the hyperparameter set Λ characterised the prior knowledge of the speaker and
channel dependent random supervector M. That holds by assuming that the latent variables z
and x have a standard normal distribution. In the previous section, it is shown that given a set
of hyperparameters Λ and a set of observations, the distributions of the latent variables z and x
could be jointly reestimated. In this section, a method is defined to iteratively update the hyper-
parameter set Λ. As described in Figure 2.4, in each iteration the new estimate of Λ is obtained
by considering the joint distributions of z and x. More precisely, the new hyperparameter set Λ
is obtained by fitting the new distribution of z and x on a standard normal distribution. That is
a likelihood maximisation according to the definition given in 2.2 since the distributions of the
latent variables z and x catch up with a standard normal distribution.

Set of enrollments

Hyperparameters
m, d and u

Distributions
of z and x

Adapt m, d and u

Figure 2.4: Speaker-independent hyperparameter estimation

In the estimation task of speaker-independent hyperparameters, given a hyperparameter set
Λ0 = (m0,d0,u0) and a set of speech utterances χs, a new hyperparameter set Λ = (m,d,u)
has to be estimated. This estimation has to be done such that the total likelihood of the speaker
population observations χs, on the hyperparameter set is maximised∏

s

P (χs|Λ) >
∏
s

P (χs|Λ0) (2.5)

where the likelihood function P is defined in Section 2.2. Such an algorithm could be given
by an Expectation-Maximisation (EM) algorithm. An EM algorithm maximises iteratively the
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likelihood in two steps, the Expectation Step (E-Step) and the Maximisation Step (M-Step). The
E-Step is used to estimate the hidden information of the observations while the M-Step up-
dates the model parameters by considering this hidden information. In our case the E-Step
corresponds to the reestimation of the distributions of the latent variables x and z. The M-Step
corresponds to the method which infers the hyperparameter set Λ from the new distributions
of the latent variables and therefore maximises the likelihood presented in 2.2. Kenny (2005)
proposes two algorithms to perform this transformation known as Maximum Likelihood (ML)
estimation and Minimum Divergence (MD) estimation. The details of these algorithms are de-
scribed in the Appendices B.4 and B.5. According to Kenny (2005), the ML algorithm tends to
converge very slowly while the MD algorithm converges much more rapidly. However, the
MD algorithm as the property to keep the orientations of the speaker and the channel spaces.
Because of this inconvenient property, the MD algorithm converges prematurely to a local max-
ima solution. In the LRDE Speaker Verification framework, the both ML and MD algorithms are
implemented. Then, we have also tried to compare these two algorithms on a 2 minutes speech
utterance and with u = 0. Figure 2.5 presents the increase of the likelihood over 50 iterations.
As expected, the ML algorithm gives better results, however it is not clear that the MD algo-
rithm converges faster. There are several ways to explain these results. First of all, 2 minutes of
speech is not enough to draw any conclusion. In another way, u was set to zero since there is
no channel variability in a single training utterance, indeed our experiment is not in agreement
with the experiment of Kenny (2005).

Figure 2.5: Comparison between the Maximum Likelihood estimation, and the Minimum Di-
vergence estimation

An Expectation-Maximisation (EM) algorithm enables to estimate iteratively a set of hyper-
parameters which describes the speaker and channel spaces. However, the EM algorithms tend
to converge to local optima. To avoid such a behaviour, a well-tuned initialisation has to be
performed before the application of the EM algorithm. First of all, observe that E[s] = m and
Cov(s, s) = d2 assuming that z follows a standard normal distribution. Moreover, the GMM
based world model represents the distribution of the acoustic events with a set of mean and
covariance matrices. Thus, the initial vector m is naturally chosen to be the CF -dimensional
supervector extracted form the world model. In the same way, the matrix d is built from the
CF × CF diagonal block matrix d2 in which each F × F block matrix is a diagonal covariance
matrix of the world model. The matrix d2 is diagonal and so d is obtained by taking the square
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root of the diagonal elements. Now, observe that E[c] = 0 and Cov(c, c) = uu∗ by assuming
that x follows a standard normal distribution. Then, the CF × Rc matrix u is given by the Rc

eigenvectors associated to the Rc higher eigenvalues of the CF ×CF channel covariance matrix
uu∗. The matrix uu∗ is estimated as described in Appendix B.7. Indeed, this provides a good
estimate of the matrix u since these eigenvectors are assumed to span the channel space. More
precisely, we assume that these eigenvectors reflect the major variation axes in the supervector
space. This assumption holds since the supervectors are built to design speaker models and
not to design channel effects. Then, by enrolling same speakers on different channels, the major
supervector variabilities come from channel effects and are represented by eigenvectors asso-
ciated to the higher eigenvalues. This assumption could be easily verified by experiment. In
Figure 2.6, the first 100 eigenvalues of a 16896 × 16896 matrix uu∗ are plotted on decreasing
order. The curve of eigenvalues obtained seems to decrease exponentially to zero. That means
that there are few axis of variations which confirms the assumption that Rc � CF . Moreover,
that means that these axis reflect high variations which are caused by channel effects. That is
why these axis are used to span the channel space and therefore to construct the matrix u.

Figure 2.6: Eigenvalues of the channel covariance matrix

The speaker-independent hyperparameter estimation is done by Expectation-Maximisation
algorithm from a well-tuned initialisation. The speaker-independent hyperparameters enable
to estimate the non-target speaker model. Moreover, speaker-independent hyperparameters
give also a prior knowledge of the client models for the speaker-dependent hyperparameter
estimation presented in the next section.

2.3.3 Speaker-dependent hyperparameter estimation

In this section, the purpose is to estimate the speaker-dependent hyperparameters in order to
model client speaker. Because of the few amount of enrolment data, the speaker-independent
hyperparameters are used as prior knowledge of the client speakers. Thus, the method con-
sists in estimating iteratively the speaker-dependent hyperparameter set Λ from the speaker-
independent hyperparameter set. However, there is a notable difference here compared to the
speaker-independent hyperparameter estimation. Actually, client speaker models are built to
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characterise the speaker variability which is independent of the channel variability. Then, there
is no reason for changing the channel space and then to reestimate the channel-dependent hy-
perparameter u. Figure 2.7 summarises the method. As in speaker-independent hyperparam-
eter estimation, during each iteration, the current hyperparameter set Λ and the set of obser-
vations are used to estimate the joint distribution of the latent variables z and x. Then, the
hyperparameter m and d could be updated in order to fit the speaker space on the observations
while the hyperparameter u is fixed.

Speaker specific
enrollment

Hyperparameters
m and d

Distributions
of z and x

Hyperparameter
u

Adapt m and d

Figure 2.7: Speaker-dependent hyperparameter estimation

In the estimation task of speaker-dependent hyperparameters, given a hyperparameter set
Λ0 = (m0,d0,u0) and a speech enrolment χ, a new hyperparameter set Λ = (m,d,u0) has to
be estimated. This estimation has to be done such that the likelihood of the observation χ on
the hyperparameter set is maximised

P (χ|Λ) > P (χ|Λ0) (2.6)

As the speaker-dependent hyperparameter estimation, such an algorithm could be given by an
Expectation-Maximisation (EM) algorithm. However, in this case, Maximum Likelihood (ML)
estimation cannot be applied. Actually, the ML algorithm iteratively updates the speaker and
channel space orientations. Unfortunately, this change of orientations is operated jointly on
speaker and channel spaces. Thus, it is not possible to change the speaker space orientation
and to keep the channel space orientation. If such an operation was performed, the two spaces
would be defined by two different basis and the Equation 2.1 would have no sense. Thus, since
the channel space is fixed in speaker-dependent hyperparameter estimation, ML algorithm can-
not be applied.That is why the Minimum Divergence (MD) algorithm have to be used (Kenny,
2005). The details of MD algorithm for speaker-dependent estimation are given in Appendix
B.6.

A factor analysis model of speaker-dependent and channel-dependent components enables
to consider speaker and channel variabilities. The non-target and target speaker models could
be estimated by using Maximum Likelihood estimation and Minimum Divergence estimation.
Then, given non-target and target speaker models, given a test utterance, the decision score of
the speaker verification task is estimated from the estimate of the joint distribution of the latent
variables z and x.



Chapter 3

Experiments and results

This chapter describes the obtained results given by the experiments realized to test our factor
analysis approach. First, the whole step of parametrisation, the used tools and the used corpus
to performed the NIST 2006 SRE campaign are described. Then the results are presented and
compared to the results obtained from the baseline system.

3.1 Experiments

This section describes the experiments realized to compare the baseline system and the channel
compensation system based on a factor analysis model under the classical MAP and eigenchan-
nel MAP assumptions. These experiments are performed on the female trials of the NIST 2006
SRE campaign which consists in training 462 clients and performing 30674 tests.

Front-end processing

The feature extraction is processed by the ALIZE module of the ELISA Consortium (Magrin-
Chagnolleau et al., 2001). First, this one sampled the speech signal every 10ms on a 20ms sliding
window. From this window, 16 Linear Frequency Cepstral Coefficients (LFCC) are extracted.
Then, the 16 first order deltas are computed. A 33-dimensional cepstral vector is obtained by
taking the 16 LFCCs, the 16 first order deltas and the delta energy. Finally, normalisation is
performed such that the 33 features are centred on zero and scaled to an unitary variance. Fur-
thermore, cepstral vectors corresponding to the silence are skipped by a Bi-Gaussian model of
the speech energy.

Probabilistic modelling

The BECARS module of the ENST (Blouet et al., 2004) is used to build probabilistic speaker
models which are large GMMs of 512 Gaussians with diagonal covariance matrices. The world
model is trained from the Fisher English database Part 1 and 2 and NIST 2003 by applying LBG
based Expectation-Maximisation algorithm. The speaker models are estimated by Maximum A
Posteriori adaptation from the world model by updating the Gaussian mean vectors only.
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Baseline system experiment

In the baseline experiment, the ALIZE module is used to compute the decision score. Each of
the 30674 female test utterances is confronted to one target model among the 462 GMM based
female client models. At the same time, every test utterance is confronted to the non-target
model that is to say the world model. Then, the log likelihood ratio is produced by simply
using the probability density functions defined by each GMM.

Channel compensation system experiment

In the channel compensation experiment, the factor analysis models are trained by our fac-
tor analysis based LRDE Speaker Verification tool. The implementation details of this tool are
given in Appendix A. The speaker-independent hyperparameters are trained from the NIST
2004 SRE database which presents several enrolments for each speaker on different channels.
This corpus is used to estimate the channel covariance matrix and also to update iteratively
the whole speaker-independent hyperparameters by Maximum Likelihood estimation. There
are 100 eigenvectors selected in the channel covariance matrix which span a 100-dimensional
channel space. Then, for the 462 female clients, the speaker-dependent hyperparameters are
estimated from the speaker-independent hyperparameters by using Minimum Divergence es-
timation. Finally, our LRDE Factor Analysis tool is used to compute the decision score for the
30674 female trials. The decision score is computed by the log likelihood ratio defined in 2.2
between the target speaker and the non-target speaker.

Step Input data Time
Training 7h of speech 10 h
Enrolment 462 clients 20 h
Testing 30674 tests 11 days

Table 3.1: Time requirement

The calculation performances of the LRDE Factor Analysis tool are presented in the Table
3.1. This table shows the results obtained for the three main steps of this speaker verification
experiment i.e the training, the enrolment and the testing steps. For each one of these steps,
we measured the execution time of our applications on the amount of data given in this table.
These execution times are obtained on a 64 bits Dual-Core AMD Opteron 2.2 GHz Processor
with 8 GB Memory. We can show that the testing step is the task which required most of the
time. Each test is computed in about 31 seconds. Thus, this task has to be done offline. Note
that it could be an inconvenience for online speaker verification task.
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3.2 Results

This section describes and compares the results obtained by the baseline system based on Gaus-
sian mixture models and the new system based on a factor analysis under the classical MAP and
the eigenchannel MAP assumptions.

Evaluation criterions

The results are presented using Decision Error Tradeoff (DET) curves. These enable to compare
different speaker verification systems. The performances are represented by plotting the false-
alarm probability PFalseAlarm as a function of the miss error probability PMiss. The probability
PFalseAlarm corresponds to the probability to reject a target speaker while the probability PMiss

corresponds to the probability to accept a non-target speaker (or impostor). Unfortunately, it
is generally not possible to minimise PFalseAlarm and PMiss together. Thus, the DET curves
underline the tradeoff between the miss errors and the false-alarm errors. Given a false-alarm
error rate, we can infer the corresponding miss error rate and vice-versa. So a system is better
than another if its DET curve is closer to the origin point than the other DET curve.

Another criterion to compare speaker verification systems is to study specific points of the
DET curves. Generally, systems are compared by studying the point where the two probabilities
PFalseAlarm and PMiss are equal. This point is characterised by the equal probability known as
the Equal Error Rate (EER). However, in the speaker verification task, it is more preferable to
reject clients than to accept impostors to intrude in the system. That is given by studying the
point which minimised a Decision Cost Function (DCF). The DCF is a function which assigns
a cost for each kind of errors. Actually, the DCF promotes the false-alarm errors and penalises
the miss errors. Thus the DCF is defined as a weighted sum of miss and false-alarm error
probabilities given by

CDCF = CMiss × PMiss × PTarget + CFalseAlarm × PFalseAlarm × (1− PTarget) (3.1)

where CMiss and CFalseAlarm are respectively the associated costs to a miss and a false-alarm
error. The PTarget is the probability to have a true access. The costs for the DCF function
computation used in the framework of the NIST 2006 SRE are set in Table 3.2.

CMiss CFalseAlarm Ptarget

10 1 0.01

Table 3.2: Decision cost function parameters of the NIST 2006 SRE

Comparison of the results

The results of our experiments are plotted on Figure 3.1. There are two DET curves representing
each of the two experiments, namely the baseline system experiment and the channel compen-
sation system experiment. Note that the baseline curve is closer to the origin point than the
channel compensation curve. Unfortunately, that means that the channel compensation system
based on factor analysis gives poor results comparing to the baseline system. Actually the base-
line system presents an EER of 10.8% while the channel compensation system presents an EER
of 22.6%.



21 Experiments and results

Figure 3.1: DET curves comparing the baseline system and the factor analysis based system

There are several ways to explain these unexpected results. First, notice that today, the factor
analysis approaches give the best performances to cope with channel effects. Actually, Shou-
Chun (2006) realized an experiment close to ours, with 25 channel factors by applying z-norm
score normalisation (Auckenthaler et al., 2000). He obtained an EER of 7.5% on the NIST 2005
SRE campaign. Knowing that this method gives good results, we could assume that the prob-
lem arises either from the implementation or from the experiment. As in all numerical imple-
mentation, it is difficult to claim that there is no implementation errors since the code is very
error prone and that it is hard to check the obtained results. Moreover, in such applications,
the calculations easily produce some capacity overflow problems or important accumulations
of precision errors because of the internal representation of the real numbers. Yet, Figure 2.5
shows that the likelihood during the Maximum Likelihood (ML) and the Minimum Divergence
(MD) estimations increases iteratively. That is a proof that these two estimation algorithms be-
have correctly. The likelihood calculation seems also consistent. And then the joint distributions
of the latent variables appears to be well-estimated. Regarding the experiment, we can notice
that is the first experiment done with this new tool. No parameter has been tuned such as the
channel space dimension or the stop criterion of the ML and MD algorithms.



Conclusion

This report describes the factor analysis model developed in the LRDE Speaker Verification
framework. First, it was shown that the baseline system is not designed to cope with the channel
effects. Moreover, the Maximum A Posteriori adaptation does not consider the uncertainty
coming from the speaker and the channel variabilities. Then, an approach based on a factor
analysis of GMM based supervectors was introduced. This one was developed in order to
cope with channel effects and therefore to improve the results of the baseline system. In this
approach, the speaker and the channel components are split by assuming that they come from
different subspaces namely the speaker and the channel spaces. This assumption is based on
the classical MAP and the eigenchannel MAP assumptions. The eigenchannel MAP assumption
provides a dimensional reduction of the channel space while the classical MAP does not. In this
report, speaker models are based on the hyperparameters of the factor analysis which enable to
define a likelihood objective function. Then, the Maximum Likelihood (ML) and the Minimum
Divergence (MD) estimations are introduced in order to model target and non-target speakers
by optimising this likelihood function. Finally, the decision score is given by the likelihood ratio
which deals with the channel effects and indeed performs channel compensation.

Our factor analysis tool is used on the NIST 2006 SRE campaign (female trials). It is compared
to a baseline system based on Gaussian mixture models. The obtained results present some
unexpected annoyances. Actually, the channel compensation system gives worse results than
the baseline system. Our channel compensation gives 20% of Equal Error Rate (ERR) while the
baseline system gives 10%. However, today the factor analysis model is known as the most
powerful method to perform channel compensation. Then, our future work will consist in
studying why we obtained such bad results.

Once the results will go far the 10% of EER, the system will be considered as well tuned and
so we will develop new features for the factor analysis model. First, it would be interesting to
develop progressive speaker adaptation in order to produce a better model under the classical
MAP assumption (Shou-Chun, 2006). Otherwise, we would consider the eigenvoice MAP as-
sumption which reduces the speaker space. Moreover, it would be interesting to implement the
likelihood function approximation described by Kenny et al. (2007) which enables to perform
online the speaker verification task. Finally, we would like to develop a system mixing factor
analysis and support vector machines which know how to discriminate target and non-target
speakers by using a supervised learning.



Appendix A

Implementation

The LRDE Speaker Verification Framework (LRDE-SVF) is a C++ framework. It is developed
in order to realize speech processing for speaker verification task. I have implemented the fac-
tor analysis of the GMM based supervectors as a module of the LRDE-SVF. The LRDE Factor
Analysis Tool (LRDE-FAT) directly uses the available and efficient features of the LRDE-SVF
i.e the GMM manipulation tools and the powerful feature manager. We have shown that the
different algorithms for factor analysis are essentially a matter of matrix manipulation. For this
task, I have implemented a light C++ library. This one interfaces with the Fortran BLAS library
(Lawson et al., 1979) and the Fortran LAPACK library (Anderson et al., 1999). The purpose of
this interface is to give a simple way to manipulate different kinds of matrices with C++ objects
and with total performances.

In the LRDE-FAT, there are three main programs named FaTrain, FaAdapt and FaLlr. The Fa-
Train program estimates the speaker-independent hyperparameter set by using the Maximum
Likelihood (ML) estimation. The FaAdapt program enables to adapt the speaker-independent
hyperparameters for a given client. Finally, the FaLlr program computes the log likelihood ra-
tio with respect to the likelihood function defined in 2.2. These three programs used the same
functionalities given by the LRDE-FAT module. The Figure A.1 describes the structure of the
LRDE-FAT module on an UML class diagram. This one shows the different interactions be-
tween the main classes of the LRDE-FAT and the LRDE-SVF. We can notice the presence of the
Statistics class which compute the Baum-Welch or Viterbi alignment statistics of the cepstral
vectors on a GMM. Here, the cepstral vectors and the GMM are given respectively by the Fea-
tureManager class and the GMM class. The Factor class estimates the distributions of the latent
variables by considering the alignment statistics and the hyperparameters, given by the Hy-
perparameters class. The Hyperparameters class represents the hyperparameter set. This one
has two methods to perform hyperparameters estimation, which implement respectively the
Maximum Likelihood (ML) estimation and the Minimum Divergence (MD) estimation. These
two estimation algorithms used the suitable accumulators, given by the class hierarchy of the
Accumulators class. Observe also the presence of the likelihood method which estimate the
likelihood objective function.
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FeatureManager
Statistics
Factors
Accumulators
AccuMLAccuMDHyperparameters+trainML()+trainMD()+likelihood()

GMMLRDE�SVF

updates
Figure A.1: UML diagram of the LRDE-FAT and its interactions with the LRDE-SVF



Appendix B

Algorithms

This Appendix technically describes the different algorithms used to estimate the parameters
of the factor analysis model. Note that most of the following algorithms are extracted from
(Kenny, 2005; Kenny et al., 2007). In the following section, the hyperparameter set Λ refers to
the extended hyperparameter set Λ = (m,d,u,Σ). The CF × CF diagonal matrix Σ is used to
capture the uncertainty independent to s and c that is the distribution of the supervectors when
there is no speaker and channel variabilities. In practice, the matrix Σ is initially the diagonal
matrix whose diagonal block matrices are the covariance matrices of the GMM based world
model.

B.1 Alignment statistic estimation

Given a Gaussian Mixture Model with C components λ = (ωc, µc, σc)1≤c≤C , and given a set
of observations (xt)1≤t≤T which are cepstral vectors, the purpose is to compute the alignment
statistics. There are several ways to compute these statistics. Here, the Baum-Welch and the
Viterbi statistics are presented. The alignment statistics on a mixture component c are defined
by the null Nc, the first Fc and the second Sc order statistics given by

Nc =
T∑

t=1

ρt (B.1)

Fc =
T∑

t=1

ρt (xt − µc) (B.2)

Sc = diag

(
T∑

t=1

ρt (xt − µc)(xt − µc)∗
)

(B.3)

(B.4)

where, in the case of Baum-Welch statistics

ρt = P (c|xt, λ) =
ωcpc(xt)∑C

c=1 ωcpc(xt)
(B.5)

or, in the case of Viterbi statistics

ρt =
{

1 if c = arg max1≤c≤C ωcpc(xt)
0 otherwise (B.6)
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Finally, we defined the alignment statistics for the supervector representation by N, F and S.
The CF × CF diagonal matrix N is the diagonal matrix where the F × F diagonal blocks
are N1I, ..., NCI . The CF -dimensional vector F is the concatenation of the C vectors Fc. The
CF × CF diagonal matrix S is the diagonal block matrix where the c-th diagonal block is the
matrix Sc.

B.2 Joint distribution estimation

Given an extended hyperparameter set Λ = (m,d,u,Σ) and the alignment statistics N and F
obtained from a set of speech, the purpose is to estimate the joint distribution of the hidden
random variables x and z that is E[x], E[z], Cov(x,x), Cov(z, z) and also Cov(x, z)

In order to have an easier representation of the factor analysis decomposition, the random
vector M is expressed as follow

M = m + UX

where

U =
(

u d
)

and X =
(

x
z

)
Estimate the distribution of the hidden variable X is a matter of inverting the Rc + CF -

dimensional matrix L = I + U∗Σ−1NU. Actually, it is proved in (Kenny, 2005) that

E[X] = L−1UΣ−1F (B.7)
Cov(X,X) = L−1 (B.8)

The matrix L can be written as

L =
(

α β
β∗ γ

)
(B.9)

where

α = I + u∗Σ−1Nu (B.10)
β = u∗Σ−1Nd (B.11)
γ = I + Σ−1Nd2 (B.12)

(B.13)

So, L−1 can be calculated by the following identity

L−1 =
(

α β
β∗ γ

)−1

=
(

ζ−1 −ζ−1βγ−1

−γ−1β∗ζ−1 γ−1 + γ−1β∗ζ−1βγ−1

)
(B.14)

where

ζ = α− βγ−1β∗ (B.15)

At this step, it is convenient to calculate |L| for future treatments, which could be obtained
as:

|L| =
∣∣∣∣ α β

β∗ γ

∣∣∣∣ = |ζ||γ| (B.16)
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B.3 Likelihood estimation

Given an extended hyperparameter set Λ = (m,d,u,Σ), the alignment statistics Nc, F and S
obtained from a speech utterance χ, the distributions of the latent variables z and x and |L|
defined in B.2, the aim is to compute the likelihood P (χ|Λ). In practice it is easier to compute
the log likelihood log P (χ|Λ). In order to have an suitable representation of the factor analysis
decomposition, the random vector M is expressed as follow:

M = m + UX

where

U =
(

u d
)

and X =
(

x
z

)
Then the log likelihood is defined by Kenny (2005) as

log P (χ| Λ) =
C∑

c=1

Nclog
1

(2π)F/2|Σc|1/2

−1
2
tr(Σ−1S)

−1
2
log|L|

+
1
2
E[X∗]U∗Σ−1F

B.4 Maximum Likelihood estimation

This section describes the Maximum Likelihood (ML) estimation algorithm (Kenny, 2005). Given
for each channel a = 1, ..., A, the alignments statistics Nc(a), N(a), F(a) and S(a) obtained from
the training data of the channel a and the distributions of the latent variables z(a) and x(a), ML
estimates the new extended hyperparameter set Λ = (m,d,u,Σ) which maximises the total
likelihood.

In order to have an easier representation of the factor analysis decomposition, the random
vector M(a) is expressed as follow:

M(a) = UX(a) + dz(a)

where

U =
(

u m
)

and X =
(

x(a)
1

)
The first step in the ML algorithm is to compute the following accumulators which consider

the alignment statistics and the distributions of the latent variables X(a) and z(a) over the
different channels a = 1, ..., A.

Nc =
∑

a

Nc(a) (B.17)

Ac =
A∑

a=1

Nc(a)E[X(a)X∗(a)] (B.18)
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B =
A∑

a=1

N(a)E[z(a)X∗(a)] (B.19)

C =
A∑

a=1

F(a)E[X∗(a)] (B.20)

a =
A∑

a=1

diag(N(a)E[z(a)z∗(a)]) (B.21)

b =
A∑

a=1

diag(F(a)E[X∗(a)]) (B.22)

The new extended hyperparameter set Λ = (m,d,u,Σ) is estimated in two steps. The first
step computes the hyperparameters m,d,u which enable to compute Σ in the second step.

• for each mixture components c = 1, ..., C and for each feature components f = 1, ..., F , set
i = (c− 1)F + f and let Ui denote the i-th row of U and di the i-th entry of d. Then Ui and
di are defined by the equation

(
Ui di

)( Ac B∗
i

Bi ai

)
=
(

Ci bi

)
(B.23)

where Bi is the i-th row of B, ai is the i-th entry of a, Ci is the i-th row of C and bi is
the i-th entry of b. This equation could be resolved by Cholesky factorisation of the left
hand-side matrix.

• Let M be the CF × CF diagonal matrix given by

M = diag(CU∗ + bd)

Then

Σ = N−1

(∑
a

S(a)−M

)
(B.24)

B.5 Minimum Divergence estimation

This section describes the Minimum Divergence (MD) estimation algorithm (Kenny, 2005).
Given for each channel a = 1, ..., A, the alignments statistics N(a), F(a) and S(a) obtained
from the training data of the channel a and the distributions of the latent variables z(a) and
x(a), MD estimates the new extended hyperparameter set Λ = (m,d,u,Σ) which minimises
the divergence.

The first step in the MD algorithm is to compute the following accumulators which consider
the alignment statistics and the distributions of the latent variables z and x over the different
channels a = 1, ..., A.

µz =
1
A

A∑
a=1

E[z(a)] (B.25)
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µxx =
1
A

A∑
a=1

E[x(a)x∗(a)] (B.26)

µzz =
1
A

A∑
a=1

E[z(a)z∗(a)] (B.27)

S =
A∑

a=1

S(a) (B.28)

D =
A∑

a=1

diag(F(a)E[O∗(a)]) (B.29)

E =
A∑

a=1

diag(E[O(a)O∗(a)]N(a)) (B.30)

where O(a) = d0z(a) + u0x(a)

Then, the new extended hyperparameter set Λ = (m,d,u,Σ) is estimated as follow:

m = m0 + d0µz (B.31)
d = d0K1/2

zz (B.32)
u = u0K1/2

xx (B.33)
Σ = N−1 (S − 2D + E) (B.34)

where

Kzz = diag (µzz − µzµ
∗
z) (B.35)

Kxx = µxx (B.36)

B.6 Special case for Minimum Divergence estimation

This section describes a special case of Minimum Divergence (MD) estimation algorithm where
the channel space is fixed and where there is just one short speech enrolment χ (Kenny, 2005).
Given the distributions of the latent variables z for the speech enrolment χ obtained from the
current estimate of the extended hyperparameter set Λ0 = (m0,d0,u0,Σ0), MD estimates the
new extended hyperparameter set Λ = (m,d,u0,Σ0) which minimises the divergence.

The new extended hyperparameter set Λ = (m,d,u0,Σ0) is estimated as follow:

m = m0 + d0µz (B.37)
d = d0K1/2

zz (B.38)

where

µz = E[z] (B.39)
Kzz = diag (Cov(z, z)) (B.40)
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B.7 Channel covariance matrix estimation

The channel covariance matrix uu∗ has to be estimated from a database where each of the S
speakers has several enrolments coming from A different channels. For each utterance of the
speaker s enrolled on the channel a, a GMM based supervector va

s is estimated. Then, the uu∗

is defined by

uu∗ =
1
S

S∑
s=1

1
A

A∑
a=1

(va
s − µa)(va

s − µa)∗

where µa =
1
S

S∑
s=1

va
s
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