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Spot is library that handles ω-automata whose acceptance conditions are expressed with at most 32 accep-
tance sets. Since the acceptance condition of the product of two automata has to use the sum of their sets,
we cannot produce a product whose operands use more than 32 sets in total.
A typical operation on automata is to compute L(A×B) 6= ∅ to know if L(A) intersects L(B). When it is
implemented as empty(product(A,B)), the computation of the product throttles the amount of acceptance
sets A and B can use.
We propose a new function empty(A,B) which does the emptiness check of A×B without actually build-
ing an automaton and hence without any limit on the acceptance conditions. The ltlcross tool can now
compare automata using a total of more than 32 acceptance sets.

Spot est une bibliothèque qui manipule des ω-automates dont les conditions d’acceptation sont exprimées
avec au plus 32 ensembles d’acceptation. Puisque la condition d’acceptation du produit de deux automates
doit utiliser la somme de leurs ensembles, on ne peut pas construire des produits dont les opérandes
utilisent plus de 32 ensembles au total.
Une opération typique sur les automates est de calculer L(A×B) 6= ∅ pour décider si L(A) intersecte L(B).
Lorsqu’elle est implémentée par empty(product(A,B)), le calcul du produit limite le nombre d’ensembles
d’acceptation que A et B peuvent utiliser.
On propose une nouvelle fonction empty(A,B) qui réalise le test de vacuité de A× B sans construire un
automate et donc sans limite sur les conditions d’acceptation. L’outil ltlcross peut maintenant comparer
des automates pour un total supérieur à 32 ensembles d’acceptation.
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Chapter 1

Introduction

Spot 2.0, presented in Duret-Lutz et al. (2016), is a C++ library which handles ω-automata, au-
tomata that run on infinitely long words whose acceptance is defined by an acceptance condition
and acceptance sets. For implementation reasons, an automaton in Spot cannot have more than
32 acceptance sets.

The automata-theoretic approach to model checking is a classical way to do the formal verifi-
cation of a system: from a model M and a property ϕ, we want to check that M validates ϕ. We
start by expressing them as ω-automata and get AM , the automaton representing M , and A¬ϕ,
the automaton accepting only the words that do not verify ϕ. We then need to check if their
languages intersect: since the intersection of their languages is the language of their product,
we compute the synchronized product of AM and A¬ϕ. Finally, we do an emptiness check over
this product to test if its language is empty: if it is not, there exists an intersection between the
languages of AM and A¬ϕ, so there exists at least one word that is accepted by M but does not
satisfy ϕ. This chain of algorithms is illustrated in Figure 1.1.

model M property ϕ

exploration translation

automaton AM automaton A¬ϕ

product

AM ⊗A¬ϕ

emptiness check

ϕ holds / ϕ violated

Figure 1.1 – The model checking toolchain
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The check for the intersection of the languages of two automata is not only used for model
checking, but also to check if two automata are equivalent. Spot’s ltlcross tool, which bench-
marks and compares LTL-to-automata translators, is constantly checking equivalences. Spot
therefore provides the following implementation of this algorithm, both for model checking
and its own tools.

empty(product(A,B))

This implementation is problematic since the product of A and B uses the sum of the accep-
tance sets of both automata: it means that we cannot compute the product if A and B use more
than 32 acceptance sets in total. To remove this limitation, we implemented the two-automaton
emptiness check, which computes the emptiness check of the product of two automata without
computing the product itself. This work is a fusion of the existing implementations of the syn-
chronized product and the single-automaton emptiness check, along with the various possible
optimizations of these algorithms.



Chapter 2

Definitions and notations

This chapter defines various notations about the notions addressed in this report.

2.1 Notations on ω-automata

Definition 2.1 (Acceptance set) An acceptance set is a set of transitions or states. A single transition
or state can belong to any number of acceptance sets.

The ω-automata manipulated in Spot are transition-based, which means their acceptance sets
are sets of transitions.

Definition 2.2 (Acceptance mark) An acceptance mark is a mark associated with an acceptance set.
Marking a transition or state denotes its belonging to an acceptance set.

This allows for a more graphical way to represent acceptance sets, by showing the marks on
their associated transitions, as shown in Figure 2.1.

1 2
a

Figure 2.1 – Acceptance marks on a transition

Definition 2.3 (Acceptance condition) An acceptance condition φ is a Boolean formula. The two-
automaton emptiness check only handles Fin-less conditions, which means the acceptance condition must
respect the grammar

φ := > | ⊥ | Inf (x) | Inf (x) | φ ∧ φ | φ ∨ φ | (φ)

where x denotes an acceptance set.
Inf (x) is true if we see infinitely often a transition of the set x, false otherwise.

We will denote acceptance sets by a symbol similar to their mark on the automaton, e.g. • or
◦.

Definition 2.4 (Transition-based ω-automaton) A transition-based ω-automaton is a tuple A =
〈Q,Σ, Q0,∆, n,m, φ〉 where
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• Q is a finite set of states,

• Σ is an alphabet,

• Q0 ∈ Q is the initial state,

• ∆ ⊆ Q× Σ×Q is a transition relation,

• n ∈ N is the number of acceptance sets,

• m : ∆ 7→ 2[n] is a function returning the acceptance marks of a transition,

• φ is an acceptance condition.

Definition 2.5 (Word) Let Σ be an alphabet. A word is defined as w ∈ Σω , where ω is the smallest
infinite ordinal.

Automata take words as inputs, and either accept or reject them. The ω-automata-theoretic
approach to model checking often uses Boolean conditions as letters to label the transitions.

Definition 2.6 (Run) A run of an automaton is a sequence of transitions ρ = (s0, l0, d0)(s1, l1, d1) . . .
where s0 = Q0 and for all i ≥ 0 we have di = si+1 and (si, li, d1) ∈ ∆. We say that ρ recognizes the
word l0l1l2 . . . ∈ Σω .

Definition 2.7 (Accepting run) ∆i ⊆ 2[n] is the set of marks that we see infinitely often along a
infinite subsequence of transitions ρi of a run ρ. We take ρi � φ to mean ρi satisfies φ and ρi 2 φ to
mean ρi does not satisfy φ. The satisfaction of an acceptance condition is interpreted by induction as
follows:

ρi � >
ρi 2 ⊥
ρi � Inf (x) ⇐⇒ x ∈ ∆i

ρi � Inf (x̄) ⇐⇒ ∆i ∩ {x} = ∅
ρi � φ1 ∧ φ2 ⇐⇒ ρi � φ1 and ρi � φ2
ρi � φ1 ∨ φ2 ⇐⇒ ρi � φ1 or ρi � φ2

A run ρ of an automaton A is an accepting run if and only if it satisfies φ.

Definition 2.8 (Accepting word) An accepting word is a word recognized by an accepting run.

Definition 2.9 (Language) The language of an automaton A, denoted L(A), is the set of all accepting
words of A.

The two-automaton emptiness check is used to check if the languages of two automata inter-
sect: if it is negative, then there exists an intersection.

2.2 Strongly Connected Components

Definition 2.10 (SCC) A Strongly Connected Component is a subautomaton of an ω-automaton where
every state can be reached from every other state.
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Upon entering an SCC, a run can then stay in the same SCC.
Since the acceptance condition only contains sets that we want to see infinitely often, if an

SCC contains a mark that satisfies it, then we know this SCC is accepting, and any run leading
to it is an accepting run. Since finding an accepting run means there is an accepting word and
that the language of the automaton is not empty, SCC-based emptiness-check algorithms look
for accepting SCCs.

Definition 2.11 (Weak SCC) An SCC is weak if all its transitions belong to the same acceptance sets.

ω-automata can be classified according to their SCCs:

Definition 2.12 (Weak automaton) An ω-automaton is weak if all its SCCs are weak.

Definition 2.13 (Terminal automaton) An ω-automaton is terminal if it is weak, its accepting SCCs
are complete, and no accepting transition leads to a non-accepting SCC.

Definition 2.14 (Strong automaton) An ω-automaton is strong if it is neither weak nor terminal.

2.3 On-the-fly and Explicit automata

Spot manipulates two types of ω-automata:

On-the-fly automata, or twa, uses virtual method calls to get and allocate data about itself on-
the-fly. This allows for big procedural automata to be generated as they are traversed.
This is especially useful in model checking, where the models we use may be too big to
store at once in memory.

Explicit automata, or twagraph, is a subclass of twa. Its states and transitions are already
known, so their handling is easier (e.g. states can be addressed with a number, instead
of allocating and manipulating structures). It offers a more efficient explicit interface, but
requires the whole automata to be loaded in memory at once. As it is a subclass, one could
use the on-the-fly interface of an explicit automaton, but it would be less efficient.

2.4 Kripke Structures

Definition 2.15 (Kripke structure) A Kripke structure is an automaton reading infinite words with
conditions expressed on its states. It can be represented as a state-based ω-automata with acceptance
condition > and no acceptance sets.

Definition 2.16 (Fair Kripke structure) A Fair Kripke structure is a Kripke structure with acceptance
sets over its states and an acceptance condition. It can be represented as a state-based ω-automata.

Kripke structures are often used in model checking to represent the state-space of the model
to verify.

Since Spot manipulates transition-based ω-automata, Kripke and Fair Kripke structures are
represented by pushing all conditions and marks from a state to its outgoing transitions, giving
an equivalent transition-based ω-automata.



Chapter 3

Implementation

The two-automaton emptiness check is an algorithm based on two algorithms that were al-
ready implemented in Spot: the on-the-fly computation of the product of automata, and the
on-the-fly emptiness check algorithm presented by Couvreur (1999). The latter has had multi-
ple implementations and improvements in Spot; the one this work is based on was written in
late 2016 and relies on templates to accommodate for its various optimizations: this allows for
faster execution at the cost of an heavier binary, it is roughly 4 times faster than the previous
implementation.

3.1 Couvreur’s emptiness check

The algorithm presented by Couvreur (1999) is an SCC-based on-the-fly emptiness check. It
looks for accepting SCCs to determine if the language of the given automaton is empty; as such,
it does not need to explore the whole automaton to give a negative answer.

Couvreur’s algorithm is an improvement of the SCC lookup algorithm by Tarjan (1972) with
ideas taken from Dijkstra (1973) (Couvreur et al., 2005; Renault et al., 2013). It is considered as
more efficient with the generalized Büchi ω-automata Spot manipulates (Gaiser and Schwoon,
2009; Schwoon and Esparza, 2005).

This algorithm works by doing a depth-first traversal of the automaton. For each new state
we see, we create it its own SCC and store the marks seen in the transition from the last SCC.
If we discover a transition leading to a state we already saw, it means we uncovered a loop, so
all the states we have seen since belong to the same SCC, and the marks seen in that SCC also
include the ones seen between the SCCs. If the marks seen in an SCC satisfy the acceptance
condition, then the SCC is accepting and the emptiness check is negative. This algorithm does
not need to store the transitions, just check them during the depth-first traversal, and store their
marks. When backtracking from an SCC, we mark it as dead as we explored all its successors
without finding an accepting SCC; if we encounter a dead SCC during our continuation of the
traversal, we know not to explore it. States are identified by a unique number called their order.
An SCC is linked to the order of the first state discovered in that SCC, called its root.

3.2 Problems with the existing implementation

The main goal of the implementation of the two-automaton emptiness check was to replace
the following line in twa::intersects, a method meant to compute if the language of two
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automata intersect:

return !otf_product(a, b)->is_empty();

This implementation, apart from the limit on acceptance sets seen in the introduction, has two
problems:

otf_product this function builds an on-the-fly automaton from the on-the-fly interface of the
two input automata. This is inefficient if we have explicit automata as inputs, as this does
not differentiate types of automata, and uses the on-the-fly interface for both1.

is_empty this redirects to an implementation of Couvreur’s emptiness check algorithm, which
dispatches to an optimized version for explicit automata. But since otf_product returns
an on-the-fly automaton, it cannot use those optimizations.

We therefore needed a fully dispatched algorithm, that would use the explicit interface when-
ever an explicit automaton was given as either inputs.

3.3 Product elements

The synchronized product of two automata requires for each element of the product to corre-
spond to two similar elements from each factor automaton. Since we have to compute the prod-
uct without building an automaton, we cannot rely on storing them in the usual data structures
used in Spot’s automata; we have to implement our own structures. Most of these structures
are pairs, or act as such.

product_state A pair of states. Provides an equality operator and a hash function for use in
hash maps.

product_mark A pair of sets of marks2. Provides the union between two product_marks,
as the |= operator, which does the union of the sets: with a, b, c, d sets of marks, (a, b) ∪
(c, d) = (a ∪ c, b ∪ d).

product_iterator A pair of transition iterators. Implements almost all operations of the
usual transition iterators of Spot; very similar to the twa_succ_iterator_product of
otf_product, except for:

• the first method, which sets the iterator to its first valid transition. To alleviate the
code, we merged it in the constructor, so that my iterators are already on the first
valid transition on instantiation.

• the cond method, which returns the condition to take the transition. The conditions
of the factors’ transitions are checked when looking for a valid transition in the next
method which iterates to the next transition, but are not required for the emptiness
check.

SCC structure A structure containing an integer for the order of the root, and a product_mark
for the marks found in that SCC.

1Spot also implements product which builds the product of two explicit automata as an explicit automa-
ton. This may explore more transitions and states than Couvreur’s algorithm needs, so it is not suited as part of
twa::intersects.

2In Spot, a mark_t is a set of marks; this structure is named in the same way.
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3.4 Data structures of the algorithm

The two-automaton emptiness check implements Couvreur’s emptiness check with an on the
fly discovery of the synchronized product of two automata. Couvreur uses the following data
structures:

• Num, an integer, to assign to each new SCC its order, starting from 1 and increasing after
each assignment.

• Hash, a hash map from product_state to integer, which maps every discovered state to
its order. We will use it to check if we already discovered a state, and also to mark states
as part of a dead SCC by giving them an order of 0.

• Root, a stack of SCC structures, to store the discovered SCCs.

• Arc, a stack of product_marks, to store the marks of the transitions between the SCCs of
Root.

Along with these, our algorithm also uses the following data structures:

• Todo, a stack of pairs of a product_state and a product_iterator, for the depth-first
traversal.

• Live, a stack of product_states. It contains all the live states, states discovered during
the depth-first traversal, that we will need to mark as dead once we backtrack from their
SCC.



Chapter 4

The algorithm

4.1 Pseudocode

The two-automaton emptiness check is mostly a rewrite and improvement of Couvreur’s algo-
rithm. The pseudocode in Algorithm 4.1 (page 14) and Algorithm 4.3 (page 15) is an iterative
approach of the recursive one in Couvreur (1999); the biggest change is in the introduction of
Algorithm 4.2 (page 14) which monitors the exploration of the two automata.

4.2 Example

To illustrate the algorithm, let us consider the two automata in Figure 4.1 and apply the the
two-automaton emptiness check step by step. The target product is in Figure 4.2 (page 16). The
order in which the transitions are discovered is the alphabetical order.

1 2 3 A B C

c

b
d

b

a
e

c
d

c

b

c

e
d b

a

d

Inf (•) Inf (◦)

Figure 4.1 – The factors of this example
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1 Function NewState
Input: States sA and sB
Output: A pair where the first field is a Boolean indicating if the product_state

was already seen, and the second field is the order of the new state
2 p = ProductState(sA, sB)
3 (b, o) = Hash.get(p)
4 if not b then
5 o = Num
6 Hash.put(p, Num)
7 Root.push(Num, EMPTYPRODUCTMARK)
8 iter = ProductIterator(sa.successors, sb.successors)
9 Todo.push(p, iter)

10 Live.push(p)
11 Num = Num + 1
12 end
13 return (b, o)
14 end

Algorithm 4.1: Pseudocode for the state creation, used in Algorithm 4.3

1 Function NextSuccessor
Input: Product iterator I
Result: I is set to the next transition, or is marked as having no successors

2 (l, r) = I
3 while r has successors do
4 if l has successors then
5 move l to next transition
6 else
7 move l to first transition
8 move r to next transition
9 end

10 conjunction = l.label ∧ r.label
11 if conjunction is not equivalent to False then
12 I = (l, r)
13 return
14 end
15 end
16 mark I as having no more successors
17 end

Algorithm 4.2: Pseudocode for the transition exploration, used in Algorithm 4.3
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1 Function TwoAutomatonEmptinessCheck
Input: Automata A and B
Output: A Boolean indicating if the languages of A and B intersect

2 Num = 1
3 NewState(A.Q0, B.Q0)
4 Arc.push(EMPTYPRODUCTMARK)
5 while Todo is not empty do
6 (curr_state, iterator) = Todo.top()
7 if iterator has no more successors then // end of DFS, backtrack
8 Todo.pop()
9 (o_root, marks) = Root.top()

10 (b, o_curr) = Hash.get(curr_state)
11 if o_root = o_curr then // curr_state is the root of an SCC
12 repeat // mark all states in the SCC as dead
13 s = Live.pop()
14 Hash.put(s, 0)
15 until curr_state = s
16 Root.pop()
17 Arc.pop()
18 end
19 end
20 (sA, sB) = iterator.destination
21 (b, o_new) = NewState(sA, sB)
22 if not b then
23 Arc.push(iterator.marks)
24 else if o_new 6= 0 then // this state is not dead
25 (o_root, marks_root) = Root.pop()
26 marks = iterator.marks ∪ marks_root
27 while o_new < o_root do
28 marks_arc = Arc.pop()
29 (o_root, marks_root) = Root.pop()
30 marks = marks ∪ marks_root ∪ marks_arc
31 end
32 Root.push(o_root, marks)
33 if A.φ.satisfy(marks) and B.φ.satisfy(marks) then
34 return False
35 end
36 end
37 NextSuccessor(iterator)
38 end
39 return True // no accepting SCC was found
40 end

Algorithm 4.3: Pseudocode for the two-automaton emptiness check
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A1 A2
b

A3
b

B2

ce

B1

c

C1 C2

b

a

B3

C3
b

d
cc

Inf(•) ∧ Inf(◦)

d d

d

Figure 4.2 – The product computed during this example
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c
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Inf(•) ∧ Inf(◦)

d d

d

1,∅ Num = 2

Root Arc Todo Live Hash
1 ∅ ∅ 1→2 A→A A1 A1: 1

We start by fetching the initial state, making it its own SCC. We set Todo to the first pair of
transitions that is valid, here leading to A2 by reading a b.
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A1

1 2 3

A
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Inf(•) ∧ Inf(◦)
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1,∅ 2,∅
Num = 3

Root Arc Todo Live Hash
1 ∅ ∅ 1→1 A→ B A1 A1: 1
2 ∅ ∅ 2→3 A→A A2 A2: 2

We take the transition, and make the top iterators of Todo point to the next valid transition.
We discover A2: we add make it an SCC, update Root and Live, and push a pair of iterators on
Todo.
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Inf(•) ∧ Inf(◦)
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1,∅ 2,∅ 3,∅
Num = 4

Root Arc Todo Live Hash
1 ∅ ∅ 1→ 1 A→ B A1 A1: 1
2 ∅ ∅ 2→× A→× A2 A2: 2
3 • ∅ 3→ 2 A→ B A3 A3: 3

We discover A3, make it an SCC, and add a pair of its iterators to Todo. The mark we en-
countered by taking this transition is put on top of Arc. We iterate over all combinations of
transitions from A2 without finding any other valid transition, the product_iterator is left
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in a done state.
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1,∅ 2,∅ 3,∅

4,∅

Num = 5

Root Arc Todo Live Hash
1 ∅ ∅ 1→ 1 A→ B A1 A1: 1
2 ∅ ∅ 2→× A→× A2 A2: 2
3 • ∅ 3→× A→× A3 A3: 3
4 ∅ ∅ 2→ 2 B→A B2 B2: 4
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1,∅ 2,∅ 3,∅

4,∅

Num = 5

Root Arc Todo Live Hash
1 ∅ ∅ 1→ 1 A→ B A1 A1: 1
2 ∅ ∅ 2→× A→× A2 A2: 2
3 • ∅ 3→× A→× A3 A3: 3
4 ∅ ∅ 2→× B→× B2 B2: 4

We get to A2: it already has an order in Hash, so we know we already discovered it. We
detected a cycle between SCCs, so we take the order of A2 and pop and merge SCCs in Root
until we find the one of same or lower order, the one A2 was in. Each time we pop Root, we also
pop Arc and add the mark of the transition to the merged SCC. Note that the order of an SCC is
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the order of its root.
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1,∅
2,•

Num = 5

Root Arc Todo Live Hash
1 ∅ ∅ 1→ 1 A→ B A1 A1: 1
2 • ∅ ∅ 2→× A→× A2 A2: 2

3→× A→× A3 A3: 3

SCC #2 has mark •, this means that there exists an infinitely long word such that •marks are
seen infinitely often; this is however not sufficient to satisfy our acceptance condition, which
also needs to see ◦marks infinitely often. We continue our depth-first traversal.

We now have done iterators on top of Todo. This means that we are done with a state, and
need to backtrack in our depth-first traversal. When backtracking, we check that the order of
the SCC on top of Root is not the order of the state we are backtracking from; otherwise it means
we have explored our SCC entirely without finding any accepting word, we need to mark this
SCC as dead. This is actually the case when we backtrack from A2: we look at Live and pop and
mark as dead every state until A2, A2 included; we then pop Root. We continue back from A1.
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Num = 6

Root Arc Todo Live Hash
1 ∅ ∅ 1→× A→× A1 A1: 1
5 ∅ ∅ 1→ 1 B→C B1 A2: 0

A3: 0
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B1: 5
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Num = 8

Root Arc Todo Live Hash
1 ∅ ∅ 1→× A→× A1 A1: 1
5 ∅ ∅ 1→ 1 B→ B B1 A2: 0
6 ◦ ∅ ∅ 1→ 1 C→ B C1 A3: 0

2→ 3 C→C C2 B2: 0
B1: 5
C1: 6
C2: 7

Upon discovering the C2→ C1 transition, we find an SCC which contains a ◦mark, so there
exists a infinitely long word such that ◦ marks are seen infinitely often. But again, this is not
enough to satisfy out acceptance condition.
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Num = 10

Root Arc Todo Live Hash
1 ∅ ∅ 1→× A→× A1 A1: 1
5 ∅ ∅ 1→ 1 B→ B B1 A2: 0
6 ◦ ∅ ∅ 1→ 1 C→ B C1 A3: 0
8 • ∅ 2→× C→× C2 B2: 0
9 ∅ ∅ 3→ 3 C→C C3 B1: 5

3→ 2 B→C B3 C1: 6
C2: 7
C3: 8
B3: 9

At this point, we have discovered all possible states, but not all possible transitions.
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Num = 10

Root Arc Todo Live Hash
1 ∅ ∅ 1→× A→× A1 A1: 1
5 ∅ ∅ 1→ 1 B→ B B1 A2: 0
6 ◦• ∅ ∅ 1→ 1 C→ B C1 A3: 0

2→× C→× C2 B2: 0
3→ 3 C→C C3 B1: 5
3→ 3 B→ B B3 C1: 6

C2: 7
C3: 8
B3: 9

With transitionB3→ C2, we enrich SCC #6 with another cycle that contains the •mark. With
that, this SCC contains both ◦ and • marks: this satisfies our acceptance condition, we have
found an accepting SCC, there exists an infinitely long word that sees ◦ and • marks infinitely
often, the language of the product of the two automata is not empty, the emptiness check is
negative.
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Note that although we discovered all the states, we did not discover all transitions in the
product. This is because Couvreur’s algorithm is an on-the-fly algorithm: it does not require
full knowledge on or full exploration of the automaton it is executed on to find an accepting
word.
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Figure 4.3 – The final computation of the SCCs if we did not stop.
The transitions we did not see are in red.

If we did not find an accepting SCC, we would have continued to explore all transitions and
backtracked states we were done with, up to the initial state, resulting in Figure 4.3. Popping
the initial state from Todo means we have completely explored the automaton without finding
any accepting SCC; there cannot be a word that is accepted by this automaton, the emptiness
check is positive.
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Improvements

The existing implementation has evolved to optimize the computation of the product and the
emptiness check based on what can be known from the input automata. The last optimization of
the emptiness check allowed for roughly 4 times faster execution when using explicit automata,
by dropping dynamic method call resolution to the on-the-fly interface, and resolving them at
compile time through templates; this, however, is done at the expense of compilation duration
and binary size, which is something we would also like to improve. We did not allow ourselves
to use virtual methods nor dynamic memory allocation, to avoid any overhead in time or size.
This chapter presents the various optimizations we implemented, based on the ones in the
existing algorithms the two-automaton emptiness check is based on.

5.1 Explicit automata

When an explicit automaton is given to the two-automaton emptiness check, we should not
use its on-the-fly interface. This makes for a radical change in code factoring, since the data
structures used are different in size and usage.

We create a class tae_iterator that is templated, and takes place of the regular itera-
tors manipulated by product_iterators; a single product_iterator now handles two
tae_iterators, which are templated independently. This class will interface an underlying
explicit or on-the-fly transition iterator to get a common set of operations that the algorithms
will be able to use. Since the algorithms already make use of the on-the-fly iterator’s operations,
we chose to adapt explicit iterators to this interface. While on-the-fly iterators are independent
structures that provide all the operations needed, explicit iterators are much closer to the STL
concept of iterators, and do not provide all the operations we need by themselves. As such,
a tae_iterator templated as explicit will aggregate 3 iterators: the current one, on which
operations are applied, the begin() iterator, to be able to reset the current iterator to the first
transition, and the end() iterator, to be able to check if the current iterator has successors.

Since we do not use a lot of operations on states, the specialization for explicit automata went
through static methods of a templated class, tae_element, which also gives information on
types, to construct, hash, compare or destroy states.

This change would not be visible in the pseudocode shown in Section 4.1, since it is a change
in the types aggregated by product_iterators and product_states.

Explicitness specialization templates are instanced in both possibilities, for both inputs, for a
total of 4 specializations. This allows for faster execution and lower memory usage.
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tae_iterator<EXPLICIT>

behavior specific to
explicit interface

tae_iterator<ON-THE-FLY>

behavior specific to
on-the-fly interface

tae_iterator<KRIPKE>

behavior specific to
Kripke structures

Common
common behavior on
on-the-fly interface

Figure 5.1 – UML diagram representing our solution to avoid
dynamic dispatch and code duplication

5.2 Kripke structures

As seen in Section 2.4, Kripke structures are implemented in Spot by pushing the conditions and
marks of the state-based ω-automatonto its transitions to get an equivalent transition-based au-
tomaton. This means that all outgoing transitions of a state will have the same label. We can use
this property to our advantage by checking only once the label of the iterators in Algorithm 4.2,
instead of at each iteration of the loop, thus reducing the amount of function calls.

The way we implemented this optimization was to have a third specialization on the au-
tomaton type, by having tae_iterator<KRIPKE> store the condition of the first transition
on instantiation, and returning it every time it was asked for, instead of interfacing with the
underlying iterator; being a very small method, calls to cond would get inlined as variable
readings, and be optimized out of the checking loop.

The problem with this was that other than the condition retrieval, all behaviors are strictly
identical with the on-the-fly specialization. Since virtual methods and dynamic dispatch were
not allowed, we designed a superclass that would implement the common behaviors between
the on-the-fly and Kripke specializations, which they would inherit from before implementing
their own behaviors. This is illustrated in Figure 5.1. This allows for static resolution of tokens
on template instantiation, avoiding a duplication of code and the need for virtual resolution.

This improvement does rely on a change in Algorithm 4.2, but we implemented it in a way
that the compiler would be able to easily optimize the code itself; therefore, again, no change in
the shown pseudocode.

Since Kripke structures are mostly used for models, we are unlikely to get two Kripke struc-
tures as inputs, so we save on template instances by only having Kripke structures as the first
parameter, and swapping inputs if needed. This puts to 6 the number of specializations on the
type of automata. Optimization on Kripke structures removes a recurrent virtual method call,
which allows for faster execution.

5.3 Strength of automata

From the strength of automata seen in Section 2.2 we can deduce the following properties:

• In a weak automaton, the marks of a single transition in an SCC can tell us if the SCC is
accepting, so we do not need to store the marks of the SCC.

• In a terminal automaton, once we encounter an accepting transition, we can state that
there exists an accepting run.
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These properties can be determined by the algorithm generating the automaton, specified by
the user, or checked during the execution of another algorithm.

Even though optimizing for terminal automata represents a consequent optimization when
running Couvreur’s algorithm on a single automaton, on two automata, specializing the algo-
rithm to stop running on the terminal one once we have found that it is accepting but continue
running on the other automaton represents a too complicated change. In practice, computing
the product with an accepting SCC of a terminal automaton adds no complexity. We chose to
not implement optimizations for terminal automata, and rather focus on weak automata, since
terminal implies weak.

With two automata, the different combinations are:

Strong-Strong This is the case we have been working with until now.

Weak-Weak We do not need the Arc stack, as we can retrieve the acceptance sets of the SCC as
we go. SCC structures only have to contain their order, lightening Root a lot.

Weak-Strong We can use usual sets of marks instead of product_marks, essentially halving
the memory usage of Arc and reducing the size of SCC structures and therefore Root.

Strong-Weak As for Kripke structures, when no input is a Kripke structure, the inputs are
swapped to get back to a Weak-Strong case, to reduce template instances. If there is a
Kripke structure in input, then the Strong-Strong instance is used.

A problem arises when executing the algorithm: we may not need to store the marks, but
we still need to retrieve and check them. That is where we introduce a distance between the
data structures and the algorithm: the data structures may be reduced or even unused, but
the code will still manipulate Strong-Strong product_marks. We need to make templates of
product_mark that are able to be converted from one specialization to the other, and are able
to be unioned. Conversion shall lose the marks we do not need to store, while union shall give
us a Strong-Strong product_mark.

5.4 Summary

Let us list the different instantiations of the two-automaton emptiness check.

For the first argument, all types of automata are instanced.

A1 = {explicit , on-the-fly , kripke}
For the second argument, however, only explicit and on-the-fly automata are instanced.

A2 = {explicit , on-the-fly}
Only 3 strength configuration are available.

strength = {(strong , strong), (weak , strong), (weak ,weak)}
Let us now compute the number of instances.

instances = A1 ×A2 × strength

|instances| = |A1| × |A2| × |strength| = 3× 2× 3 = 18

We have 18 different outcomes in our dispatch of automata. On the other hand, if we did not
limit the possibilities on Kripke structures and strength combinations, this number would be
3× 3× 9 = 81, which means that the final binary object would be more than 4 times its current
size.
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Benchmarks

We generated 70 random automata with 900 states, acceptance conditions being random com-
binations of 16 acceptance sets, and transitions labeled as conditions over 10 different variables.
The variables are shared between automata. We then generated the 24851 different possible
pairs such that for any pair (a, b) there was not (b, a) but there was (a, a) and (b, b). We then
compared the old and new implementations of twa::intersects.
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Figure 6.1 – Checking against the old implementation
In red, pairs where the old implementation was faster, in green where it was slower, in blue the identity

line. Data are in seconds.

In Figure 6.1 we can see that in almost all cases the two automaton emptiness check was faster
than the old implementation of intersects. The 30 cases where it was slower took under one
second.

We did the same test under the same conditions with automata with 200 states and checked
the two-automaton emptiness check against an explicit product and an emptiness check. The
results are in Figure 6.2.

1(70
2

)
+ 70 or (70 + 2− 1)!/2!/(70− 1)!, depending how you want to count.
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Figure 6.2 – Checking against an explicit product and an emptiness
check

In red, pairs where an explicit product with an emptiness check was faster, in green where it was slower,
in blue the identity line. Data are in seconds.

As expected, even though we reduced the size of the automata, we saw a higher consump-
tion of memory due to the explicit product exploring all possible transitions and states where
the two-automaton emptiness check computes them as needed. However, we can see that some
tests are faster with the explicit product, when about as many are faster with the two-automaton
emptiness check, in a well spread fashion. We will need to explore this further.

Strength is a factor easier found in smaller automata, so this time we generated 100000 pairs
of random automata with 10 states and conditions expressed with 3 variables, and the same
acceptance conditions as before. We then checked their strength.

We can again see in Figure 6.3 that in a vast majority our implementation is faster by a seem-
ingly constant factor.
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Figure 6.3 – Checking small automata with known strength against
the old implementation

In red, pairs where the old implementation was faster, in green where it was slower, in blue the identity
line. Data are in seconds.



Chapter 7

Conclusion

We wanted to remove the limitations of the previous way to check if the intersection of the
languages of two automata was empty, while keeping all the optimizations of the existing al-
gorithms. Our new implementation, besides lifting the limitation on the number of acceptance
sets of the inputs, is heavily templated to account for various cases of time and space optimiza-
tions. We saw that this new implementation is faster than the previous one, while allowing for
more optimization cases.

On top of proving the existence of an accepting word in the product of two automata, we
would then like to be able to provide such a word: it would be a counterexample of the model
checking, a word that is accepted by the model but violates the property. This requires to imple-
ment a second traversal of the automata to look for a run going to and cycling in the accepting
SCC we found.
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