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Vaucanson is a generic finite state machine manipulation platform. We have based our genericity on the
ability to not only support various types of automata, but also to use different data structures to reprensent
them. In its current state, we have various techniques to iterate over sets of transitions, however, none of
them is really independent of the data structures. To overcome this problem, we have integrated the design
pattern Iterator. Our goal is to assess the improvements given by this method in terms of performance and
code writing.

Vaucanson est une bibliothèque générique de manipulation d’automates. Le cœur de sa généricité réside
dans le support de types d’automates variés mais aussi sa capacité à s’appuyer sur différentes structures de
données. Actuellement, nous avons différentes manières de manipuler des transitions. Cependant, aucune
d’entre elles n’est réellement indépendante de la structure de données utilisée. Afin de pallier cela, nous
allons nous tourner vers le design pattern Iterator. Nous évaluerons l’impact de ce design pattern sur les
performances et sur l’utilisation de la bibliothèque en termes d’écriture d’algorithmes.
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Chapter 1

Introduction

The VAUCANSON project is a finite state machine manipulation platform. Since its early steps
of development, its strength relied on its genericity. Its goal is to provide a library that is able to
handle automata with various alphabets and weights. Furthermore, it allows the user to easily
change the data structure to adapt to the new constraints.

In our latest work, we added a new data structure based on the use of hash tables whereas the
former one was based on adjacency lists. Both data structures have different properties which
underlined some problems related the VAUCANSON interface.

Theoretically, the new data structure was supposed to outrun dramatically its predecessor.
Against all odds, it only gave few improvements. We have traced the performance loss to a lack
of freedom in the VAUCANSON application programming interface. For instance, when using
VAUCANSON, some data copy are mandatory even though they are not necessary from the user
point of view. To solve those problems, we will introduce new iterators in VAUCANSON.

The second chapter exposes the source of the problem and introduces existing techniques
to solve that. Then, the third chapter presents our solution. Ultimately, the fourth chapter
discusses the results and draws a few conclusions for this work.



Chapter 2

Iterating, a general overview

2.1 Iterate over an automaton

When working with automata, a common and natural desire is to be able to walk through it.
Depending on the problems, there are various ways one might want to do it. When the taken
path does not matter, it is easier to simply iterate over all the states, but in the other cases, things
can be much more complex.

When using VAUCANSON, in order to iterate over an automaton, there exist numerous meth-
ods, called the delta functions, that iterate over a set of states or transitions. They can be divided
in two groups:

• Those which are filling up a container.

• Those which are a applying functor.

2.1.1 Working with a container

The idea is to fill a container with the states or the transitions that matches the current needs.
For instance, if one wants to iterate over all the successors of a given state, the function will put
them all into a given container which is specified by the user in the function call.

These methods are defined as follows:

1 void d e l t a ( I t e r a t o r i , S t a t e src , DeltaKind k ) ;
2 void d e l t a ( I t e r a t o r i , S t a t e src , Query q , DeltaKind k ) ;
3 void l e t t e r _ d e l t a ( I t e r a t o r i , S t a t e src , L e t t e r l , DeltaKind k ) ;
4 void spontaneous_delta ( I t e r a t o r i , S t a t e src , DeltaKind k ) ;

The Iterator taken as an argument is an insertion iterator which is used to fill the con-
tainer previously created. The hstate_t is the state from which the query starts. Finally, the
DeltaKind argument tells if you want the states or the transitions. In order to get a better idea
as to how those methods are used, a few sample codes are available in Appendix A.

The second delta is taking an additional functor parameter qwhich is applied to each succes-
sor. If the functor q is returning true, then the current element will be added to the container.
letter_delta is filling the container with the states or transitions reachable with the letter l
from the state src. spontaneous_delta is performing the same task but with ε-transitions.
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Furthermore, we have a last flavor of these types of delta functions, deltac which take a
container instead of an insertion iterator and behave exactly like all the functions that were
previously defined.

1 void d e l t a c ( Container i , S t a t e src , DeltaKind k ) ;
2 void d e l t a c ( Container i , S t a t e src , Query q , DeltaKind k ) ;
3 void l e t t e r _ d e l t a c ( Container i , S t a t e src , L e t t e r l , DeltaKind k ) ;
4 void spontaneous_deltac ( Container i , S t a t e src , DeltaKind k ) ;

Finally, there is one variation of each of these delta functions: the reverse delta. They have the
same prototype but with rdelta instead of delta and they fill in the predecessors or incoming
transitions instead.

2.1.2 Working with a functor

An alternative solution to the container exists: deltaf. Its use is similar to what was described
above:

1 void d e l t a f ( Functor i , S t a t e src , DeltaKind k ) ;
2 void d e l t a f ( Functor i , S t a t e src , Query q , DeltaKind k ) ;
3 void l e t t e r _ d e l t a f ( Functor i , S t a t e src , L e t t e r l , DeltaKind k ) ;
4 void spontaneous_del taf ( Functor i , S t a t e src , DeltaKind k ) ;

They also exists with the reverse flavor. The main difference is the use of a functor. It applies
the functor to each element that matches the request. For instance, all the successor states for a
basic delta. The targeted optimization was the capacity to stop the iterations when the functor
returned true. The deltaf can be compared to the std::for_each provided by the C++
Standard Template Library or STL (??).

2.1.3 Genericity issues

At first sight, these delta functions seemed to be working pretty well. However, with the new
data structure bmig (Lazzara, 2008), some performance issues have been pointed out.

Before digging further, let’s have a short reminder of the data structures used in VAUCANSON.
On the one hand, we have a first data structure, called listg, which is a graph representation
based on the adjacency lists. To be more precise, it uses the lists provided by the STL. The
successors and the predecessors of a node are stored in two proper lists which are used in
combination with a list of states. On the other hand, we have bmig where the goal is to lighten
the use of multiple lists by using a single hash table. In this implementation, we are using the
Boost Multi-index Container Library (Munoz, 2003). It provides an efficient implementation of
hash tables with the specificity of supporting several sub-indexes on the stored items. In our
case, we are keeping a single hash table with all the transitions of the automaton and we have
defined sub-indexes on the successors and predecessors of each states. This way, bmig have
embedded sub-containers on successors and predecessors.

The root of the problem lies in the constraints imposed by the use of the deltas. The trend of
the algorithm writing style is to call deltac. This disables the main advantage of bmig: instead
of using the existing containers provided by the hash table, it has became mandatory to, first,
copy all the states or transitions into a container before any further operations.
deltaf can avoid this cost. It has, however, its own step back with regards to the code

writing. The functors usually requires the algorithms to be more fragmented. Thereby, using
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VAUCANSON becomes less intuitive because pulling the loops out of the body of the algorithm
often makes the code less readable.

Therefore, we are seeking a solution which gives a wide range of action to the implementation
of the data structure. Furthermore, this answer has to enhance or at least not to deteriorate the
readability of the algorithms.

2.2 Iterators

In order to avoid unnecessary copy of data, the intuitive answer would be not to copy it, and to
directly work on what is inside the automaton. A first way of implementing it would be to rely
on the containers offered by the hash tables. However, it is not the best way, because with the
other data structure listg, we do not have any equivalent. Hence, it may imply having to add
significant cost to listg since wrapping virtual containers can often be a tricky task.

Another solution would be to simulate the existence of this container with the support of
some wrapper. In our particular case, we are not interested by the container itself but rather by
its items. We will, then, look into how we can directly provide iterators without having to build
additional substructures.

Before making a decision on how we are going to implement our new iterators, let’s have a
look at the existing techniques. There is two main existing way of defining iterators: control-
based or object-based. In addition, we will sub-categorize the object ones in two groups: the
container-dependant ones and the self-sufficient ones.

2.2.1 The control-based style

Many languages, such as Python, Ruby or even shell scripting, provide control-based iterators.
They are neither functions nor objects but keywords part of the language itself. The grammar
of the language can also assist the implementation of methods to simulate this type of writing.

In Python (Guido van Rossum, 2003), the for keyword can implicitly act as an iterator over
container.

for Value in L i s t :
print Value

In Ruby (Thomas and Hunt, 2001), containers have methods such as each, or derived from
it, to iterate over its items.

l i s t . each { |val|
puts val

}

In the first C++ standards, the grammar did not provide any similar constructions. However,
using external libraries, such as BOOST_FOREACH (Niebler, 2004), can give the same results.

BOOST_FOREACH( Type i , c on ta in er )
s td : : cout << i << std : : endl ;

This will be improved in the new C++0x standard (Becker, 2008) as this syntax will become a
built-in feature of the C++ under the for keyword:

for ( Type& i : c on ta in er )
s td : : cout << i << std : : endl ;
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2.2.2 The container-dependant style.

In some object languages, there are some iterator objects that help iterating over a container. For
instance, in C++, every container of the STL has its iterator which works as follows:

Container c ;
for ( Container : : i t e r a t o r i = c . begin ( ) ; i != c . end ( ) ; ++ i )

s td : : cout << ∗ i << std : : endl ;

Note that the stopping condition is an iterator given by the container. The use of those itera-
tors depends on the container which is why we called them container-dependant. Also, most of
the information are held by the containers. It is similar to the pointer way of working with an
array in C. The iterator points to an item, it can move all along and it is dereferencable to access
the underlying element.

In the future, it will be possible to simulate the control-based style with iterators. Actually,
we have the std::for_each construction which applies a function or a functor to all the items
that lies between a pair of iterators. In the forth coming C++0x standard, we will be able to use
lambda functions instead of functor for instance. This solves the readability issue introduced
earlier with regards to the use of deltaf. With the lambda functions, the writing style is close
to the control-based style.

Container c ;

/ / In t h e o l d C++
std : : for_each ( c . begin ( ) , c . end ( ) , Function ) ;

/ / Using C++0x and lambda f u n c t i o n s
std : : for_each ( c . begin ( ) , c . end ( ) , [ ] ( Type i ) {

s td : : cout << i << std : : endl
} ) ;

2.2.3 The self-sufficient style

There is a variant to the container-dependant iterators which is, for instance, the one used in
Java. The objective is to provide a way to access the elements of an aggregated object sequen-
tially without exposing its underlying representation (Gamma et al., 1995).

I t e r a t o r i = l i s t . i t e r a t o r ( ) ;
while ( i . hasNext ( ) )

System . out . p r i n t l n ( i . next ( ) ) ;

The main difference with the container-dependant is that the iterator is self-sufficient with
regards to the loop part. It is as if the iterator knew its own container and therefore, it is able to
stop when it reaches its end. It is even more powerful, it could compute its own successors on
the fly and therefore simulate a container. It can be seen as a getter on the next item more than
an iterator.

2.2.4 Additional flavors

The three types previously introduced were designed to iterate over sets of elements. Based
on those, others have been created to be able to perform additional actions during the iteration
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process. Two variations have drawn our attention: OutputIterator and EraseIterator.
The OutputIterator, also known as insertion iterators, are capable of filling up a container.

Their task is to iterate over a container while inserting items at the end of it. For instance, the
following code will insert integers ranging from 1 to 5 into a list.

s td : : l i s t < int > l i s t ;
s td : : i n s e r t _ i t e r a t o r <std : : l i s t < int > > i t ( l i s t , l i s t . begin ( ) ) ;
for ( i n t i = 1 ; i <= 5 ; ++ i )
∗ i t ++ = i ;

These are also the iterators used with the delta function presented in subsection 2.1.1.
The EraseIterator are capable of erasing item during the iteration. They are handy in

a sense that they are aware of the constraints of the container with regards to the suppression
process. For instance, in the STL list, suppressing the current item invalidate the current iterator,
however, the use of a EraseIterator can solve this problem since it knows how to be able to
keep tracks on its iterations.



Chapter 3

Integrating new iterators

It has been established that we needed to add new iterating techniques to VAUCANSON. This
chapter presents how we are going to integrate the new iterators into VAUCANSON.

3.1 Directions

3.1.1 Choosing the iterator flavor

As we have seen, different concepts of iterators have already been worked out. We now have
to choose the one that is best fitted to our needs.

The control-based iterators seems to be very handy to use, providing ease of code writing.
They are, however, difficult to integrate in a C++ environment because of syntactic constraints.
Heavy use of macro definition is generally needed to achieve this type of syntax if one do not
want to rely on the BOOST_FOREACH library. The control-based writing style is what we aim to
but we will reach it later on with some syntactic sugar.

The container-dependant style is the common flavor used in C++ in general. We are looking
for a different solution since it is currently the source of our performance leak. If we want to
stay in this direction, we have to work on some methods to help those iterators. The solution
we are seeking is capable of avoiding data copy, so it has to be able to manipulate the internal
data of the data structure.

We will finally choose the self-sufficient style since it seems to have more possibilities. Indeed,
if the container does not physically exist, it can, then, be built or simulated on the fly. Therefore,
we can avoid data copy and furthermore, it seems to be the most user-friendly solution. This
last statement should be more detailed later on in this report. In the end, these iterators might
even evolve into the erase iterators that were described in subsection 2.2.4.

3.1.2 Choosing the initialization method

The FACTORY pattern

Since the beginning, we aimed at keeping the VAUCANSON library as static as possible. There-
fore, we do not want an abstract Iterator class but one that is templated by the needs. The
templated part is however hidden underneath the API and the user only manipulates the in-
stances that has been instanciated in his stead.
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The first and intuitive idea to initialize these iterators was to add a method to the automaton
to get an iterator. This way, the automaton can be seen as an iterator Factory. It turned out to
be quite heavy to use.

The problem is related to the wish of keeping the code as static as possible. Without declaring
an iterator abstraction, it was mandatory to specify most of the needs in the type declaration
and then repeat most the them in the function call.

d e l t a _ s t a t e _ i t e r a t o r i = aut . d e l t a i ( s t a t e , del ta_kind : : s t a t e s ( ) ) ;

From the type definition, we know that an iterator on the successors is needed. In the
function call, we have to either repeat explicitly that we want the accessible (deltai) states
(delta_kind::states()).

The constructor method

To avoid the redundancy caused by the FACTORY pattern, we chose to initialize the iterator
within its constructor.

d e l t a _ s t a t e _ i t e r a t o r i ( automaton , s t a t e ) ;
d e l t a _ t r a n s i t i o n _ i t e r a t o r i ( automaton , s t a t e ) ;

This is pretty intuitive, first, in the declaration of the iterator, we specify what type of iterator
we want, and then, in its constructor, on which automaton and starting from which state we
want to iterate.

3.2 The delta iterator specifications

3.2.1 The main types

Four new types are now available through the VAUCANSON API:

• delta_state_iterator.

• delta_transition_iterator.

• rdelta_state_iterator.

• rdelta_transition_iterator.

The task of each iterator is defined in its name:

• delta or rdelta specify whether we want to iterate over successors or predecessors.

• state or transition specify if we are interested in the accessible states or in the tran-
sitions that leads to them.

In order to keep things clear, the notion of reverse iterators in VAUCANSON is not related to
the common notions of forward and backward iterators. The normaliterator iterates over the
successors of a state and the reverse iterator iterates over its predecessors. We do not have the
forward and backward iterators because they are not useful when it comes to working with
automata.

The equivalent to letter_delta and spontaneous_delta are not yet implemented. Fur-
ther details are given later on in this report, see subsection 4.2.1.
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3.2.2 The interface specifications

Each of the iterators previously defined implements the following interface:

s t r u c t D e l t a C o n s t I t e r a t o r
{

D e l t a C o n s t I t e r a t o r ( const Automaton&, Automaton : : h s t a t e _ t ) ;

void next ( ) ;
bool done ( ) const ;
data_type operator ∗ ( ) const ;

} ;

• The constructor initializes the iterator.

• void next(): step to the next item.

• bool done() const: return true if there is no more item to iterate over.

• data_type operator*() const: return the current item. data_type is a hstate_t
if we have a state iterator, or a htransition_t if we have a transition iterator.

We have chosen to use explicit methods and not overriding the operator++() because it
avoid the temptation of using some post and pre incrementation operators which in our case,
do not always make sense. Furthermore, the notations next and done are used in Java for
instance. It is also similar to the API of OpenFst (GoogleResearch and NYU, 2007) which is the
weighted finite-state transducer library developed at Google.

Depending on the implementation, their properties are not exactly the same. On listg, the
iterator is valid as long as the current item (state or transition) exists. On bmig, the iterator re-
mains valid as long as there is no modification upon the automaton. To ensure code robustness,
there should not be any modification on the automaton while using the delta iterators. The
erase iterators have not been implemented yet, further details are available in subsection 4.2.2.

3.2.3 In real life

The control-based flavor, as we introduced it earlier, presents some advantages related to the
code writing part and its readability. We provide sufficient syntactic sugar to write algorithms
using a control-based style.

f o r _ a l l _ s u c c e s s o r _ s t a t e s ( i , automaton , s t a t e ) ;
f o r _ a l l _ s u c c e s s o r _ t r a n s i t i o n s ( i , automaton , s t a t e ) ;
f o r _ a l l _ p r e d e c e s s o r _ s t a t e s ( i , automaton , s t a t e ) ;
f o r _ a l l _ p r e d e c e s s o r _ t r a n s i t i o n s ( i , automaton , s t a t e ) ;

For example, to print out all the successors of a given state, the sample code would be:

f o r _ a l l _ s u c c e s s o r _ s t a t e s ( i , automaton , s t a t e )
{

s td : : cout << ∗ i << std : : endl ;
}

This way, the use of the iterators is totally transparent to the user and he can therefore enjoy
the control-based style. Note the syntax here is quite similar to the BOOST_FOREACH, however,
we have chosen to use our own to have explicit names to enhance the code readability.



Chapter 4

Performances and drawbacks

4.1 Performance analysis

In order to assess the improvements brought by the new iterators, we will conduct a short series
of benchmarking.

4.1.1 Evaluation protocol

The test is pretty basic, first, we build an automaton with n states and with one transition be-
tween each state including loops. Therefore, we have an automaton with n states and n2 transi-
tions. Then, we iterate over each transition starting from each state.

The iterating part can be described as follows:

f o r _ a l l _ s t a t e s ( s t a t e , automaton )
f o r _ a l l _ s u c c e s s o r s ( i , automaton , ∗ s t a t e )

;

This is a basic state querying or transition querying benchmark. For each state, we access all of
its successors. More detailed code is available in Appendix A. Additionally, from Appendix A,
it is clear that the new iterators can greatly improve the code readability.

We will not benchmark the memory consumption since the purpose of the report is to im-
prove the computation time of VAUCANSON. Basic tests have been run to ensure that there is
no loss in this part but it will not be detailed in this report.

The computation time benchmarks were run on a Intel R© Core 2 DuoTM T7300, 2.0Ghz with
2Gb of DDR2. The compiler used is GCC version 4.2.3, the GNU Compiler with the following
compilation flags: -O3 -finline-limit-1500 -DNDEBUG. The time values were retrieved
using the benchmarking tools that are built into VAUCANSON. They consist of marking down
ticks at some user defined watchpoints and comparing them at the end of the execution.

4.1.2 The iterator implementation on bmig

The results of the state querying (Figure 4.1) are good. The computation time of delta and
deltac are almost the same which is what we expected since the implementation of deltac
uses delta. deltaf is faster than the other two, it seems natural since it does not have to
build a temporary structure. Finally, the quickest of all is deltai. It was expected because of
how the deltaf are implemented. From how the dispatch is done in VAUCANSON, it has to
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use an intermediate functor in order to evaluate which transitions to apply the given functor to.
deltaf was outrun because of this additional cost.

On the contrary, the results of the transition querying (Figure 4.2) are quite surprising. We
had expected gains to be similar to the previous benchmark. However, the computation times
are almost the same. If we have a very close look at their scores, the ranking remains the same
but the difference is insignificant. The answer to this question is yet to be discovered.

Based on those two tests, the new iterating functionality seems more stable independently of
the type of query and could therefore be used without any concerns or worries.

4.1.3 The iterator implementation on listg

The state querying on listg (Figure 4.3) is comparable to the one on bmig. For the same
reason, we can group together delta and deltac. But in this case, deltaf and deltai have
the same results. This was expected since we did not have the built in sub container that we
had with bmig. Therefore, the execution time is pretty much the same in both cases.

Once more, the results of the transitions querying (Figure 4.4) are unexpected. The good thing
is that both implementation seems to behave similarly on this matter.

The outcome here remains the same, using deltai seems to be a steady decision.

4.1.4 Comparing listg and bmig

From subsection 4.1.2 and subsection 4.1.3, we can steadily asses deltai is have the best time
performances of the all the four existing deltas. Hence, we will compare its performance on
both data structures.

One of the main drawbacks from the integration of bmig into VAUCANSON is that the com-
putation time were unexpected (Lazzara and Ma, 2007). We expected bmig to be always faster
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Figure 4.4: Querying transitions on listg.
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Figure 4.5: Comparing the implementation of the delta iterators on bmig and listg.
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than listg. However, on some benchmarking tests, it happened to be slower. By looking at
Figure 4.5, we can claim that bmig might, finally, always have better performances than listg.

This is yet to be confirmed on real case benchmarking, for instance on algorithms that exists
in VAUCANSON. Those benchmarks are not yet available because the current iterators are not
sufficient to run an algorithm. We need to first provide the equivalent to the letter_delta
and the spontaneous_delta in order to evaluate the real case performances. More details
are given in the next section of this report.

4.2 Drawbacks

So far, the new iterators of VAUCANSON have better computation time performance and im-
proves significantly the code readability. There are however a few drawbacks from our present
works.

4.2.1 The labels

In the implementation of the letter_delta and spontaneous_delta, we came across un-
expected complications: the representation of the labels.

The labels in VAUCANSON, a quick overview

There are four different types of labels in VAUCANSON:

• labels_are_letters, the transitions are labeled by letters.

• labels_are_words, the transitions are labeled by words.

• labels_are_series,the transitions are labeled by series.

• labels_are_couples,the transitions are couples which can be any combination among
letters, words or series.

In addition, two variations are available when the label are letters or words. There are either
multiple transitions between two states or only one labeled by a polynomial, see Figure 4.6. An
automaton can be in either form as long as all of its transitions follows the same rule.

s1 s2

a

b s1 s2
a + b

Figure 4.6: Two equivalent automata with and without polynomial as transitions.

Label related issues

It is often unclear as to which type of label we have, especially when writing an algorithm.
The issue here is that polynomial and multiple transitions are not handled the same way, and
therefore have great impact on the code writing. Some wrappers are necessary but it is not yet
clear as to where they are needed, if it is in the iterators or somewhere else.

The problem that it underlines is how to hand in the data to the user. The solution we want
to avoid is having to specialize each algorithms according the type of label. Another part is that
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s1 s2

a

a s1 s2
2a

Figure 4.7: Multiple label issues. The left automaton is wrong, the one on the right is the ex-
pected Z-automaton.

some graphs specifications are still unclear at the moment. For instance, we definitely do not
want two transitions between a same state to have the same label (Figure 4.7). In this case, we
must have a single transition. The expected behaviour would be that the automaton automati-
cally merges those transitions. This still has to be unified in the data structures. For what is sure,
this has to be solved before having the letter_delta iterators and the spontaneous_delta
iterators implemented.

4.2.2 The erase iterators

Another goal was to provide iterator capable of deleting the current item. The problem in this
part is how to erase an item without invalidating the current iteration. This is highly entangled
with the properties of the underlying data structure.

In listg, which is based on the Standard Template Library of the C++, the answer is quite
easy. The deletion of an item invalidates the iterators which are pointing toward it. Therefore,
delaying the deletion can easily solve this problem. Whereas in the multi indexes used in bmig,
the deletion of an item makes all the iterators on the sub-indexes unsafe. Some leads are cur-
rently being investigated, however, as long as nothing is sure, this feature will not be available
directly.



Chapter 5

Conclusion

The iterators presented in this report are promising. In terms of performance, they enable bet-
ter use of the underlying hash table and its sub indexes. We can finally expect bmig to outrun
listg. Up to now, we have successfully improved the computation time and the code read-
ability of VAUCANSON with those new iterators.

However, the work on that part is yet to be finished. The next task will be to correct the
labeling of the transitions to complete the set of iterating methods.

Regarding the readability, we have now released the constraints of intermediate types and
the use of the VAUCANSON library is therefore lighter.

This also improves the genericity of VAUCANSON with regards to the performance when
using different data structures. Those iterators have the best performance on both implementa-
tions and allows algorithm writing without having to care about the structure used.

Finally, a last step would be the integrate the erase iterators to provide easy state or transition
deletion.
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Using the delta functions

In this section, we present sample codes of the different workaround with the delta functions of
VAUCANSON. The examples described below correspond to the code used in the benchmarks
of subsection 4.1.1.

automaton_t a ;
AUTOMATON_TYPES_EXACT( automaton_t ) ;

This is a prefix to all the samples below. We have an automaton a and the second line is a
macro definition that exports useful types to the top-level. Finally, we assume that we are in the
namespaces std and vcsn to lighten the samples.

A.1 delta

/ / D e c l a r e a c o n t a i n e r t h a t w i l l be f i l l e d by d e l t a .
vector < h s t a t e _ t > d e l t a _ c o n t a i n e r ;

f o r _ a l l _ s t a t e s ( s , a )
{

/ / The i n s e r t i t e r a t o r used t o f i l l t h e d e l t a _ c o n t a i n e r .
i n s e r t _ i t e r a t o r <vector < h s t a t e _ t > > i ( d e l t a _ c o n t a i n e r ,

d e l t a _ c o n t a i n e r . begin ( ) ) ;

a . d e l t a ( i , ∗s , del ta_kind : : s t a t e s ( ) ) ;
for ( vector < h s t a t e _ t > : : i t e r a t o r i = d e l t a _ c o n t a i n e r . begin ( ) ;

i != d e l t a _ c o n t a i n e r . end ( ) ; ++ i )
/∗ Do someth ing h e r e i f n e e ded ∗ / ;

d e l t a _ c o n t a i n e r . c l e a r ( ) ;
}
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With the use of syntactic sugar, we get the following:

vector < h s t a t e _ t > d e l t a _ c o n t a i n e r ;

f o r _ a l l _ s t a t e s ( s , a )
{

i n s e r t _ i t e r a t o r <vector < h s t a t e _ t > > i ( d e l t a _ c o n t a i n e r ,
d e l t a _ c o n t a i n e r . begin ( ) ) ;

a . d e l t a ( i , ∗s , del ta_kind : : s t a t e s ( ) ) ;
f o r _ a l l _ i t e r a t o r ( vector < h s t a t e _ t > , i , d e l t a _ c o n t a i n e r )

/∗ Do someth ing h e r e i f n e e ded ∗ / ;

d e l t a _ c o n t a i n e r . c l e a r ( ) ;
}

A.2 deltac

/ / D e c l a r e a c o n t a i n e r t h a t w i l l be f i l l e d by d e l t a c .
vector < h s t a t e _ t > d e l t a _ c o n t a i n e r ;

f o r _ a l l _ s t a t e s ( s , a )
{

a . d e l t a c ( d e l t a _ c o n t a i n e r , ∗s , del ta_kind : : s t a t e s ( ) ) ;
for ( vector < h s t a t e _ t > : : i t e r a t o r i = d e l t a _ c o n t a i n e r . begin ( ) ;

i != d e l t a _ c o n t a i n e r . end ( ) ; ++ i )
/∗ Do someth ing h e r e i f n e e ded ∗ / ;

d e l t a _ c o n t a i n e r . c l e a r ( ) ;
}

With the use of syntactic sugar, we get the following:

vector < h s t a t e _ t > d e l t a _ c o n t a i n e r ;

f o r _ a l l _ s t a t e s ( s , a )
{

a . d e l t a c ( d e l t a _ c o n t a i n e r , ∗s , del ta_kind : : s t a t e s ( ) ) ;
f o r _ a l l _ i t e r a t o r ( vector < h s t a t e _ t > , i , d e l t a _ c o n t a i n e r )

/∗ Do someth ing h e r e i f n e e ded ∗ / ;

d e l t a _ c o n t a i n e r . c l e a r ( ) ;
}
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A.3 deltaf

/ / D e c l a r e a f u n c t o r t o use wi th d e l t a f .
s t r u c t Functor
{

void operator ( ) ( h s t a t e _ t ) {
/∗ Do someth ing h e r e i f n e e ded ∗ /

}
} ;

/ / Back t o t h e f u n c t i o n i m p l e m e n t a t i o n .
f o r _ a l l _ s t a t e s ( s , a )
{

/ / The f u n c t o r used by d e l t a f .
Functor f ;
a . d e l t a f ( f , ∗s , del ta_kind : : s t a t e s ( ) ) ;

}

A.4 deltai

f o r _ a l l _ s t a t e s ( s , a )
{

/ / The use o f d e l t a i t e r a t o r .
for ( d e l t a _ s t a t e _ i t e r a t o r i ( a . value ( ) , ∗ s ) ; ! i . done ( ) ; i . next ( ) )

/∗ Do someth ing h e r e i f n e e ded ∗ / ;
}

With the use of syntactic sugar, we get the following:

f o r _ a l l _ s t a t e s ( s , a )
f o r _ a l l _ s u c c e s s o r _ s t a t e s ( i , a . value ( ) , ∗ s )

/∗ Do someth ing h e r e i f n e e ded ∗ / ;
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