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Spot is an ω-automata manipulation library who aims to help doing ω-automata-theoretic approach to
model checking or develop tools for ω-automata transformation. As such, it provides many algorithms,
with many different implementations depending of the specificities of each ω-automaton.
Of those algorithms, emptiness check algorithms and counterexample search algorithms are often used,
with various goals, and since their results are linked, they are often used together. However, some imple-
mentations of emptiness check algorithms lack a similar counterexample search implementation which is
able to work in the same way on the same automata.
We introduce two implementations of counterexample computation, which complete two already existing
implementations of emptiness check algorithms by walking in their footsteps and reusing some of the data
they gathered to efficiently compute counterexamples.

Spot est une bibliothèque de manipulation d’ω-automates qui tend à aider la vérification de modèles par
ω-automates et le développement d’outils de transformation d’ω-automates. Elle fournit donc de multiples
algorithmes avec de multiples implémentations qui fonctionnent sur une grande variété d’ω-automates.
Parmi ces algorithmes, les tests de vacuité et les recherches de contrexemple sont souvent utilisés pour de
diverses raisons. Comme leurs résultats sont liés, ils sont souvent utilisés ensemble. Cependant, il manque
à Spot les implémentations de recherche de contrexemple correspondant à certaines implémentations de
tests de vacuité qui soient capables de travailler de la même manière sur les mêmes automates.
Nous présentons deux implémentations de calcul de contrexemple, qui viennent compléter deux implé-
mentations de tests de vacuité déjà existantes, qui suivent leur sillage et se servent des données dejà accu-
mulées pour construire efficacement des contrexemples.
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Chapter 1

Introduction

Model checking is the field of computer science that looks into the exhaustive and automatic
proof of the specifications of a system. From a formalisation of the system, called a model,
and a set of specifications, we want to prove that the system meets all the requirements. The
automata-theoretic approach to model checking is one of the ways to perform these verifica-
tions, in which we solve the problem with graph theory and ω-automata theory, a field of au-
tomata theory that considers automata which execute on infinitely long inputs.

The ω-automata-theoretic approach to model checking comes from turning the model check-
ing problem into an ω-automaton problem (Fig. 1.1). The goal of model checking is to prove
that a model M always satisfies a property ϕ (Eq. (1.1)). By turning the model and the prop-
erty into ω-automata AM , whose words are sequences of valid inputs in the model, and Aϕ,
whose accepting words are all the words satisfying the property, we now have turned the prob-
lem to only have to check that the language of the former is included in the language of the
latter (Eq. (1.2)). This is equivalent to checking if the language of AM has an intersection with
the complement of the language of Aϕ (Eq. (1.3)). The complement of the language of an au-
tomaton is the language of the complement of the automaton (Eq. (1.4)), but complementing an
automaton is an expensive operation; we would rather compute the automaton of the negation
of the property A¬ϕ which is equivalent to Aϕ: they match all the words which do not satisfy
ϕ (Eq. (1.5)). The intersection of the languages of two automata is actually the language of the
synchronised product of the automata (Eq. (1.6)), so we only have to check the language of the
product AM ⊗A¬ϕ.

M |= ϕ (1.1)
⇐⇒ L (AM ) ⊆ L (Aϕ) (1.2)

⇐⇒ L (AM ) ∩ L (Aϕ) = ∅ (1.3)

⇐⇒ L (AM ) ∩ L
(
Aϕ

)
= ∅ (1.4)

⇐⇒ L (AM ) ∩ L (A¬ϕ) = ∅ (1.5)
⇐⇒ L (AM ⊗A¬ϕ) = ∅ (1.6)

Figure 1.1 – The ω-automata-theoretic approach to model checking
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Figure 1.2 – The algorithmic chain of the ω-automata approach to model checking

We have reduced the problem of checking if all the possible inputs given to a system leave
it in a state where a property is satisfied, to checking if the language of a single automaton is
empty.

The chaining of algorithms to deploy for the ω-automata-theoretic approach to model check-
ing is illustrated in Fig. 1.2. It works by first turning the model M into an ω-automaton AM ,
with a tool like LTSmin (Kant et al., 2015) which plugs in with DiVinE (Baranová et al., 2017)
or SpinS (Holzmann, 1997), and a property ϕ, usually written in a logic like the LTL, Linear
Temporal Logic (Pnueli, 1977), into the automaton of its negation A¬ϕ. We then compute the
product of the automata.

From there, we have several options: either run an emptiness check algorithm (Couvreur,
1999) or an accepting run search (Couvreur et al., 2005; Gastin and Moro, 2007; Gastin et al.,
2004; Hansen and Geldenhuys, 2008; Hansen and Kervinen, 2006) on the product automaton.
Emptiness checks answer the question "Is the language of this automaton empty?", where, if the
answer is "Yes", is sufficient to prove that the property ϕ always holds in the model M . How-
ever, if the answer is "No", we only know that there exists at least one word in the intersection
of the languages of AM and A¬ϕ, we do not have such a word. Accepting run searches actually
look for an example of an accepting word, which in the case of model checking corresponds to
a counterexample to the proof we are trying to make. Even though they process the automaton
in similar ways, emptiness checks are usually lighter algorithms than accepting run searches,
but they answer a broader question; to avoid redundancy and optimise performance, a com-
mon implementation of accepting run searches is to first do an emptiness check, and when sure
that there exists an accepting run, search for it, reusing data gathered by the emptiness check.
This way, if the language is empty, only the emptiness check is run, and if not, the accepting run
search is more efficient than it would be if it had been run first. The chaining of those algorithms
is illustrated in Fig. 1.2.

Another case where emptiness checks and accepting run searches are used is to check the
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A1 ≡ A2

⇐⇒ L (A1) = L (A2) (1.7)
⇐⇒ L (A1) ⊆ L (A2) and L (A1) ⊇ L (A2) (1.8)

⇐⇒ L (A1) ∩ L (A2) = ∅ and L (A1) ∩ L (A2) = ∅ (1.9)

⇐⇒ L (A1) ∩ L
(
A2

)
= ∅ and L

(
A1

)
∩ L (A2) = ∅ (1.10)

⇐⇒ L
(
A1 ⊗A2

)
= ∅ and L

(
A1 ⊗A2

)
= ∅ (1.11)

Figure 1.3 – How to check for the equivalence of ω-automata

equivalence of automata (Fig. 1.3). Automata are equivalent if their languages are equal (Eq. (1.7)),
i.e. if they accept exactly the same words. The equality of language can be tested by checking
inclusion both ways (Eq. (1.8)). As we have seen before, inclusion checks can be replaced by in-
tersection checks with complements of languages of automata (Eq. (1.9)), which are equivalent
to languages of complement of automata (Eq. (1.10)), and intersection checks can be replaced
with emptiness checks of products (Eq. (1.11)).

Imagine that we are developing a new tool for automata transformation, or translation from
a model or formula. We want to check that this tool actually produces equivalent automata to
other, more thoroughly tested tools. We start by generating the automata A1 and A2 from the
tools. We then compute the complement A1 to one of the tool’s automata then compute the
product of that complement with the other automata. We then check that the product is empty
by running an emptiness check on it; but if we get that the language is not empty (which means
the starting automata are not equivalent), we need to run an accepting run search to help us
debug our tool.

* *
*

Spot 2 (Duret-Lutz et al., 2016) is a library whose goal is to provide tools for LTL and ω-automata
manipulation. It is developed in C++ and ships with a Python interface and several binaries to
generate, translate, and process formulæ and ω-automata. Spot manipulates multiple kinds of
automata, with different types of acceptance conditions, and different representations; it must
provide generic implementations of manipulation algorithms, as well as implementations op-
timised for only a particular type of representation, or acceptance condition... But, when algo-
rithms come linked, like with emptiness checks and accepting run searches, you run into the
problem of having to develop two algorithms for the same usage. This explains why some
emptiness check implementations do not have their accepting run search counterpart in Spot.

Table 1.1 shows the implementations of emptiness check and accepting run search algorithms
in Spot which we will talk about in this paper. Blue ticks indicate the algorithm was presented in
Gillard (2017), purple ticks, presented in Gillard (2018), while red ticks and text indicate what
will be treated in this report. Black ticks indicate algorithms which were developed prior to
these reports and whose implementations will not be discussed here.

“On-the-fly” ω-automata are an implementation of ω-automata of Spot, where states and tran-
sitions are only accessible through methods, which means that their exploration relies primarily
on code. This is useful to generate an automaton as it is being requested, or reading a large au-
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Name Type of automata Emptiness check Accepting run search

Couvreur New: Generalised Büchi
– on-the-fly 4 4
– explicit 4 4

Product EC&CE1: Generalised Büchi
– on-the-fly 4 (2017) 4 (2018)
– explicit 4 (2017) 4 (2018) (benchmarks: 2019)

Generic EC: Any
– explicit 4 4 (2019)

Table 1.1 – Emptiness check and Accepting run search algorithms in Spot

tomaton bits at a time from files to lower RAM usage. This is used to represent some models,
but is a slower implementation which requires more memory per state and transition.

“Explicit“ ω-automata, on the other hand, are an implementation of ω-automata of Spot
where states and transitions are known in advance and stored efficiently in memory. This is
a faster implementation, but requires the whole automaton to be stored at once in memory,
which does not fit some usages. Explicit ω-automata offer an on-the-fly interface, such that they
can be mixed transparently with on-the-fly ω-automata but that interface is slower than the
actual explicit interface, which is why some algorithms are reworked to work with the explicit
interface.

“Couvreur New” is the name given to a recent implementation of the algorithm introduced
in Couvreur (1999); it works on both on-the-fly and explicit automata, but only works with
generalised Büchi acceptance conditions (see Definition 2.16). The generic emptiness check is a
new algorithm which is able to determine emptiness with any acceptance condition, but only
on explicit automata.

This report will present once again the product counterexample search of Gillard (2018), with
updated benchmarks, and the implementation of a counterexample search based on the generic
emptiness check.

1Product Emptiness Check and CounterExample search, formerly called “two-automaton emptiness check” and
“two-automaton accepting run search”.



Chapter 2

Definitions and notations

2.1 Mathematical notations

This section defines various mathematical notations used later in this report.

Definition 2.1 (Power set) The power set of a set A, denoted P(A), is the set of all subsets of A, such
that we have:

B ⊆ A ⇐⇒ B ∈ P(A)

Definition 2.2 (Set of integers) For two integers a and b, we denote as [a..b] the set of all integers
between a and b:

[a..b] = Z ∩ [a, b]

Definition 2.3 (Set of strictly positive integers) For a strictly positive integer number a, we denote
as [a] the set [1..a].

2.2 Notions on ω-automata

This section introduces various definitions on ω-automata that are necessary for the compre-
hension of this report.

Definition 2.4 (Acceptance set) An acceptance set is a set of transitions or states. A single transition
or state can belong to any number of acceptance sets.

Transition-based ω-automata (see Definition 2.7) are ω-automata whose acceptance sets are
sets of transitions. This is how they are handled by Spot.

Definition 2.5 (Acceptance mark) An acceptance mark is a mark associated with an acceptance set.
Marking a transition or state denotes its belonging to an acceptance set.

Acceptance marks allows for a more graphical way to represent acceptance sets, by showing
the marks on their associated transitions or states, as can be seen in Fig. 2.1.

Definition 2.6 (Acceptance condition) An acceptance condition φ of an ω-automaton is a Boolean
formula which respects the following grammar:

φ := > | ⊥ | Inf (x) | Fin(x) | φ ∧ φ | φ ∨ φ | (φ)

where x denotes an acceptance set.
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As can be seen in Fig. 2.1, we may directly an acceptance mark in place of a set in the accep-
tance condition for ease of reading.

Definition 2.7 (Transition-based ω-automaton) A transition-based ω-automaton is a tuple A =
〈Σ, Q, q0,∆, n,m, φ〉 where

• Σ is a finite alphabet,

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• ∆ ⊆ Q× Σ×Q is a transition relation,

• n ∈ N is the number of acceptance sets,

• m : ∆ 7→ P([n]) is a function returning the acceptance marks of a transition,

• φ is an acceptance condition.

0 1 Fin( ) ∧ Inf ( )a

!a
!a a

Figure 2.1 – The deterministic transition-based ω-automaton of the translation of the LTL
formula FG(a), with its acceptance condition on the right, and the acceptance marks on its

transitions.

Definition 2.8 (State-based ω-automaton) A state-based ω-automaton is defined in the same way as
a transition-based ω-automaton (see Definition 2.7), except for m, which is defined as m : Q 7→ P([n]) a
function returning the acceptance marks of a state.

Definition 2.9 (Run, word, and step) A run of an ω-automaton is an infinite sequence of consecutive
transitions ρ ∈ ∆ω starting from the initial state of the automaton.

We say that the run ρ = (q0, `0, s0)(s0, `1, s1)(s1, `2, s2) . . . recognises the word w = `0`1`2 . . . ∈
Σω .

A single transition (s, `, d) ∈ ∆ of a run is called a step.

Definition 2.10 (Accepting run) Let mInf ⊆ [n] be the set of marks that we see infinitely often along
a run ρ of an ω-automaton. We write ρ � φ to mean ρ satisfies φ and ρ 2 φ to mean ρ does not satisfy φ.
The satisfaction of an acceptance condition is interpreted by induction as follows:

ρ � >
ρ 2 ⊥
ρ � Inf (x) ⇐⇒ x ∈ mInf

ρ � Fin(x) ⇐⇒ x /∈ mInf

ρ � φ1 ∧ φ2 ⇐⇒ ρ � φ1 and ρ � φ2
ρ � φ1 ∨ φ2 ⇐⇒ ρ � φ1 or ρ � φ2

A run ρ of an automaton is an accepting run if and only if it satisfies the acceptance condition of the
automaton.
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Definition 2.11 (Accepting word) An accepting word is a word recognised by an accepting run.

Definition 2.12 (Language) The language of an automatonA, denoted L(A), is the set of all accepting
words of A.

Definition 2.13 (SCC) A Strongly Connected Component is a set of states of an ω-automaton where
every state can be reached from any other state.

Definition 2.14 (Büchi acceptance condition) A Büchi acceptance condition is an acceptance condi-
tion with a single Inf operator, over a single acceptance set.

Definition 2.15 (Büchi automaton) A Büchi automaton is a state-based ω-automaton with a Büchi
acceptance condition.

Definition 2.16 (Generalised Büchi acceptance condition) A generalised Büchi acceptance condi-
tion is an acceptance condition which does not make use of the Fin operator.

Büchi and generalised Büchi acceptance conditions are examples of Fin-less acceptances con-
ditions, which do not make use of the Fin operator.



Chapter 3

Generalities on accepting run
searches

3.1 Structure of an accepting run

An accepting run is always linked to an automaton.

Since a run is infinite, but runs through a finite automaton, we can use the pumping lemma to
conclude that the run must contain a finite sequence of consecutive transitions that repeats itself
infinitely in the run, the cycle, and a finite, possibly empty sequence of consecutive transitions
that lead from the initial state to the first source state of the cycle, the prefix.

An accepting run can therefore be implemented as two finite sets of steps.

3.2 Algorithms for accepting run searches

Several papers show various ways of computing an efficient accepting run (Gastin and Moro,
2007; Gastin et al., 2004; Hansen and Geldenhuys, 2008; Hansen and Kervinen, 2006). However,
many are actually computing them without any knowledge; they act as both emptiness check
and accepting run search algorithms by gathering data necessary for both (Gastin et al., 2004;
Hansen and Geldenhuys, 2008; Hansen and Kervinen, 2006). This does not match the model of
Spot, since most of the time we are going to check against empty products, and do not want to
gather the data necessary to build back an accepting run.

Moreover, we must consider that Spot does not use bitstate hashing, a method introduced by
Morris (1968) which allows for a more memory efficient way of keeping track of visited states,
but requires heavier algorithms if references to states are needed.

This simplifies greatly the algorithm: we need to keep hold of very little data on our path to
an accepting cycle, since we are always assured to be able to retrieve them back easily. This also
excludes Gastin and Moro (2007) which presents an algorithm for bitstate hashing. But we may
not have to look this far ahead.
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i s1

s...

s2
ρ1

ρ3

ρ2

Figure 3.1 – Accepting run search on a transition-based generalised Büchi automaton

3.3 The search algorithm

“If states are stored in an hash table as usual, one can recover the trace of the counter-
example using a BFS algorithm [. . . ]. It then suffices to apply this BFS from the initial
state i to s1 to generate ρ1, then to apply it from s1 to s2 to generate ρ2 and finally to
apply it once more from s2 to s1 to generate ρ3.”

According to this quote from Gastin and Moro (2007), if bitstate hashing is not mandatory,
provided we have the states s1 and s2, then a simple breadth-first search is the most efficient
way of retrieving the accepting run.

But what are those states s1 and s2? s1 is described as the first encountered state of a loop of
states containing s2, and s2 is an accepting state. By chance, we do have these states: emptiness
check algorithms work by finding an accepting SCC, therefore we can find an entry point s1,
and we know which states belong to the SCC, hence we can find s2.

Gastin and Moro also define three paths: ρ1 from i to s1, ρ2 from s1 to s2, and ρ3 from s2 back
to s1. ρ1 is actually the prefix of the run while ρ2 and ρ3 make up the cycle (see Section 3.1). This
definition holds for Büchi ω-automata but we may extend it to generalised Büchi ω-automata
by defining s2 as the destination state of the last transition needed to satisfy the acceptance con-
dition, and shaping ρ2 to go through several marked transitions. This is illustrated in Fig. 3.1.

The accepting run search algorithm has three steps:

1. Search for a path from the initial state to any state of the accepting SCC. We denote as
current state and also entry state the first encountered state of the SCC. This is ρ1.

2. From the current state, look for a path to a transition bearing a mark we have not seen yet
while staying in the SCC; note the mark as seen, and the destination state of the transition
as the current state. Repeat this step until the seen marks satisfy the acceptance condition.
The concatenation of all those paths gives ρ2.

3. From the current state, look for a path going back to the entry state while staying in the
SCC. This is ρ3.



Chapter 4

Product counterexample search

Note: this chapter is a rewriting and extension of Chapters 3 to 5 of Gillard (2018). The main differences
lie in the replacement of the name of the algorithm family, from “two-automaton” to “product”, and the
updated benchmarks (in Section 4.7).

The goal of the “product” algorithms is to remove the limitation on the number of acceptance
sets introduced by the product of automata in the checks for the intersection of the languages
of two automata, by reimplementing their underlying algorithms without building a product
in Spot’s constructs. This is done by handling pairs of states, iterators, and acceptance marks to
simulate the operations that would be applied if they were part of an actual product automaton.

The product accepting run search completes the product emptiness check introduced by
Gillard (2017), a reimplementation of the on-the-fly emptiness check algorithm introduced by
Couvreur (1999). The product emptiness check was heavily templated to account for various
optimisations, based on the implementations of the on-the-fly product and the emptiness check
that already existed in Spot.

4.1 Reminders on the product emptiness check

The product emptiness check is an implementation of Couvreur’s algorithm, which works with
generalised Büchi ω-automata, automata whose acceptance condition is a conjunction of Inf
operators (see Definition 2.16).

This algorithm does a depth-first search through the automaton, looking for SCCs. During
the exploration, the states are associated with an order number, a unique number representing
the order in which states have been discovered, such that states discovered later are given a
greater order. The algorithm keeps track of which acceptance marks can be seen in an SCC; if at
some point an SCC contains marks that, if seen infinitely often, satisfy the acceptance condition
of the automata, then it can be concluded that there exists a run capable of reaching that SCC
and able to satisfy the acceptance condition, so the language of the automaton is not empty. If
the depth-first search finished without finding any accepting SCC, then it can be concluded that
there is no accepting run, and that the language of the automaton is empty.
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This algorithm is an on-the-fly emptiness check: it does not need to explore the entire au-
tomaton to conclude that its language is not empty; however all transitions must be explored to
conclude that the language is empty.

4.2 The data available

The product emptiness check produces several data structures:

• states, a hashmap that maps discovered pairs of states (“product_states”) to their
order,

• todo, a stack of pairs of iterators used for the depth-first search,

• live, a stack of the states currently in the search stack, used to mark those states as dead
when they are known to neither belong to an accepting SCC nor lead to one,

• acc, a structure that holds the accepting marks of the current SCC and the order of the
first discovered state in it; when the emptiness check ends this contains the minimal order
of the states of the accepting SCC and the marks that had to be discovered in order to
satisfy the acceptance condition.

We could use live or todo to build the accepting run: they contain the states that were seen
during the depth-first traversal, that we could use as a trail of crumbs from the initial state to the
transition that contained the last acceptance mark needed to satisfy the acceptance condition.

However, the transition iterators in todo are already pointing to the transition after the one
we need to take in the accepting run, so using todo would require a transition search algo-
rithm; same goes for live, which contains no information on the transitions taken. Also, these
structures represent the depth-first search, that may not give an efficient run, which is why we
decided to not use them and reimplement the run search from scratch.

This allowed following the existing implementation of the accepting run search, that only
made use of states and acc, and used breadth-first searches to build the run.

4.3 Existing implementation of accepting run searches

As for the product emptiness check, the product accepting run search is heavily inspired from
the existing single-automaton algorithms. The algorithm we chose to reproduce was one imple-
mented along with the algorithm that inspired the product emptiness check: an accepting run
search that uses back data from an implementation of Couvreur’s algorithm. This algorithm, to
get shortest paths, uses a breadth-first search for all 3 steps described in Section 3.3, constrained
to the states that have been explored during the emptiness check.

The breadth-first search is done with the help of an existing Spot algorithm, bfs_steps,
which from a starting state, and matching and filtering functions, builds a set of steps and
appends it to a given set. The matching and filtering functions are user defined, which allow
for a very flexible algorithm.
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4.4 Implementation of the product accepting run search

The product accepting run search is for the biggest part a rewrite of the bfs_steps algorithm
for the “product” data structures of the product emptiness check. This section discusses its
implementation and its integration within the product algorithms.

4.4.1 Spot’s data structures

The following structures are used in the product algorithms:

state is a state of an automaton, it provides a field successors which is a transition iterator to its
first outbound transition, from which one can iterate over all the outbound transitions,

mark_t is a set of acceptance marks, implemented as a bitfield, with all usual bitwise opera-
tions defined,

step contrarily to Definition 2.9, a step is implemented as a tuple 〈s, `,m〉where s is the source
state, ` is the condition, and m is the set of marks seen on the transition; this is because
we can retrieve the destination states from the first two, and the marks are to be easily
accessible for other algorithms that will not be discussed here.

4.4.2 Product data structures

The following data structures were implemented for Gillard (2017):

product_state is a pair of states, it provides a hash function for use in hash maps and an
equality operator,

product_mark is a pair of mark_ts,

product_iterator is a pair of transition iterators, with a field indicating if it still has succes-
sors, and a field giving the next successor if there is one.

The members of these structures are called left and right, for elements respectively from the left
and right automata.

Along with these, we also define the product_steps data structure, which is a tuple
〈src, condition,marks〉 where src is a product_state, condition is a pair of conditions1, and
marks is a product_mark.

4.4.3 Pseudocode

Algorithm 4.1 shows the pseudocode for the product_bfs_steps algorithm. This algorithm
will run a breadth-first search from a given start to a state indicated by the function match, while
filtering out unexplored states, states marked as dead, and states indicated by the function filter.

It works by building a map backlinks which associates each unfiltered state with the first
product_step that lead to it. From that, it can, once a match is found, reconstruct the run
that goes from start to the match by getting the step that lead to the match, then the step that
lead to the source of that step, and so on until the source is actually start; this is what is done
lines 16 to 23. However, since the steps are retrieved backwards, we need to store them in a
stack, and then pop them back to get the actual runs; this is done lines 24 to 31.
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1 Function product_bfs_steps
Input: product_state start, functions match and filter, lists of product_steps

steps` and stepsr already allocated or set to None, states from Section 4.2
Output: The product_state to which points the matching transition

2 backlinks←map of product_state to product_step
3 todo← queue of product_state

4 todo.push(start)
5 while todo is not empty do
6 src← todo.top()
7 iter← product_iterator(src.left.successors, src.right.successors)
8 while iter.HasSuccessors do
9 dst← product_state(iter.left.destination, iter.right.destination)

10 if dst is in states // state is undiscovered
11 and states[dst] 6= 0 // state is dead
12 and not filter(dst) then
13 cur_step← product_step(src, iter.condition, iter.marks)
14 if match(cur_step, dst) then
15 tmp`, tmpr ← stacks of steps
16 Loop
17 if steps` is not None then
18 tmp`.push(cur_step.src.left, cur_step.condition.left,

cur_step.marks.left)
19 if stepsr is not None then
20 tmpr.push(cur_step.src.right, cur_step.condition.right,

cur_step.marks.right)
21 if cur_step.src = start then
22 break
23 cur_step← backlinks[cur_step.src]
24 if steps` is not None then
25 while tmp` is not empty do
26 steps`.append(tmp`.top())
27 tmp`.pop()
28 if stepsr is not None then
29 while tmpr is not empty do
30 stepsr.append(tmpr.top())
31 tmpr.pop()
32 return dst
33 if dst not in backlinks then
34 backlinks[dst]← cur_step
35 iter← iter.NextSuccessor
36 todo.pop()
37 return start // no match found

Algorithm 4.1: Pseudocode for the product_bfs_steps algorithm
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1 Function ProductAcceptingRunSearch
Input: Automata left and right, runs run` and runr already allocated or set to None,

states and a copy of acc from Section 4.2, product_state start the initial
state

Output: Allocated runs are filled with corresponding accepting runs

2 if run` is None
3 and runr is None then
4 return
5 prefix` ← if run` is None then None else run`.prefix
6 prefixr ← if runr is None then None else runr.prefix
7 cycle` ← if run` is None then None else run`.cycle
8 cycler ← if runr is None then None else runr.cycle

9 matchOrder← lambda step, dst: return states[dst] = acc.order
10 matchMarks← Function

Input: product_step step, product_state dst
11 if step.marks.left & acc.marks.left
12 or step.marks.right & acc.marks.right then

// Remove step.marks from acc.marks
13 acc.marks.left← acc.marks.left & not steps.marks.left
14 acc.marks.right← acc.marks.right & not steps.marks.right
15 return true
16 return false
17 filterNone← lambda dst: return false
18 filterSCC← lambda dst: return states[dst] < acc.order

19 substart← product_bfs_steps(start, matchOrder, filterNone, prefix`, prefixr)

20 while acc.marks.left & acc.marks.right do
21 substart← product_bfs_steps(substart, matchMarks, filterSCC, cycle`, cycler)

22 if states[substart] 6= acc.order then
23 product_bfs_steps(substart, matchOrder, filterSCC, cycle`, cycler)

Algorithm 4.2: Pseudocode for the product accepting run search
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If a match is found, we return it, so that the product accepting run search may start a new
breadth-first search from it.

Algorithm 4.2 shows the pseudocode for the actual implementation of the accepting run
search. We start by setting up two match functions:

• matchOrder which will match on the state whose order is the one in acc (Section 4.2), which
is the entry state of the accepting SCC we are looking for,

• matchMarks which will match on any transition that bears marks that are in a local copy
of acc but we have not matched with yet, and will modify the local copy of acc to exclude
those marks for the next match.

We also set up two filter functions:

• filterNone, which never filters anything,

• filterSCC, which filters out states whose order is lower than the one in acc: these states
were less deep than the accepting SCC during the depth-first search.

For Step 1 (from Section 3.3) we run product_bfs_steps from the initial product_state
of the automata with matchOrder and filterNone: we are looking for the entry state of the accept-
ing SCC and are restricting the search only to states that were discovered and “live” when the
emptiness check stopped. We get back that state, and store it in substart. The retrieved runs are
stored in the prefix part of the given runs.

For Step 2 we run product_bfs_steps from substart with matchMarks and filterSCC: we
look for any transition bearing an acceptance mark that is still in our local copy of acc, that is to
say, that is in the accepting SCC but has not been matched yet, while staying in the accepting
SCC. We store the destination state of that transition back in substart, we append the retrieved
runs to the cycle part of the given runs, and we loop back on that step while there are still unseen
marks.

For Step 3 we first check if we have looped back to the entry state of the accepting SCC, if not
we run a final product_bfs_steps from substart with matchOrder and filterSCC: we want to
get back to the entry state, while staying in the accepting SCC. The retrieved runs are appended
to cycle part of the given runs.

The product accepting run search is designed such that the caller could choose to only build
an accepting run over the left or right automaton.

4.5 Integration with the series of algorithms

Since the accepting run search is only going to be run after an emptiness check, and run with
some of its data, it makes sense that it would be called on an object built by the emptiness check.
We modified the product emptiness check to return a structure called product_emptiness_res
instead of a Boolean. This structure contains pointers to the two automata, the states and
acc structures described in Section 4.2, and a Boolean telling us if the automata were swapped
(Gillard, 2017, Sections 5.2 and 5.3). Along with this structure comes functions to run the accept-
ing run search and return a run over the left automaton, the right automaton, or a pair of runs

1For ease of reading, its field have also been called left and right.



19 Product counterexample search
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Figure 4.1 – The product algorithms

over each one. The user cannot access the fields of the product_emptiness_res outside of
these methods: this way it only matters to the methods if the automata have been swapped or
not.

Instances of this structure are hidden behind a std::shared_ptr, which allows for easy
Boolean conversion: when there is no intersection, the product emptiness check returns a null
pointer which is easily converted into a Boolean false, whereas when there is one, it returns a
pointer to a filled product_emptiness_res which is easily converted into a Boolean true.
This allows us to keep the usability of the old interface that returned Booleans, and ensures that
the accepting run search is only run on filled product_emptiness_res (and that the user
checked the result of the emptiness check before running the accepting run search, unless they
want to dereference a null pointer).

The chaining of algorithms and data structures is illustrated in Fig. 4.1.

4.6 Additional changes

Some algorithms used a feature of the product implemented in Spot, which allowed choosing
which states would be taken as initial states in each automaton, instead of asking the automata
for their initial states. This was ported into the product emptiness check and the product ac-
cepting run search.

The implementation of the product accepting run search allowed us to use the product empti-
ness check in a lot more algorithms than we were previously able, since most of these algorithms
were built around the retrieval of a counterexample in the case of a non-empty intersection. This
meant that the product emptiness check was now executed on a much wider range of automata
of various types, built by various tools, and revealed several problems with the implementation,
especially in terms of memory management, which are now fixed.
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4.7 Benchmarks

Note: this section, although bearing the same structure, is not taken from Gillard (2018). The differences
are a few minor changes in the implementation, which had no effect on the performances measured here,
and a change on the benching method removing a huge cache bias against the product algorithms, which
had a great effect on the performances.

4.7.1 Comparison of product algorithms against existing implementations

Benchmark setup

We generated 100 random automata with Spot’s randaut tool, each with the following prop-
erties:

• 500 states,

• a density of transitions of 7.5%

• 16 acceptance sets,

• an acceptance condition being a conjunction of Inf of all those sets,

• 10 atomic propositions to express the conditions over the transitions with, common across
all automata.

These automata are of the explicit kind.

We combined all these automata into 5050 different pairs: each automaton is in a pair with
each other automaton plus itself; of those pairs, 2327 gave products with empty languages. We
then computed the time spent during the execution of:

• For Thread 1:

– explicit product,
– explicit emptiness check on that product,
– if the product is not empty, explicit accepting run search on that product,

• For Thread 2:

– on-the-fly product,
– on-the-fly emptiness check on that product,
– if the product is not empty, on-the-fly accepting run search on that product,

• For Thread 3:

– product emptiness check,
– if the product is not empty, product accepting run search on the product_emptiness_res,

for every pair. These threads were executed in parallel on a dedicated machine with more than
three physical cores.
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Explicit On-the-fly

product and
emptiness check
when the product
is empty

Similar: both algorithms would
build the whole product and ex-
plore it completely using the ex-
plicit interface of the ω-automata Faster: the product algorithms

would perform the same opera-
tions as the on-the-fly algorithms,
but would use the faster explicit
interface to do soproduct and

emptiness check
when the product
is not empty

Faster: the explicit product
would have to build the whole
product, which is not required
by the explicit emptiness check,
whereas the product emptiness
check would only build the
required parts of the product

product, empti-
ness check and
accepting run
search when the
product is not
empty

Faster: the product algorithms
would perform the same op-
erations on the same interface
as the explicit algorithms, but
the explicit product would have
already lost time building the
whole product

Table 4.1 – Expectations on the new algorithms compared to the existing explicit and on-the-fly
implementations

Expectations

Table 4.1 shows the expected time performance of the existing implementations compared to
the new algorithms.

Results

Size of automata: Figure 4.2 shows the comparison of the time of computation to the size of the
products. We can see that the pairs of automata can be split into three distinct groups:

• in orange, the 100 pairs where an automaton was paired with itself, which all formed
non-empty products and compute, for the biggest part, in less than a millisecond,

• in plum, the empty products, which are very small (less than 60 states) and compute in
less than 10 milliseconds, there are 2327,

• in brown, the non-empty products, which are quite big (over 120 thousand states) which
compute in more than a millisecond, there are 2623.

We can see that there is a huge bias in our dataset towards small empty products and big
non-empty products. This is due to the method used to generate automata, which will either
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Figure 4.2 – Comparison of the time of products and emptiness check to size of product on
explicit automata (all axes logarithmic)

give “compatible” automata whose transitions are going to merge, which will give a big product
with huge chances of finding an accepting word, or “incompatible” automata whose transitions
cancel each other out, giving a small, non-accepting product.

Empty products: Like we expected, we can see in Fig. 4.3 that the product emptiness check
compares well with the already existing implementations, with an average time ratio2 of 115%
compared to the old on-the-fly implementation, and 94% to the explicit implementation. How-

2Computed as the mean, for each pair, of the time spent computing with the new algorithm divided by the time
with the old algorithm.
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language of the product is empty (all axes logarithmic)

ever, even though they are quite close, we can see that the explicit algorithms still perform a bit
better. This can be attributed to the fact that the explicit product is built once and then worked
upon, while the product emptiness checks always manipulates two automata at the same time.

Non-empty product: As expected, we can see in Fig. 4.4 that the explicit product and empti-
ness check are indeed slower than the two on-the-fly emptiness checks, due to the useless explo-
ration of the whole product. We can also see that the product emptiness check is, as predicted,
faster than the on-the-fly product by an average of 4%.

Non-empty products: Finally, in Fig. 4.5 is shown the comparison of the duration of the prod-
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uct, emptiness check and accepting run search in the case of a non-empty product. We can see
that as expected the explicit algorithms did not recover from the cost of the exploration of the
product, and that on average the new on-the-fly implementation is faster than the old one by an
average of 2%. However, we can also see that the computation times of the product accepting
run search are much more spread than those of the on-the-fly one, resulting in more products
being processed more quickly by the on-the-fly algorithms.
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4.7.2 Use case: ltlcross

ltlcross is a tool shipped with Spot which compares LTL-to-ω-automata translators. You
give it a set of commands, and a set of LTL formulæ, and it will check for the equivalence of the
automata produced, while measuring several parameters like time spent translating or size of
the automata produced. ltlcross only manipulates explicit automata.
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Benchmark setup

We generated 100 random LTL formulæ with Spot’s randltl tool with the command randltl
--tree-size=30 30, and ran ltlcross with three LTL-to-ω-automata translators with the
command ltlcross -T 60 ltl2ba ltl3ba ltl2tgba.

We then replaced the implementation of the cross checking of automata in ltlcross from
an on-the-fly product and emptiness check to the product emptiness check, and ran the same
command again.

In each case, we measured the time spent during the execution of the product and emptiness
check.

Overall, 26 timeouts occurred during the translations, and 852 products and emptiness checks
were computed.

Results

Figure 4.6 shows the individual times spent computing the products and emptiness checks. We
can see an improvement of the performances of 50% on average, which can be atributed to the
use of the explicit interface of the automaton, instead of the on-the-fly interface.
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Chapter 5

Generic counterexample search

Some emptiness check algorithms, like Couvreur’s, are quite simple and efficient, but may be
restricted to a certain type of ω-automata. The generic emptiness check is a new algorithm,
which works with any acceptance condition, at the cost of a way higher complexity, as was
shown by Emerson and Lei (1987).

5.1 Acceptance condition evaluation

Whenever we can conclude on whether we see an acceptance mark infinitely or finitely often,
we may replace its occurrences in the acceptance condition by Boolean constants, which may in
turn simplify the acceptance condition.

mark appears in... mark is seen infinitely often mark is seen finitely often

Inf (mark) replace by > replace by ⊥

Fin(mark) replace by ⊥ replace by >

5.2 Introduction to the generic emptiness check

The first step to the generic emptiness check is an SCC analysis of the automaton, which will
classify SCCs into three categories:

trivially accepting by considering the marks found in the SCC as seen infinitely often and the
marks not found as seen finitely often, the acceptance condition evaluates to >,

trivially rejecting by considering the marks which cannot be avoided in the SCC as seen in-
finitely often, the acceptance condition evaluates to ⊥,

non trivial no conclusion can be made on the acceptance of the SCC without further analysis.

If an accepting SCC is found, then we can conclude that there exists an accepting run in the
automaton. If not, we start by dropping all the trivially rejecting SCCs, and proceed to the rest
of the analysis.
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We consider each non trivial SCC individually as if it were a smaller automaton. After re-
stricting the acceptance condition to the acceptance sets seen in the SCC we look at it in more
details.

If it contains a mark such that we have to not see it to satisfy the acceptance condition, like
in the form . . . ∧ Fin(mark) ∧ . . ., then we cut it from the automaton: we remove all transitions
that bear this mark, such that we cannot see it in any way; we may then simplify the acceptance
condition and restart from the first step by considering the cut SCC as an automaton.

In the third step, we look at the lowest priority operator of the acceptance condition. If it is a
logical Or, we take each operand as an acceptance condition and try to run the second step; if
any of them turns out to be accepting, we have found an accepting SCC.

The fourth step is to take any mark that is inside a Fin operator, cut it from the automaton,
and see how it affects the acceptance condition with step one.

The last step is to assume the mark from step four is seen infinitely often, and start back from
step two.

This algorithm works recursively, by working on smaller and smaller SCCs, and cutting the
automaton and its acceptance condition, until it encounters a trivially accepting SCC.

5.3 Implementation details of the generic emptiness check

The generic emptiness check is actually divided into four parts:

scc_info, which analyses the SCCs,

check_for_scc, which runs the steps two to five,

scc_split_check, which cuts the SCCs by building transition filters and giving them to
scc_info, and runs the first step on the got SCCs before giving them to check_for_scc,

check_main, which runs the first step on the automaton before giving the SCCs individually
to check_for_scc.

Since all the information on how an SCC was considered accepting is gathered here, we de-
cided to implement the accepting run search as a method of scc_info.

5.4 Implementation of the generic accepting run search

Like the product accepting run search, the generic accepting run search is heavily inspired from
the bfs_steps algorithm of Spot. But since we need more control over the exploration than is
possible with bfs_steps, we decided once again to reimplement a breadth-first search algo-
rithm more suited to our needs.
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5.4.1 Spot’s data structures

The structures used include the ones described in Section 4.4.1, to which we add:

state identifier is a number uniquely identifying a state in an explicit automaton, from which
we can get back all usual information about the state, and even an actual state, by passing
it through explicit automata’s method,

edge is a structure representing a transition in an explicit automaton,

SCC is a structure holding, among other things:

• the set of its states (by state identifier),

• the set of all marks that can be found in it,

• the edge filter that was used for its analysis.

5.4.2 Additional data structures

The following data structures are implemented for the generic accepting run search:

exp_step which is similar to Spot’s step (see Section 4.4.1), except the source state is replaced
by a state identifier.

5.4.3 Pseudocode

Algorithm 5.1 shows the pseudocode for the explicit_bfs_steps algorithm. Like Algo-
rithm 4.1, it runs a breadth-first search from a given stating state to a matching state, deter-
mined by a given function match, while not exploring transitions as told by another function
filter. This algorithm, while heavily inspired by bfs_steps, makes use of the explicit interface
of automata, and allows filtering of transitions, which gives us the control we need for a correct
accepting run search.

Algorithm 5.2 shows the pseudocode for the implementation of the generic accepting run
search. It first checks if a prefix is needed by testing if the initial state of the automaton is not
already in the SCC. If it is not, we set up the functions matchSCC, which will only return true
if it encounters a state that is inside the accepting SCC, and filterNone, which does not filter
anything. These functions are passed to explicit_bfs_steps to get us the prefix and the
entry state of the accepting loop, SCCstart.

We then set up the functions matchMarks, which will iterate over the marks we need to see
and then get back to SCCstart, and filterSCC, which will ensure we stay in the SCC and do not
traverse any transition that would have been filtered out by the analysis, which we pass to
explicit_bfs_steps for successive breadth-first searches to compute the accepting cycle.
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1 Function explicit_bfs_steps
Input: Automaton A, the state identifier start, functions match and filter, list of

steps steps
Output: The state identifier to which points the matching transition

2 backlinks←map of state identifier to exp_step
3 todo← queue of state identifiers

4 todo.push(start)
5 while todo is not empty do
6 src← todo.pop()
7 for edge t ∈ A.SuccessorsOf(src) do
8 if not filter(t) then
9 cur_step← exp_step(src, t.condition, t.marks)

10 if match(cur_step, t.destination) then
11 path← stack of steps
12 Loop
13 path.push(A.AsState(cur_step.src), cur_step.condition,

cur_step.marks)
14 if cur_step.src = start then
15 break
16 cur_step← backlinks[cur_step.src]
17 while path is not empty do
18 steps.append(path.pop())
19 return t.destination
20 if t.destination /∈ backlinks then
21 backlinks[t.destination]← cur_step
22 return -1;

Algorithm 5.1: Pseudocode for the explicit_bfs_steps algorithm
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1 Function GenericAcceptingRunSearch
Input: Automata A, already allocated run r, trivially accepting SCC scc
Output: r is filled with an accepting run over A

2 if A.initial ∈ scc.states then
3 substart← A.initial
4 else
5 matchSCC← lambda step, dst: return dst ∈ scc.states
6 filterNone← lambda edge: return false
7 substart← explicit_bfs_steps(A, A.initial, matchSCC, filterNone, r.prefix)
8 SCCstart← substart

9 to_see← scc.seen_marks
10 matchMarks← Function

Input: exp_step st, state identifier dst

11 if to_see = ∅ then
12 return dst = SCCstart
13 if st.marks & to_see then

// Remove st.marks from to_see
14 to_see← to_see & not st.marks
15 return true
16 return false
17 filterSCC← Function

Input: edge t

18 if t.destination /∈ scc.states then
19 return true
20 if scc.edge_filter 6= None then
21 return scc.edge_filter(t)
22 return false

23 do
24 substart← explicit_bfs_steps(A, substart, matchMarks, filterSCC, r.cycle)
25 while to_see 6= ∅ and substart 6= SCCstart

Algorithm 5.2: Pseudocode for the generic accepting run search
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Conclusion

The product and generic accepting run search come to complete the panorama of algorithms
that Spot provides. They both have their specificities, their usage, their needs, but came to-
gether as solutions to a common problem. There may however still be room for performance
improvement in the product algorithms.

Some work needs to be done with the benching, to reduce the disparity of the sizes of the
products used to test the product emptiness check and accepting run search, and to see how the
generic emptiness check and accepting run search compare to other methods, such as convert-
ing the automaton to have a certain acceptance condition and then running algorithms specific
to it.

It would be interesting to see if we could combine some of the mechanics behind each algo-
rithm to not have such a huge tradeoff between genericity, capacity, and performances.
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