
Two-automaton accepting run search in Spot

Clément Gillard
(supervisor: Alexandre Duret-Lutz)

Technical Report no1805, June 2018
revision e2a7a075

In a previous paper we introduced the two-automaton emptiness check in the Spot library, that would
check for the emptiness of the intersection of the languages of two ω-automata without building their
product, circumventing a limitation in Spot on the number of acceptance sets of the automata.
This operation, when the intersection is actually not empty, is usually followed by an accepting run search
on the product that would return an example of such a word that is in the languages of both automata.
We introduce a new method that computes an accepting run from the data gathered during the two-
automaton emptiness check, allowing us to use this new method in algorithms that require the counterex-
ample.

Dans un précédent rapport nous présentions le test de vacuité bi-bande dans la bibliothèque Spot, qui
vérifie que l’intersection des langages de deux ω-automates est vide sans construire leur produit, ce qui
permet de contourner une limitation de Spot sur le nombre d’ensembles d’acceptations de ces automates.
Cette opération, lorsque l’intersection n’est effectivement pas vide, est généralement suivie d’une re-
cherche de chemin acceptant sur le produit qui expose un mot qui se trouve dans les langages des deux
automates.
Nous présentons une nouvelle fonction qui réalise cette recherche de chemin acceptant à partir des don-
nées générées par le test de vacuité bi-bande, ce qui nous permet d’utiliser ces nouvelles méthodes dans
des algorithmes qui nécessitent la recherche d’un contre-exemple.

Keywords
Spot, emptiness check

Laboratoire de Recherche et Développement de l’EPITA
14-16, rue Voltaire – FR-94276 Le Kremlin-Bicêtre CEDEX – France

Tél. +33 1 53 14 59 22 – Fax. +33 1 53 14 59 13
clement.gillard@epita.fr – http://www.lrde.epita.fr/

clement.gillard@epita.fr
http://www.lrde.epita.fr/

2

Copying this document

Copyright c© 2018 LRDE.
Permission is granted to copy, distribute and/or modify this document under the terms of

the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with the Invariant Sections being just “Copying this document”, no Front-
Cover Texts, and no Back-Cover Texts.

A copy of the license is provided in the file COPYING.DOC.

Contents

1 Introduction 5

2 Definitions and notations 7
2.1 Mathematical notations . 7
2.2 Notions on ω-automata . 7
2.3 Types of ω-automata in Spot . 9
2.4 ω-automata operations in Spot . 9

2.4.1 Unary operations . 9
2.4.2 Binary operations . 10

3 Context of the two-automaton accepting run search 11
3.1 Reminders on the two-automaton emptiness check 11
3.2 The data available . 12
3.3 Structure of an accepting run . 12
3.4 The search algorithm . 12
3.5 Existing implementation . 13

4 Implementation of the two-automaton accepting run search 14
4.1 Spot’s data structures . 14
4.2 Product data structures . 14
4.3 Pseudocode . 15

4.3.1 product_bfs_steps . 15
4.3.2 Two-automaton accepting run search . 15

4.4 Integration with the series of algorithms . 18
4.5 Integration in Spot . 18
4.6 Additional changes . 19

5 Benchmarks 20
5.1 Comparison of two-automaton against existing implementations 20

5.1.1 Setup . 20
5.1.2 Expectations . 21
5.1.3 Results . 21

5.2 Use case: ltlcross . 23
5.2.1 Setup . 23
5.2.2 Results . 25

6 Conclusion 27

CONTENTS 4

7 Bibliography 28

Chapter 1

Introduction

Model checking is the field of computer science interested in the exhaustive and automatic ver-
ification of the behaviours of a model: from the model M of a system and a set of specifications,
we want to check that the system meets all requirements. The automata-theoretic approach to
model checking is a classical way to verify a system, that can often be reduced to graph prob-
lems, and to which we can apply ω-automata theory, a field of automata theory that considers
ω-automata that recognise infinite words, just like a system is designed to execute on infinitely
long inputs.

The approach, illustrated in Fig. 1.1, goes as follows: we explore a model M to build an
ω-automaton AM , and we express a specification we want to check as a logical property ϕ,
usually using Linear Temporal Logic (Pnueli, 1977), that we can then negate and translate into
an ω-automaton A¬ϕ: AM accepts all words that represent behaviours of the model, and A¬ϕ

accepts all words that do not satisfy ϕ. We then check if the languages of these ω-automata
have an intersection, that is to say, if there is a word that represents a valid behaviour of the
model but does not verify the property. This is usually done by computing the product of the
ω-automata, whose language is the intersection of its operands, and then running an emptiness
check algorithm on that product to check if its language is empty. If it is not, then the property is
violated, and we usually want a counterexample of what went wrong: this is done by running
an accepting run search on the product to extract a single word that exists both in the languages
of the model and the negation of property.

Spot 2 (Duret-Lutz et al., 2016) is a C++ library whose goal is to provide tools to manipulate
ω-automata. It implements several algorithms, allows for user-defined automata, provides a
Python interface, and comes with several binaries to generate, translate, and process LTL for-
mulae and ω-automata. It also ships with two binaries to compare such tools: ltlcross and
autcross, that take as inputs LTL formulae (respectively ω-automata) and several tools that
should translate (respectively process) them equivalently, and semantically compare their out-
puts. Both ltlcross and autcross, among other things, compare the ω-automata by running
an emptiness check between an automaton and what should be its complement: the intersection
of their languages should be empty. ltlcross is used by some LTL translators’ development
teams to test their tool and compare it to others’ (Duret-Lutz, 2017, p. 52).

In Spot, ω-automata have a fixed maximum number of acceptance sets they can have. But
the number of acceptance sets of the product of two ω-automata is the sum of the numbers of

6

model M property ϕ

exploration translation

automaton AM automaton A¬ϕ

product

AM ⊗A¬ϕ

emptiness check

L(AM ⊗A¬ϕ)
?
= ∅

ϕ holds / ϕ violated

accepting run search

w ∈ L(AM ⊗A¬ϕ)

counterexample

if
no
t

Figure 1.1 – The usual ω-automata approach to model checking

acceptance sets of its operands. That means that even though two ω-automata may be express-
ible in Spot, their product may not, which prevents the application of a regular emptiness check
algorithm on the product, or any other algorithm that is to be run on the product.

In Gillard (2017), we introduced the two-automaton emptiness check, which takes two ω-automata
and simulates their product while running an emptiness check algorithm, essentially giving the
result of a regular product then emptiness check while circumventing the limitation in accep-
tance sets. This algorithm, while being fully usable, did not change a lot of the workflow of
Spot’s tools, because of its binary answer: most algorithms do not only need to know if the
languages have an intersection, they also need to have a counterexample if there is one.

We are now introducing the two-automaton accepting run search, that looks for an accepting
run in the data that was generated by the two-automaton emptiness check. With these two
algorithms, we can now replace every occurrence of a product followed by an emptiness check
and still be able to run an accepting run search when needed, while still not having to compute
an actual product of automata.

Chapter 2

Definitions and notations

2.1 Mathematical notations

This section defines various mathematical notations used later in this report.

Definition 2.1 (Power set) The power set of a set A, denoted P(A), is the set of all subsets of A, such
that we have:

B ⊆ A ⇐⇒ B ∈ P(A)

Definition 2.2 (Set of integers) For two integer numbers a and b, we denote as [a..b] the set of all
integers between a and b:

[a..b] = Z ∩ [a, b]

Definition 2.3 (Set of strictly positive integers) For a strictly positive integer number a, we denote
as [a] the set [1..a].

2.2 Notions on ω-automata

This section introduces various definitions on ω-automata that are necessary for the compre-
hension of this report.

Definition 2.4 (Acceptance set) An acceptance set is a set of transitions or states. A single transition
or state can belong to any number of acceptance sets.

Transition-based ω-automata (see Definition 2.8), as they are handled in Spot, are ω-automata
whose acceptance sets are sets of transitions.

Definition 2.5 (Acceptance mark) An acceptance mark is a mark associated with an acceptance set.
Marking a transition or state denotes its belonging to an acceptance set.

Acceptance marks allows for a more graphical way to represent acceptance sets, by showing
the marks on their associated transitions or states, as can be seen in Fig. 2.1.

Definition 2.6 (Acceptance condition) An acceptance condition φ of an ω-automaton is a Boolean
formula which respects the following grammar:

φ := > | ⊥ | Inf (x) | Fin(x) | Inf (x) | Fin(x) | φ ∧ φ | φ ∨ φ | (φ)

where x denotes an acceptance set.

2.2 Notions on ω-automata 8

As can be seen in Fig. 2.1, for clarity we can use an acceptance mark to denote an acceptance
set in the acceptance condition.

Definition 2.7 (Generalised Büchi acceptance condition) A generalised Büchi acceptance condi-
tion is an acceptance condition which does not make use of the Fin operator. It is said to be Fin-less.

Currently, the two-automaton emptiness check and accepting run search algorithms are only
able to work on ω-automata with generalised Büchi acceptance conditions.

Definition 2.8 (Transition-based ω-automaton) A transition-based ω-automaton is a tuple A =
〈Σ, Q, q0,∆, n,m, φ〉 where

• Σ is a finite alphabet,

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• ∆ ⊆ Q× Σ×Q is a transition relation,

• n ∈ N is the number of acceptance sets,

• m : ∆ 7→ P([n]) is a function returning the acceptance marks of a transition,

• φ is an acceptance condition.

0 1 Fin(◦) ∧ Inf (•)a

!a
!a a

Figure 2.1 – The deterministic ω-automaton of the translation of the LTL formula FG(a), as
would be represented in Spot, with its acceptance condition on the right, and the acceptance

marks on its transitions.

Definition 2.9 (Run, word, and step) A run of an ω-automaton is an infinite sequence of consecutive
transitions ρ ∈ ∆ω starting from the initial state of the automaton.

We say that the run ρ = (q0, `0, s0)(s0, `1, s1)(s1, `2, s2) . . . recognises the word w = `0`1`2 . . . ∈
Σω .

A single transition (s, `, d) ∈ ∆ of a run is called a step.

Definition 2.10 (Accepting run) Let mInf ⊆ [n] be the set of marks that we see infinitely often along
an infinite subsequence of transitions σ of a run ρ of an ω-automaton. We write σ � φ to mean σ satisfies
φ and σ 2 φ to mean σ does not satisfy φ. The satisfaction of an acceptance condition is interpreted by
induction as follows:

σ � >
σ 2 ⊥
σ � Inf (x) ⇐⇒ x ∈ mInf

σ � Fin(x) ⇐⇒ x /∈ mInf

σ � Inf (x̄) ⇐⇒ mInf ∩ {x} = ∅
σ � Fin(x̄) ⇐⇒ mInf ∩ {x} 6= ∅
σ � φ1 ∧ φ2 ⇐⇒ σ � φ1 and σ � φ2
σ � φ1 ∨ φ2 ⇐⇒ σ � φ1 or σ � φ2

9 Definitions and notations

A run ρ of an automaton is an accepting run if and only if it contains such a σ that satisfies the acceptance
condition of the automaton.

Definition 2.11 (Accepting word) An accepting word is a word recognised by an accepting run.

Definition 2.12 (Language) The language of an automatonA, denoted L(A), is the set of all accepting
words of A.

Definition 2.13 (SCC) A Strongly Connected Component is a set of states of an ω-automaton where
every state can be reached from any other state.

2.3 Types of ω-automata in Spot

Spot implements two kinds of ω-automata:

On-the-fly automata whose states and transitions are only accessible through functions, which
means that their exploration leads to code execution that could be reading memory, files,
or even generating the automaton as requested. This is useful to represent some models,
but is ultimately slower and uses more memory.

Explicit automata whose states and transitions are known in advance and are stored efficiently
in memory. This leads to faster exploration and less memory usage.

Explicit automata offer an on-the-fly interface, which means they can be mixed transparently
with on-the-fly automata, but that interface is slower that their actual interface, which is why
some algorithms are rewritten or adapted to work with the explicit interface.

2.4 ω-automata operations in Spot

This section introduces the operations on ω-automata already implemented in Spot, that we aim
to improve in this work.

It must be noted that the emptiness check algorithm introduced by Couvreur (1999) only runs on
ω-automata with Fin-less acceptance condition.

2.4.1 Unary operations

is_empty: ω-automaton 7→ Boolean

Return True if the language of the automaton is empty, False otherwise.
Current implementation: If the automaton’s acceptance condition is Fin-less, redirect to an

implementation of Couvreur’s emptiness check algorithm, else redirect to a generic emptiness
check algorithm on an explicited automaton.

accepting_run: ω-automaton 7→ run

Return an accepting run if the language of the automaton is not empty, nullptr otherwise.
Current implementation: Run Couvreur’s emptiness check algorithm, if the result is non-

empty run its accepting run search algorithm, else return nullptr. If the automaton’s accep-
tance condition is not Fin-less, abort with an error message.

2.4 ω-automata operations in Spot 10

accepting_word : ω-automaton 7→ word

Return an accepting word if the language of the automaton is not empty, nullptr otherwise.
Current implementation: Run accepting_run on a Fin-less copy of the automaton, and

build a word from the result, or nullptr if the result is nullptr.

2.4.2 Binary operations

product: explicit ω-automaton × explicit ω-automaton 7→ explicit ω-automaton

Sometimes referred to as explicit product for clarity. Compute the synchronised product of the
two given explicit automata as an explicit automata.

Requires two explicit automata, as well as a full exploration of the product.

otf_product: ω-automaton × ω-automaton 7→ on-the-fly ω-automaton

Sometimes referred to as on-the-fly product for ease of reading. Produce an on-the-fly automaton
whose methods will compute the synchronised product on demand.

Uses the on-the-fly interface, so works with any type of automata, and does not require full
exploration of the product.

intersects: ω-automaton × ω-automaton 7→ Boolean

Return True if the languages of the two automata have a non-empty intersection, False oth-
erwise.

Current implementation: Perform various checks to ensure the suitability of an explicit prod-
uct followed by a generic emptiness check of the product, otherwise build an on-the-fly product
of Fin-less copies of the automata, and invoke is_empty on it.

intersecting_run: ω-automaton × ω-automaton 7→ run

Return an accepting run of the first automaton whose word is also an accepting word of the
second automaton, or nullptr if the languages of the automata do not have an intersection.

Current implementation: Build an on-the-fly product of Fin-less copies of the automata, and
invoke accepting_run on it.

intersecting_word: ω-automaton × ω-automaton 7→ word

Return a word that is in the languages of both automata, or nullptr if the languages do not
have an intersection.

Current implementation: Build an on-the-fly product of Fin-less copies of the automata, and
invoke accepting_word on it.

Chapter 3

Context of the two-automaton
accepting run search

The goal of the two-automaton series of algorithms is to remove the limitation on the number of
acceptance sets introduced by the product of automata in the intersects, intersecting_run,
and intersecting_word methods, by reimplementing their underlying algorithms without
building a product in Spot’s constructs. This is done by handling pairs of states, iterators, and
acceptance marks to simulate the operations that would be applied if they were part of an actual
product automaton.

The two-automaton accepting run search completes the two-automaton emptiness check in-
troduced by Gillard (2017), an reimplementation of the on-the-fly emptiness check algorithm
introduced by Couvreur (1999). The two-automaton emptiness check was heavily templated to
account for various optimisations, based on the implementations of the on-the-fly product and
the emptiness check that already existed in Spot.

3.1 Reminders on the two-automaton emptiness check

The two-automaton emptiness check is an implementation of Couvreur’s algorithm, which
works with generalised Büchi ω-automata, automata whose acceptance condition is a conjunc-
tion of Inf operators.

This algorithm does a depth-first search through the automaton, looking for SCCs. During
the exploration, the states are associated with an order number, a unique number representing
the order in which states have been discovered, such that states discovered later are given a
greater order. The algorithm keeps track of what acceptance marks can be seen in an SCC; if at
some point an SCC contains marks that, if seen infinitely often, satisfy the acceptance condition
of the automata, then it can be concluded that there exists a run capable of reaching that SCC
and able to satisfy the acceptance condition, so the language of the automaton is not empty. If
the depth-first search finished without finding any accepting SCC, than it can be concluded that
there is no accepting run, and that the language of the automaton is empty.

3.2 The data available 12

This algorithm is an on-the-fly emptiness check : it does not need to explore the entire au-
tomaton to conclude that its language is not empty; however all transitions must be explored to
conclude that the language is empty.

3.2 The data available

The two-automaton emptiness check produces several data structures:

• states, a hashmap that maps discovered pairs of states (“product_states”) to their
order,

• todo, a stack of pairs of iterators used for the depth-first search,

• live, a stack of the states currently in the search stack, used to mark those states as dead
when they are known to neither belong to an accepting SCC nor lead to one,

• acc, a structure that holds the accepting marks of the current SCC and the order of the
first discovered state in it; when the emptiness check ends this contains the minimal order
of the states of the accepting SCC and the marks that had to be discovered in order to
satisfy the acceptance condition.

We could use live or todo to build the accepting run: they contain the states that were seen
during the depth-first traversal, that we could use as a trail of crumbs from the initial state to the
transition that contained the last acceptance mark needed to satisfy the acceptance condition.

However, the transition iterators in todo are already pointing to the transition after the one
we need to take in the accepting run, so using todo would require a transition search algo-
rithm; same goes for live, which contains no information on the transitions taken. Also, these
structures represent the depth-first search, that may not give an efficient run, which is why we
decided to not use them and reimplement the run search from scratch.

This allowed following the existing implementation of the accepting run search, that only
made use of states and acc, and used breadth-first searches to build the run.

3.3 Structure of an accepting run

An accepting run is always linked to an automaton.

Since a run is infinite, but runs through a finite automaton, we can use the pumping lemma to
conclude that the run must contain a finite sequence of consecutive transitions that repeats itself
infinitely in the run, the cycle, and a finite, possibly empty sequence of consecutive transitions
that lead from the initial state to the first source state of the cycle, the prefix. In an accepting run,
the cycle corresponds to σ in Definition 2.10.

An accepting run is therefore implemented as two finite sets of steps.

3.4 The search algorithm

The accepting run search is done in 3 steps:

1. Search for a path from the initial state to any state of the SCC. We denote as current state
and also entry state the first encountered state of the SCC.

13 Context of the two-automaton accepting run search

?>=<89:;q7// 1 //?>=<89:;/.-,()*+q8
2 //?>=<89:;q9BC

oo

3

yy

Large subgraph 4

Fig. 4. Problematic case forSE05.

•c0

•

c3
?�

?�
?�

?�
?�

?�

•

??
?__ t2

•c2
�_

�_
�_

�_

•
��

�??
t1

•

c1

�?
�?

�?
�?

•
???��

t0

_�
_�

_�
_�

•q0 o/ o/ o/ o/ o/ o/ //

Fig. 5. Computing an accepting run for a TGBA.

4.2 A New Nested DFS Algorithm

Fig. 4 illustrates a case whereSE05 could be improved. Arcs are labeled by their depth-
first order.SE05 is defined on Büchi automata with accepting states. In its first DFS, if
eitherq9 or q7 are accepting, thenSE05 can report a violation. Ifq8 is accepting, the
accepting cycle(q8, q9, q7, q8) cannot be detected by the first DFS: it will only be found
by the second DFS performedafter the large subgraph have been explored.

The first DFS could detect an accepting cycle when visiting the third arc if it knew
whether an accepting state exists betweenq7 andq9. We propose to associate each state
q in the DFS stack with the numberW [q] of accepting states in the DFS path fromq0 to
q. Therefore checking the existence of an accepting state betweenq7 andq9, amounts
to testing whetherW [q9] − W [q7] > 0.

This technique can be generalized to multiple acceptance conditions using a vector
of counters. We implemented it inTau03 opt. Its effect can be observed on TGBAs
with a single acceptance condition, whereSE05 andTau03 opt differ only on this last
optimization. For instance see formulæ A and B in Table 2.

Fig. 6 presentsTau03 opt. This new algorithm uses the technique ofTau03 to
handle multiple acceptance conditions, but simplifies its logic and also implements all
the optimizations introduced bySE05.

On Table 1 the reason whyTau03 opt outperformsGV04 in terms of visited states
is that the latter works on a degeneralized automaton (this is confirmed when comparing
Cou99 with Tau03 opt); however the wayTau03 opt nests multiple DFSs to handle
multiple acceptance conditions causes more transitions tobe visited thanGV04.

5 Computing Accepting Runs for Generalized Automata

When a product space is foundnot to be empty, it means the system does not verify the
formula it is checked against. An important step is to provide the user with a counterex-
ample, showing an actual faulty execution of the system. Such a counterexample is an
accepting run of the product automata. It can often be produced as a side-effect of the
emptiness check, or afterwards by reusing some data of the check.

In emptiness-check algorithms that work on degeneralized automata, exhibiting an
accepting run if one exists is straightforward. In NDFS-based algorithms (CVWY90,
SE05) that run is the contents of the stack. ForGV04, Geldenhuys and Valmari [9]
showed how to use an extra integer per stack state to produce an accepting run.

Figure 3.1 – Excerpt from Couvreur et al. (2005)

2. From the current state, look for a path to a transition bearing a mark we have not seen yet
while staying in the SCC; note the mark as seen, and the destination state of the transition
as the current state. Repeat this step until the seen marks satisfy the acceptance condition.

3. From the current state, look for a path going back to the entry state while staying in the
SCC.

The transitions of the path found in Step 1 make up the prefix, the transitions of the paths found
in Steps 2 and 3 make up the cycle. Figure 3.1 is an illustration of those steps:

• the search from q0 to c0 is Step 1,

• the searches from c0 to c1, c1 to c2, and c2 to c3, each respectively seeing the marks t0, t1,
and t2, are Step 2,

• the search from c3 back to c0 is Step 3.

3.5 Existing implementation

As for the two-automaton emptiness check, the two-automaton accepting run search is heavily
inspired from the existing single-automaton algorithms. The algorithm we chose to reproduce
was one implemented along with the algorithm that inspired the two-automaton emptiness
check: an accepting run search that uses back data from an implementation of Couvreur’s algo-
rithm. This algorithm, to get shortest paths, uses a breadth-first search for all 3 steps described
in Section 3.4, constrained to the states that have been explored during the emptiness check.

The breadth-first search is done with the help of an existing Spot algorithm, bfs_steps,
which from a starting state, and matching and filtering functions, builds a set of steps and
appends it to a given set. The matching and filtering functions are user defined, which allow
for a very flexible algorithm.

Chapter 4

Implementation of the
two-automaton accepting run search

The two-automaton accepting run search is for the biggest part a rewrite of the bfs_steps al-
gorithm for the “product” data structures of the two-automaton emptiness check. This chapter
discusses its implementation and its integration within the two-automaton series of algorithms.

4.1 Spot’s data structures

The following structures are used in the two-automaton series of algorithms:

state is a state of an automaton, it provides a field successors which is a transition iterator to its
first outbound transition, from which one can iterate over all the outbound transitions,

mark_t is a set of acceptance marks, implemented as a bitfield, with all usual bitwise opera-
tions defined,

step contrarily to Definition 2.9, a step is implemented as a tuple 〈s, `,m〉where s is the source
state, ` is the condition, and m is the set of marks seen on the transition; this is because
we can retrieve the destination states from the first two, and the marks are to be easily
accessible for other algorithms that will not be discussed here.

4.2 Product data structures

The following data structures were implemented for Gillard (2017):

product_state is a pair of states, it provides a hash function for use in hash maps and an
equality operator,

product_mark is a pair of mark_ts,

product_iterator is a pair of transition iterators, with a field indicating if it still has succes-
sors, and a field giving the next successor if there is one.

15 Implementation of the two-automaton accepting run search

The members of these structures are called left and right, for elements respectively from the left
and right automata.

Along with these, we also define the product_steps data structure, which is a tuple
〈src, condition,marks〉 where src is a product_state, condition is a pair of conditions1, and
marks is a product_mark.

4.3 Pseudocode

4.3.1 product_bfs_steps

Algorithm 4.1 shows the pseudocode for the product_bfs_steps algorithm. This algorithm
will run a breadth-first search from a given start to a state indicated by the function match, while
filtering out unexplored states, states marked as dead, and states indicated by the function filter.

It works by building a map backlinks which associates each unfiltered state with the first
product_step that lead to it. From that, it can, once a match is found, reconstruct the run
that goes from start to the match by getting the step that lead to the match, then the step that
lead to the source of that step, and so on until the source is actually start; this is what is done
lines 16 to 23. However, since the steps retrieve the steps backwards, we need to store them in
a stack, and then pop them back to the actual runs ; this is done lines 24 to 31.

If a match is found, we return it, so that the two-automaton accepting run search may start a
new breadth-first search from it.

4.3.2 Two-automaton accepting run search

Algorithm 4.2 shows the pseudocode for the actual implementation of the accepting run search.
We start by setting up two match functions:

• matchOrder which will match on the state whose order is the one in acc (Section 3.2), which
is the entry state of the accepting SCC we are looking for,

• matchMarks which will match on any transition that bears marks that are in a local copy
of acc but we have not matched with yet, and will modify the local copy of acc to exclude
those marks for the next match.

We also set up two filter functions:

• filterNone, which never filters anything,

• filterSCC, which filters out states whose order is lower than the one in acc: these states
were less deep than the accepting SCC during the depth-first search.

For Step 1 (Section 3.4) we run product_bfs_steps from the initial product_state of
the automata with matchOrder and filterNone: we are looking for the entry state of the accept-
ing SCC and are restricting the search only to states that were discovered and “live” when the
emptiness check stopped. We get back that state, and store it in substart. The retrieved runs are
stored in the prefix part of the given runs.

For Step 2 we run product_bfs_steps from substart with matchMarks and filterSCC: we
look for any transition bearing an acceptance mark that is still in our local copy of acc, that is to

1For ease of reading, its field have also been called left and right.

4.3 Pseudocode 16

1 Function product_bfs_steps
Input: product_state start, functions match and filter, lists of product_steps

steps` and stepsr already allocated or set to None, states from Section 3.2
Output: The product_state to which points the matching transition

2 backlinks←map of product_states to product_steps
3 todo← queue of product_states

4 todo.push(start)
5 while todo is not empty do
6 src← todo.top()
7 iter← product_iterator(src.left.successors, src.right.successors)
8 while iter.HasSuccessors do
9 dst← product_state(iter.left.destination, iter.right.destination)

10 if dst is in states // state is undiscovered
11 and states[dst] 6= 0 // state is dead
12 and not filter(dst) then
13 cur_step← product_step(src, iter.condition, iter.marks)
14 if match(cur_step, dst) then
15 tmp`, tmpr ← stacks of steps
16 Loop
17 if steps` is not None then
18 tmp`.push(cur_step.src.left, cur_step.condition.left,

cur_step.marks.left)
19 if stepsr is not None then
20 tmpr.push(cur_step.src.right, cur_step.condition.right,

cur_step.marks.right)
21 if cur_step.src = start then
22 break
23 cur_step← backlinks[cur_step.src]
24 if steps` is not None then
25 while tmp` is not empty do
26 steps`.append(tmp`.top())
27 tmp`.pop()
28 if stepsr is not None then
29 while tmpr is not empty do
30 stepsr.append(tmpr.top())
31 tmpr.pop()
32 return dst
33 if dst not in backlinks then
34 backlinks[dst]← cur_step
35 iter← iter.NextSuccessor
36 todo.pop()
37 return start // no match found

Algorithm 4.1: Pseudocode for the product_bfs_steps algorithm

17 Implementation of the two-automaton accepting run search

1 Function TwoAutomatonAcceptingRunSearch
Input: Automata left and right, runs run` and runr already allocated or set to None,

states and a copy of acc from Section 3.2, product_state start the initial
state

Output: Allocated runs are filled with corresponding accepting runs

2 if run` is None
3 and runr is None then
4 return
5 prefix` ← if run` is None then None else run`.prefix
6 prefixr ← if runr is None then None else runr.prefix
7 cycle` ← if run` is None then None else run`.cycle
8 cycler ← if runr is None then None else runr.cycle

9 matchOrder← lambda step, dst: return states[dst] = acc.order
10 matchMarks← Function

Input: product_step step, product_state dst
11 if step.marks.left & acc.marks.left
12 or step.marks.right & acc.marks.right then

// Remove step.marks from acc.marks
13 acc.marks.left← acc.marks.left & not steps.marks.left
14 acc.marks.right← acc.marks.right & not steps.marks.right
15 return true
16 return false
17 filterNone← lambda dst: return false
18 filterSCC← lambda dst: return states[dst] < acc.order

19 substart← product_bfs_steps(start, matchOrder, filterNone, prefix`, prefixr)

20 while acc.marks.left & acc.marks.right do
21 substart← product_bfs_steps(substart, matchMarks, filterSCC, cycle`, cycler)

22 if states[substart] 6= acc.order then
23 product_bfs_steps(substart, matchOrder, filterSCC, cycle`, cycler)

Algorithm 4.2: Pseudocode for the two-automaton accepting run search

4.4 Integration with the series of algorithms 18

say, that is in the accepting SCC but has not been matched yet, while staying in the accepting
SCC. We store the destination state of that transition back in substart, we append the retrieved
runs to the cycle part of the given runs, and we loop back on that step while there are still unseen
marks.

For Step 3 we first check if we have looped back to the entry state of the accepting SCC, if not
we run a final product_bfs_steps from substart with matchOrder and filterSCC: we want to
get back to the entry state, while staying in the accepting SCC. The retrieved runs are appended
to cycle part of the given runs.

The two-automaton accepting run search is designed such that the caller could choose to only
build an accepting run over the left or right automaton.

4.4 Integration with the series of algorithms

Since the accepting run search is only going to be run after an emptiness check, and run with
some of its data, it makes sense that it would be called on a object built by the emptiness check.
We modified the two-automaton emptiness check to return a structure called two_aut_res
instead of a Boolean. This structure contains pointers to the two automata, the states and
acc structures described in Section 3.2, and a Boolean telling us if the automata were swapped
(Gillard, 2017, Sections 5.2 and 5.3). Along with this structure come functions to run the accept-
ing run search and return a run over the left automaton, the right automaton, or a pair of runs
over each one. The user cannot access the fields of the two_aut_res outside of these methods:
this way it only matters to the methods if the automata have been swapped or not.

Instances of this structure are hidden behind a std::shared_ptr, which allows for easy
Boolean conversion: when there is no intersection, the two-automaton emptiness check returns
a null pointer which is easily converted into a Boolean false, whereas when there is one, it
returns a pointer to a filled two_aut_res which is easily converted into a Boolean true. This
allows us to keep the usability of the old interface that returned Booleans, and ensures that the
accepting run search is only run on filled two_aut_res (and that the user checked the result of
the emptiness check before running the accepting run search, unless they want to dereference a
null pointer).

The chaining of algorithms and data structures is illustrated in Fig. 4.1.

4.5 Integration in Spot

The two-automaton emptiness check was already integrated to the intersects method in
place of the on-the-fly product and emptiness check, but this had little effect since this method is
not used a lot: most algorithms, when checking for emptiness, also require an example of a word
that is in the languages of both automata. The two-automaton accepting run search was there-
fore integrated to replace the on-the-fly product and accepting run search of intersecting_run,
and intersecting_word was rebuilt around intersecting_run. All those changes were
done with the ability to switch back to the old implementation if an environment variable is set
to tell us so.

19 Implementation of the two-automaton accepting run search

automaton A automaton B

two-automaton
emptiness check

two aut res

L(A)
⋂
L(B)

?
= ∅ two-automaton

accepting run search

w ∈ L(A)
⋂

L(B)

Figure 4.1 – The two-automaton series of algorithm

4.6 Additional changes

Some algorithms used a feature of the product implemented in Spot, which allowed choosing
which states would be taken as initial states in each automaton, instead of asking the automata
for their initial states. This was ported into the two-automaton emptiness check and the two-
automaton accepting run search.

The implementation of the two-automaton accepting run search allowed us to use the two-
automaton emptiness check in a lot more algorithms than we were previously able, since most
of these algorithms were built around the retrieval of a counterexample in the case of a non-
empty intersection. This meant that the two-automaton emptiness check was now executed on
a much wider range of automata of various types, built by various tools, and revealed several
problems with the implementation, especially in terms of memory management, which are now
fixed.

Chapter 5

Benchmarks

5.1 Comparison of two-automaton against existing implemen-
tations

5.1.1 Setup

We generated 100 random automata with Spot’s randaut tool, each with the following prop-
erties:

• 500 states,

• a density of transitions of 7.5%

• 16 acceptance sets,

• an acceptance condition being a conjunction of Inf of all those sets,

• 10 atomic propositions to express the conditions over the transitions with, common across
all automata.

These automata are of the explicit kind.

We combined these automata into all 5050 different pairs: each automaton is in a pair with
each other automaton plus itself. We then computed the time spent during the execution of:

• explicit and on-the-fly products,

• explicit and on-the fly emptiness checks over their respective products,

• two-automaton emptiness check,

• in the case where the product had a non-empty language:

– explicit and on-the-fly accepting run searches over their respective products,
– two-automaton accepting run search over the two_aut_res got from the two-automaton

emptiness check,

for every pair. These computations were done 24 pairs in parallel over 24 cores of the same
machine.

Of those 5050 pairs, 2327 of them gave products with empty languages.

21 Benchmarks

5.1.2 Expectations

The following table shows the expected time performance of the existing implementations com-
pared to the two-automaton algorithms.

explicit on-the-fly
product and
emptiness check
when the product
is empty

Similar: both would build the
whole product and explore it
completely using the explicit in-
terface of the automata. Slower1: would perform the

same operations using the on-
the-fly interface.

product and
emptiness check
when the product
is not empty

Slower1: the whole product
would have to be built but not ex-
plored.

product, empti-
ness check and
accepting run
search when the
product is not
empty

Slower1: would perform the
same operations with the same
interface, and would not get back
the time lost building the whole
product.

5.1.3 Results

Size of the automata

Figure 5.1 shows the comparison of the time of computation to the size of the products. We can
see that the pairs of automata can be split into three distinct groups:

• the big (more than 100000 states), non-empty products that take little time to process (less
than microsecond for the two-automaton emptiness check), less than 100,

• the small (less than 60 states), empty products, 2327 ,

• the big (more than 100000 states), non-empty products that take longer to process, about
2600.

Empty product

Contrary to what we expected, we can see in Fig. 5.2 that the two-automaton emptiness check is
about two times slower than the explicit product and emptiness check. This can be attributed to
the fact that the explicit product is built once and then worked upon, while the two-automaton
emptiness checks always manipulates two automata at the same time. We can also see that
shorter computations take longer with the two-automaton emptiness check, but that the time
difference reduces with longer computations : this may indicate that we have a constant over-
head. This is confirmed by the fact that shorter computations also take longer against the on-
the-fly product and emptiness check.

Non-empty product

As expected, we can see in Fig. 5.3 that the explicit product and emptiness check are indeed
slower than their on-the-fly counterparts and the two-automaton emptiness check, due to the

1Compared to the two-automaton equivalent of the algorithm.

5.1 Comparison of two-automaton against existing implementations 22

1e−04 5e−04 5e−03

1
2

5
10

20
50

em
pt

y

5e−05 5e−04 5e−03

1
2

5
10

20
50

1e−04 5e−04 5e−03

1
2

5
10

20
50

1e−04 5e−03 1e−01

1
10

0
10

00
0

bo
th

1e−04 1e−02 1e+00

1
10

0
10

00
0

5e−05 1e−03 5e−02

1
10

0
10

00
0

1e−04 5e−03 1e−01

12
50

00
13

50
00

no
n−

em
pt

y

two−automaton
14 16 18 20 24

12
50

00
13

50
00

explicit
1e−04 5e−03 1e−01

12
50

00
13

50
00

on−the−fly

S
iz

e
of

 p
ro

du
ct

 (
st

at
es

)

Time of product + emptiness check (s)

Figure 5.1 – Comparison of the time of products and emptiness check to size of product on
explicit automata

useless exploration of the whole product. We can also see that the two-automaton emptiness
check is, as predicted, faster than the on-the-fly product by an average of 10%, but it is still
beaten on the smaller products, which goes in the direction of a constant overhead.

Finally, in Fig. 5.4 is shown the comparison of the duration of the product, emptiness check
and accepting run search in the case of a non-empty product. We can see that as expected
the explicit algorithms did not recover from the cost of the exploration of the product, and
that on average the two-automaton series of algorithms is faster than the on-the-fly algorithms.
However we can also see that some of the advance gotten during the two-automaton emptiness
check is lost during the accepting run search, meaning that this implementation is slower than

23 Benchmarks

1e−04 5e−04 2e−03 1e−02

1e
−

04
5e

−
04

2e
−

03
1e

−
02

two−automaton
emptiness check

5e
−

05
2e

−
04

1e
−

03
5e

−
03

0 green

2327 red

average improvement: ×2.02

1e−04 5e−04 2e−03 1e−02

1e
−

04
5e

−
04

2e
−

03
1e

−
02 138 green

2189 red

average improvement: ×1.23

explicit
product + emptiness check

5e−05 2e−04 1e−03 5e−03

2327 green

0 red

average improvement: ×0.61

1e−04 5e−04 2e−03 1e−02

1e
−

04
5e

−
04

2e
−

03
1e

−
02

on−the−fly
product + emptiness check

Time of positive emptiness check (s)

Figure 5.2 – Comparison of products and emptiness checks on explicit automata when the
language of the product is empty

the on-the-fly one.

5.2 Use case: ltlcross

5.2.1 Setup

We replaced the implementation of the cross check of automata in ltlcross from an on-the-
fly product to the two-automaton emptiness check. This could not be done previously since the
point of this check is to return a counterexample if the product’s language is not empty.

5.2 Use case: ltlcross 24

1e−04 1e−03 1e−02 1e−01

1e
−

04
1e

−
03

1e
−

02
1e

−
01

two−automaton
emptiness check

14
16

18
20

22

2723 green

0 red

1e−04 1e−03 1e−02 1e−01

1e
−

04
1e

−
03

1e
−

02
1e

−
01

2595 green

128 red

explicit
product + emptiness check

14 16 18 20 22 24

0 green

2723 red

1e−04 1e−03 1e−02 1e−01
1e

−
04

1e
−

03
1e

−
02

1e
−

01

on−the−fly
product + emptiness check

Time of negative emptiness check (s)

Figure 5.3 – Comparison of products and emptiness checks on explicit automata when the
language of the product is not empty

We generated 100 random LTL formulae with Spot’s randltl tool and ran ltlcross with 3
LTL-to-ω-automata translators. The command for the generation was randltl --tree-size=30
30. The command for the execution was ltlcross -T 60 ltl2ba ltl3ba ltl2tgba.

The execution was done in parallel over 2 cores of the same machine. We measured the time
spent during each execution of the emptiness check.

In total, 27 timeouts occurred during the translations, and 849 emptiness checks were run for
each implementation.

25 Benchmarks

0.001 0.005 0.050 0.500

0.
00

1
0.

00
5

0.
05

0
0.

50
0

two−automaton
emptiness check

+ accepting run search

14
16

18
20

22

2723 green

0 red

0.001 0.005 0.050 0.500

5e
−

04
5e

−
03

5e
−

02
5e

−
01

2456 green

267 red

explicit
product

+ emptiness check
+ accepting run search

14 16 18 20 22 24

0 green

2723 red

5e−04 5e−03 5e−02 5e−01

5e
−

04
5e

−
03

5e
−

02
5e

−
01

on−the−fly
product

+ emptiness check
+ accepting run search

Time of negative emptiness check + accepting run search (s)

Figure 5.4 – Comparison of product, emptiness check and accepting run search on explicit
automata

5.2.2 Results

Figure 5.5 shows the individual times spent computing the emptiness checks. We can see an
improvement of the times2. We can see an improvement of about 70% on average, which may
be attributed to the use of the explicit interface instead of the on-the-fly one.

2The single outlier is the formula (!(X(p11))) ⇒ (!(p0)) and its negation, put through ltl3ba, and checked against
each other.

5.2 Use case: ltlcross 26

1e+00 1e+02 1e+04 1e+06 1e+08

1e
+

01
1e

+
03

1e
+

05
1e

+
07

new (µs)

ol
d

(µ
s)

av
er

ag
e i

mpr
ov

em
en

t: ×
0.6

9

Figure 5.5 – Comparison of old vs. new emptiness check in ltlcross

Chapter 6

Conclusion

The two-automaton accepting run search completes the two-automaton emptiness check and
allows us to use it in far more places than on its own. We have seen that even though the two-
automaton series of algorithms is not more efficient than some of the existing implementations,
it is still faster on the cases on which we are more likely to use it. But on top of all, it frees us
from the limit of the amount of acceptance sets when doing computations that require a product
of automata.

Figure 6.1 – A message we will never see again in the output of ltlcross!

We may now investigate as to why the two-automaton algorithms are slower than others
when we do not expect them to.

We would also like to expand the field of ω-automata accepted by the two-automaton empti-
ness check to those with generalised Rabin acceptance conditions, as per Bloemen et al. (2017);
the current implementation following Couvreur (1999) which only supports generalised Büchi
acceptance conditions.

Chapter 7

Bibliography

Bloemen, V., Duret-Lutz, A., and van de Pol, J. (2017). Explicit state model checking with
generalized büchi and rabin automata. In Proceedings of the 24th International SPIN Symposium
on Model Checking of Software (SPIN’17), pages 50–59. ACM. (page 27)

Couvreur, J.-M. (1999). On-the-fly verification of temporal logic. In Wing, J. M., Woodcock, J.,
and Davies, J., editors, Proceedings of the World Congress on Formal Methods in the Development of
Computing Systems (FM’99), volume 1708 of Lecture Notes in Computer Science, pages 253–271,
Toulouse, France. Springer-Verlag. (pages 9, 11, and 27)

Couvreur, J.-M., Duret-Lutz, A., and Poitrenaud, D. (2005). On-the-fly emptiness checks for
generalized Büchi automata. In Godefroid, P., editor, Proceedings of the 12th International SPIN
Workshop on Model Checking of Software (SPIN’05), volume 3639 of Lecture Notes in Computer
Science, pages 143–158. Springer. (page 13)

Duret-Lutz, A. (2017). Contributions to LTL and ω-Automata for Model Checking. Habilitation
thesis, Université Pierre et Marie Curie (Paris 6). (page 5)

Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., and Xu, L. (2016).
Spot 2.0 — a framework for LTL and ω-automata manipulation. In Proceedings of the 14th
International Symposium on Automated Technology for Verification and Analysis (ATVA’16), volume
9938 of Lecture Notes in Computer Science, pages 122–129. Springer. (page 5)

Gillard, C. (2017). Two-automaton emptiness check in spot. Technical Report 1706, EPITA
Research and Development Laboratory (LRDE). (pages 6, 11, 14, and 18)

Pnueli, A. (1977). The temporal logic of programs. In Proceedings of the 18th Annual Sympo-
sium on Foundations of Computer Science, SFCS ’77, pages 46–57, Washington, DC, USA. IEEE
Computer Society. (page 5)

	1 Introduction
	2 Definitions and notations
	2.1 Mathematical notations
	2.2 Notions on omega-automata
	2.3 Types of omega-automata in Spot
	2.4 Omega-automata operations in Spot
	2.4.1 Unary operations
	2.4.2 Binary operations

	3 Context of the two-automaton accepting run search
	3.1 Reminders on the two-automaton emptiness check
	3.2 The data available
	3.3 Structure of an accepting run
	3.4 The search algorithm
	3.5 Existing implementation

	4 Implementation of the two-automaton accepting run search
	4.1 Spot's data structures
	4.2 Product data structures
	4.3 Pseudocode
	4.3.1 product_bfs_steps
	4.3.2 Two-automaton accepting run search

	4.4 Integration with the series of algorithms
	4.5 Integration in Spot
	4.6 Additional changes

	5 Benchmarks
	5.1 Comparison of two-automaton against existing implementations
	5.1.1 Setup
	5.1.2 Expectations
	5.1.3 Results

	5.2 Use case: ltlcross
	5.2.1 Setup
	5.2.2 Results

	6 Conclusion
	7 Bibliography

