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D
uring the last decade, statistical machine learning has reached a high level of maturity
to solve classification and regression problems with efficient and theoretically well-founded

algorithms. This success story has led researchers to move on more advanced learning problems.
Classification and regression respectively consist in predicting simple discrete and continuous
outputs. In many real-world applications however, learning components have to deal with much
more complex data. There are mainly two approaches to tackle complex learning problems. We
can either create new models for each new task or we can adopt the reductionist approach, which
consists in combining simple learning models to form solutions to more complex tasks. In this
thesis, we adopt this last approach and propose a new framework to define complex learning
problems in a unified, efficient and simple way: CR-algorithms.

1.1 Introduction

Many practical solutions to deal with complex real-world applications of machine learning rely on
the idea of simplifying the problem enough to use classical learning machines, such as probabilistic
classifiers. Let us consider the example of a multi-language character recognition system. Such
a complex problem can be decomposed into simpler sub problems, such as language classifiers,
font classifiers, letter classifiers, layout recognizers and so forth. These sub-problems can then
be tackled with traditional learning machine tools.

Systems using machine learning involve a learning phase before being able to perform infer-
ence. Learning aims at training the system, given examples of its desired behavior. Inference is Learning

Inferencethe process of running the whole system: to perform character recognition on a given document
in our example. In many complex applications of machine learning, learning is disconnected from
inference. First, each classifier is trained independently, then, the classifiers are grouped to form
the whole system. In this approach, each classifier only has a local vision of the system and
the specificities of inference are not taken into account during learning. This leads to important
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learning problems such as error propagation among chains of classifiers. We claim that a key
step to learn such complex systems correctly is to model the whole system as a single learning
problem instead of modeling each of its learning-based components independently. This way,
the empirical behavior and weaknesses of the system can be taken into account during learning.
Instead of optimizing each classifier locally, this approach suggests to optimize the whole system
globally. Therefore, the dynamic of the system – what happens between two learning-based
decisions ? – must be taken into account during learning, through simulation for example.

The major idea underlying CR-algorithms is to integrate learning and inference into a singleIntegrate learning
and inference object. A CR-algorithm jointly represents an inference procedure and an associated learning

problem. The inference procedure is a piece of code that can perform machine-learning based
decisions. The learning problem defines a quality criterion that should be maximized to find the
optimal decision sequences. An important aspect of our approach – that may be disturbing – is
that CR-algorithms put less the focus on learning machine, than on the environment in which
learning is used. Since computers execute programs sequentially, we put a particular emphasis
on the temporal nature of code execution, i.e. the quality of an inference procedure depends on
the whole sequence of decisions that are performed during its execution. In order to properly
model inference procedures, CR-algorithms are defined as sequential decision-making problems
and are formalized within the well-establish framework of Markov decision processes.

1.2 Overview

We here briefly introduce the CR-algorithm formalism with a simple example: automatic recog-
nition of handwritten words. In this application, inputs are sequences of bitmaps representing
handwritten letters and outputs are words, i.e. sequences of recognized letters. Recognizing a
word can be done in multiple ways. A simple choice for the inference procedure is left-to-right la-
beling, which consists in recognizing each letter sequentially, from left to right. In this approach,
at each time step t, the t-th letter is recognized on the basis of the corresponding input and on
the previous recognized letters.

Figure 1.1 illustrates the use of CR-algorithms on the word recognition example. We now
briefly describe each step of the proposed methodology:

1) Problem The starting point is a problem that involves some kind of learning. In this
manuscript, we essentially consider structured prediction problems. Structured prediction
problems are supervised learning problems – the aim is to learn a mapping given a set of
input and associated desired outputs – that involve structured outputs, such as sequences,
trees or graphs. Handwritten word is a structured prediction problem where inputs and out-
puts are respectively sequences of bitmaps and sequences of recognized letters. Structured
prediction covers numerous applications ranging from bio-informatics to image processing
or web-mining. Although most of this thesis is about structured prediction, CR-algorithms
is a general framework that can be relevant to other fields. As an example, we propose
prospective work on the learning-for-search problem, which consists in using machine learn-
ing to improve the efficiency of combinatorial search algorithms.

2a) CR-algorithm A CR-algorithm jointly defines an inference procedure and an associated
learning objective:

– Inference procedure Inference is a piece of code that solves the problem and that
relies on machine-learning based decisions. In order to deal with such decisions, we
introduce a new instruction called choose. In our example, the choose (line 4) defines
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Figure 1.1: Illustration of the proposed methodology. 1) The starting point is a problem
involving some kind of learning. We consider here a handwritten word recognition task, which
consists in recognizing words given 8× 16 black-and-white bitmaps corresponding to segmented
letters. 2) In order to solve the problem, we have to provide two components: a CR-algorithm
(2a) and training data (2b). We here give the CR-algorithm that recognizes letters from left to
right. 3) Given the training data and the CR-algorithm, we learn the inference procedure. 4)
Learning results in a policy π useable in conjunction with the inference procedure to recognize
any new incoming word.
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a classification problem: given the input bitmap x and the previous recognized letters
ŷt−C , . . . , ŷt−1, choose one label among the set of possible labels L. The core of the
CR-algorithm iterates over the letters of the word to recognize (line 3) and invokes
this classification problem for each letter. Once all the letters are recognized, the
inference procedure returns the predicted word ŷ (line 9).

– Learning objective The learning objective of CR-algorithms is defined thanks to
reward instructions. The aim of learning is to find the sequences of decisions that
maximize the sum of rewards. In our example, each time that a letter is wrongly
predicted, we give a reward of −1 (line 6), i.e. the aim is to take decisions in order
to minimize the number of wrongly predicted letters.

2b) Training data This step is classical in machine learning: in order to train the inference
procedure, the user has to provide a set of training examples. In the case of handwritten
word recognition, a training example is a correctly recognized word.

3) Training A key aspect of our work is that we develop tools to learn CR-algorithm that
support different kind of supervision knowledge. We mostly deal with perfect supervision
or imperfect supervision. Perfect supervision assumes that, for all training examples, we
can compute the best decisions on the long-term in any state that can be reached by
the inference procedure. This is the case of handwritten word recognition: whatever the
previous predictions are, the best decision is to recognize the next letter correctly. Not
all applications can be perfectly supervised in this manner. A key aspect of our work is
to introduce reinforcement learning techniques to learn CR-algorithm with less a-priori
knowledge. We also introduce post-supervision, which corresponds to situations where the
supervision is only known once the inference procedure is terminated.

4) Policy that solves the problem Training results in a policy π: a function that maps
states of the inference procedure to decisions. The CR-algorithm, in conjunction to this
policy, can be used to recognize any new incoming word.

1.3 Contributions

The primary contribution in this thesis is the development of the CR-algorithm formalism, toCR-algorithm
formalism integrate inference procedures and associated learning problems (see Chapter 4). This framework

is, up to our knowledge, the first attempt to explicitly describe learning-based programs as
sequential decision-making problems. The main features of our formalism are:

• Well-founded formalism Since we model programs that are executed sequentially, we
develop a natural connection between CR-algorithms and the well-established Markov de-
cision process formalism. Thanks to this connection, we develop a proper understanding
of the temporal nature of programs described with CR-algorithms.

• Existing learning algorithms Another fundamental benefit the connection with Markov
decision process is to provide a range variety of existing policy learning algorithms that can
be applied, without modifications, to learn CR-algorithms. We identify different levels of
supervision that corresponds to different applications of CR-algorithms. We show that the
structured prediction field provides some algorithms useable to deal with perfect supervision
situations. In order to deal with imperfect supervision, we introduce algorithms from the
field of approximated reinforcement learning.
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• Simplicity CR-algorithms rely on an imperative description of learning problems. This
description is close to this of classical programs and learning is introduced in an intuitive
manner, which makes the formalism easy to understand for any computer scientist. The
learning algorithms that we propose for CR-algorithms are also relatively simple. In our
experiments, we only make use of simple linear approximators trained stochastically and
show successful results.

• Expressiveness CR-algorithms describe complex Markov decision processes in a very
concise way. For example, describing the Markov decision processes corresponding to the
CR-algorithm given in Section 1.2 takes at least one or two pages of text, whereas the
CR-algorithm defines it completely in 9 lines. Chapter 5, Chapter 6 and Chapter 7 provide
numerous CR-algorithms corresponding to complex and hard-to-describe Markov decision
processes. Appendix B presents an on going work, which is to create a programming
language to develop CR-algorithms. The feasibility of such a language gives it whole sense
to CR-algorithms. The work presented in this thesis can be though as a preliminary study
to create this learning-based programming language.

• Efficient applicative solutions CR-algorithms lead to efficient solutions, which are most
of time competitive with state-of-the-art models, while having much lower complexities.
Thanks to their expressiveness, CR-algorithms makes it possible to develop efficient solu-
tions for complex problems, as shown by Chapter 6. As an example of this efficiency, our
approaches are able to transform HTML pages into XML trees containing thousands of
nodes in less than one second.

From the point of view of structured prediction, our work can be seen as a follow up of Structured prediction
with reinforcement
learning

[Daumé III et Marcu, 2005, Daumé III et al., 2006]. In addition to these founding approaches,
we provide a description formalism and wide the range of possible supervision situations. Our
main contribution to the field of structured prediction is to demonstrate the relevancy of rein-
forcement learning to deal with imperfect supervision. Chapter 5 shows that, although requiring
much more training iterations, reinforcement learning algorithm are competitive with supervised
approaches for sequence labeling tasks. In Chapter 6, we develop a complex structured predic-
tion task, where perfect supervision is not available. We give successful results for reinforcement
learning approaches in this complex domain, on which most previous models fail.

From the point of view of reinforcement learning, we introduce the idea of policy as a ranking
machine. Learning to rank is a problem that has received an increasing interest over the last CRank: action

rankingyears in the machine learning community. A ranking machine is a learning machine that ranks
possible alternatives given situations. We propose to view policy learning as a ranking problem.
This leads to policies that, given the current state, rank all the possible actions and select the
top-ranked one. We propose a policy-learning algorithm called CRank, to learn policies through
action ranking.

CR-algorithms lead to very particular reinforcement learning problems, which are very large, Reinforcement
learning sucessmostly deterministic but not always fully observable. We give numerous experimental results

that show the success of reinforcement learning with simple linear approximators in these large
problems. In particular, all our experiments lead to good generalization properties, which is a
satisfying result for reinforcement learning.
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1.4 Manuscript layout

This thesis is presented in four parts. The first part gives background on supervised learning
and sequential decision-making problems and overviews the domain of structured prediction.
This domain motivated most of the work leading to CR-algorithms. Although our formalism
is not restricted to structured prediction problems, these problems have a central place in this
thesis. The second part of the thesis describes the proposed formalism. The third part of the
thesis, comprising Chapter 5 though Chapter 7, discusses the applications of CR-algorithms and
describes numerous experimental results. The final part of the thesis concludes and gives an
overview of the perspectives raised by this work.

The chapters in this thesis are organized as follows:

Part I: Background

Chapter 2 introduces relevant background to understand the remainder of the thesis. It fo-
cuses on supervised learning and sequential decision-making and puts a particular emphasis
on learning-based methods for sequential decision-making. These methods are able to deal
with very large decision processes and are being used as building blocks in the remainder
of the thesis.

Chapter 3 describes the field of structured prediction and makes an overview of state-of-the-art
models from this field. We distinguish global models from incremental models. The former
focus on what good outputs look like, while the latter directly model how to construct
good outputs. We show that the latter approach has several advantages over the former.
Our work can be considered as follow-up to existing work on incremental models.

Part II: CR-algorithm Framework

Chapter 4 presents the CR-algorithms formalism. It first describes the formalism and its
connection with Markov decision processes. It then overviews existing learning algorithm
that can be used to learn CR-algorithms. Finally, it presents CRank, our algorithm to
learn policies with action ranking.

Part III: Applications

Chapter 5 describes the application of CR-algorithms to sequence labeling, which is is the
generic task of assigning labels to the elements of a sequence. This aim of this chapter is
threefold: firstly to introduce CR-algorithms on a simple task, secondly to compare CR-
algorithms to state-of-the-art work and thirdly to experiments CR-algorithms with perfect
supervision. We give multiple solutions to the sequence-labeling problem, including two
original approaches: order-free labeling and multiple-pass labeling with CR-algorithms.
The latter approach especially leads to nice results: it is competitive with the best baselines
on all our datasets and clearly outperforms them in some experiments, while being very
fast both in training and inference.

Chapter 6 describes a challenging structured prediction task: ordered labeled tree transfor-
mation. The aim of this chapter is twofold: firstly to demonstrate that CR-algorithms
provide relatively simple solutions to complex learning problems and secondly to exper-
iment CR-algorithms in problems with imperfect supervision. CR-algorithms lead to an
original family of algorithms to perform tree transformation. One of our most spectacular
results is that our approach, which has a linear complexity in the number of tree leaves,
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outperforms the baseline model, which has a cubic complexity in the number of tree leaves.
In practice, our approach runs about 50 times faster than the baseline on small datasets
and scales well to all our large real-world datasets.

Chapter 7 shows that CR-algorithms can be relevant to other problems than structured pre-
diction. The aim of this chapter is twofold: firstly to show the relevancy of CR-algorithms
to learning-for-search problems and secondly to experiment CR-algorithms with post-
supervision. We give several examples of CR-algorithms dedicated to learning-for-search
problems and introduce a general approach to learn such CR-algorithms. We also provide
prospective experiments to show the promise of this approach on two search problems.

Part IV: Perspectives

Chapter 8 concludes this work and discusses the perspectives it opens. The perspectives are
organized according to three directions: automating the CR-algorithm learning system,
extending the CR-algorithm formalism and developing new applications of CR-algorithms.

Appendices

Appendix A presents Nieme, the open-source machine-learning library developed in the con-
text of this thesis. This library is distributed under the GPL license and is published in
the Journal of Machine Learning Research.

Appendix B introduces a major on-going work: the creation of aCR-algorithm based pro-
gramming language. This programming language relies on the work exposed in this thesis
and its existence definitely validates the relevancy of CR-algorithms.

Appendix C discusses our work on defining feature generators in the context of Nieme.

Appendix D gives a summary of the mathematical notations used in this thesis.
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A
n important topic in AI concerns the ability of computer programs to learn from examples.
When looking at human learning, one can observe a lot of different learning tasks: learning

to walk, learning to speak, learning to recognize words and, more generally, several forms of
behavior learning. Formalizing all these concepts is far from being trivial and multiple scientific
domains, which focus on different aspects of the problem, have naturally emerged over the past
sixty years.

In this chapter, we focus on two kind of learning problems: supervised learning problems (SL)
and sequential decision-making (SDM) problems. SL, presented in Section 2.1, aims at learning
a function from training data. The training data consists in pairs of input objects and associated
desired output objects. The main challenge of SL is that the learned function should be able to
generalize to new input objects that were not in the training data.

SDM, which is discussed in Section 2.2, is the problem of taking decisions in a given environ-
ment. Usually, an environment is described in terms of states, actions and rewards and the aim
is to learn a function that map states to actions in order to maximize a long-term reward. SDM
raises multiple challenges: a learning challenge, but also an exploration challenge. In order to
find a good behavior, SDM algorithms usually perform some form of search over all the possible
ways to act and to observe their long-term quality.

Since SL and SDM correspond to old and very active scientific communities, being exhaustive
on these subjects would require more than a book. This chapter is an introduction to these fields
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and is only intended to provide the sufficient tools to understand the remainder of this manuscript.
For more detail, you can refer to one of the multiple existing books introducing SL ([Vapnik, 1995]
for example) and SDM ([Sutton et Barto, 1998] or [J. Si et II, 2004] for example).

2.1 Supervised Learning

This section introduces the SL problem and classical solutions to this problem. We start with
a simple use-case that gives an overview of the methodology: email filtering. We then describe
several tasks that fit in the SL framework in Section 2.1.2. We formalize the learning problem and
introduce the empirical minimization risk principle in Section 2.1.3. Common learning methods
following this principle are discussed in Section 2.1.4.

2.1.1 A use case: email filtering

We consider here the problem of email filtering, where incoming emails have to be classified as
being spam emails or normal emails. In this problem, we want to learn a classification function
f :

f : email→ {spam,not-spam}

Figure 2.1: Email filtering training set. The training set is made of examples containing
an input and its associated output. Here, inputs are emails and outputs are categories among
spam and not-spam.

Methodology When using SL, the first step is always to gather a training set. As illustrated
in Figure 2.1, such a training set is composed of inputs (emails) and associated desired outputsTraining dataset
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Figure 2.2: Supervised Learning: Training and Inference. Given the training set, training
aims at finding a model, representing the function f . Given this model, we can make predictions
for any new incoming input.

(spam or not-spam). The training set needs to be representative of the real-world use of the
function. The desired outputs are usually constructed by human experts.

Given the training set, we can perform the training phase. The result of training is a model Training

that represents the learned function f(.). This function can then be applied to perform inference Inference
on new input objects, which result in predictions. The global architecture of the SL methodol-
ogy is summarized in Figure 2.2. Usually, training is performed only once and may use a lot
of computing resources. However, in most of cases, inference will be used frequently and its
computation should be done reasonably fast.

Representation In order to fit in the SL framework, we have to choose a representation for Representation

the input objects. Depending on the learning methods, different kind of representations may
be used: vectors, attribute-value lists, first-order logic, relational representations and so forth.
In this manuscript, we only use vectorial representations: functions that map input objects to
vectors. In the case of email filtering, described in Figure 2.3, we define:

φ : email→ R
d

The elements of the φ(.) vectors are often called features and may describe any aspect of the Features

input objects. For example, when dealing with textual documents, a common choice is to have
one feature per possible word, each feature corresponding to a word frequency.

Choosing an appropriate representation for a given learning problem is a difficult task and
usually requires expertise of the domain. From a practical point of view, it is often observed
that the quality of learning crucially depends on the representation choice. There must be
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Figure 2.3: Supervised Learning: Vectorial representation of an email. The represen-
tation function φ encodes input objects in the form of feature vectors. Each feature describes an
arbitrary aspect of the input.

enough features to accurately describe the properties of the input objects, but too many features
may lead to hard learning problems. Given the current state-of-the-art of SL, creating a good
representation is still much more an art than a science.

A solution example A funding method of SL is the Rosenblatt’s Perceptron (1957). The
Perceptron performs inference using a linear function: 1:The Perceptron

f(x) =

{
spam if 〈θ, φ(x)〉 is positive
not-spam otherwise

where θ are the parameters learned during the training phase and 〈., .〉 denotes the dot product
operator:

〈θ, φ(x)〉 =
d∑
i=1

θiφ(x)i

Figure 2.4 illustrates inference with the Perceptron in the case of email filtering. With its
linear architecture, the Perceptron learns the parameters of a hyper-plan in the feature-space-
, separating the examples into spams and not-spams. The classification is then performed byLinear separation

looking at the sign of the activation, which is the result of the dot product between the parameters
and the descriptions.

Training the Perceptron is done in an online way: the training examples are processed onePerceptron Training

at a time. For each example, we compute the prediction given the current parameters. If this
prediction is correct, we continue with the next example. Otherwise, we apply a correction to

1We omit here the bias parameter for the sake of clarity. A simple way to introduce a bias is add a unit feature,
whose value is always one, to each example.
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Figure 2.4: Linear Classification. We assume minimalist descriptions containing two features
feature 1 and feature 2 and a unit features whose value is always one. The feature-space is split
by a linear separation θ1f1 + θ2f2 + θ31. In order to predict the class of an example, we look at
which side of the space we are.

the parameters in order to enforce the correct answer:

θ ←

{
θ + φ(x) if x is a spam
θ − φ(x) otherwise

If the training dataset is linearly separable, i.e. there exists a hyper-plane that perfectly separates
spams from not-spams in the feature space, then the Perceptron will converge to such a solution
[Rosenblatt, 1958]. Usually, training is iterated over the complete training dataset, until the
number of errors cannot be lowered more.

2.1.2 Supervised Learning Tasks

The aim of SL is to induce a function f : X → Y that maps inputs2 x ∈ X to outputs3

y ∈ Y, given a set of training examples D = {(x(i),y(i))}i∈[1,n]. SL is a general framework that
encompasses several different tasks. In the following, we briefly review the most frequent ones.

Discrete outputs A central SL problem is the binary classification problem: learning prob- Binary Classification

lems with two possible outputs. By convention, these two outputs are often qualified as positive
and negative and denoted +1 and −1. With these notations, the output space of binary classifi-
cation is:

Y = {−1,+1}
2The inputs are sometimes called observations.
3The outputs are sometimes called labels, or classes in the discrete case.
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Examples of binary classification problems include the following:

• Email filtering: the example introduced above.

• Medical testing: predicting if a patient has a certain disease or not.

• Gender recognition: predicting if an image represents the face of a woman or a man.

• Ad-hoc retrieval: predicting if a document is relevant or not for a given query4.

Binary classification is particularly interesting for multiple reasons: it has a simple formal-
ization, it allows extensive theoretical insights and it is historically the first learning problem
where computers achieved effective learning.

Figure 2.5: A multi-class learning problem: sentiment classification. Each face repre-
sent a training example described by two features feature 1 and feature 2.

When there are more than two possible discrete outputs, we fall into multi-class classificationMulti-class
classification problems. Here are a few examples of multi-class classification problems:

• Sentiment classification: e.g. classifying a human face as being happy, neutral, sad or
surprised (Figure 2.5).

• Genre classification: e.g. predicting the genre of a piece of music with the following cate-
gories: Y = {classical, rock, techno, funk, rap}.

• Email routing: e.g. predicting the category of an email between professional, personal and
spam.

• Text categorization: e.g. predicting the topic of a document between sports, politics and
people.

Continuous outputs Learning problems with scalar outputs are known as regression prob-Regression

lems:
Y ⊆ R

The regression problem is illustrated in Figure 2.6. Regression problems include the following:
4In this example, the input objects are (document, query) pairs.
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Figure 2.6: Learning tasks: Regression.

• Market prediction: predicting the volatility of a stock market.

• Predicting the weight of a person given its age, its height and various informations of her
way of life.

There also exist learning problems which need to predict multiple scalar outputs in the same Multi-dimensional
Regressiontime (Y ⊆ Rn). Such problems are called multi-dimensional regression problems.

Learning to rank In the last decade, there has been a growing interest on the ranking prob-
lem5. The aim of ranking is to learn preferences about alternatives [Cohen et al., 1998]. We
adopt the label ranking formalism, where a training example is made of a situation xs and a set
of preferences over alternatives xa in this situation. Figure 2.7 gives the example of a search-
engine, where a situation is a query and alternatives are documents that may be relevant for
that query. As shown by the figure, the aim of ranking is to learn a scoring function F (xs,xa; θ)
that defines an order over alternatives6.

Ranking is close to regression in the sense that we learn a function with scalar outputs.
The main difference is that only the order over objects induced by this function matters. Any
re-scaling or offset may be applied to a ranking function without changing its meaning.

Ranking is currently receiving a growing interest in many communities. Examples of the
ranking problem include:

• Information retrieval: learning to order a set of documents by relevance w.r.t. a given
query. This example is illustrated in Figure 2.7 in the context of a web search engine.

• Automatic summarization: learning to order sentences of a text by summarization power.

• Recommendation systems: e.g. learning to order movies to recommend a user.

• Preference learning: e.g. learning customer’s preferences from transaction data of super-
markets.

5Many different names still exist for this learning problem: preference learning, ordering, label ranking, ordinal
regression, etc.

6Formally, this order can be seen as the prediction y ∈ Y, where Y is the set of all possible orders.
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Figure 2.7: Learning tasks: Ranking. In information retrieval, a situation xs is a query and
alternatives xa are documents that may be relevant for that query. The alternatives are sorted
by the learned function F (xs,xa; θ).

Beyond classification, regression and ranking In many different fields such as biology,
natural language processing, image processing or chemistry, data may be naturally described as
structured objects like sequences, trees, lattices or graphs. Learning problems with arbitrary out-
puts are called structured prediction problems and form one of the main topics of this manuscript.Structured prediction

In the following chapters, we introduce methods that reduce hard prediction problems into much
more simpler classification, regression or ranking problems. We will show that these three kinds
of learning problems can be though as basic building blocks that allow constructing complex
learning systems.

2.1.3 Risk Minimization

Supervised learning aims at learning a function f : X → Y that performs well on a given learning
problem. Formally, such a learning problem is defined by a joint distribution over input-output
pairs DX×Y . In order to measure the quality of predictions, we assume the existence of a task-
specific loss function:Loss function

∆ : Y × Y → R
+

When predicting the correct output, such a loss function has a null value. Otherwise, ∆(ŷ,y)
quantifies how bad it is to predict ŷ = f(x) instead of y. A simple loss function is the 0/1 loss,0/1 loss

which equals one if the prediction is incorrect:

∆0/1(ŷ,y) = 1 {ŷ 6= y}
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where 1 {b} is the indicator function whose value is one if b is true and zero otherwise.

Expected Risk The expectation of loss over the distribution DX×Y is called the expected risk
and is defined as follows:

R(f) = E(x,y)∼DX×Y{∆(f(x),y)} (2.1)

The expected risk can be related to the task-dependent learning objective by appropriately
choosing the loss function. For example, in classification with the 0/1 loss, R(f) is the expectation
of classification errors with function f .

Given a function space F , SL aims at selecting the function f ∈ F that minimizes the
expected risk: Expected Risk

Minimizationf∗ = argmin
f∈F

R(f)

In practice, the distribution DX×Y is unknown, so that the expected risk quantity cannot be
computed. However, we usually have access to a set of training examples D = (x(i),y(i))i∈[1,n]. Training Examples

These examples are assumed to be independently and identically drawn (i.i.d.) from DX×Y .

Empirical Risk The training examples allows us to approximate the true risk with the em-
pirical risk :

R̂(f) =
1
n

n∑
i=1

∆(f(x(i)),y(i))

Selecting the function f∗ that minimizes the empirical risk is known as the principle of empirical
risk minimization: Empirical risk

minimizationf∗ = argmin
f∈F

R̂(f) ' argmin
f∈F

R(f)

Regularization The relation between empirical risk minimization and expected risk minimiza-
tion has a central place in modern statistical learning [Vapnik, 1999]. A classical phenomenon
when minimizing the empirical risk is that we may perfectly learn the training examples but
generalize badly to new examples. This is known as overfitting and is illustrated in Figure 2.8 Overfitting

(left). Overfitting occurs when the model becomes too strongly tailored to the particularities
of the training set. In order to avoid it, we need a way to control the capacity of the learning
method.

A flexible way to control overfitting is inspired from the Ockham’s razor principle. This
principle is often paraphrased as All other things being equal, the simplest solution is the best.
In other terms, among different functions f whose empirical risks are not significantly different,
we should choose the simplest f . The common way to introduce such a preference for simpler
models is to use a regularization term Ω(.). Such a function returns high scores for complex Regularization term

models and low scores for simple models. Learning then aims at finding a function, which is a
good compromise between low empirical risk and simplicity. Finding such a function is known
as the regularized empirical risk minimization principle7: Regularized

empirical risk
minimizationf∗ = argmin

f∈F
R̂(f) + λΩ(f) (2.2)

where λ is a parameter that allows to control the tradeoff between empirical risk minimization
and regularizer minimization.

7This is also known as structural risk minimization.



36 Background

Figure 2.8: Overfitting and Regularization in a one-dimensional regression problem.

Figure 2.8 shows the result of learning for three values of λ. On the left, the λ parameter is
null and no importance is given to the simplicity of f , this leads to overfitting. The middle case
corresponds to a good value of λ: we have learned a simple function that still gives a good mean
accuracy. The right part of the figure corresponds to a big λ value: we are only looking for a
simple function at the price of accuracy.

2.1.4 Learning Methods

A huge number of SL methods have been developed. A traditional point of view is to classify
them into symbolic and numeric methods. Symbolic methods are based on discrete function
spaces (e.g. decision trees or ensemble of rules) while numeric methods learn in continuous
function spaces (e.g. artificial neural networks, support vector machines or bayesian statistics).
In this following, we only focus on numerical methods8.

Numerical methods Numerical learning methods rely on parameterized functions: the pre-Parameterized
functions diction function f is fully defined by a set of scalar parameters θ ∈ Rd. In such models, mini-

mizing the regularized empirical risk aims at finding the best parameters θ:

θ∗ = argmin
θ∈Rd

R̂(fθ) + λΩ(fθ) (2.3)

where fθ is the prediction function corresponding to parameters θ. In general, such parameterized
prediction functions are chosen to be continuous: a small change on θ leads to a small change
on fθ. This allows using various numerical optimization techniques to perform training.

In order to deal with discrete outputs, numerical methods usually compute activation levelsDiscrete outputs

Fθ(x) ∈ R for all possible class. In this approach, predicted classes are those that have the
highest activation. A well-known function to compute such activations is the linear function,
which computes the dot product between the input’s description and the parameters:

Fθ(x) = 〈θ, φ(x)〉

In the case of binary classification, the sign of the activation determines the predicted class (−1
or +1):

f binaryθ (x) = sign(Fθ(x))

8Many of these methods are also qualified as statistical learning methods.
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In order to treat multiclass problems, we have a set of parameters θy per possible class y ∈ Y9.
Prediction is then performed by searching the class which has the highest activation:

fmulticlassθ (x) = argmax
y∈Y

Fθy(x)

Losses Many loss functions are hard to optimize directly. For example, the 0/1 loss is not
continuous (and so not derivable either), which makes the solving of Equation 2.2 intractable.
In such cases, many methods minimize a related loss that has better mathematical properties-
. Alternatives losses are often upper bounds of the original losses, so that the results of both Alternative Losses

minimization problems are equivalent.

Figure 2.9: Common alternatives of the 0/1 loss.

Multiple alternative losses of ∆0/1 are given in Figure 2.9 in the context of binary classification
with y = +1. In this case, positive activations lead to correct predictions. The losses have either
theoretic or historical justifications:

• The 0/1 loss is the theoretical objective: there is one error when the activation is negative.

• When interpreting the Rosenblatt’s Perceptron algorithm in the formalism of empirical risk
minimization, each training update can be seen as a stochastic gradient descent step with
the Perceptron loss.

• The large-margin loss10 enforces a minimum margin between the positive examples and
the negative examples. Enforcing such a margin leads to stronger theoretical guaranties
[Vapnik, 1995]. Furthermore, a lot of experimental results show that large-marge methods
improve the generalization performance. The large-margin loss is the loss that is optimized
by the well-known Support Vector Machines [Cristianini et Shawe-Taylor, 2000].

• It is possible to interpret the boosting method as an empirical risk minimization method
with the exponential loss. Boosting [Schapire, 1990] can then be seen as a closed-form
solution of the risk minimization problem.

9We do not consider one-against-one approaches here.
10This loss is also known as the hinge loss
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• Maximum entropy classifiers and the logistic regression models learn log-linear conditional
probabilities over classes given inputs. When comparing them with empirical risk mini-
mization techniques, it can be shown that they perform minimization of the binomial loss
[S. et A, 1985, Hastie et al., 2001].

Figure 2.10: Losses illustrated on a binary classification task. Empty shapes correspond
to examples with a null loss. Otherwise, the size of the filled shapes reflects the amount of loss
the examples suffer from. In this example, ideally, all the green examples should be below the
line and the red examples should be above.

Figure 2.10 shows how various losses penalize the training examples on a binary classification
task. The 0/1 loss penalizes all the errors in the same way, whereas the other loss functions take
the activation into account: the farther examples are from being correctly predicted, the more
loss they suffer from. The exponential loss increases exponentially in function of the activation,
whereas the Perceptron and large-margin losses only grow linearly. As soon as the examples
are correctly classified in the Perceptron, their loss becomes null. Instead, the large-margin loss
considers that an example that is too near from Fθ(x) = 0 should be considered as an error.

Training Once we have a continuous objective function, training aims at solving Equation 2.3.
Online training methods are minimization techniques that process the examples one per one, orOnline Training

small groups per small groups. The simplest minimization technique is the stochastic gradient
descent algorithm. In this algorithm, the training examples (x(i), y(i)) are processed one at a
time. In order to process an example, we compute the gradient of the regularized empirical risk
restricted to this example, and slightly modify the parameters in the inverse direction of the
gradient:

∀i, θi ← θi − α
∂(∆(fθ(x(i)),y(i)) + λΩ(fθ))

∂θi
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The Perceptron training algorithm presented in Section 2.1.1 is the instantiation of stochastic
gradient descent with the Perceptron loss, λ = 0 and α = 1. Many variant of stochastic descent
exists. In particular, a lot of work has been done on tuning the α parameter.

Another stochastic descent method that receives a growing interest in SL is the mini-batch Mini-batches

gradient descent. Mini-batches are small subsets of the training examples that allows approxi-
mating the risk and its gradient w.r.t. the parameters. Mini-batch methods repeat the following
steps: sample a subset of the examples (e.g. one hundred examples out of ten thousand), compute
the approximated risk gradient and perform a gradient descent step. Pure stochastic gradient
descent can be seen as a mini-batch algorithm with mini-batches of size one.

Batch training is another approach that requires all the training examples to be known in Batch Training

advance. Batch training methods compute R̂(f) + λΩ(f) exactly, which makes it possible to
use classical numerical optimization techniques to perform minimization. The loss function and
prediction function are often chosen to lead to a convex optimization problem. This makes it
possible to use various efficient optimization techniques [Boyd et Vandenberghe, 2004] including
BFGS (for continuously derivable losses), SMO ([Platt, 1998], used in SVMs) and various closed-
forms methods when available (in regression with the square-loss for example).

2.1.5 Summary

In this section, we introduced the SL problem: given a limited amount of training examples,
induce a function mapping inputs to outputs. We have illustrated SL with a simple use-case:
email filtering. Such learning problems with two possible outputs are called binary classification
problems. When there are more than two discrete outputs, we fall into multiclass classification
problems. Supervised learning with scalar outputs is known as regression. We also talked about
ranking problems where the aim is to learn to order objects.

The SL problem can be formalized according to the principle of expected risk minimization:
the function we are searching is the function that leads to the lowest expected value of a task-
specific loss function. Computing the expected risk is not possible, since we do in general not
have access to the distribution underlying the learning problem. Instead, we usually have access
to a limited amount of training examples that are sampled from this distribution. A key idea of
SL is to approximate the expected risk with the empirical risk computed over the set of training
examples.

When minimizing the empirical risk, a common phenomenon is overfitting. This happens
when the learned function is too tailored to the particularities of the training examples. In order
to control overfitting, a common approach is to introduce a regularization term that gives a
preference for simple models.

In order to perform training, many methods can be thought of as minimizing the regularized
empirical risk. This minimization can be done with online and with batch methods. The former
modify the parameters continuously as new training examples are processed, while the latter
needs to know all the examples in advance.

2.2 Sequential Decision Making

This section introduces sequential decision making (SDM) problems. This topic has a central
place in AI and has been widely studied by researchers since the sixties. We start with a few
SDM examples in Section 2.2.1. SDM can be formalized within the Markov Decision Processes
(MDPs) framework, which is described in Section 2.2.2. The behavior of an agent evolving in
an MDP is defined by its policy. Section 2.2.3 introduces reinforcement learning which aims at
learning such a policy. Classical reinforcement learning methods suffer from scaling problems
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to large decision problems. In order to deal with such problems, the decision maker can be
represented approximately, thanks to Supervised Learning (SL) techniques. This approach is
described in Section 2.2.4.

2.2.1 Agent-environment interaction

Planning a company’s production, scheduling an elevator, driving a car autonomously, choosing
a travel route or playing a video game are all examples of decision making problems where the
aim is to maximize a long-term satisfaction measure. This satisfaction measure depends on the
particular decision problems: it could be the turnover of the company, the average waiting time
for an elevator or the score in a computer game.

Figure 2.11: The agent-environment interaction in SDM problems.

SDM problems involve the interaction between an agent and an environment as illustrated inAgent/Environment
interaction Figure 2.11. The agent is the decision maker and the environment defines the decision problem.

Given a current state of the environment, the agent chooses the next action to take. Taking
an action then modifies the current state of the environment. The environment also transmits
a scalar reward signal to the agent, that represent goals. Informally, when interacting with the
environment, the aim of the agent is to choose the actions that maximize the long-term reward,
i.e. the sum of rewards over a long time period.

GridWorld Consider the grid world example, given in Figure 2.12. Here, the agent is a mouse
and the environment is a grid world containing cells, walls, cheese and a mousetrap. A state
is a position (x, y) of the mouse in the world. In a given state, the mouse can move in four
possible directions {left, right, top, bottom}. Given one such direction, either the mouse faces
a wall and does not move consequently, or it goes deterministically to the new position. There
are two states for which the agent perceives non-null rewards: the mousetrap gives a very large
negative reward, which reflects the cost of dying into the trap. Reaching the cheese state is the
goal of the mouse and gives a positive reward. Now, from the point of view of the agent, the
problem can be reformulated as finding the sequence of directions to take, in order to maximize
the reward, i.e. finding the cheese without crossing the mousetrap.

Tic-tac-toe Another classical example is the child’s game of tic-tac-toe11. This game involves
two players X and O who take turns marking the spaces in a 3×3 grid. The player who succeeds
in placing three respective marks in a horizontal, vertical or diagonal row wins the game.

11This example comes from http://www.cs.ualberta.ca/~sutton/book/ebook/node10.html.

http://www.cs.ualberta.ca/~sutton/book/ebook/node10.html
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Figure 2.12: An example decision problem: the grid world.

Figure 2.13: An example decision problem: the tic-tac-toe game.

Here, the agent is the player X. All the other elements of the game are part of the environ-
ment: the game board, the opponent player O and the game rules. A state of tic-tac-toe is a
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vector of nine elements in {none,X,O} indicating the state of each cell of the game. The aim
of our agent is to select positions where to put Xs. There is thus one action per free position
in the game board. If X wins, the agent perceives a reward of +1. If O wins, it perceives a
reward of −1. In all other cases, the reward is null. The SDM problem, illustrated in Figure
2.13 is the problem of finding the behavior that maximizes the probability of wining against a
given opponent.

In tic-tac-toe, the agent chooses where to put Xs but it has no control over the Os. When
playing a turn, the successor state of the game depends on the behavior of the opponent, which
may be stochastic. In many SDM problems, we assume the environment to be stochastic: a
decision leads to a probability distribution over successor states.

2.2.2 Markov Decision Processes

We introduced SDM as an interaction problem between an agent and an environment. We now
formalize these concepts: Markov Decision Processes (MDPs) and policies respectively describe
environments and agents.

Markov Decision Process Markov Decision Processes [Howard, 1960] provide a mathemat-
ical framework for modeling SDM problems. They are used in a variety of areas, including
robotics, automated control, economics and manufacturing. Formally, an MDP is defined by:

• A state space S. This set represents all the states in which the environment can be at a
given time step. The state space may contain final states. The decision processes finishes
when the agent enters in such a final state.

• An action space A. This set is composed of the actions among which the agent has to
choose at each time step. In some MDPs, the set of possible actions depend on the current
state. In such cases, we denote As ⊂ A the set of actions available in state s. In final
states, the set of possible actions is empty: As = ∅. In all other states, the set of possible
actions must contain at least one action.

• A transition function T : S × A → Π(S), with Π(S) the set of probability distributions
p(st+1|st,at), where st is the state at time step t and at is the chosen action at time step t.

• A reward function r : S ×A → R. This function gives recompenses or punishments to the
agent. Selecting action a in state s leads to a reward of r(s,a).

Figure 2.14 gives an example MDP with three states S0, S1 and S2 and two actions a0 and a1.
In each state, the agent can choose between the two actions. Each action leads to a probability
distribution over successor states. The probabilities are shown in green in the figure. Some
transitions lead to non-null rewards, which are represented by red arrows in the figure.

Policies The behavior of an agent is defined by its policy12. Deterministic policies map statesPolicy

to actions : π : S → A. Stochastic policies define a distribution over actions for each possible
state: π : S → Π(A). When dealing with stochastic policies, we will denote π(s,a) the probability
of selecting the action a in state s.

Optimality Criterions Given an MDP, the aim is to find a policy that maximizes a long-
term sum of rewards. The criterion that should be optimized can be defined in several ways. A
natural definition is the total reward criterion. The expected total reward Vπ(s) when startingTotal reward

12We only consider stationary policies.
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Figure 2.14: A general Markov Decision Process.

from state s and selecting actions with π is defined in the following way:

Vπ(s) = E(st,at)∼π{
∞∑
t=1

r(st,at) | s1 = s}

Note that, in the general case, this sum may diverge. In order to avoid divergence, it is common
to introduce a discounting factor γ ∈ [0, 1[ in order to reduce the influence of late rewards. The
expected γ-discounted reward when starting from state s given π is defined in the following way: Discounted Reward

Vπ(s) = E(st,at)∼π{
∞∑
t=1

γtr(st,at) | s1 = s}

The choice of the discount factor γ leads to a continuous range of problems of increasing com-
plexity, from maximizing the immediate reward (γ = 0) to maximizing the total reward (γ → 1).
Since it is not always convenient to choose the value of this parameter, it has also been proposed
to consider the average reward criterion. This criterion focuses on the expected reward per step Average Reward

and is defined in the following way:

Vπ(s) = E(st,at)∼π{ lim
T→∞

1
T

T∑
t=1

r(st,at) | s1 = s}

Note that the V -functions described above are generally called state-value functions13. State values

Given the state-value function, we can define a partial order over policies. A policy π is said Optimal policies

to dominate π′ if and only if its state-value is higher for all the states of the problem:

π ≥ π′ ⇐⇒ ∀s ∈ S, Vπ(s) ≥ V ′π(s)
13Depending on the communities, this quantity may also be called utility, expected utility or expected return.

The opposite quantity may also be considered under the cost-to-go name.
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Figure 2.15: The optimal state-value function V ∗ and an optimal policy π∗ in the
grid-world problem with a discount factor of 0.9. The optimal policy is a greedy policy
w.r.t. the V ∗-function.

An optimal policy is a policy that is better or equivalent than any other possible policies. Such
a policy π∗ is defined by:

∀π, π∗ ≥ π

Greedy policies Given a value function V : S → R that assigns scores to each state of an
MDP, it is possible to define the greedy policy πgreedyV that performs one-step-ahead search ofGreedy Policy

the best action w.r.t. V . Such a policy is defined in the following way:

πgreedyV (s) = argmax
a∈As

QV (s,a)

where QV (s,a) is called the state-action value function and reflects how desirable it is to chooseState-action value

action a in state s. The definition of the state-action value function depends on the choice of
optimality criterion. For example, with γ-discounted reward, we have:

QV (s,a) = r(s,a) + γ
∑
s′

Pπ(s′|s)V (s′)

where Pπ(s′|s) = P (s′|s, π(s)).
Figure 2.15 illustrates the optimal state-value and one optimal policy in the grid-world prob-

lem with a discounted reward criterion. The optimal policy is a greedy policy w.r.t. the state-
value: it always chooses directions that most increase the state-value.

Note that greedy policies may be defined given any function Q : S × A → R that assigns
scores to state-action pairs. In the following, we denote πgreedyQ the greedy policy w.r.t. Q:

πgreedyQ (s) = argmax
a∈As

Q(s,a)

2.2.3 Reinforcement Learning

Many different methods have been developed to find optimal policies in MDPs. In the reinforcement-
learning problem, the transition and reward functions are not known a priori. Such problems
involve an agent that discovers the environment and has to interact with it in order to maxi-
mize the perceived reward. In the tic-tac-toe example, the transition and reward function are
determined by the rules and by the behavior of the opponent player. If we do not have a perfect
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model of the opponent, we cannot compute the transition probabilities: in order to solve the
problem, we have to estimate the opponent’s behavior by interacting with him.

Reinforcement learning problems are characterized by the exploration/exploitation dilemma: Exploration/Exploitation
dilemmathe agent has to explore the environment in order to find new promising ways to receive reward,

and in the same-while, it has to exploit its current knowledge to effectively perceive rewards.
Therefore, reinforcement-learning algorithms have to make use of exploration strategies. A com- ε-greedy policies

mon strategy is to use ε-greedy policies. Such a policy selects a random action with a small
probability ε and the greedy actions otherwise:

πε−greedyQ (s) =

{
a random action with probability ε
argmaxa∈AQ(s,a) otherwise

When selecting random actions, the hope is to find a new way to behave that leads to more
reward: this is exploration. Instead, the greedy actions make use of the current knowledge of
the agent that is encapsulated in the action-value function Q. This corresponds to exploitation
steps.

Algorithm 1 One-step Qlearning

Require: the learning rate parameter α
1: Initialize Q(s,a) arbitrarily
2: repeat . For all episodes
3: s← sample an initial state
4: while not isStateFinal(s) do . For all states
5: Choose a from s using a policy derived from Q (e.g. ε-greedy)
6: Take action a, observe reward r(s,a) and new state s′

7: Q(s,a)← (1− α)Q(s,a) + α[r(s,a) + γmaxa′ Q(s′,a′)]
8: s← s′

9: end while
10: until convergence of Q(s,a)
11: return Q

An example solution One of the most important breakthroughs in reinforcement learning
was the development of the learning algorithm known as Qlearning [Watkins, 1989], which is Q-learning

given in Algorithm 1. Qlearning aims at learning the optimal action-value Q∗ iteratively, given
a γ-discounted reward criterion. One value Q(s,a) is stored per state-action pair. Those values
are initialized arbitrarily (line 1). The algorithm then performs several episodes, i.e. sequences
from an initial state until a final state in the MDP (line 2–10). The core of Qlearning is
the update step (line 7), which slightly modifies the current Q(s,a) value to make it closer to
r(s,a) + γmaxa′ Q(s′,a′). Qlearning has been shown to converge to Q∗ if all state-pairs are
visited an infinite number of times. In practice, Qlearning has been widely used with success
in various applications.

Several applets demonstrating its use are available on Internet. Figure 2.16 is a capture of
the applet of David Poole14. Here, Qlearning has been applied on a grid-world domain similar
to ours. In this example, there are four rewarding states, two that give negative rewards (−10
and −5) and two that give positive rewards (+5 and +10). Each cell corresponds to a state and
four state-action pairs. The numbers displayed in the cells are the learned Q(s,a) values. The
blue arrows display the learned policy, which is a greedy policy w.r.t. the Q function.

14http://www.cs.ubc.ca/~poole/demos/rl/q.html

http://www.cs.ubc.ca/~poole/demos/rl/q.html


46 Background

Figure 2.16: An applet demonstrating Qlearning.

Whereas Qlearning learns the Q function, it is also possible to learn the state-value function
V . Algorithms adopting this approach include TD(0) and TD(λ). Other well-known reinforce-
ment learning algorithms that are not discussed here include Monte Carlo Control and Sarsa.

All these methods compute the optimal state-value (resp. action-value) for all states (resp.
all state-action pairs). This implies that we are able to enumerate all the states of the MDPs.
Furthermore, in order to store these values that implicitly encode the policy, we need O(S) (resp.
O(S × A)) memory size. For small MDPs, such as the grid-world or the tic-tac-toe problems,Tabular

representation this is perfectly realistic. However, many MDPs and in particular those we deal with in this
manuscript, have very large state spaces (e.g. billions of states). In the following, we only
introduce approximate methods that are able to deal with such very-large MDPs.

2.2.4 Function Approximation

In many MDPs, the state space is typically astronomically large, described implicitly and decom-
posed into factors, or aspects of state. Since storing state or action values explicitly in memory
is intractable for these MDPs, various approximate methods have been developed. This has lead
to an important bridge between SL techniques, discussed in Section 2.1 and SDM. Instead of
storing the state or action-values explicitly, approximate methods make use of learning machines
to approximately and compactly represent those values.

In order to use SL to compactly store policies, the first step is to introduce vectorial descriptions-
of states or state-action pairs. We therefore use feature functions φ(.) ∈ Rd, such as those in-Feature Functions

troduced in Section 2.1.1, for states and for state-action pairs. The latter is illustrated in Figure
2.17 in the context of the tic-tac-toe problem. As shown in this figure, features can describe
any joint aspect of the state and the action. For example, the Number of Os in diagonal feature
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Figure 2.17: Example of state-action joint description in the tic-tac-toe problem.

counts the number of Os in the diagonal (of the current state) corresponding to position 31 (the
envisaged action).

Value-based reinforcement learning Given a vectorial feature function φ(.), we can use
any regression machine to approximately store value functions. Instead of storing one value per Approximate Values

state-action pair, the policy is then fully defined by the parameters θ of the learning machine:

Qπ(s,a)
approx

= Q̂θ(φ(s,a))

Any SL method can be used to approximate the value functions. A common and simple choice
is to perform linear regression:

Q̂θ(φ(s,a)) = 〈θ, φ(s,a)〉 (2.4)

Algorithm 2 Approximated One-step Qlearning

Require: A supervised learning algorithm for regression.
1: Initialize θ arbitrarily
2: repeat . For all episodes
3: s← sample an initial state
4: while not isStateFinal(s) do . For all states
5: Choose a from s using a policy derived from Q̂θ (e.g. ε-greedy)
6: Take action a, observe reward r(s,a) and new state s′

7: Correct θ w.r.t. learning example (φ(s,a), r(s,a) + γmaxa′ Q̂θ(s′,a′))
8: s← s′

9: end while
10: until convergence of θ
11: return θ

Most reinforcement learning algorithms that were developed to work with tables can be easily
extended to this approximate case. As an example, Algorithm 2 shows the approximate version Approximate

Q-learningof Qlearning. The only notable difference with traditional Qlearning lies at line 7: instead
of modifying the current value of Q(s,a), we update the parameters θ of the SL machine. These
parameters are updated on the basis of a new learning example: a pair containing the description
of the state-action pair and the associated Q value.
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Training methods Approximate reinforcement learning fits well with online learning methodsOnline training

(see Section 2.1.4). For example, if we use linear regression (Equation 2.4) with the unregularized
squared error loss function (see Section 2.1.3), the line 7 can be replaced by:

θ ← θ + α[r(s,a) + γmax
a′

Q̂θ(s′,a′)︸ ︷︷ ︸
Desired Q-value

− Q̂θ(s,a)︸ ︷︷ ︸
Predicted Q-value

].φ(s,a)

where α is the learning rate parameter.
It is also possible to use batch-learning methods within approximate reinforcement learningBatch training

algorithms. Many algorithms, including the batch version of Qlearning, which is called Fitted
Qlearning, work by iterating the following steps:

1. Make several passes in the MDP and create one training example per visited state, until
we reach a predefined number of examples.

2. Train the SL machine with the examples created in step (1).

3. Replace the parameters θ by those learned in step (2) and continue.

One problem of value-based reinforcement learning is that minimizing the regression error is
not directly related to the policy’s performance. A good approximation of the value function may
not lead to a good policy. Inversely, we could obtain a good policy while badly approximating the
value function. Recent work in approximated reinforcement learning includes the development of
new approximation methods that are not expressed as regression problems. In the following we
review two alternative approaches: policy gradient and reinforcement learning as classification.

Policy Gradient Policy gradient algorithms directly optimize the expected long-term sum of
rewards, without using value functions. These algorithms rely on stochastic policies πθ that are
parameterized by a set of parameters θ. A simple example of such policy is the log-linear policy:

πθ(s,a) =
1
Z

exp 〈θ, φ(s,a)〉

where Z is the normalization factor:

Z =
∑
a∈As

exp 〈θ, φ(s,a)〉

The aim of policy gradient algorithms is to find the parameters θ that maximize the expectation
of reward. Given a distribution over initial states DS , the objective function ∇ is defined in the
following way:

η(θ) = Es∼DS{V πθ (s)}

The key idea of policy gradient algorithms is that the gradient ∇θη(θ) can be estimated empir-
ically through simulation. GPomdp [Baxter et Bartlett, 2001] is a classical gradient estimation
method to deal with the average reward criterion. Given the estimates of gradients ∇θη(θ), any
numerical optimization method can be used to optimize the parameters θ. A simple choice is to
use stochastic gradient ascent. This leads to the online GPomdp algorithm, called Olpomdp
[Baxter et al., 2001]. Given an appropriate choice of the learning rate parameter, this algorithm
is guaranteed to converge toward a locally optimal policy.
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Reinforcement learning as classification In Section 2.1.2, we introduced the classification
problem. Classification can be easily understood in the context of policies: the aim of a policy is
to choose one action among a set of possible actions given a particular state, while classifiers aims
at choosing one class among a set of possible classes given a particular input object. This parallel
has led to the development of reinforcement learning algorithms that train a policy represented
by a classifier [Lagoudakis et Parr, 2003]. This approach is directly related to the policy learning
problem: a classification error correspond to an error of the policy. This strong relation makes
it possible to relate the performance of the classifier to the reinforcement learning performance
[Langford et Zadrozny, 2005], which was unfeasible with the regression approach.

Reinforcement learning as classification algorithms essentially follow the batch-training sketch
given above. The main difficulty is that, in step (1), we have to create classification training
examples. [Lagoudakis et Parr, 2003] proposed to determine the good action for a given state by
using rollouts [Bertsekas, 1999]. Given a policy π and a state s, a rollout is a run of π, starting Rollouts

from s with a maximum number of steps Tmax. Rollouts are used to estimate empirically the
state-value Vπ(s) by averaging the sum of rewards perceived over multiple runs. Formally, given
the γ-discounted reward criterion, the state-values are approximated the following way:

Vπ(s)
approx

=
1
K

K∑
k=1

Tmax∑
t=0

γtr(st,at) | π, s0 = s

In order to create a classification example for a given state s, the Qπ(s,a) values are estimated
for all possible actions by using rollouts. These estimated values are then use to determine if
one action clearly is better than the others. If this is the case, a classification example can be
created with this good action. A particularly interesting case with rollouts is deterministic MDPs
(such as the grid-world). With deterministic transitions, a policy will always behave the same
way when started from the same state. Therefore, only one rollout (K = 1) is enough to exactly
compute Vπ(s)15. In deterministic MDPs, rollouts can thus be used with a relatively small cost.

2.2.5 Summary

In this section, we introduced Sequential Decision Making (SDM) problems that involve an
agent interacting with an environment. Such environments where formalized as Markov Decision
Processes (MDPs). An MDP is composed of a state-space, an action-space, a transition function
and a reward function. At a given time step t, the agent perceives the current state of the
MDP st and it has to choose between multiple possible actions Ast. Once an action at has been
chosen, the environment goes into a new state st+1 sampled from a distribution P (st+1|st,at)
and it generates a reward r(st,at). The aim of the agent is to choose actions in order to maximize
a long-term sum of rewards. Common definitions of this long-term sum of rewards include the
total reward, the γ-discounted reward and the average reward.

Given an MDP, the agent’s behavior is described by its policy, which is a function that
maps states to actions. The SDM problem consists in finding an optimal policy: a policy that
maximizes the long-term reward. Most SDM methods make use of state-value and action-value
functions. A state-value function (or V-function) reflects how desirable it is to be in a given
state. An action-value function (or Q-function) reflects how desirable it is to choose an action in
a given state. Given a state-value or an action-value, we can define greedy policies that always
select the best scored actions. A fundamental property of these functions is that, for a given
MDP, there is a unique optimal state-value function and a unique optimal action-value that are
shared by all the optimal policies.

15Assuming that the Tmax value is big enough.
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Finding an optimal policy, when the transition and reward functions of the MDP are unknown,
is called a reinforcement-learning problem. In such problems, agents have to continuously make
a trade-off between exploiting their current knowledge and exploring new behaviors that may
eventually lead to more reward. This is called the exploration/exploitation dilemma and various
strategies to make the trade-off have been proposed. An example of such strategies is the ε-greedy
policy, which, from time to time, selects a random action to enforce exploration.

Qlearning is a central algorithm of reinforcement learning, which aims at iteratively estimat-
ing the optimal Q-function. Therefore, it stores one Q-value per state-action pair and computes
these values by visiting each state-action pair several times. Most classical reinforcement-learning
algorithms store one value of the V-function (resp. Q-function) per possible state (resp. state-
action pair) in a table.

Storing V-functions or Q-functions explicitly in a table is reasonable for small MDPs, e.g. less
than 106 possible states. However, many MDPs, including those discussed in this manuscript,
have much larger state-spaces. Using tables to store value functions becomes then quickly in-
tractable. A key idea to handle very large MDPs, is to replace the explicit table representation by
an implicit representation encoded by a learning machine. Using SL techniques to approximately
store and learn policies is the essence of approximated reinforcement learning. We overviewed
three approaches to perform approximated reinforcement learning: value-based reinforcement
learning, policy gradient algorithms and reinforcement learning as classification.
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S
upervised Learning focuses on learning a function given a set of input-output examples. A
lot of models have been proposed mainly for continuous outputs (i.e. regression) or discrete

outputs (i.e. classification). Though most Machine Learning (ML) work focuses on regression
and classification, in many different fields such as biology, natural language processing, image
processing or chemistry, data may be naturally described as structured objects like sequences,
trees, lattices or graphs. This data, which does not fit in the classical learning frameworks, has
recently witnessed a surge of interest in the ML community. Supervised learning problem where
the outputs are structured objects is known as learning with structured outputs or mort shortly
Structured Prediction (SP). Structured Prediction has a lot of real-world applications, including
prediction of protein structure in bio-informatics, image understanding, speech processing, hand-
writing recognition and several natural language processing tasks such as part-of-speech tagging,
named entity extraction, sentence parsing or automatic translation.

This chapter introduces the SP problem and makes an overview of existing methods to solve
this problem. We first introduce SP formally and illustrate it with various traditional problems in
Section 3.1. We will show that the main challenges of SP come from the combinatorial nature of
the problem. The need for search in SP has been tackled in two different ways that we contrast in
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our overview of state-of-the-art. The first approach relies on a global combinatorial optimization
(Section 3.2) while the second approach uses greedy search (Section 3.3).

3.1 Predicting Structured Objects

Many learning problems of the real world naturally express themselves with more complex out-
puts than discrete classes or simple scalars. Prediction problem with complex outputs such as
sequences, trees, graphs or lattices are known as Structured Prediction (SP) problems. We adopt
a general definition of SP as a supervised learning problem, where the goal is to learn a mapping
from inputs x ∈ X to outputs y ∈ Yx. The outputs are discrete structured objects, such as
sequences, trees or graphs. X is the set of all possible inputs and Yx is the set of candidate
outputs for a given input x. We denote by Y = ∪x∈XYx the full output space.

For learning, the user supplies a set of examples D = {(x(i),y(i))}i∈[1,n]. These examples are
supposed to be independently and identically sampled from an unknown distribution DX×Y . In
order to evaluate the quality of a prediction, we use a loss function ∆(ŷ,y), which quantifies
how bad it is to predict ŷ instead of y. Given D and ∆(., .), the aim is to learn a model that
is able to predict outputs for any new input x ∈ X . SP learning methods try to find the model
that minimizes the expected loss values between predicted and correct outputs.

3.1.1 Examples of SP tasks

Sequence labeling is the generic task of assigning labels to the elements of a sequence. This taskSequence Labeling

corresponds to a wide range of real-world problems. For example, in the field of Natural Language
Processing (NLP), part of speech tagging consists in labeling the words of a sentence as nouns,
verbs, adjectives, adverbs, etc. Other examples in NLP include: chunking sentences, identifying
sub-structures, extracting named entities, etc. Information extraction systems can also be based
on sequence labeling models. For example, one could identify relevant and irrelevant words in
a text for a query need. Sequence labeling also arises in a variety of other fields (character
recognition, user modeling, bioinformatics, ...). See [Dietterich, 2002] for an exhaustive overview
of sequence labeling applications.

In sequence labeling, an input x ∈ X is a sequence of elements (x1, . . . ,xT ) and an output
y ∈ Y is the corresponding sequence of labels (y1, . . . ,yT ), where each yt is the label that
corresponds to element xt. The labels belong to a predefined application-dependent dictionary
denoted L.

Figure 3.1: Sequence labeling: handwritten recognition.
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Figure 3.1 illustrates one application of sequence labeling: handwritten characters recognition.
In this application, inputs are sequences of handwritten characters (e.g. gray-scale bitmaps) and
outputs are sequences of labels identifying recognized characters. The set of possible labels is
the 26-letters alphabet: L = {A, . . . , Z}.

In order to perform handwritten recognition, one could simply ignore the output structure by
treating each letter independently with a traditional multi-class classifier. However, this is not
very convincing because we ignore structural information that may help for better predictions. In
our example, the letters U and R are mostly hidden. If we remove the entire neighboring context,
recognizing them seems very hard. However, given the context – predictions on other letters: the
word begins with STRUCT and finishes with E – predicting the missing letters seems much more
easy. Handwritten recognition is an example of collective classification: the aim is to solve a set Collective

classificationof interdependent classification problems. Such dependencies legitimate SP approaches, which
work at the level of the complete structured objects.

In order to cast sequence labeling in the framework of SP, we must select a loss function Loss Functions

that measures the quality of predictions. A common loss function for sequence labeling is the
Hamming Loss, which simply counts the number of wrong predicted labels:

∆hamming(ŷ,y) = card({i ∈ [1, T ], ŷi 6= yi})

Depending on the applications, other loss function may be used. Such loss function may for
example put more focus on particular labels or particular elements of the sequence.

Figure 3.2: SP example: Text Chunking.

Figure 3.2 illustrates text chunking1, which consists of dividing a text in syntactically cor- Chunking

related parts of words. In order to evaluate a particular chunker, the F1 score is usually used.
This score is the geometric mean between the precision and the recall of the predicted chunks
[van Rijsbergen, 2001]. When applying SP methods on text chunking, we can directly incorpo-
rate this quality measure into the loss function ∆(., .). Note that this loss function, contrary to
the Hamming loss, is not additively decomposable onto the predicted elements.

Another kind of natural language analysis is the dependency-parsing task, which is illustrated Dependency Parsing

in Figure 3.3. Here, inputs are sentences (i.e. sequence of words) that may be enriched thanks
to pre-processing and outputs are dependency trees. For each word, there is one arc in the
dependency tree. Each arc is labeled (e.g. body, subject, ...) and linked to a predecessor word.

A well-known problem where SP may be applied is the machine translation task. Machine Machine Translation

translation may be formalized in several different ways. Figure 3.4 illustrates phrase-based
translation2, where both the input and the output are segmented sentences.

Document engineering is another field that offers several applications that fit in the SP Structure Mapping

framework. Figure 3.5 introduces the structure mapping problem: mapping an input tree de-
scribing a document (an HTML page) onto an enriched structured representation of the same

1example from http://www.cnts.ua.ac.be/conll2000/chunking/
2example from www.iccs.inf.ed.ac.uk/~pkoehn/publications/tutorial2003.pdf

http://www.cnts.ua.ac.be/conll2000/chunking/
www.iccs.inf.ed.ac.uk/~pkoehn/publications/tutorial2003.pdf
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Figure 3.3: SP example: Dependency Parsing.

Figure 3.4: SP example: Phrase-based Machine Translation.

data (an XML tree with a specific Document Type Definition (DTD) for example). In structure
mapping, the output structure is not known in advance. Constructing the output trees involves
both to find their structure and to decide the labels of each node.

Another popular application where SP may be applied is the document annotation task.Document
Annotation This task, illustrated in Figure 3.6, aims at predicting the structure of a document available as

an image. This can be seen as an SP task where the outputs are tree-structured layout and
content information.

Beside these few popular examples, SP has several other applications in various fields such
as bio-informatics or image processing.

3.1.2 Inference and Training

In order to properly treat the characteristics of the output space, SP methods work at the level
of the structured outputs. SP can be seen as a classification problem where each possible output
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Figure 3.5: SP example: HTML to XML structure mapping.

Figure 3.6: SP example: Document Annotation.

is a possible class. But, compared to traditional multi-class classification, the number of possible
outputs grows, in general, exponentially in the size of the objects for most structured objects.
For example, in handwritten character recognition with a 26-letters alphabet, the number of
possible outputs of size n is 26n.
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In the following, we discuss SP models that are parameterized by a vector θ ∈ Rd and we
denote fθ the prediction function corresponding to parameters θ. Two problems have to be
solved in SP:

• Inference: Given the parameters θ and an input x, the inference consists in selecting an
output ŷ = fθ(x) among all candidates Yx. The main challenges of inference are related
to the combinatorial nature of the output space.

• Training: Given the set of examples D and the loss function ∆, the aim of training is to
find the parameters θ that will lead to a good inference function. Ideally, we would like to
minimize the expected risk, which is defined as follows:

θ∗ = argmin
θ∈Rd

Ex,y∼DX×Y{∆(fθ(x),y)}

Since the distribution DX×Y is unknown, the expected risk cannot be computed and one
usually minimizes the empirical risk3 [Vapnik, 1995]:

θ∗ = argmin
θ∈Rd

1
N

∑
(x,y∗)∈D

∆(ŷ = fθ(x),y)

A common aspect of all SP methods is that the inference function is launched several times
in order to perform training. The intractability of the inference thus systematically leads to the
intractability of training.

In the two following sections, we give an overview of the field of Structured Prediction.
The apparition of general SP models is relatively recent. Previously, many ad-hoc solutions
have been proposed on some instances of the SP problem such as sequence labeling, sequence
chunking or natural language parsing. Well-known examples of early work dealing with structure
include the Hidden Markov Models [Rabiner, 1990] [Cappé, 2001] for modeling sequences and the
Probabilistic Context Free Grammar [Johnson, 1998] for modeling syntax trees. In the following,
we only focus on structure independent SP models: those that are not restricted to a particular
kind of data.

3.2 Overview of Global Models

One of the first ideas of SP was to generalize existing classification methods to structured out-
puts. The main difficulty to generalize classification is related to the exponential number of
possible outputs w.r.t. the size of the data. Inference in the methods presented below is a global
combinatorial optimization problem.

3.2.1 Principle

We introduce here the common concepts underlying global methods.
Several methods have been proposed which are based on a compatibility function F (x,y; θ)Compatibility

functions that measures how good the output y is, given an input x. A simple and common choice for the
function F is to use a linear function:

F (x,y; θ) = 〈θ, φ(x,y)〉

where 〈., .〉 denotes the scalar product and φ is an input-output joint description function.
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In order to assign scores to candidate outputs, the global methods make use of input-output Joint descriptions

joint feature functions φ(., .). Such functions jointly describe an input x and a corresponding
candidate output y as a vector in Rd. Such vectors are usually called feature vectors. A feature
is a function that describes one aspect of the input-output pair as a scalar. For example, in the
natural language parsing domain, the feature function illustrated in Figure 3.7 has one feature
per production rule. Each of these features corresponds to the number of times a rule is expressed
in the input-output pair4.

Figure 3.7: Features example: Text Parsing.

Given the compatibility function F (., .), inference consists in finding the output, which has Inference

the best compatibility with the specified input:

fθ(x) = argmax
y∈Yx

F (x,y; θ) (3.1)

The global methods assume that this equation can be solved efficiently. The way this combi-
natorial search problem is tackled depends on the properties of the feature function φ(., .) and
on the output space Y. Usually, global models require that the functions φ(., .) and ∆(., .) both
decompose additively over the structure elements. Such decomposable functions make it possible
to use dynamic-programming based inference. Other kind of search algorithms may also be used,
such as graph-cut algorithms or approximate inference algorithms.

Global models differ in the meaning that is associated to the compatibility function and in Training

the way they learn the θ parameters. We review below the most-known training methods for
global models.

3.2.2 Structured Perceptron

The Structured Perceptron [Collins, 2002] is a generalization of the classical Perceptron, which
was first applied to natural language parsing.

Training is described in Algorithm 3. The principle is very similar to training in the classical
Perceptron. For a given input x(i), we predict the output ŷ = fθ(x(i)) (line 4). If this output

3or some regularized empirical risk.
4Example from [Tsochantaridis et al., 2004]
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Algorithm 3 Structured Perceptron training algorithm.
Require: a training set D

1: θ ← 0
2: while training do
3: for i = 1 to card(D) do
4: ŷ = argmaxy∈Y

〈
θ, φ(x(i),y)

〉
5: if ŷ 6= y(i) then
6: θ ← θ + φ(x(i),y(i))− φ(x(i), ŷ)
7: end if
8: end for
9: end while

is the correct one, we continue with the next example. Otherwise, we update to the parameters
vector (line 6) to enforce the correct output and reduce the (wrong) predicted output. Several
runs over the training datasets are performed until the convergence of θ. In the Structured
Perceptron, no special meaning is given to the parameters vector, except the requirement that
the correct output should have higher scores than wrong outputs.

This algorithm has one advantage: its simplicity. However, it does not take into account
the loss function ∆ and considers implicitly a 0/1 loss: 0 for the correct output, 1 for all other
possible outputs.

3.2.3 Conditional Random Fields

Conditional Random Fields (Crfs) [Lafferty et al., 2001, Wallach, 2004] use a log-linear proba-
bility function to model the conditional probability of an output y given an input x:

p(y|x, θ) =
1

Zθ(x)
exp 〈θ, φ(x,y)〉

This form of probability distribution is motivated by the formalism of Markov Random Fields,
which are graphical models where nodes are random variables and edges indicate dependencies
between those variables. The outputs y are seen as sets of random variables (y1, . . . , yn) and the
graphical model defines a probability distribution that decomposes over a set of cliques C:

p(y|x, θ) =
1

Zθ(x)
exp Σc∈C 〈θc, φc(x,y)〉

where θc is the part of the parameters corresponding to the clique c and φc is a joint description of
the input and the variables forming clique c. This decomposition of the probability distribution
is intended to make training and inference tractable. Training works by finding the parame-
ters θ that maximize the conditional likelihood of the outputs given the inputs [S. et A, 1985]
[Berger et al., 1996]. Inference involves searching to output with highest probability, given the
input. Note that finding the maximum of p(y|x, θ) is equivalent to finding the maximum of
〈θ, φ(x,y)〉, e.g. Equation 3.1. Similarly to the other methods presented in this section, we
assume to have access to an efficient solver of this equation. In the case of linear-chain Crfs,
that model sequences with a Markov assumption, the model is close to the traditional HMMs
and inference can be solved exactly using the Viterbi algorithm.

A large amount of work has been spent on training methods for Crfs. Initially the focus was
on batch methods such as iterative scaling [Lafferty et al., 2001], BFGS [Sha et Pereira, 2003], or
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conjugate gradient descent [Wallach, 2002]. More recently, it has been shown that Crfs can effi-
ciently be trained with online methods including stochastic meta-descent [Schraudolph et Graepel, 2003,
Vishwanathan et al., 2006] and exponentiated gradient [Globerson et al., 2007]. In order to deal
with many potential features, [Dietterich et al., 2004] discuss the use of regression tree in order
to represent the clique potentials and propose to use boosting for training. [Liao et al., 2007]
also introduce boosting in the context of Crfs in order to simultaneously perform training
and feature selection. Apart from training, it has also be shown that Crfs can be kernerlized
[Lafferty et al., 2004].

3.2.4 Large margin methods

Several methods extending the ideas of Support Vector Machines to SP have been proposed.
SVM for Interdependent and Structured Output spaces (SvmIso, also known as SVMstruct)
[Tsochantaridis et al., 2004] [Tsochantaridis et al., 2005] is a generalization of maximum margin
multi-class classification [Mayoraz et Alpaydin, 1998] to structured outputs. Maximum Margin
Markov Network (M3N) [Taskar et al., 2003] is another well known SP model which relies on
margin maximization. Both methods try to maximize the margin between correct and wrong
outputs. This margin is defined the following way:

m(x(i),y(i),y; θ) =
〈
θ, φ(x(i),y(i))

〉
︸ ︷︷ ︸

score of the correct output

−
〈
θ, φ(x(i),y)

〉
︸ ︷︷ ︸

score of an incorrect output y

Note that this margin can be rewritten as a dot product 〈θ,Φi(y)〉 with Φi(y) = φ(x(i),y(i))−
φ(x(i),y).

The aim of learning is to find parameters θ that lead to high margins for high loss values.
The two methods differ in the way they generalize the max-margin principle and in how they
handle the potentially exponential number of constraints of the quadratic programming problem
they solve.

The loss function is introduced with a slack rescaling approach in SvmIso, which solves the SVM-ISO

following problem:

∀i, 〈θ,Φi(y)〉 > 1− ξi
∆(y,y(i))

where the ξi are slack variables, similar to those of the traditional SVMs. This approach allows∑
ξi to be interpreted as an upper bound on the empirical risk. In order to solve the quadratic

problem, which has an exponential number of constraints, the authors propose to find an approx-
imate solution, using only a small number of significant constraints. An extension of SvmIso to
semi-supervised learning problems is presented in [Brefeld et Scheffer, 2006].

M3N introduces the loss function with a margin rescaling approach: M3N

∀i, 〈θ,Φi(y)〉 > ∆(y,y(i))− ξi

In the initial paper describing M3N, the author proposed an adaptation of the SMO algorithm
[Platt, 1999] in order to solve the quadratic program. Several more efficient algorithms have been
proposed in the following, such as exponentiated gradient [Bartlett et al., 2004], extra-gradient
[Taskar et al., 2005], dual extra-gradient [Taskar et al., 2006] or sub-gradient [Ratliff et al., 2006a]
methods.
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3.2.5 Discussion

All global models assume that inference (Equation 3.1) can be solved efficiently. This optimiza-
tion step, which is involved in both learning and inference, has mostly been tackled with dynamic
programming techniques. This has multiple major drawbacks:

• Dynamic programming requires strong independence assumptions on the feature function.
For example, in sequence labeling, it is often assumed that a label only interacts with the
previous and next labels. This disables the use of feature functions that captures long-term
or global dependencies in the output.

• The use of dynamic programming generally restricts the training methods to decomposable
loss functions. Such loss function can be written as sums over a set of sub-structures of
the output. However, as shown in Section 3.1.1, this restricting assumption is violated in
many tasks.

• The inference algorithm entirely depends on the structure of the outputs and on the as-
sumptions that are made in the loss and feature functions. There is thus a high adaptation
cost of the global methods from one SP task to another. In order to apply a given global
method to a new SP task, one often needs to fully rewrite an appropriated optimization
method. In practice this requires an advanced knowledge of optimization methods and
good implementation skills.

• Even with independence assumptions, dynamic programming algorithms may have a pro-
hibitive complexity. For example, when predicting trees, the best dynamic programming
algorithms have a cubic complexity in the number of leaf nodes. This limits the use of such
methods to small trees, e.g. less than 50 nodes. Some domains, such as HTML to XML
conversion, deal with trees containing thousands of nodes, which make the use of dynamic
programming unrealistic.

In summary, the family of global methods is constructed on task dependents inference pro-
cedures. For many applications, solving Equation 3.1 is unrealistic, in particular in the presence
of large-scale collections or complicated structured output. In order to circumvent this bottle-
neck, some approximate inference algorithms have been proposed, but the way approximation
in inference interacts with learning is far from being clear [Kulesza et Pereira, 2008]. The next
section presents a new family of methods that avoid the need to solve Equation 3.1.

3.3 Overview of Incremental Models

A key difficulty when dealing with SP is the combinatorial nature of the output space. In order
to break this complexity, global SP models usually make simplifying assumptions on the nature
of the dependencies or on the loss functions used for training. Even though, many models are
often restricted to problems with limited complexity and they do not scale, neither for inference
nor for learning, with large datasets. We introduce here a new family of methods for SP that has
specially been designed to complex cases where global models fail. Much less work exists in the
literature on incremental models than on global ones. However, since CR-algorithms are closely
related to following methods, we provide a detailed description of them.

3.3.1 Principle

A new vision of the SP process has been recently proposed where SP inference is considered
as a sequential decision problem. Instead of modeling what a good output looks like and then



3.3 Overview of Incremental Models 61

searching for the best output, these methods directly model how to build the good output. This
simple idea suggests thus to integrate learning and searching into a sequential prediction process.

Figure 3.8: Incremental Structured Prediction for Sequence Labeling. Given an input,
inference consists in constructing the output incrementally. The prediction space is the set of
states in which inference can be during this construction process.

For this approach, illustrated in Figure 3.8, the structured output is built incrementally:
components are added one at a time to a current partial output. Inference then consists in
exploring a search space defined by states (partial outputs) and actions (choosing a component
to be added to the current state) until a complete output is built. Going back to Figure 3.1,
decisions for the sequence-labeling example would simply consist in choosing the correct label
for each input character. For other examples, decisions may correspond to node creations,
displacements or deletions in trees and graphs, and labeling and link creation/deletion in graphs.

Incremental models share the very nice property to have very fast inference functions. Most Inference

of them perform inference in a purely greedy fashion with the method depicted in Algorithm 4.
This algorithm works the following way: start with an initial partial output ε (line 1). While
the current partial output is not complete (line 2), enumerate all partial outputs that we can
reach in one elementary step by modifying the current partial output (line 3). For each of those
new partial outputs, compute a score reflecting its quality. Then, choose and continue with the
best-scored partial output (line 4). These decision steps are repeated until a complete output is
built.

Algorithm 4 Greedy inference algorithm.
Require: an input x
Require: the parameters vector θ.

1: ȳ← ε
2: while not IsOutputComplete(ȳ) do
3: nexts ← Successors(ȳ)
4: ȳ← argmaxȳ′∈nexts 〈θ, φ(x, ȳ′)〉
5: end while
6: return ȳ

The complexity of greedy inference is O(T.s) where T is the number of steps required to build
a complete output and s is the number of successors at each step. Compared to all dynamic-
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programming based methods, this complexity is very low. For example, when dealing with trees,
each single step adds one node to the tree: the inference is (only) linear in the number of nodes.

Figure 3.9: Features example: Text Parsing with a partial output.

As previously, incremental models rely on feature functions φ(., .). The descriptions that arePartial outputs
description used in incremental SP are more general than those of global models: instead of describing input-

output pairs, they focus on input-partial output pairs. As an example, Figure 3.9 illustrates how
the joint-description of Figure 3.7 is augmented to handle partial outputs. The new features,
related to the incompleteness of the output, are shown in red.

3.3.2 Incremental Parsing

Incremental Parsing [Collins et Roark, 2004] is one of the first models using the idea of incre-
mental prediction. This model was introduced in the context of natural language parsing, where
inputs are sequences of words and outputs are parse trees.

As most incremental SP methods, Incremental Parsing uses the greedy inference functionInference

given in Algorithm 4. Incremental Parsing is built around a Perceptron, which assigns ranking
scores to partial outputs.

Training repeats the following process: run the inference function until a wrong decisionTraining

happens, stop inference and make an elementary correction of the Perceptron:

θ ← θ + φ(x(i), ȳ(i))− φ(x(i), ȳ)

where ȳ(i) is the correct partial output and ȳ is the predicted partial output. Incremental Parsing
does not take the loss function ∆ into account and implicitly considers a 0/1 loss.

3.3.3 Learning as Search Optimisation

Incremental prediction was popularized by the Learning as Search Optimization (LaSO) algo-
rithm [Daumé III et Marcu, 2005], which is probably the first general Incremental SP model.
The authors propose to perform inference with the beam-search function given in Algorithm 5.
This beam-search algorithm considers multiple partial outputs simultaneously thanks to a queue
of partial outputs that are scored by a Perceptron.
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Algorithm 5 Beam-search inference algorithm
Require: an input x
Require: the parameters vector θ
Require: a beam size B.

1: partialOutputs ← MakeQueue(ε)
2: while partialOutputs 6= ∅ do
3: ȳ← RemoveFront(partialSolutions)
4: if IsOutputComplete(ȳ) then
5: return ȳ
6: end if
7: nexts ← Successors(ȳ)
8: for each ȳ′ ∈ nexts do
9: score ← 〈θ, φ(x, ȳ′)〉

10: Insert(partialOutputs, ȳ′, score)
11: end for
12: KeepBestElements(partialOutputs, B)
13: end while
14: return failure

The algorithm first initializes the partial outputs queue with the singleton containing the Inference

initial partial output (line 1). The algorithm then repeats the following steps until the partialOut-
puts queue is empty (line 2–13). Pop the best-scored partial output from the queue (line 3). If
this is a complete output, return it to the user (line 4–6). Otherwise, enumerate the successors
of the current partial output (line 7), compute scores for each of them (line 9) and insert them
in the queue (line 10). Once the new partial outputs are in the new queue, the algorithm only
keeps the B best-scored partial outputs (line 12), where B is the beam-search size parameter.

The parameter B gives a direct control the complexity of the algorithm. Two values of this
parameter are of particular interest: B = 1 and B = +∞. With a beam-size of one, the beam-
search inference algorithm is equivalent to the purely greedy inference algorithm (Algorithm 4).
With an infinite beam-size, the algorithm performs exhaustive search – which, in practice, is
most of time intractable.

Training in LaSO relies on the concept of y-good partial outputs: the partial outputs from Training

which we can reach the correct output. The aim of training is to always have at least one y-good
node in the partial outputs queue. Furthermore, the first complete output in the queue should
be the correct output. An error is said to occur each time that one of these two conditions are
violated.

The training algorithm of LaSO is given in Algorithm 6. The main idea is to launch the
inference procedure until an error occurs. For each error, a correction is applied to the parameters,
the error is corrected and the inference continues. The authors propose a Perceptron-like update
rule:

∆ =
∑

ȳ′∈Sibs(ȳ)

φ(x, ȳ′)
card(Sibs(ȳ))

−
∑

ȳ′∈partialOutputs

φ(x, ȳ′)
card(partialOutputs)

where Sibs(ȳ) is the set of successors of ȳ that are y-good. This rule enforces the scores of
the y-good nodes and reduces the scores of the nodes that caused the error. The authors also
propose an approximate large-margin update adapted from [Crammer et Singer, 2003]. Training
in LaSO does not take the SP loss function into account and implicitly considers a 0/1 loss.
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Algorithm 6 LaSO training algorithm
Require: a training set D
Require: a beam size B

1: while training do
2: θ ← 0
3: (x,y)← PickAnExample(D)
4: while inference is not finished do
5: RunInferenceUntilAnErrorOccur(x, θ, B,y)
6: θ ← θ + ∆
7: end while
8: end while
9: return θ

3.3.4 Searn

Searn (contraction of Search-Learn) [Daumé III et al., 2006] is another general Incremental SP
model developed later. In Searn, SP is reduced to multi-class cost-sensitive classification. Each
decision-making step is seen as a classification problem, with one class per possible successor.
This classification problem can be solved with a classifier of any type (e.g. Support Vector
Machines or Decision Trees).

The inference algorithm of Searn is the greedy algorithm (Algorithm 4), where the choiceInference

of the best successor (line 4) is replaced by the classifier decision function.
The aim of Searn is to learn a policy (see Section 2.2). In the context of SP, a policyTraining

is a decision function to choose between successor partial outputs. Searn uses three kinds of
policies:

• Training policies. In order to perform training, Searn assumes that we know an optimal
training policy π∗. For any training input and any partial output, this policy computes:

– The best(s) successor(s) to choose, i.e. the successor from which we can reach the
lowest ∆ values.

– The regret associated to each decision, i.e. the difference between the lowest ∆ that
we can reach before and after the decision.

The optimal training policy is only defined for training examples and can make use of
the correct outputs. For example, in sequence labeling with Hamming loss, the optimal
training policy acts the following way:

– Whatever the partial output sequence is, choose the next label given by the correct
output.

– The regrets are zero for correct labels and one for other labels, since incorrect label
increase the Hamming loss by one.

• Classifier-based policies. Any multi-class classifier can be seen as a policy, with one
class per possible successor partial output. The aim of Searn is to learn a classifier-based
policy that performs well on the SP task.

• Mixture policies. The mixture of two policies π1 and π2 samples between decisions from
π1 and decisions from π2:

Mixtureπ1,π2,p(x, ȳ) =

{
π1(x, ȳ), with probability p
π2(x, ȳ), otherwise
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Searn can be though as a case of imitation learning. Given an optimal training policy
that is only defined over the training examples, Searn tries to reach a fully learned policy (i.e.
a classifier) able to generalize over unseen examples. Searn uses an iterative batch-learning
approach, which is depicted in Algorithm 7. Each training iteration has three steps: it runs
the inference function for all training examples (line 5), it creates a cost-sensitive classification
dataset (line 6–12) and updates the current policy (line 14–15).

Algorithm 7 Searn training algorithm
Require: a training set D
Require: an optimal training policy π∗

1: π ← π∗ . Start with the optimal training policy
2: while training do
3: Dclassif ← ∅
4: for (x,y) ∈ D do
5: trajectory ← RunInference(x, π) . Run inference
6: for ȳ ∈ trajectory do . Create classification examples
7: example ← Create a cost-sensitive multi-class example where
8: input = φ(x, ȳ),
9: classes = Successors(ȳ),

10: costs = regrets computed with π∗

11: Dclassif ← Dclassif ∪ example
12: end for
13: end for
14: π′ ← TrainClassifier(Dclassif ) . Train a new classifier
15: π ← Mixture(π, π′) . Mix the new and old policies
16: end while
17: return π \ π∗ . Remove influence of the optimal training policy

At the core of training, Searn simulates inference with the current policy π (line 5). Inference Inference Simulation

returns a trajectory containing the sequence of partial outputs that were explored.
For each partial output that has been visited during inference, one multi-class classification Reduction to

classificationexample is created (line 7–10). This example has one class per possible successor of the partial
output. The cost of predicting each of the possible classes is linked to the regrets computed by
the optimal training policy. In order words, the more a classification error reduces our hope to
reach low ∆ values, the more this error should be penalized.

Once a full classification dataset has been built, a new classifier is learned (line 14). This new Policy update

classifier could directly be used at the next iteration, however for convergence and theoretical
issues it is preferable to mix it with the previous policy (line 15), as shown by Conservative Policy
Iteration reinforcement-learning algorithm [Kakade et Langford, 2002]. In Searn, the authors
propose to choose the mixture coefficient with line-search on a validation dataset.

At its first iteration, Searn performs inference with the training optimal policy. This cor-
responds to an ideal case, where only correct decisions are performed. The following iterations
then progressively move away from the training optimal policy to a fully learned policy. After
convergence, only the learned part of the policy is kept (line 17).

Searn has been applied to a wide variety of SP tasks and is considered as a state-of-the-art
SP method.
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3.3.5 Discussion

Incremental models have been developed in order to deal with hard SP problems, when solving
Equation 3.1 is intractable. Instead of searching among all possible outputs, they make use of
greedy inference. Hence, these methods can cope with arbitrary complex structures, arbitrary
dependencies in the joint feature function and any loss function. They can be applied both for
large-size problems and for complex dependencies.

However, greedy inference may lead to sub-optimal solutions. For example, when facing local
ambiguities, taking an immediate decision is certainly not the good thing to do. Instead, in such
cases, global methods explicitly search for the best compromise between all possible solutions.

Furthermore, Incremental Parsing, LaSO and Searn make strong assumptions on the avail-
ability of supervision information:

• Incremental Parsing and LaSO assume that we know the Optimal Learning Trajectories
(OLTs): the set of partial outputs that can lead to the correct outputs (i.e. the set of
y-good nodes).

• Search assumes that we have access to the Optimal Learning Policy (OLP) which an even
stronger assumption: for any partial output (that may contain several errors) the optimal
learning policy always knows how to choose the best successor.

In some simple SP tasks, the OLTs and the OLP can be computed trivially in O(1). This
is the case for sequence labeling, where, whatever the current partial output is, the best thing
to do is to select a correct label. In some other tasks, such as the tree transformation described
in XX, OLTs and OLPs computation is a non-trivial or even intractable combinatorial search
problem. In particular, computing the OLP means solving the following equation:

π∗(ȳ) = argmin
ȳ′∈Successors(ȳ)

{ min
y∈R(ȳ′)

∆(y, y∗)}

where R(s) ⊂ Y is the set of reachable outputs when starting from ȳ. In cases where the OLP
is not trivially computed, a possibility is to directly solve the search problem given above. This
is the solution proposed in [Daumé III et al., 2006] where the authors use a greedy beam-search
algorithm for finding an approximate OLP for automatic summarization. However, there are
problems where this combinatorial problem can still be too complex.

In summary, the idea of incremental SP is attracting to solve complex SP problems, but suffer
from two drawbacks in its current state: the potential sub-optimality of greedy inference and the
need for strong supervision assumptions.

3.4 Conclusion

In this chapter, we have introduced the Structured Prediction (SP) problem. SP problems are
learning problems where both the input and output objects have an arbitrary structure (e.g.
sequences, trees, graphs, or lattices). We have detailed on instance of SP: the sequence-labeling
task. We have also illustrated the diversity of SP tasks with several examples coming from the
natural language processing and document processing fields. We have discussed the two problems
of SP: inference (predicting an output given a new input) and training (learning the model given
a set of input-output examples).

The remainder of the chapter was an overview of the existing SP models. We have dis-
tinguished two families of methods: the global methods and the incremental methods. Global



3.4 Conclusion 67

methods, including structured Perceptron, Crfs, M3N and SvmIso, rely on the fundamental
assumption that we are able to solve the following combinatorial search problem:

fθ(x) = argmax
y∈Yx

〈φ(x,y), θ〉

In many applications, solving this search problem is a serious bottleneck, limits the model to
small data or imposes restricting assumptions on the description and loss functions.

Instead of modeling what a good output looks like and then searching for the best output,
the incremental methods directly model how to build the good output. Inference is seen as a
sequential decision problem. In order to make a prediction, we start with an empty output
and grow it incrementally by taking a sequence of construction decisions. We have introduced
Incremental Parsing, LaSO and Searn and discussed the assumptions (Optimal Learning Tra-
jectories and Optimal Learning Policy) on which these methods rely. The incremental models
have many advantages over global ones, however, when facing local ambiguities, they may suffer
from prediction errors due to their greedy inference.

In our overview, we did not detail some particular SP models that are beyond the cope
of our work. Let us just cite the work of [Titov et Henderson, 2007], which propose the use
of incremental Bayesian network to solve SP. The factor graphs models also deal with some
SP problems [Abbeel et al., 2006]. We also skipped the kernel dependency estimation model
[Weston et al., 2002] were SP is seen as a multi-dimensional regression problem, where both the
input space and the output space are kernelized.

In the following chapter, we introduce a new framework for Incremental SP. The two next
chapters illustrate our approach experimentally. We first focus on the sequence labeling task
introduced in Section 3.1.1. This task, which is probably the simplest one exhibiting a non-trivial
structure, allows extensive experiments and comparisons with state-of-the-art work. We show
how CR-algorithm can be used to label sequences and discuss the links between our approach
and other incremental models. We will show that CR-algorithms profits from all advantages
of the incremental approach, while offering multiples ways to bypass the disadvantages of pure
greedy inference method. The following chapter will then show the application of CR-algorithms
to hard, large-scale real-world SP problems.
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S tructured prediction often involves very large search spaces and intensively relies on combi-
natorial search. A possible approach to solve hard SP problems is to make use of greedy

approximate inference. Since greedy optimization may lead to sub-optimal solutions this raises
a fundamental question. Do we want to learn a model to accurately describe how good it is to
predict y for the given input x? Or, instead, do we want to learn a model on which our greedy
inference procedure gives good outputs? The work of [Wainwright, 2006] suggests that opti-
mal performance is obtained when the methods used for training and testing are appropriately
aligned, even if those methods are not independently optimal. For two different inference pro-
cedures that solve the same problem, we should learn two different functions that help inference
to perform well in each case.

In SP, the characteristics of the inference procedure should be taken into account during
learning. In order to reach good quality predictions, the central idea of our work is to directly
learn the behavior of the inference procedure. We formalize inference procedures as sequential
decision making (SDM) problems and investigate the use of SDM learning methods to learn the
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inference behavior. The central aspect of our work is the idea of learning the inference procedure:
we directly relate the learning problem to the form of the inference procedure.

This chapter describes four major contributions of our work:

• CR-algorithms framework CR-algorithms is a new framework for describing learning-
based inference procedures. Our framework is particularly tailored to the needs of Structured
Prediction and gives a high flexibility to describe SP inference procedures. Compared to previous
work in Incremental SP, CR-algorithms put the focus on the way to describe inference proce-
dures and associated learning problems simultaneously. CR-algorithms are traditional algorithms
augmented with two learning-related instructions: choose and reward. The former define classi-
fication problems and the latter define learning objectives. Learning in CR-algorithms aims at
finding the classifiers – corresponding to choose instructions – that maximize the expectation of
reward. This way of writing learning-based inference procedures proves to be simple and concise.
Thanks to CR-algorithms it becomes easy to describe a wide range of inference procedures for
possibly very complex tasks.

• Connecting CR-algorithms and MDPs CR-algorithms can be seen as SDM problems.
We propose to formalize the relation between CR-algorithms and SDM problems, through Markov
Decision Processes (MDPs). Given a set of inputs, a CR-algorithm implicitly defines an MDP
where each choose corresponds to decision-making step that should be treated w.r.t. the current
state of the CR-algorithm. This connection makes it possible to formally define the CR-algorithm
learning problem as a policy-learning problem, bridging the gap with various existing work in
the field of SDM learning.

• Reinforcement Learning for Structured Prediction We propose a classification of learn-
ing methods for CR-algorithms. Thanks to the tight relation between CR-algorithms and MDPs,
we can bridge the gap between traditional reinforcement learning algorithms and CR-algorithms
training. In particular, we focus on approximated reinforcement learning algorithms and show
their usefulness in the context of general SP. This reinforcement-learning based approach for SP
is an original idea of our work, which requires fewer assumptions than previous methods and is
thus applicable to strictly more tasks.

• An action-ranking policy learning algorithm CRank is a new policy learning algorithm
that is based on the idea of ranking actions. A ranking machine is a supervised learning machine
that learns to rank alternatives given situations. CRank relies on an original connection between
ranking and decision-making: taking a decision can be performed by ranking all the possible
actions in the current state and by picking the best one. We show how to learn such an action-
ranking function and discuss the multiple advantages of this approach compared to traditional
value-base reinforcement learning.

The chapter is structured as follows. The CR-algorithms formalism is introduced in Section
4.1. In particular, Section 4.1.3 connects CR-algorithms to MDPs and Section 4.1.4 states the
CR-algorithm learning problem as a policy-learning problem. Section 4.2 makes an overview of
various existing methods to solve the CR-algorithm learning problem. We discuss two classes of
methods: approximated reinforcement learning methods and incremental SP methods. Section
4.3 presents CRank : a new policy learning algorithm that tries to capture the best from the
various learning methods discussed previously.
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4.1 CR-algorithms formalism

CR-algorithms aims at simultaneously defining inference procedures and associated learning
problems. CR-algorithms put the inference procedure at the central place, which make them
close to classical algorithms describing the inference procedure. In order to introduce learn-
ing, CR-algorithms rely on two original constructs, called choose and reward, that respectively
describe classification problems and learning objectives.

4.1.1 Choose and Reward

The choose instruction corresponds to a choice between multiple possible actions. Its syntax is choose instruction

the following:

where state are variables that describe the current state of the CR-algorithm and action1, . . . , actionN
are possible actions among which a learning component should choose. A choose could be though
as a switch-case in C, where the condition will be automatically constructed by a training algo-
rithm:

1: switch (??) . The condition will be learned
2: {
3: case 1: action1; break;
4: . . .
5: case N: actionN; break;
6: }

The missing conditions of choose instructions are learned during a training phase, in order reward instruction

to maximize a learning objective. In order to define this objective into a CR-algorithm, we make
use of the reward instruction. The syntax of reward is given below:

where scalarReward ∈ R is a number reflecting the quality of previously made choices. The
better the inference procedure is, the higher the rewards will be.

A CR-algorithm is not a classical algorithm, in the sense that it requires a training phase
before being executable. This training phase is illustrated in Figure 4.1. Training aims at learning
the choose functions, in order to maximize the expectation of rewards.

4.1.2 Examples of CR-algorithms

Binary Classification CR-algorithm 1 gives one of the simplest use cases of CR-algorithms:
the binary classification problem with the 0/1 loss. This CR-algorithm has two inputs: an input
x and its associated class y. In practice, we only know the class y for a finite amount of training
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Figure 4.1: Training phase in CR-algorithms. This figure illustrates the training phase in
CR-algorithms: given a CR-algorithm and training data, the aim is to learn the choose functions
of the CR-algorithm. The result of training is a ready-to-use inference procedure.

data. The correct class y is called a Training Input : an input of the CR-algorithm that is onlyTraining Inputs

known during the training phase. CR-algorithm 1 has one output: the predicted class.

CR-algorithm 1 A binary classification problem as a CR-algorithm
Input: An input x
Training Input: The correct class y ∈ {−1,+1}
Output: A predicted class

1: ŷ← choose[x] -1, +1 . Choose
2: if training then
3: reward 1 {ŷ = y} . Reward
4: end if
5: return ŷ

Line 1 shows the use of a choose instruction to describe the classification problem: given x,Choose

the algorithm should choose a class between −1 or +1. The result of this choice is then stored in
the predicted class ŷ. The lines 2–4 form a training block : a part of the CR-algorithm that only
exists during the training phase. In order to be valid, CR-algorithms can only use training inputs
inside such training blocks. The binary-classification learning objective is described thanks to
the reward instruction of line 3. Here, a reward of +1 is given if the predicted class is correctReward

and a reward of 0 is given otherwise. If we are not in the training phase, the training inputs are
not available and the lines 2–4 are skipped consequently. In any case, line 5 returns the result of
inference: the predicted class among −1 or +1.

Sequence labeling A fundamental characteristic of CR-algorithms is that chooses1 can be
made sequentially. Furthermore, the state of a choose may depend on previously made choices.
CR-algorithm 2 illustrates this on a simple inference procedure for the sequence-labeling taskSequence labeling

(e.g. handwriting recognition or part-of-speech tagging, see Chapter 3).
This CR-algorithm has two normal inputs and one training input. Normal inputs are the

input sequence x = (x1, . . . ,xn) and the set of possible labels L (e.g. all the letters from ’a’
1chooses is an abuse of language to abbreviate choose instructions.
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to ’z’). The training input is the correct label sequence y = (y1, . . . ,yn). The aim of the
CR-algorithm is to predict and return a sequence of labels ŷ.

CR-algorithm 2 Left-Right Sequence labeling
Input: An input sequence x
Input: The set of possible labels L
Training Input: The correct labels y
Output: A predicted sequence of labels

1: ŷ← (ε, . . . , ε)
2: for t = 1 to card(x) do
3: ŷt ← choose[xt, ŷt−1] L . Choose the next label
4: end for
5: if training then
6: reward −∆(ŷ,y) . Learning objective
7: end if
8: return ŷ

Line 1 initializes ŷ with an empty prediction: all the labels ŷt are set to the ε value to denote
that they are not chosen yet. The lines 2–4 predict the sequence of labels in the left-right order: Left-right labeling

the first label is decided at the first step, the second label is decided at the second step and so
forth. Line 3 describes the classification problem: given the current input element xt and the
previous predicted label ŷt−1, choose a label among the set of possible labels L. The result of this
choice is then stored into ŷt. The lines 5–7 are the training-specific part of the CR-algorithm.
During training, once all the labels have been decided, the reward instruction (line 7) tells how
good these choices were. In the case of sequence labeling, this reward is directly related to the
SP loss function ∆(., .).

CR-algorithms can be seen as defining SDM problems: the aim is to find sequences of decisions
that maximize the expectation of reward. This parallel leads us to the formalism of Markov
Decision Processes (MDPs).

4.1.3 Formalization with Markov Decision Processes

Let P be a CR-algorithm. We denote IX the Cartesian product of all possible normal inputs of
P. Similarly, IY is the cartesian product all possible training inputs of P.

Given a particular set of inputs ix ∈ IX and iy ∈ IY , the CR-algorithm P can be seen
as implicitly defining an MDP denoted MDP (P, ix, iy). We adopt the view of an agent that
evolves in these MDPs by taking decisions that corresponds to choose instructions. Formally,
MDP (P, ix, iy) is defined in the following way:

• The state space S is the union of all possible values that can be put in the state part of
choose instructions. States correspond to chooses: each time their is a choose, the agent is
in a corresponding state and has to select between various possible actions. The initial state
of a CR-algorithm is computing by running the algorithm until the first choose occurs. This
state is denoted sinitial(P, ix). When a CR-algorithm finishes, we enter in a special state:
the final state. This state is unique and denotes the end of the sequential decision-making
problem.

• The set of possible actions As in a given state s ∈ S is the set of parameters given to the
current choose. The whole action space A is the union of possible choices in every possible
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state: A = ∪s∈SAs. As is empty for the final state, otherwise it always contains at least
one action.

• The transition function T (s,a) is deterministic. The transition function executes the chosen
instruction and runs the CR-algorithm until the next choose occurs. If the CR-algorithm
finishes before any other choose occurrence, the transition function lead to the final state.

• The reward function is computed by summing all the scalar values given by reward instruc-
tions between two states. If there is no reward between two successive chooses, the reward
function has a null value.

Figure 4.2: The MDP corresponding to CR-algorithm 2 with given input parameters.
In this example, the input sequence x and the set of possible labels L are normal inputs (ix =
(x,L)) and the correct sequence of labels y is a training input (iy = (y)). Boxes are states, circles
are actions and arrows correspond to transitions. Green numbers are transition probabilities.
Here we only have deterministic transitions. Red numbers are rewards.

An example of MDP (P, ix, iy) is given in Figure 4.2. This MSP is fully deterministic:
the transitions are computed by deterministically executing P and rewards are also computed
deterministically by P. However, the rewards depend on the training inputs, which are only
observable during training. From the point of view of the agent, which never sees the training
inputs, the rewards are stochastic functions that depend on the conditional probability of training
inputs given normal inputs P [iy|ix].

4.1.4 The CR-algorithm learning problem

The connection with MDPs developed above allows us to define the learning problem of CR-
algorithms as a policy-learning problem.

CR-algorithm learning problem Formally, a CR-algorithm learning problem is a pairLearning Problem

(P,DIX×IY ) where P is the CR-algorithm and DIX×IY is a joint distribution over normal inputs
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and training inputs. We assume that, in order to be valid, a CR-algorithm always finishes in a
finite time. The MDPs induced by valid CR-algorithm have thus a bounded horizon. This makes
it possible to use the total reward criterion (see Section 2.2.2). Given a CR-algorithm learning
problem, let η(π) be the expectation of total reward w.r.t. policy π:

η(π) = E(ix,iy)∼DIX×IY {
∑
t

r(st,at) | π, iy, s0 = sinitial(P, ix)}

The aim of learning is to find a policy π∗ that maximizes η:

π∗ = argmax
π

η(π)

In general the process that generates inputs is unknown, which makes the exact computation
of η(π) unfeasible. Instead, we assume that we have access to a finite number of independently Sampling

Assumptionand identically drawn (i.i.d.) samples from DIX×IY . These samples compose a training set
denoted D = {i(i)x , i(i)y }i∈[1,n]. Thanks to the training set, it is possible to approximate the true
expectation of cumulative reward with the empirical cumulative reward:

η(π) ' η̂(π) =
1
n

n∑
i=1

(
∑
t

r(st,at) | π, i(i)y , s0 = sinitial(P, i(i)x ))

CR-algorithms and expected risk minimization There is a direct link between some CR-
algorithms and well-known supervised learning problems. For example, the binary classification Binary Classification

learning problem (see Chapter 2) is defined through a joint distribution DX×{−1,+1} and the aim
is to learn a classifier f that minimizes the expectation of classification errors:
Ex,y∼DX×{−1,+1}{1 {f(x) 6= y}}. In CR-algorithm 1, the normal input space is IX = X and the
training input space is IY = Y. Learning the CR-algorithm aims at maximizing the expectation
of total reward η(π). In this degenerated example of CR-algorithms, we only have one decision-
making step, i.e. η(π) only depends on the first state and action. We can thus rewrite η(π) in
the following way:

η(π) = E(ix,iy)∼DIX×IY {r(s1, π(s1)) | π, iy, s1 = sinitial(P, i(i)x )} (4.1)

= E(x,y)∼DIX×IY {r(x, π(x)) | π,y,x} (4.2)

= E(x,y)∼DIX×IY {1 {π(x) = y}} (4.3)

By choosing DIX×IY = DX×Y , η(π) becomes the expectation of good classification and the
maximization of η(π) is equivalent to the expectation of classification errors minimization.

In this manuscript, we are particularly interested by CR-algorithms that perform structured
prediction. The aim of SP is to learn a prediction function f that minimizes the expected loss Structured

PredictionEx,y∼DX×Y{∆(f(x),y)}. In order to solve the SP problem with CR-algorithms, we usually make
use of rewards that sum to the negative loss ∆(f(x),y) such as in CR-algorithm 2. This way,
maximizing the cumulative reward expectation becomes equivalent to minimizing the expected SP
loss:

argmax
π

η(π) = argmax
π

E(ix,iy)∼DIX×IY {
∑
t

r(st,at) | π, iy, s0 = sinitial(P, ix)} (4.4)

= argmax
π

E(ix,iy)∼DIX×IY {−∆(Pπ(x),y)} (4.5)

= argmin
π

E(x,y)∼DX×Y{∆(Pπ(x),y)} (4.6)
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where Pπ : X → Y is the inference function defined by CR-algorithm P with policy π.

Note that, although most of our work is about SP, CR-algorithms is a rather general frame-
work, in which many MDPs corresponding to other tasks can be described. See chapter [XXOther problems

Discussion] for examples of CR-algorithms that are not related to SP.

4.2 Learning methods for CR-algorithms

The CR-algorithm formalism is a general way to describe inference procedure and associated
learning problems. We have shown that CR-algorithms implicitly describe MDPs and that the
learning problem of CR-algorithms can be seen as a policy-learning problem. We now focus on
existing learning methods that can be used to solve this policy-learning problem. This sections
aims at giving an overview of the spectrum of learning methods that could be applied to CR-
algorithms. In particular, we develop a unified view of methods coming from two different fields:
reinforcement learning and incremental SP.

We first focus on approximated reinforcement learning methods in Section 4.2.1 whose use
in the context of SP is original. We then discuss the adaptations of existing Incremental SP
algorithms to the case of CR-algorithms in Section 4.2.2. The fundamental difference between
these two approaches is the supervision assumptions they rely on. Different possible level of
supervisions are described and discussed in Section 4.2.3. Section 4.2.4 discusses another funda-
mental difference between the various learning methods for CR-algorithms, which is is the kind
of policy representation they rely on.

4.2.1 Approximated reinforcement learning

Approximated Reinforcement Learning algorithms (see Section 2.2.4) use function approximationApproximated
Reinforcement

Learning
to compactly store policies. The traditional motivation of these algorithms is to cope with large
state-spaces and with the curse of dimensionality. When learning CR-algorithmswe put a special
emphasis on generalization. Contrary to traditional SDM problems, CR-algorithms involve two
distinct phases: a training phase and an inference phase. Given only a finite amount of training
data, a CR-algorithm policy should be able to generalize on any unseen inputs. The reward
function may depend on training inputs and thus be available only during the training phase.
This problem is illustrated in Figure 4.3.

General approximate reinforcement learning can be applied to the MDPs induced by CR-
algorithms by respecting the two following constraints on the policies:

• The learned policy should not depend on the training inputs. Otherwise, it would not be
able to generalize to situations where the training inputs are not observable.

• The learned policy should not depend on the perceived rewards2. Since, in general, CR-
algorithm rewards depend on the training inputs, they are only available during the training
phase. In other words, after training, the environment stops sending reward feedback to
the policy. These feedbacks should therefore not be necessary to compute the policy.

In practice, it is sufficient to choose a feature functions for states or state-action pairs that
only depends on the current state and the normal inputs. As soon as this property is verified
in the feature function, a policy learned by a approximated reinforcement learning algorithm is
automatically defined over the whole set of MDP (P, ix, iy)’s.

2unless the reward computations do not depend on training inputs. Chapter [XX discussion] gives examples
of CR-algorithms where the rewards are available at anytime.
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Figure 4.3: This figure illustrates a whole set of MDP (P, ix, iy)’s. The big circle denotes
states that correspond to training examples: those where the reward function is known. For
all MDP’s outside this circle, the reward function is unknown. More than a way to cope with
the curse of dimensionality, we use function approximation in order to obtain policies able to
generalize on the whole set of MDPs given only a small training subset.

Many reinforcement learning algorithms either optimize the γ-discounted reward or the av-
erage reward. In order to optimize the total reward, algorithms using γ-discounted reward can
be used with γ = 1, since we assume MDPs with a bounded horizon. The average reward can
also be connected to the total reward criterion, see [Garcia et Ndiaye, 1998].

4.2.2 Incremental structured prediction

Reinforcement learning algorithms only use observed rewards in order to learn. In many CR-
algorithms for SP however, the structure of the problem makes it possible to compute much
richer supervision information. It may for example be possible to immediately know what the
best choice is, given the current state and the training inputs. The Incremental SP algorithms Incremental SP

that were described in the previous chapter, namely Incremental Parsing, LaSO and Searn,
use such additional supervision.

CR-algorithms are more general than previous Incremental SP problems:

• Previous methods focused on selecting partial outputs until reaching a complete output,
i.e. states were composed of input and partial outputs. Here, we consider the more
general problem of selecting actions in an arbitrary inference procedure described as a
CR-algorithm. Any relevant variable of the inference procedures may be included in the
states.
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• The SP loss ∆ is replaced by the more general concept of reward. Rewards may be com-
puted at any time in the CR-algorithm and learning involves the maximization of expected
cumulative reward. While the SP loss only focuses on the result of inference – the pre-
diction – , rewards can be given at any time during inference. This offers a convenient
way to introduce a priori knowledge of the problem. It is for example possible to dispatch
the loss among the successive decisions, in order to make learning easier. Furthermore,
rewards can be given to intermediate states of the CR-algorithms that do not directly have
a consequence on the SP losses. An example of such CR-algorithm is the multiple-pass
sequence labeling, presented in Chapter 5.

It is possible to adapt the previous Incremental SP models to the framework of CR-algorithms
by replacing partial outputs by CR-algorithm states and losses by total rewards. For example,
instead of describing partial outputs φ(x, ȳ), CR-algorithms involve describing states φ(s).

In order to perform learning, the Incremental SP models make use of strong supervision
assumptions. Depending on the tasks and on the CR-algorithms, such strong supervision may
be or may not be available. In the following, we classify the learning methods for CR-algorithms
according to the kind of supervision they rely on.

4.2.3 Supervision assumptions

The fundamental difference between the reinforcement learning approach and the IncrementalDifferences

SP approach concern the supervision assumptions that are made. The former approach uses
weak supervision in the form of reward feedbacks, whereas the latter relies on much stronger
supervision, such as – ideally – a function that immediately computes the long-term cost of
actions. Depending on the tasks and on the CR-algorithms such stronger supervision may be
or may not be easily computed. We overview here multiple supervision assumptions that are
relevant for CR-algorithms:

•Optimal Learning Policy Availability of the Optimal Learning Policy (OLP) is the strongest
assumption. Intuitively, it is assumed that for any possible state of the CR-algorithm, given the
training inputs, we exactly know what the best choice to perform is. The sequence labeling
CR-algorithm 2, is an example problem, where the optimal learning policy is easily computed.
Indeed, whatever the current state is, the best thing to do is to choose the next label correctly.
The best choice at time step t is thus simply determined by taking the correct label yt from the
training input. Formally the optimal policy is a greedy policy w.r.t. the optimal action value:

π∗(s,a) = πgreedyQ∗ (s,a) = argmax
a∈As

Q∗(s,a)

Having access to the OLP is the ideal case, in which learning a CR-algorithm becomes imitation
problem: we know the good behavior of the CR-algorithm on a set of training examples and the
aim is to generalize this behavior to any possible input.

• Optimal Learning Trajectories In many tasks, computing the OLP is either unfeasible
or very slow. One weaker assumption is called Optimal Learning Trajectories. Here, we assume
that for each training example, we have access to the set of optimal states Sopt ⊂ S, which are
the states reachable by the optimal policies. Formally, Sopt is the union of the optimal states at
all time steps t:

Sopt =
⋃

t∈[1,T ]

Soptt
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Figure 4.4: Various supervision assumptions illustrated on the sequence labeling
task. The red color indicate supervision information available in various cases. The left part of
the figure illustrates the OLT and OLP assumptions that come from the field of Incremental SP.
The right part of the figure illustrates the general reinforcement learning case.

where the optimal states Soptt at time step t are defined recursively:

Soptt+1 =
⋃

s∈Soptt ,π∗

T (s, π∗(s))

starting from the initial states of the CR-algorithm:

Sopt1 = {sinitial(P, i(i)x )}i∈[1,card(D)]

The OLTs assumption is weaker than the OLP assumption. In the latter, the best decisions
must be known for every learning state, while, in the former, it is only sufficient to know the
best decisions to take in the optimal states.

• Heuristics In some other tasks, such as the one described in Chapter 6, computing the OLP
or OLTs is a non-trivial or even intractable combinatorial search problem. A weaker assumption
is the knowledge of Heuristics: policies π̂1, . . . , π̂n that are known to behave not too bad. Such
policies can be used as a starting point for learning.

• None When neither the optimal choices can be computed, nor we have any idea of correct
heuristics, we fall in the traditional reinforcement learning case, where only the reward can be
used for learning.

Figure 4.4 illustrates the various supervision assumptions on the sequence-labeling task. De-
pending on the tasks and on the CR-algorithms strong supervision may be or may not be avail-
able. The choice of the learning method thus crucially depends on which kind of supervision
we can compute in a reasonable time. Compared to reinforcement learning based methods, the
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Incremental SP methods are less applicable due to their dependence to strong supervision. How-
ever, when OLP or OLTs are known, this additional knowledge makes the learning problem much
simpler in general.

The generality of CR-algorithms leads to situations ranging from pure reinforcement learning
to imitation learning. In order to deal with these various situations, we believe that a general
CR-algorithm learning method should be able to deal with any kind of available supervision.
CRank, which is presented in the next section, is one such algorithm, which can deal with
various supervision information in a unified manner.

4.2.4 Policy representations

An important difference between the learning methods discussed previously, is the way policies are
represented and learned. Reinforcement learning algorithms generally rely on values regression
and use value-based greedy policies. Incremental SP, thanks to their rich supervision, make use
of discriminative techniques and represent policies thanks to classification or ranking learning
machines. Table 4.1 proposes a classification of various learning methods, according to their
supervision assumptions and their policy representation.

OLP OLTs Heuristics / None
State regression - - TD(0), TD(λ), LSTD

Action regression - - Fitted Qlearning, Sarsa
State ranking - Incremental Parsing, LaSO -

Action ranking CRank CRank CRank

Classification Searn - RL as classification

Table 4.1: Learning approaches for CR-algorithms. The generalizations of existing Incre-
mental SP methods are shown in blue. Incremental Parsing, LaSO and Searn are the algorithms
respectively described in Section 3.3.2, Section 3.3.3 and Section 3.3.4. All the other methods
are original in the context of SP. Approximated reinforcement learning algorithms are shown in
red and are described in Section 2.2.4. Our algorithm CRank, described in Section 4.3, is shown
in black. The rows correspond to various ways to represent and learn policies. The columns cor-
respond to supervision assumptions. OLP stands for Optimal Learning Policy and OLTs stands
for Optimal Learning Trajectories.

Various ways exist to represent a policy as a learning-machine. Most of the approximated
reinforcement-learning algorithms work by approximating value functions. In these algorithms,State/Action

regression approximation is seen as State regression or Action regression learning problems. Given an
approximated value function, these algorithms make use of the greedy policy: the policy that
maps states to highest valued actions or successor states.

Instead of learning the exact values, a simpler alternative consists in learning ordering
functions. State-ranking and Action-ranking are instances of the ranking problem that wasState/Action

ranking introduced in Section 2.1.2. Both approaches involve learning functions that assign scalar scores
to states or actions, similarly to value functions. Only the learning criterion changes between
State value (resp. Action value) and State ranking (resp. Action-ranking): the former is a
regression problem and the latter is a ranking problem.

A last approach, Classification, makes the parallel between decision-making (mapping a stateClassification

to an action) and multi-class classification (mapping an input to a class). Thanks to this connec-
tion, it is possible to use standard multi-class classifiers (e.g. support vector machines, decision
trees) in order to represent policies.
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Classification The Classification solution is not entirely convincing, since chooses allow a
number of situations that are not handled by standard multi-class classifiers:

• The set of available choices may depend on the current state. The following chapters will State-dependent
classesgive examples such as choosing words in a sentence or choosing nodes in a tree. In these

examples, the choose instructions have dynamic lists of choices that depend on the sentence
length or on the tree size.

• At any time, new choices may appear depending on the current state. Consequently, the Apriori unknown
classeswhole set of choices may not be known before execution.

• Choices may not only concern discrete values such as in the previous examples, but also Structured classes

general programming instructions. Examples of such instructions include adding/removing
nodes from a tree, creating new variables, breaking or continuing a loop and so forth. In
general, choices concern structured instructions which are in relation with various other
elements of the program. These relations must be taken into account by the learning
system.

Although our setting does not fit with standard multi-class classifiers, representing a policy as
a classifier is still a good idea. However, we must replace standard classifier by learning machine
able to solve our generalized classification problem. In the following, we introduce the action-
ranking approach, which is a practical way to handle the generalized classification problem.

Action vs States In order to deal with complex actions, two approaches are possible: learning
state values V̂θ(.) or learning action values Q̂θ(., .). In the first approach, the greedy policy selects
the action that leads to the best-scored successor state3:

πgreedyθ(s) = argmax
a∈As

V̂θ(φstate(T (s,a))) (4.7)

where φstate is a state feature function. In the second approach, the greedy policy directly scores
the possible actions, without computing successor states:

πgreedyθ(s) = argmax
a∈As

Q̂θ(φaction(s,a)) (4.8)

where φaction is a joint state-action feature function. From a practical point of view, action-
value based policies have two major advantages over state-value based policies. Firstly, they
are in general much faster than state-value based policies, since they do not require transitions
computations, i.e. there is no need for one-step-ahead search. Secondly, they are more general
than state-value policies. Indeed, action values can be made equivalent to state values by choosing
to describe actions with the description of their successor state φaction(s,a) = φstate(T (s,a)).
Instead of computing successor state, it is often more efficient in practice to describe actions by
only considering the part of the state their execution would change.

Regression vs Ranking Value functions, during inference, are only used to sort possible
actions and to pick the best one at each step. The exact values of the state or actions do not rely
matter; only the order that is induced by the value functions is used. Instead of learning the exact
values, the ranking approach directly learn functions V̂θ(.) and Q̂θ(., .) that can be used to rank
state or actions. As illustrated in Figure 4.5, the exact values of these functions do not matter

3We assume deterministic transitions.
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Figure 4.5: Action value regression versus action ranking. We consider an MDP with a
one-dimensional state space and three actions action1, action2 and action3. The optimal policy
is given on the top of the figure. The optimal action value is illustrated on the left part. In our
approach, only the order that is induced by the action-ranking function matters. The right part
of the figure gives one possible optimal action-ranking function. Since their exist an infinity of
optimal action-ranking function, ranking can be solved with much simpler functions than the
traditional action-values.

as long as the induced order is correct. Contrary to traditional action values, MDPs admit
infinities of optimal ranking functions. This set of optimal ranking functions contains all the
possible re-scalings of the optimal action value function. More interestingly, it also contains much
more simpler functions than the traditional values. This makes the ranking learning problem
simpler than the value regression problem, such that we expect better learning performances.
Furthermore, ranking models can be trained with discriminative learning methods, such as large-
margin methods, which provide good generalization guarantees.

4.3 Action-ranking policy learning: CRank

In this section, we introduce CRank: a new algorithm for learning to rank actions in MDPs.
CRank is particularly motivated by the particularities of the MDPs induced by CR-algorithms,
but it may be used as a general scheme for learning policies in any finite-length MDPs.

The main novelty of CRank is to use ranking of actions in the context of sequential decision-
making. In order to take decisions, the policies learned with CRank rank the set of possible
actions and pick the top-ranked one. These action ranking functions trained in order to minimize
the expectation of action costs. The function that computes action costs is a parameter of the
algorithm that gives the possibility to handle the various supervision assumptions discussed
previously in a unified manner.
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Figure 4.6: CRank viewed as generalized policy iteration. Generalized policy iteration
algorithms interleave two kinds of steps: policy evaluation and policy improvement. In CRank,
evaluation is carried out by the action-cost function and improvement corresponds to learning
updates on an action ranking function.

CRank belongs to the family of generalized policy iteration algorithms. As illustrated in
Figure 4.6, CRank is constructed around policy evaluation and policy improvement steps. Policy
evaluation steps involve the computation of action costs that encapsulate supervision. Policy
improvement steps update a set of parameters θ that defines an action ranking function.

Our presentation of CRank is structured as follows. First, we describe the ranking of ac-
tions learning problem in Section 4.3.1. In order to solve this learning problem, CRank make
use of a simple stochastic descent gradient rule, which is described in Section 4.3.2. Learning in
CRank aims at minimizing the expectation of the top-ranked action costs. We show in Section
4.3.3 how to exploit available supervision information in the definition of action cost functions.
Finally, Section 4.3.4 puts all together a describes the CRank training loop, which interleaves
action cost computation steps with learning steps.

4.3.1 Ranking of actions

CRank represents policies with action ranking functions Q̂θ(.). Such functions induce an order
over the possible actions As given the state s. This order is used to sort the actions and pick the
best one at each decision step. In the following, we describe how CRank makes use of action-costs
to learn action-ranking functions.

CRank makes use of the most common form of ranking which uses a linear prediction function: Linear ranking

Q̂θ(φ(s,a)) = 〈θ, φ(s,a)〉 (4.9)

The main advantages of linear ranking functions are their simplicity and their good scaling
properties. Linear functions make it possible to deal with very large feature sets (we have
up to 106 distinct features in our applications). Furthermore, linear functions may be non-
linear in function of the input, by adding additional features in the feature function φ(., .).
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For example, if the state is composed of two scalar numbers x1 and x2, it possible to include
derived quantities such as x1x2, (x1 ∗ x2)/(x1 + x2) or

√
x2

1 + x2
2 into the features. With such

an augmented representation, while being linear w.r.t. the parameters, we are able to express
non-linear functions of x1 and x2 in this example.

Figure 4.7: Ranking and binary preferences. The left part of the figure gives an example
ranking over actions in a given state. Each action has an associated cost. Learning aims at
top-ranking actions with the lowest cost. The right part of the figure shows the decomposition
of the order into binary preferences. Each such preference is made of an action a1 that should
be preferred over action a2. The importance of each binary preference is the difference of action
costs. The binary preferences that are violated in the current ranking are displayed on a red
background.

A ranking example in CRank is composed of a state s, a list of actions (a1, . . . ,an) and a listRanking Example

of associated action costs c = (c1, . . . , cn). The costs of actions are computed through a function
c : S ×A → R that is provided by the user. We thus have: c = (c(s,a1), . . . , c(s,an)).

Given a set of parameters θ, we are interested by the cost associated to top-ranked actions,
i.e. those that the greedy policy πgreedyθ would select. The ranking problem of CRank consists
in the minimization of the expectation of the top-ranked action cost.

Ranking losses Ranking can be formalized following the principle of expected risk minimiza-
tion (see Section 2.1). This implies the use of ranking loss function that measures the qualityRanking Loss

of possible orders. Ranking losses compute scalar penalties associated to the current ranking
scores w.r.t. the action costs. In the following, the set of current ranking scores is denoted
y = (y1, . . . ,yn) with yi = 〈θ, φ(s,ai)〉. Formally, the loss ∆r(y, c) ∈ R is the amount of
penalty that is given to scores y w.r.t. costs c.
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We focus on ranking losses that decomposes themselves over binary preferences. A binary Binary Preferences

preference (i, j, β) indicates that action i should be preferred over action j with an importance
weight of β. The quality of the current ranking function w.r.t. a binary preference depends
on the margin m = yi − yj , which is the difference between the two predicted scores. We use
a discriminant loss ∆d : R → R

+ that penalizes negative or too small margins. An example Discriminant Loss

of such loss is the large-margin function that gives a linear penalty in function of the margin
violation:

∆d(m) =

{
1−m if m < 1
0 otherwise

Minimizing ∆d(yi − yj) aims at making the score yi significantly higher than the score yj . See
Figure 2.9 for other examples of discriminative losses.

The general form of our ranking losses is the following:

∆r(y, c) =
∑

(i,j,β)

β∆d(yi − yj)

We have investigated three decomposition strategies. Each of these strategies represents
a family of ranking loss functions, depending on which discriminant loss ∆d is used. The
most frequent idea in ranking is to learn on the basis of the whole set of binary preference
[Cohen et al., 1998, Freund et al., 2003]. The all-pairs decomposition strategy ∆ap involves one All-pairs

binary preference per pair of actions that have different costs:

∆ap(y, c) =
∑

i,j|ci<cj

(cj − ci)∆d(yi − yj)

Figure 4.7 illustrates a ranking situation with the corresponding all-pairs binary preferences.
The all-pairs strategy gives an equal importance to the whole order. However, in our case, we
are only interest by the top-ranked action. In order to give more importance to the top of the
list, we propose two new decomposition strategies: most-violated-pair and best-against-all.

The most-violated-pair strategy ∆mvp only considers the most violated binary preference: Most-violated-pair

∆mvp(y, c) = max
i,j|ci<cj

(cj − ci)∆d(yi − yj)

For example, if we have only good action (with a cost of 0) and bad actions (with a cost of 1),
the most-violated-pair is composed of the lowest good action and the highest bad action. When
∆d is a convex decreasing function, the ∆ap and ∆mvp decompositions lead to convex learning
problem.

The best-against-all strategy ∆baa particularly focuses on the top-ranked action. It creates Best-against-all

binary preferences between the top-ranked action and all the other actions that have different
costs. Formally, ∆baa is defined the following way:

∆baa(y, c) =
∑

i|ci<ctop

(ctop − ci)∆d(yi − ytop)︸ ︷︷ ︸
i is better than top

+
∑

i|ctop<ci

(ci − ctop)∆d(ytop − yi)︸ ︷︷ ︸
top is better than i

where top denotes the top ranked element argmaxi yi. Although it is particularly tailored to our
problem, the ∆baa strategy has a drawback: it leads to non-convex learning problem, due to the
dependency on the top-ranked element top. From a theoretical point of view, this is not very
satisfactory. However, we will relativize this problem with experimental results that demonstrate
that the ∆baa strategy often outperforms the other decomposition strategies.
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4.3.2 Learning to rank

In order to learn the ranking function, we rely on the regularized empirical risk minimization
principle. In order to minimize the ranking loss, we use a gradient descent scheme. This involve
the computation of ranking loss gradients. Let Φi = φ(s,ai) be the descriptions corresponding
to actions ai. Since we use a linear prediction function, the gradient of all-pair losses can be
written:

∇θ∆ap(y, c,Φ) =
∑

i,j|ci<cj

(cj − ci)∇θ∆d(yi − yj) (4.10)

=
∑

i,j|ci<cj

(cj − ci)
∂∆d(yi − yj)
∂(yi − yj)

∇θ(yi − yj) (4.11)

=
∑

i,j|ci<cj

(cj − ci)
∂∆d(yi − yj)
∂(yi − yj)

(Φi − Φj) (4.12)

Similarly, the gradient of most-violated-pair losses can be written:

∇θ∆mvp(y, c,Φ) = (cj − ci)
∂∆d(yi − yj)
∂(yi − yj)

(Φi − Φj) | (i, j) = max
i,j|ci<cj

(cj − ci)∆d(yi − yj)

The naive computation of these gradients has a complexity in O(n2). However, by observing
that these gradients are linear combinations of the Φi vectors, it is possible to perform only n
weighted vector additions, which makes implementation much faster. Furthermore, with discrim-
inative losses such as the large-margin loss, many correctly ranked binary preferences will have
zero loss. In general, during training, the better the ranking function is, the more null values
appear in the ranking loss. This can be exploited by sorting the set of actions by predicted score.
The gradient can then be computed by quickly pruning all binary preferences that do not suffer
from loss.

The computation of the best-against-all loss gradient requires only O(n) steps:

∇θ∆baa(y, c,Φ) =
∑

i|ci<ctop

(ctop − ci)
∂∆d(yi − ytop)
∂(yi − ytop)

(Φi − Φtop)

+
∑

i|ctop<ci

(ci − ctop)
∂∆d(ytop − yi)
∂(ytop − yi)

(Φtop − Φi)

CRank relies on online learning. This choice is motivated by simplicity and scalability con-Online learning

cerns. Online learning scales can deal with much bigger training sets than batch methods.
Furthermore, online learning allows continuous learning: the same ranking function is incremen-
tally improved during the whole training process. Finally, online learning can be implemented
very simply by using stochastic gradient descent.

A recurrent question in approximated reinforcement learning concerns the frequency of learn-
ing steps. Should we update the parameters θ after each decision step, after each episode (i.e.Learning Steps

Frequency each time we reach the final state) or after a whole pass on the training set? Online learning
at the training set level may be very slow, particularly with large datasets. At the opposite,
learning at the decision level introduces may introduce a local over-fitting phenomenon: learning
on the firsts decisions of an episode may have a direct effect on the behavior of the greedy policy
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on latter decisions. The risk is that the greedy policy takes decisions in function of specificities
of the current episode instead of using generalization over episodes. Due this local over-fitting,
the observed value of the current policy may be highly superior to its real performance in gener-
alization. In order to avoid this phenomenon, CRank performs learning at the episode level: it Episode Level

makes one descent gradient step per episode, each time that the final state is reached.

In order to perform learning at the episode level, CRank relies on the episode loss. This
quantity is used as an approximation of the standard regularized empirical risk, based on the
training examples of the current episode:

R̂(y(1), c(1), . . . ,y(T ), c(T )) =
1
T

T∑
t=1

∆r(y(t), c(t)) + λΩ(θ)

where y(t) is the vector of predicted scores at time step t and c(t) is the vector of corresponding
costs. The learning steps of CRank– gradient descent steps on the episode loss – are defined the
following way:

θ ← θ − α∇θR̂({y(i), c(i)})

where α is the learning rate parameter that defines the descent speed.

4.3.3 Supervision

In order to deal with the various supervision assumptions that are relevant for CR-algorithms,
CRank is parameterized by an action-cost function c : s × a → R. Learning in CRank aims at
minimizing the expectation of the costs of the top-ranked actions.

Depending on the kind of supervision that is available, action-cost can take various forms:

• Optimal Learning Policy: If we have access to an OLP, we can compute the regrets
of actions. A regret c(s,a) is the amount of reward that is definitively lost when taking
action a in state s. In deterministic MDPs, such as ours, the regret function is defined the
following way:

c(s,a) = V ∗(s)− V ∗(T (s,a))

where V ∗ is the optimal value function: the value function of the OLP. The regret of an
action is difference between two terms: the maximum of reward that can be perceived,
when starting from s and the maximum of reward that can be perceived after action a’s
execution.

• Optimal Learning Trajectories: If we have access to the OLTs, or equivalently to the
set of optimal states Sopt, we can penalize actions to lead to sub-optimal states:

c(s,a) =

{
0 if T (s,a) ∈ Sopt

1 otherwise

• None: When no additional supervision than the reward is available, we can relate the costs
to the regrets w.r.t. the current policy. In order to compute these regrets, we must be able
to evaluate the current value function V π. This can be done with rollouts, as described in
Section 2.2.4:

V π(st) =
∑
i≥0

r(st+i,at+1) | st+1 = T (st, π(st))
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Given the V π value function, the regrets w.r.t. π are defined the following way:

c(s,a) = V π(s)− V π(T (s,a))

Note that, since the MDPs induced by CR-algorithms are deterministic, it is sufficient to
perform a single rollout to compute the exact value of state. In order to use CRank in a
non-deterministic context, it is possible to estimate state values empirical by averaging the
results of several rollouts.

• Heuristics: Multiple heuristics π1, . . . , πn can be combined into a single action-cost func-
tion, by performing rollouts of the heuristic and selecting each time the best value:

c(s,a) = max
i
V πi(s)−max

i
V πi(T (s,a))

4.3.4 Algorithm

Algorithm 8 CRank

Require: a CR-algorithm P
Require: a training set D
Require: an action cost function c : s× a→ R

Require: a learning rate α
Require: a regularizer value λ (default: 0)
Require: a ranking loss ∆r

1: θ ← 0
2: while training do

3: (ix, iy)← sampleTrainingData(D)
4: s← s0(P, ix) . initial state

5: δ ← 0 . initialize current gradient
6: t← 0
7: while s is not the final state do . perform steps in the MDP
8: for i ∈ [1, card(As)] do
9: Φi ← φ(s,a) . action’s description

10: yi ← 〈φ(s,a), θ〉 . action’s score
11: ci ← c(s,a) . action’s cost
12: end for
13: δ ← δ +∇θ∆r(y, c,Φ) . update current gradient
14: a = πgreedyθ(s) or an exploratory action . select action
15: s← T (s,a) . take action
16: t← t+ 1
17: end while

18: θ ← θ − α[ 1
t δ + λ∇θΩ(θ)] . gradient descent step

19: end while
20: return πgreedyθ

CRank is given in Algorithm 8. It has five parameters. The CR-algorithm P and the trainingParameters

set D = {(i(i)x , i(i)y )} implicitly define the family {MDP (P, i(i)x , i(i)y )}. We have formulated CRank
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in the context of CR-algorithms , but these two parameters may be replaced by any initial states
generator, in order to deal with other reinforcement learning problems. The next parameter is
the action-cost function c(., .) that was introduced in Section 4.3.3. The two last parameters are
related to learning: α is the learning rate parameter and ∆r is the ranking loss function.

CRank is an iterative algorithm that repeats the following three steps: sample a decision
problem, run an episode and improve the policy:

• Initial state sampling (line 3–4). When using stochastic descent, it is often a good idea to
randomize the order of training examples in order to avoid local over-fitting problems. In all our
experiments with CRank , the training set is shuffled each time that all the examples have been
processed since the last shuffle. This procedure ensures that all the training examples appear
the same number of times.

• Running an episode (line 5–17). This step aims at computing the gradient of the episode
loss w.r.t. the current parameters θ. This is performed incrementally, by summing per-decision
gradients over all steps of the episode. For each state that is encountered, CRank computes the
descriptions (line 9), ranking scores (line 10) and costs (line 11) of all available actions, which
makes it possible to update the current sum of per-decision gradients (line 13). Once this has
been performed, an action is selected depending on the current state (line 14). This can either
be the greedy action (the action maximizing scores[i]) or an exploratory action (e.g. following
an ε-greedy policy).

• Policy improvement (line 18). Once the gradient of the episode loss has been computed,
CRank improves the current policy by applying a gradient-descent step to the parameters θ.

In order to treat one decision-making step, CRank makes card(As) computations of descrip-
tions, ranking scores and action-costs. In practice, most of computing time is spent in φ(s,a)
computations and, depending on which supervision is used, in c(s,a) computations. Anyway,
these complexities are still low compared to most SP approaches that use global inference.

4.4 Conclusion

In this chapter, we have described the major contribution of our work: CR-algorithms, a formal-
ism for simultaneously describing inference procedures and associated learning problem. Com-
pared to classical algorithms, CR-algorithms make use of two learning-related constructs: choose
and reward. chooses correspond to classification problems and rewards represent the objective
that learning try to maximize. A fundamental characteristic of CR-algorithms, is that chooses
can be made sequentially before receiving any reward. CR-algorithms can be seen as implicitly
defining MDPs and the CR-algorithm learning problem can be cast as a policy-learning problem.

We have proposed an overview of various methods that can be applied to learn CR-algorithms.
Two sources of learning methods were developed: adapting previous Incremental SP algorithms
and using general reinforcement learning algorithms. The main difference between these two
approaches concerns the supervision assumptions that are made. Strong supervision assumptions,
such as the knowledge of an Optimal Learning Policy, makes learning easier and faster but restrict
the applicability of the method. The weakest supervised case is the general reinforcement learning
setting, where only the observed rewards can be used for learning. In order to deal with these
various situations, we believe that a general CR-algorithm learning method should be able to
deal with any kind of available supervision.
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The second major contribution that was presented in this chapter is the CRank algorithm.
CRank is a policy-learning algorithm that is particularly tailored to the particularities of the
MDPs induced by CR-algorithms. CRank relies on a linear ranking machine that defines an
order over actions. Up to our knowledge, using action raking in the context of reinforcement
learning is a novelty of our work. In order to handle various supervision assumptions in a unified
manner, CRank relies on an action-cost function. By changing the content of this function,
CRank can range from the classical reinforcement learning setting (no supervision assumptions)
to imitation learning (OLP).

In the two next chapters, we illustrate the CR-algorithm methodology on two SP tasks:
sequence labeling and tree structure mapping. The former is a simple task that allows us to
perform extensive experiments and comparisons with state-of-the-art sequence labeling models.
The latter involve complex structured domains (XML trees) and deals with very large amounts
of data. This task is intended to demonstrate the scalability of the CR-algorithm in a general
reinforcement learning case.
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S
equence labeling is the generic task of assigning labels to the elements of a sequence. This
structured prediction (SP) task corresponds to a wide range of real world problems. For ex-

ample, in the field of natural language processing, part of speech tagging consists in labeling the
words of a sentence as nouns, verbs, adjectives, adverbs, etc. Other examples in NLP include:
chunking sentences, identifying sub-structures, extracting named entities, etc. Information ex-
traction systems can also be based on sequence labeling models. For example, one could identify
relevant and irrelevant words in a text for a query need. Sequence labeling also arises in a variety
of other fields1 (character recognition, user modeling, bioinformatics, ...).

In this chapter, we illustrate the use of CR-algorithms in the context of sequence labeling and
demonstrate experimentally the multiple advantages of this approach. We use the same notations
as in Chapter 3: input sequences are denoted x = (x1, . . . ,xn), correct output sequences are
denoted y = (y1, . . . ,yn) and predicted output sequences are denoted ŷ = (ŷ1, . . . , ŷn). The set
of possible labels is denoted L. The aim is to learn a prediction function f : X → Y that leads
to low expected risk. In the following, we consider sequence labeling with the Hamming loss.

1See [Dietterich, 2002] for an exhaustive overview of sequence labeling models and applications.
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In order to measure the quality of a prediction, this loss function counts the number of wrong
predicted elements:

∆hamming(ŷ,y) = card({i ∈ [1, T ], ŷi 6= yi})

This chapter is structured as follows. Section 5.1 introduces a first CR-algorithm for sequence
labeling, which performs left-to-right labeling. This simple CR-algorithm is compared with
six baseline models on five datasets. CR-algorithms is a general framework, in which more
complicated inference procedures than the left-to-right labeling can be described. We show
experiments with two other CR-algorithms: order-free labeling and multiple-pass labeling, and
discuss several possible extensions in Section 5.2. Various aspects of the learning process are
discussed in Section 5.3.

5.1 Left-to-right sequence labeling

A simple way to predict a sequence of labels is to predict the labels sequentially, from left to right.
In this approach, at each time step t, a label ŷt is predicted on the basis of the input x and the
previous predicted labels. In the following, we describe the left-to-right labeling CR-algorithm
and present various experimental results with CRank.

5.1.1 Left-to-right CR-algorithm

In order to fully describe the left-to-right sequence labeling model, we describe the CR-algorithm
(the inference procedure and associated learning problem) and the way to perform learning: the
description and supervision functions.

CR-algorithm Left-to-right labeling is given in CR-algorithm 3: we start with an empty
prediction (line 1). Then, for each element of the sequence, we choose a label among the set of
possible labels L (line 4). Once all the labels have been predicted, the CR-algorithm returns the
predicted sequence y (line 9).

CR-algorithm 3 Left-to-right Sequence labeling
Input: An input sequence x
Input: The set of possible labels L
Input: The context size C
Training Input: The correct labels y
Output: A predicted sequence of labels

1: ŷ← (ε, . . . , ε)
2: n ← card(x)
3: for t = 1 to n do
4: ŷt ← choose[x, ŷt−C , . . . , ŷt−1, t] L . Choose the next label
5: end for
6: if training then . Learning objective:
7: reward - ∆hamming(ŷ,y) . Hamming Loss
8: end if
9: return ŷ

Usually, sequence models (Hmm, Crfs, SvmIso) rely on the first-order Markov assumption:
a label yt only interacts with its previous label yt−1 and its next label yt+1. This assumption is
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Figure 5.1: Feature function for CR-algorithm 3. The current state contains the input
sequence x (handwritten letters) and the current prediction ŷ = (H,E,L, ε, ε). The current
action consists in recognizing the next letter as a L. The joint description of this state-action
pair is given on the right. It contains content features (those related to the handwritten digits)
and structural features (those related to previous predictions).

required in order to perform exact inference with the Viterbi algorithm. When performing greedy
inference, we are not limited by such concerns. Hence, we can very easily introduce long-term Long-term

dependenciesdependencies. In CR-algorithm 3, the parameter C controls the length of the dependencies on
which the labeling process relies.

Action Descriptions In order to apply CRank or any other action-value based learning algo-
rithms, we need a joint state-action feature function: φ : S ×A → R

d. The feature function that Feature function

we use in our experiments is illustrated in Figure 5.1. We use content features and structural
features:

• The content features compute a joint aspect of the action and the current input element Content Features

xt. Features related to input elements depend on the tasks: they might correspond to pixel
values in handwritten recognition or word prefixes and suffixes in part-of-speech tagging.
In Figure 5.1, input elements are black-and-white bitmaps and we use one feature fl,p per
possible label ∈ L and per possible pixel position p:

fl,p(s,a) =

{
1 if chosen label = l ∧ pixel p is black in xt
0 otherwise

• The structural features focus on previously predicted labels. In left-to-right labeling, we Structural Features

use one feature per possible label pair (l1, l2) ∈ L2 and per possible context position2

2Note that ŷt−δ may sometimes not be defined due to border effects. In order to handle all cases in a uniform
way, we introduce a special label, called Before, to denote elements that are before the beginning of the sequence
(i.e. δ > t).
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Figure 5.2: Examples of training sequences. The left part of the figure gives an example
sequence from the Ner corpus. This sequence contains the following labels: Outside, Begin-
PERson, Inside-PERson, Begin-LOCation and Begin-MISC. The right part of the figure gives
an example from the Chunk corpus. Three labels are possible: Begin, Inside and Outside a
noun-phrase.

δ ∈ [1, C]:

fl1,l2,δ(s,a) =

{
1 if chosen label = l1 ∧ ŷt−δ = l2

0 otherwise

The feature space induced by content and structural features may be very large. With card(L)
distinct labels and d input features, we have card(L) × d content features and card(L)2 × C
structural features. A major characteristic of the feature functions we use is sparsity : for aSparsity

given state-action pair, most of the features have null values. In practice, we only consider active
features: those that have non-null values. As an example, on the card(L)2×C structural features,
only C features are active in a given state-action pair. Sparseness can be exploited through sparse
vectors data structure, which, in practice leads to quite efficient implementations.

Supervision Left-to-right labeling with the Hamming loss has a very nice property: it is easy
to compute the optimal policy function on training examples. Indeed, whatever the current stateOptimal Learning

Policy is, the best action (to maximize the reward) is to select the next label correctly. If we start from
time step t and then choose all the succeeding labels correctly, the optimal value is:

V ∗(s) = V ∗((x, ŷ,y, t)) = −card({i ∈ [1, t], ŷi 6= yi})

i.e. the optimal values only depend on the errors that occurred before time step t. Since we
know the optimal value function, we can compute regrets associated to actions. We consider twoOptimal Regrets

cases: either the chosen label is correct or we made a prediction error. In the former case, the
hamming loss will not increase and the regret equals zero. In the latter case, the optimal value
decreases by one: the regret equals +1. We can thus supervise CRank with optimal regrets:

c(s,a) = c((x, ŷ,y, t), l) =

{
0 if yt = l

1 otherwise

5.1.2 Datasets

We performed experiments on three standard sequence labeling datasets that correspond to five
train/test splits.
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Training Set Evaluation Set
Sequences Elements Elts/Seq Sequences Elements Elts/Seq Labels Features

Ner-Small 300 7059 ≈ 23.5 8,323 264,715 ≈ 31.8 9 175,531
Ner-Large 8,323 264,715 ≈ 31.8 1,517 51,533 ≈ 34.0 9 188,248

HandWritten-Small 626 4,617 ≈ 7.4 6,251 47,535 ≈ 7.6 26 128
HandWritten-Large 6,251 47,535 ≈ 7.6 626 4,617 ≈ 7.4 26 128

Chunk 8,936 211,727 ≈ 23.8 2,012 47,377 ≈ 23.5 3 143,310

Table 5.1: Statistics of the Sequence Labeling corpora. From left to right: number of
sequences and elements for the training and testing sets, number of input features and number
of labels.

• Spanish Named Entity Recognition (Ner) This dataset, illustrated in Figure 5.2 (left),
is composed of sentences in Spanish, labeled with named entities. Named entities are phrases
that contain the names of persons, organizations, locations, times and quantities (9 labels).
This dataset was introduced in the CoNLL 2002 shared task3 where the aim was to develop
language-independent NER taggers. We used two train/test splits: Ner-Large is the original
split, composed of 8,324 training sentences and 1,517 test sentences. In order to compare our
model with baseline methods that cannot handle such a large dataset, we also used the Ner-
Small split, with a random selection of 300 training sentences, the 9541 remaining sentences
forming the test set. This corresponds to the experiments performed in [Daumé III et al., 2006]
and [Tsochantaridis et al., 2004]. Input features include word descriptions, suffixes and prefixes.

• Noun phrase chunking (Chunk) This dataset comes from the CoNLL-2000 shared task4.
As illustrated in Figure 5.2 (right), the aim is to divide sentences into non-overlapping phrases.
In this task, each chunk consists of a noun phrase. This task can be seen as a sequence-labeling
task thanks to the ”BIO encoding”: each word can be the Beginning of a new chunk, Inside
a chunk or Outside chunks. This standard dataset put forward by [Ramshaw et Marcus, 1995]
consists of sections 15-18 of the Wall Street Journal corpus as training material and section 20
of that corpus as test material. Input features are similar to the previous ones and we consider
one additional feature per surrounding word that corresponds to the part of speech of the word.

• Handwriting Recognition (HandWritten) This corpus was created for handwriting
recognition and was introduced by [Kassel, 1995]. Here, sequences are handwritten words and
labels are possible characters of the 26-letter alphabet. The dataset corresponds to a limited vo-
cabulary setting: there are only 55 different words. Most of the words have been written by 150
subjects leading to a total of 6900 sequences of handwritten characters (more than 52,000 charac-
ters). Each character is a 8 × 16 black-and-white pixels images. As in [Daumé III et al., 2006],
we used two variants of the set: HandWritten-Small is a random split of 10% words for
training and 90% for testing. HandWritten-Large is composed of 90% training words and
10% testing words. For both splits, the 55 possible word appear at least once in the training set.
Letters are described using one feature per pixel, as in Figure 5.1.

The statistics of our five corpora are summarized in Table 5.1.
3http://www.cnts.ua.ac.be/conll2002/ner/
4http://www.cnts.ua.ac.be/conll2000/chunking/

http://www.cnts.ua.ac.be/conll2002/ner/
http://www.cnts.ua.ac.be/conll2000/chunking/
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Independent Classification Structured Prediction
L2-Maxent L1-Maxent Svm Crf SvmIso Simple Searn

Ner-Small 93.00 92.87 93.26 91.86 93.45 93.8
Ner-Large 96.57 96.75 - 96.96 - 96.3

HandWritten-Small 71.65 71.20 77.59 66.86 76.94 64.1
HandWritten-Large 78.69 78.56 82.78 75.45 - 73.5

Chunk 96.36 96.56 - 96.71 - 95.0

Table 5.2: Baselines scores for Sequence Labeling. We considered two approaches: in-
dependent classification and structured prediction. The former treats each element as an in-
dependent prediction problem, while the latter try to capture interdependencies between the
neighboring elements. All the scores are percentages of correctly predicted labels in the test
set. The − symbol denotes experiments that failed due to their excessive memory or CPU time
requirement.

5.1.3 Baselines

In order to compare our models, we have computed baselines that correspond to two approaches:
independent classification and structured prediction.

Independent Classification When applied to sequence labeling, SP methods try to exploit
the sequential structure in order to improve the predictions accuracy. In order to measure
the benefit of using this structure, we consider a simple series of baselines which ignore the
interactions between labels. In this case, any traditional multi-class classifier may be used to
predict the labels independently. We give results for maximum entropy classifiers and support
vector machines. L1-Maxent and L2-Maxent5 are maximum entropy classifiers, which differMaxent

in the regularizer and learner they use. The former is regularized with the L2-norm of the
parameters and trained with the L-BFGS optimization procedure. The latter is regularized
with the L1-norm of the parameters and trained with the OWLQN method proposed recently
in [Andrew et Gao, 2007]. We tried regularizer values varying from 10−7 to 10−2 and selected
the best scores. LibSVM 6 is the traditional batch support vector machine classifier with linearSupport Vector

Machines kernels. We tried C values ranging from 10−4 to 104 and selected the best scores.

Structured Prediction We have used three baseline methods, which are described in Chapter
3, in order to compare our models: Crfs, SvmIso and Searn. For Crfs, we used the Flex-
CRFs [Phan et Nguyen, 2005] implementation – which is freely available online – with default
parameters. We compared with discriminant training of the SvmIso approach, thanks to the
implementation given by the authors: SvmHmm7. For each dataset, we tried three values of the
C parameter: 0.01, 1, and 100, and kept only the best results. Our last baseline is a ”very sim-
ply and stripped down implementation of Searn”8. This implementation is limited to sequence
labeling with Hamming loss and its base learner is an averaged Perceptron.

We trained each baseline and computed the percentage of correctly labels on the test set.
The results are summarized in Table 5.2. Surprisingly, the SP methods do not always perform
better than the much more simpler independent classifiers. As it will be shown in the following,

5Implementation from http://nieme.lip6.fr.
6Implementation from http://www.csie.ntu.edu.tw/~cjlin/libsvm.
7Implementation from http://svmlight.joachims.org/svm_struct.html.
8Implementation from http://searn.hal3.name.

http://nieme.lip6.fr
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://svmlight.joachims.org/svm_struct.html
http://searn.hal3.name
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Ner-Small Ner-Large HandWritten-Small HandWritten-Large Chunk

Best baseline 93.8 96.96 77.59 82.78 96.71
CR-algorithms 93.78 97.03 75.78 83.06 96.66

Table 5.3: Left-to-right sequence labeling with CR-algorithms compared to the best
baseline results. The first row gives the test-accuracies (the percentage of correctly labeled
elements in the test set) of the best baseline. The second row gives the test-accuracies of the
left-to-right CR-algorithm with a context size of C = 1, trained with CRank.

the contribution of the structure to the accuracy differs following the datasets. Similar results
were obtained in [Nguyen et Guo, 2007].

5.1.4 Experiments

Due to their use of Viterbi, Crfs and SvmIso rely on the first-order Markov assumption. Searn,
for comparison, was also executed with a first-order Markov assumption. To be comparable, we
thus also start with first-order dependencies (i.e. in CR-algorithm 3: C = 1).

First Order Dependencies Table 5.3 compare CRank to the best baselines models presented
above. It can be seen that the CR-algorithm approach is competitive with state-of-the-art on
four datasets over the five. On two datasets, we have slightly better results than the baselines
(+0.07 % on Ner-Large and +0.28 % on HandWritten-Large). Figure 5.3 shows the
training behavior of CRank . For each dataset, we display the train and test accuracies (i.e.
the percentage of correctly labeled elements) in function of the number of training iterations. A
training iteration corresponds to a whole pass on the dataset.

Depending on the datasets, most of the learning is generally done during the ten or twenty
first iterations (e.g. On Ner-Small, we have 92.8% accuracy after 10 iterations, 93.4% accuracy
after 20 iterations, and 93.8% at convergence). As usual in supervised learning, training scores
are higher than test scores. This effect is related to over-fitting and its amount reduces with
the number of training examples. For example in the Ner-Large and HandWritten-Large
corpora, the differences between train and test scores are much smaller than in the corresponding
Ner-Small and HandWritten-Small corpora.

Parameters In order to obtain the previous results, we have selected the following parameters
for CRank:

• Since we deal with corpora having from 128 to 188,248 input features, it is crucial to
properly tune the learning rate in each case. Experimentally, we found that the invert of Learning Rate

the average L1-norm of feature vectors is a good heuristic that works in all cases:9

α = Es,a∼π{
∑
i

|φ(s,a)i|}

• Ranking losses define the way ranking scores are updated in CRank. In the previous
chapter, we introduced three decomposition strategies: all-pairs, most-violated-pair and
best-against-all. Each of these strategies can be combined with a discriminant loss ∆d.
By default, we use the ∆mvp ranking loss with the large-margin discriminative loss. The
impact of ranking losses is studied below. Ranking Loss

9This heuristic works well in practice, furthermore it is easy to compute incrementally.
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Figure 5.3: Train and test accuracies during CRank training with the left-to-right
labeling CR-algorithm. The X-axis is the number of passes on the training dataset that have
been performed. The Y-axis is the accuracy: the percentage of correctly predicted labels. We
compare CRank train and test accuracies with the best baseline test accuracy from Section 5.1.3.
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Loss Context = 0 Context = 2 Context = 8
Base Loss Ranking Loss Train Test Train Test Train Test

Large-margin
Most violated pair 83.56 72.56 92.77 77.98 96.56 83.04

All pairs 81.91 68.52 92.81 75.70 98.51 80.51
Best against all 85.16 72.60 93.29 77.88 97.36 82.51

Perceptron
Most violated pair 77.41 65.24 89.43 73.37 96.4 79.42

All pairs 72.10 63.05 88.07 70.93 97.64 77.72
Best against all 72.75 64.69 83.73 72.43 88.87 76.78

Log-binomial
Most violated pair 81.16 71.03 88.11 77.21 93.63 82.32

All pairs 78.90 69.02 88.95 76.25 93.42 80.71
Best against all 82.93 72.09 89.86 78.10 93.02 82.10

Exponential
Most violated pair 78.06 68.61 88.76 76.73 96.53 83.02

All pairs / / / / / /
Best against all / / / / / /

Table 5.4: Impact of the ranking loss, HandWritten-Small dataset. This table gives
the train and test accuracies of CRank after 50 iterations with various ranking losses. Ranking
losses are combinations of decomposition strategies ∆r and discriminative losses ∆d. For each
possible combination, we give train and test accuracies for three different context sizes: C = 0,
C = 2 and C = 8. The / symbol denotes experiments where the parameters θ diverged.

• We observed experimentally that, on our datasets, adding a regularization term does not
significantly improve the test-accuracies. Therefore and for the matter of simplicity, we
only deal with unregularized CRank (λ = 0) in the following.

Higher order dependencies One of the major advantages of greedy inference over exact
inference is that we can easily incorporate higher-order dependencies in the feature function.
The impact of the context size C – the number of predicted labels on which the feature function
depends– on the training and testing accuracies of CRank are shown in Figure 5.4. These results
are similar to those that can be found in [XX effet taille du contexte]. In some datasets, such as
Ner and Chunk, the optimal values of C are small (0, 1 or 2) and too much context may slightly
degrade the performances. However, on some other datasets such as HandWritten, increasing
the context size has a major impact. Thanks to long-term dependencies, CRank significantly
outperforms the baselines: +5.8% accuracy on HandWritten-Small and +8.3% accuracy on
HandWritten-Large.

Ranking Losses We have tried all the combinations between the three decomposition strate-
gies ∆mvp, ∆ap and ∆baa, and four disciminative losses: the Perceptron loss, the large-margin
loss, the log-binomial loss and the exponential loss. The train and test accuracies for all possible
combinations are given in Table 5.4 for the HandWritten-Small dataset and Table 5.5 for
the Ner-Small dataset.

Most of our experiments using the exponential loss failed due to parameters divergence. This Exponential

is related to our learning method: stochastic gradient descent. The exponential loss may lead
to very big gradients, which introduce a lot of stochastically in the learning process. In an ideal
world, this should not diverge. We believe that the problem comes from numerical error, which
are propagated and amplified by the exponential loss.

The large-margin loss always significantly outperforms the Perceptron loss on test accuracies. Large-margin
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Figure 5.4: Impact of the context size. The X-axis corresponds to the parameter C: the
number of previous predicted labels on which predictions rely. The Y-axis is the percentage
of correctly predicted labels after 50 iterations of CRankon the left-to-right CR-algorithm with
first order dependencies. We compare the train and test accuracies with the best baseline test-
accuracy.
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Loss Context = 0 Context = 2 Context = 8
Train Test Train Test Train Test

Large-margin
Most violated pair 98.99 93.27 99.52 93.69 99.12 93.64

All pairs 99.59 93.18 99.9 93.69 99.83 93.62
Best against all 98.8 93.25 99.16 93.79 99.08 93.66

Perceptron
Most violated pair 100 92.27 100 92.78 100 92.61

All pairs 100 91.91 100 92.47 100 92.65
Best against all 99.9 92.27 100 92.77 100 92.78

Log-binomial
Most violated pair 96.19 92.11 96.47 92.33 96.02 92.18

All pairs 96.76 92.3 97.96 92.83 96.78 92.41
Best against all 95.57 92.4 96.27 92.75 96.12 92.58

Table 5.5: Impact of the ranking loss, Ner-Small dataset. This table gives the train and
test accuracies of CRank with various ranking losses, similarly to Table 5.4.

Intuitively, the large-margin loss requires a minimal margin between the good actions and the bad
actions, whereas the Perceptron only requires their order to be good. For a same computation Perceptron

cost, minimizing the large-margin loss leads to much better predictions.
Most of time, the log-binomial loss leads to lower accuracies than the large-margin loss. Log-binomial

Furthermore, it has a higher computation cost than the large-margin and Perceptron losses,
since it requires the computation of an exponential.

In most of our experiments, we use large-margin based losses since they lead to good accuracies
while being simple and fast to compute.

Concerning the decomposition strategies, the two datasets exhibit different behaviors. In Decomposition
StrategiesHandWritten-Small, the all-pairs strategy give significantly lower test accuracies than the

two other strategies. In Ner-Small, the difference is less significant but the best losses are still
those using most-violated-pair and best-against-all decompositions. Although the best-against-all
with large-margin loss seems to give slightly better results, we mostly use the most-violated-
pair/large-margin combination in the following. This choice is motivated by the fact that most-
violated-pair leads to convex learning problems, which, from a theoretical point of view, is much
more preferable.

5.2 Improving the inference procedure

In the previous section, we introduced the left-to-right labeling CR-algorithm and showed its
competitiveness w.r.t. state-of-the-art. Left-to-right is a simple approach for sequence labeling
that can be improved in various ways thanks to our formalism. In this section, we introduce two
alternative CR-algorithms: order-free labeling and multiple-pass labeling. We show experimen-
tally that CRank is able to learn these CR-algorithms and that, for some datasets, these new
inference procedures significantly improve our best previous results.

5.2.1 Order-free CR-algorithm

Instead of labeling from left to right, we consider here a CR-algorithm that is able to label in
any order. The underlying idea is that it may be easier to first label easy-to-recognize elements,
in order to enrich the context for the harder remaining labels. For example, in a handwritten
recognition task, some letters may be very noisy whereas others are clear and well drawn. If the
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algorithm starts to recognize some letters with a high confidence, it will then be able to use these
labels, as an additional context to decide how to label the remaining letters.

CR-algorithm 4 Order-free Sequence labeling
Input: An input sequence x
Input: The set of possible labels L
Input: The context size C
Training Input: The correct labels y
Output: A predicted sequence of labels

1: ŷ← (ε, . . . , ε)
2: n ← card(x)
3: labelings ← L× [1, n] . All labelings
4: for t = 1 to n do

5: (label, pos) ← choose[x, ŷpos−bC/2c, . . . , ŷpos−1, ŷpos+1, . . . , ŷpos+dC/2e] labelings
6: ŷpos ← label . Put label at position pos
7: labelings ← labelings \ L × {pos} . Removes labelings corresponding to pos
8: end for
9: if training then . Learning objective:

10: reward - ∆hamming(ŷ,y) . Hamming Loss
11: end if
12: return ŷ

CR-algorithm Order-free labeling is given in CR-algorithm 4. The main difference with left-
to-right labeling is that each choose corresponds to both a position and a corresponding label.
The CR-algorithm first creates the set of all possible labeling: all possible (position,label) pairs
(line 3). Then, at each step, it chooses simultaneously a position and an associated label (line
5). This decision is made on the basis of the input sequence x and on the neighboring predicted
labels yt. Each time an element has been labeled, we remove the possibility for future choices to
relabel this element (line 7). This ensures that, after n steps, the whole sequence is labeled.

Action Features As in left-to-right labeling, the CR-algorithm has a context size parameter
C. In both cases cases, C is the total number of predicted labels that are incorporated in the
feature function. We propose two feature functions for the order-free labeling CR-algorithm. The
first one is illustrated in Figure 5.5. Compared to left-to-right labeling, we introduce two new
labels: non-decided and after. These two labels respectively denote unlabeled elements (ŷt = ε)
and elements that are beyond the end of the sequence (t > n).

Our second feature function incorporates one more information in the features: the current
context completion. The completion is the number of elements in the context that are already
labeled. In order to include this additional information, we replace the content features by:

fc,l,...(s,a) =

{
1 if context completion = c ∧ chosen label = l ∧ input feature
0 otherwise

and structural features by:

fc,l1,l2,δ(s,a) =

{
1 if context completion = c ∧ chosen label = l1 ∧ ŷt−δ = l2

0 otherwise
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Figure 5.5: Order-free labeling features. The left part of the figure represents the current
state and action. The set of features corresponding to this situation is given in the right part of
the figure. We only display active features: those that have a non-null value. Since this example
only deals with binary features, all the active features have a value of 1.

Given a context size C, the set of possible completions c is the interval [0, C]. We thus multiply
the number of possible features by C + 1. However, the number of active features per state-
action pair does not change. In the following, order-free with the extended feature function will
be called order-free more-feats.

Supervision Similarly to left-to-right labeling, the Optimal Learning Policy of order-free la-
beling is easy to compute. This makes it possible to supervise CRank with the optimal regrets:

c(s,a) = c((x, ŷ,y), (label, pos)) =

{
0 if ypos = label

1 otherwise

Experiments Figure 5.6 compares the training behavior of CRank for left-to-right labeling, Training Behavior

order-free labeling and order-free labeling with the extended description. On the handwritten
recognition task, order-free labeling significantly improves the prediction accuracies over left-
to-right labeling: +2.8% for HandWritten-Small and +2.9% for HandWritten-Large.
Furthermore, the order-free method seems to be less sensible to over-fitting than the left-to-right
method (especially on the HandWritten-Small dataset). The more-feats feature function
seems to lead to better results than the normal feature function. However, these improvements
are done at the cost of the number of necessary training iterations. On HandWritten-Small,
left-to-right reaches its best performance after 40 iterations, order-free needs about 100 iterations
and order-free more-feats needs about 200 iterations.

Figure 5.7 compares the three approaches w.r.t. the context size. A surprising phenomenon Impact of Context
size
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Figure 5.8: Left-to-right vs order-free ranking problems. We consider the sequence
(S,O, S) in a problem with two possible labels L = {S,O}. The left part of the figure illustrates
the ranking problem corresponding to left-to-right labeling. The right part of the figure illustrates
the ranking problem corresponding to order-free labeling. Actions are written in black and the
corresponding red numbers are their action-costs. We assume a perfect ranking situation: all the
top-ranked actions have a cost of 0.

is that, for small context sizes, order-free accuracies are significantly lower than their left-to-
right counterpart. We believe that this is due to the nature of the underlying ranking problems.
Figure 5.8 illustrates the ranking problems corresponding to left-to-right labeling and order-free
labeling. A major difference between both problems is the following: the left-to-right ranking
problem is homogeneous – each ranking list corresponds to a single element – whereas the order-
free ranking problem is heterogeneous – multiple different elements are mixed within ranking
lists. We believe that the latter problem is harder to solve, which could explain cases where
order-free gives lower accuracies than left-to-right. If the order-free ranking problem is really
harder than its left-to-right counterpart, we may need a richer description space to accurately
learn the ranking function. This could explain why the extended description works better than
the normal description. This is also consistent with the effect of context size observed in Figure
5.7. When the context size is increased, the ranking machine can use more and more structural
features, which seems to be crucial to solve the ranking problem accurately.

Table 5.6 compares left-to-right labeling with order-free labeling on all our datasets. In most left-to-right vs
order-freeof them, order-free methods slightly degrade the test-accuracy compared to left-to-right methods.

This is probably related to the learning problem described above: order-free ranking functions
seems more hard to learn than left-to-right ranking functions.

On the HandWritten dataset, where large contexts help a lot, order-free methods clearly
outperform the left-to-right methods. With the Normal description, we have up to +4.98%
improvement over the left-to-right method. With the more-feats feature function, order-free
works even better with +5.52% improvement over left-to-right.

The feature function more-feats gives, in general, better results than the Normal description.
This is consistent with our previous argument: since order-free ranking functions seem more
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Description Loss Ner-Small Ner-Large HandWritten-Small HandWritten-Large Chunk

Normal
mvp -0.61 -0.28 +1.95 +3.25 -0.60
ap -1.37 -0.62 +1.39 +2.96 -1.07
baa - 0.56 -0.05 +2.75 +4.98 -0.21

more-feats
mvp -0.33 -0.17 +2.84 +2.94 -0.16
ap -1.18 -0.48 +1.55 +3.14 -0.17
baa -0.69 -0.07 -0.94 +5.52 -0.10

Table 5.6: Differences of test-accuracies between order-free and left-to-right labeling.
We compare left-to-right labeling (with 50 training iterations) with order-free labeling. We have
used two action feature functions: Normal (with 100 training iterations) and more-feats (with
200 training iterations). For each dataset, we chose the context size where left-to-right best
performed and used the same context size for all methods. Each result is the difference between
the order-free test-accuracy and the left-to-right test-accuracy. Positive numbers, shown in bold,
correspond to situations where order-free labeling outperforms left-to-right labeling.

complex than left-to-right ranking functions, we need more degrees in freedom in the ranking
function to learn it accurately.

As previously, the all-pairs decomposition strategy gives the worst results. The best-against-
all strategy generally gives the best results. However, in one case (HandWritten-Small /
more-feats), the test-accuracy is surprisingly low. In this experiment, the algorithm has reached
100% training accuracy after only 60 iterations. We believe that the −0.94% accuracy difference
is due to overfitting.

5.2.2 Multiple-pass labeling

When performing left-to-right or order-free labeling, each label is decided once for all. If a
prediction is wrong, there is no chance for the CR-algorithm to correct it afterwards. This is
a drawback of greedy inference procedures that may lead to sub-optimal predictions. Instead
of deciding each label once, we can give the CR-algorithms the opportunity to relabel elements
multiple times.

CR-algorithm CR-algorithm 5 shows a simple sketch for revising labels multiple times: multiple-
pass left-to-right sequence labeling. Compared to traditional left-to-right labeling, this CR-
algorithm has a new parameter: the number of passes P . When selecting P = 1, the CR-
algorithm is equivalent to the previous left-to-right labeling. With P > 1, we give inference the
opportunity to revise each label up to P times. At a given pass P > 1, the predictions can
depend both on the previous predicted label and on the next predicted labels of previous pass
P − 1.

Action Descriptions As the ranking of actions may change depending on the current pass,
we incorporate the pass number p into the features. We use the following content features:

fp,l,...(s,a) =

{
1 if current pass = p ∧ chosen label = l ∧ input feature
0 otherwise



5.2 Improving the inference procedure 107

CR-algorithm 5 Multiple Pass Left Right Sequence labeling
Input: An input sequence x
Input: The set of possible labels L
Input: The context size C
Input: The number of passes P
Training Input: The correct labels y
Output: A predicted sequence of labels

1: ŷ← (ε, . . . , ε)
2: n ← card(x)
3: for p = 1 to P do . For each pass
4: for t = 1 to n do . For each element
5: ŷt ← choose[p,x, ŷpos−C/2, . . . , ŷpos−1, ŷpos+1, . . . , ŷpos+C/2] L
6: end for
7: end for
8: if training then . Learning objective:
9: reward - ∆hamming(ŷ,y) . Hamming Loss

10: end if
11: return ŷ

and the following structural features:

fp,l1,l2,δ(s,a) =

{
1 if current pass = p ∧ chosen label = l1 ∧ ŷt−δ = l2

0 otherwise

Compared to traditional left-to-right labeling, the number of possible features is multiplied by
P . However, for a given state-action pair, the number of active features does not change.

Supervision As in our previous CR-algorithms, it is easy to compute an Optimal Learning
Policy in the multiple-pass case. A particularity of multiple-pass is that the final reward only
depends on the predictions of the last pass. Any policy that performs the last pass correctly
leads to the maximum of reward. The optimal regrets of the actions are the following:

c(s,a) = c((x, ŷ,y, t, p), l) =

{
1 if p = P ∧ yt 6= l

0 otherwise

The optimal regrets does not give any information on how to perform the first P − 1 passes.
Thus, if we want to learn to predict the good labels as soon as possible, supervising with the
optimal regrets is not a satisfying solution. Instead, we propose to supervise with action costs
that do not depend on current pass:

c(s,a) = c((x, ŷ,y, t, p), l) =

{
1 if yt 6= l

0 otherwise

Experiments Figure 5.9 shows the training behavior of CRank on the multiple-pass labeling Training Behavior

CR-algorithm. For some datasets (Ner and Chunk), performing multiple passes does not lead
to better accuracies. For some other datasets (HandWritten), multiple-passes significantly
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Figure 5.9: Multiple-pass training behavior. The X-axis corresponds to number of train-
ing iterations and the Y-axis corresponds to the test accuracy. For each dataset, we compare
multiple-pass CR-algorithms with varying number of passes P .
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Num. Passes Ner-Small Ner-Large HandWritten-Small HandWritten-Large Chunk

2 -0.02 +0.12 +7.01 +4.14 +0.08
3 -0.02 +0.11 +8.12 +5.14 +0.08
4 -0.03 +0.13 +8.53 +5.29 +0.06
5 -0.03 +0.08 +8.66 +5.40 +0.04
10 -0.04 +0.09 +9.57 +6.69 +0.02

10, C=16 - - +11.77 + 7.30 -

Table 5.7: Differences of test-accuracies between multiple-pass and single-pass la-
beling. We compare multiple-pass labeling with single-pass labeling. For each possible value
of P , we show the test-accuracy difference between multiple-pass and single-pass after 50 × P
training iterations.
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Figure 5.10: Interaction of the context size and the number of passes. The X-axis
correspond to the context size parameter C and the Y-axis corresponds to the test accuracies.
We report results for one pass, two passes and five passes (P = 1, 2, 5). For each model, we used
50× P training iterations.

improve the quality of predictions. In all cases, the more passes we use, the more training
iterations are required to learn the ranking function.

Table 5.7 gives the relative performances of multiple-pass and single-pass labeling on our
five datasets. In most cases, multiple-pass improves the test-accuracies. In the handwritten
recognition task, growing the number of passes dramatically improves the test-accuracies: up to
+8.66% improvement on HandWritten-Small and +5.40% improvement on HandWritten-
Large for a constant context size C = 10. These major improvements are probably related to
the limited vocabulary setting of the HandWritten dataset. Since there are only 55 different
words, the multiple-pass approach makes it possible to implicitly learn the vocabulary through
the structural features. Note that, with CR-algorithms, this is automatically and transparently
integrated into the inference process and does not require an external dictionary or any natural
language grammar.

Figure 5.10 shows how the number of passes interacts with the context size. There is a Number of passes
and Context sizesignificant margin between the one-pass and the two-passes methods in both train/test splits.



110 Sequence Labeling with CR-algorithms

The next passes seems to help a little bit more, but most of the correction work seems to be
done in the second pass.

5.2.3 Extensions

Although we only studied left-to-right, order-free and multiple-pass labeling experimentally, it is
easy to imagine various extensions to these CR-algorithms.

We have seen that the order-free ranking problem seems to be harder than its left-to-right
counterpart. In order to avoid this, one approach could be this split the position and label choiceTwo-step order-free

into two chooses. The following example first chooses a position and then chooses a label for
this position:

pos ← choose[x, ŷp−C/2, . . . , ŷp+C/2] {the set of unlabeled positions p} . Choose a position
label ← choose[x, ŷpos−C/2, . . . , ŷpos+C/2] L . Choose a label

Instead of having one ranking problem, Two-step order-free leads to two different ranking prob-
lems: ranking the possible positions and ranking the labels for a given position. The latter is
similar to the traditional left-to-right ranking problem. The former is a bit particular: the aim is
to rank the positions in order to make further predictions easier. Supervising this problem is not
trivial: the quality of positions depends on the error distribution of the label-ranking function.
As this might be hard to quantify, one possibility is to supervise the position-ranking problem
thanks to rollouts. In this approach, in order to quantify the quality of a position, we perform
several labeling steps starting from that position and observe the quality of the predicted label
sequence.

We presented above the multiple-pass left-to-right approach for sequence labeling. It is easy
to introduce the multiple-pass idea in an order-free CR-algorithm. The following inference loopmultiple-pass

order-free performs S labeling steps. Any element of the sequence can be labeled or re-labeled in each such
step:

for t=1 to S do
(label, pos) ← choose[x, ŷpos−C/2, . . . , ŷpos+C/2] L × [1, n]

end for
The optimal policy of the multiple-pass order-free approach is any policy that, after the S labeling
or re-labeling steps, leads to the correct label sequence. Similarly to our supervision for multiple-
pass left-to-right, we suggest the use of a strong action-cost function. For example, we could use
the following supervision function:

c(s,a) = c((x, ŷ,y, t), (label, pos)) =


0 if (ŷpos 6= ypos) ∧ (label = ypos)
1 if (ŷpos = ypos) ∧ (label = ypos)
1 if (ŷpos 6= ypos) ∧ (label 6= ypos)
2 if (ŷpos = ypos) ∧ (label 6= ypos)

This supervision function is derived from the immediate change in Hamming Loss, i.e. the reward
that would be obtained if the CR-algorithm was stopped immediately after the current choose.
The best thing to do is to correctly label elements that are unlabeled or wrongly labeled (cost =
0). Replacing a wrong label by another wrong label and replacing correct labels by themselves
has a cost of 1. The worst actions are those that replace a correct label by a wrong label (cost
= 2).

We have seen that performing multiple-passes dramatically improves accuracy on some datasets.
However, this improvement is made at the cost of inference (and training) time. In order to make
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inference faster, we could imagine CR-algorithms that incorporate a learning-to-stop problem. Learning to stop

Practically, this problem can be formalized as a choose between continuing or stopping the
algorithm:

choose[x, ŷ] break, continue . Stop or continue?
This choice can be inserted after each pass in CR-algorithm 5, or after each choose in a multiple-
pass order-free approach. In order to enforce fast inference, we must modify the rewards to take
the inference time into account. Since we have two different objectives: making good predictions
and making them fast, there is a trade-off to do between both. This can be done simply, by
adding a penalty Γ after each inference pass:

reward −Γ
The learning problem then consists in learning to stop, as soon as we expect less than Γ improve-
ment on the final loss. This can be supervised by comparing the current Hamming loss with the
optimal Hamming loss. If the difference between both is less than Γ, we should choose to break.

5.3 Additional results

In this section, we discuss various aspects of training on the basis of several additional experi-
mental results. In particular, we discuss the use of reinforcement learning algorithms (Section
5.3.1), alternative exploration strategies (Section 5.3.2) and the use of rollouts in learning (Sec-
tion 5.3.3). We also discuss the links between multiple-pass labeling and existing methods from
the field of collective classification (Section 5.3.4)

5.3.1 Reinforcement learning

The CR-algorithms described in this chapter share a nice property: they are easy to supervise.
In order to quantify the contribution of supervision in the training process, we have made a set
of experiments with reinforcement learning algorithms that only use the information conveyed
by rewards.

Experiments have been performed with the left-to-right and order-free CR-algorithms com- Models

bined with two reinforcement learning algorithms: Sarsa and Olpomdp (see Section 2.2.4).
Both methods make use of linear learning machines trained with stochastic ascent/descent. The
learning rate is an inversely proportional function of the time. In both Sarsa and Olpomdp,
we performed softmax exploration with Gibbs distributions [Sutton et Barto, 1998]. The tem-
perature of this distribution was chosen to be an inversely proportional function of the time. For
each dataset and labeling method, we tuned the following parameters using grid search:

• Sarsa: learning rate, temperature, discount

• Olpomdp: learning rate, β (the bias-variance tradeoff)

To evaluate each set of parameters, we performed 100 training iterations with 75% of training
data and evaluated the learned policy on the remaining 25% of training data.

Until now, we considered CR-algorithms with per-episode rewards: the whole negative loss Per-decision rewards

was given at the end of episodes. From the point of view of reinforcement learning, the credit
assignment problem is maximally difficult in this setting. In order to make learning easier, we
considered an alternative definition of rewards called per-decision rewards. Instead of giving the
whole Hamming loss at the end of inference, we give rewards of 0 or −1 immediately after each
choose. This new reward function is illustrated for left-to-right labeling in CR-algorithm 6. Note
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Figure 5.11: Behavior of Olpomdp depending on which reward function is used. The
figures illustrates experiments performed on the HandWritten-Small dataset. Left: train
accuracy as a function of the number of training iterations. Right: impact of the β parameter
with both rewards on the train and test scores of Olpomdp.

that when maximizing the total reward criterion, per-decision and per-episode rewards are both
equivalent to the empirical sequence labeling risk minimization problem.

CR-algorithm 6 Left-to-right Sequence labeling with per-decision reward.
Input: An input sequence x
Input: The set of possible labels L
Input: The context size C
Training Input: The correct labels y
Output: A predicted sequence of labels

1: ŷ← (ε, . . . , ε)
2: n ← card(x)
3: for t = 1 to n do
4: ŷt ← choose[x, ŷt−C , . . . , ŷt−1, t] L . Choose the next label
5: if training then . Learning objective:
6: reward - 1 {ŷt 6= yt}
7: end if
8: end for
9: return ŷ

Figure 5.11 shows the behavior of Olpomdp depending on which reward function is used.Per-episode vs.
Per-decision Rewards Although the per-episode correspond to a much more difficult learning problem, Olpomdp is

still able to learn a good policy. However, training requires much more iterations, which makes
the per-decision rewards hard to apply in practice. With per-episode rewards, since the whole
loss is given at the final states, the best value of the β parameter of Olpomdp is one, i.e. the
algorithm requires maximal propagation of the rewards to perform effective learning. At the
opposite, when using the per-decision reward, only few propagation of the reward is required,
which leads to low optimal β values. In all the remaining experiments, we use the per-decision
reward.
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left-to-right order-free
Sarsa Olpomdp CRank Sarsa Olpomdp CRank

Ner-Small 91.90 93.73 93.83 91.28 93.63 93.68
Ner-Large 96.31 96.87 97.43 96.32 96.64 97.19

HandWritten-Small 75.20 82.46 83.13 81.56 84.36 87.56
HandWritten-Large 85.88 89.74 90.39 92.21 90.75 94.10

Chunk 96.08 96.50 96.79 96.17 96.14 96.65

Table 5.8: Comparison of Sarsa, Olpomdp and CRank on left-to-right and order-free
sequence labeling. Each row corresponds to a dataset and each column corresponds to a
learning method. For each combination, we give the percentage of correctly predicted labels on
the test-set. The best test scores are shown in bold.
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Figure 5.12: Training behavior of Sarsa, Olpomdp and CRankon left-to-right se-
quence labeling. For each method, we display the number of correctly predicted labels on the
test-set as a function of the number of passes over the training set.

Table 5.8 compares the test-accuracies obtained with Sarsa, Olpomdp and CRank. The
main difference between these algorithms is the supervision information that is used during RL vs. Supervised

training. Our results show that, although using much weaker supervision, reinforcement learning
methods reach nearly the same accuracy as the supervised method on most datasets. Figure 5.12
gives the training curves for each method with left-to-right labeling. On nearly all datasets, we
observed the following behavior: Sarsa converges towards a sub-optimal solution and Olpomdp
converges to nearly the same result as CRank, but requires one or two orders of magnitude more
training iterations. In summary, removing the rich supervision required by CRank impacts much
more on the required training time than on the accuracy of the model.

In order to maximize the total reward criterion, Sarsa should be used with a discount factor Sarsa Discount

of 1. We also performed experiments with smaller discount values since this sometimes lead to
an increased performance. Figure 5.13 shows the behavior of Sarsa as a function of the discount
value on the HandWritten dataset. In practice, the best discount values were close to zero for
most corpora. Since maximizing the immediate per-decision reward leads to an optimal behavior,
a null discount seems natural for left-to-right labeling. Using a discount factor greater than zero
would suggest that some decisions should perhaps go against the correct label for the sake of
future reward. In the order-free labeling case, discounting makes more sense: discount factors
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Figure 5.13: Impact of the discount parameter in Sarsa with left-to-right labeling
and order-free labeling. The curves correspond to the training scores after 100 and 1000
training iteration and to the test score after 1000 iterations.

greater than zero tend to enforce actions that make further predictions easier, i.e. between
two different correct labeling actions, we should prefer the position that most disambiguate the
remaining prediction problems.

Figure 5.14 illustrates the impact of the β parameter of Olpomdp. The impact of β onOlpomdp β
parameter Olpomdp is similar to the one of the discount on Sarsa (see Figure 5.11 for an example). The

tuning process led to small, but non-null, values of β: typically from 0.05 to 0.2 for left-to-right
labeling and less than 0.15 for order-free labeling.

In the previous chapter, we argued that ranking actions is an easier learning problem thanRanking vs
Regression the traditional action value regression problem. In left-to-right and order-free labeling, if we

assume a null discount factor, the value function can be written in the following way:

V π(s) = V π((x,y, ŷ, t)) = −1 {πt 6= ŷt}

i.e. the value functions equals 0 if the policy chooses the next label correctly and −1 otherwise.
In this configuration, Sarsa is very close to CRank : both methods use the Predicted exploration
strategy, both of them have immediate supervision and both of them are learned with stochastic
gradient descent. Only the learning problem changes: Sarsa tries to predict −1 or 0 values with
a regression machine, whereas CRank learns an ordering function with action-costs 1 or 0. The
previous comparisons between Sarsa and CRank can thus be seen as fair comparisons between
regression and ranking for sequence labeling problems.

5.3.2 Exploration

In the previous chapter, we have introduced various learning methods for CR-algorithms. A
fundamental characteristic of these methods is the exploration strategy they rely on. Exploration
strategies define the way actions are selected during training.

We have made a first set of experiments comparing CRank with its normal behavior – the
Predicted exploration strategy – and CRank with the Optimal exploration strategy:
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Figure 5.14: Impact of the β parameter in Olpomdp with left-to-right labeling and
order-free labeling. The curves correspond to the training scores after 100 and 1000 training
iteration and to the test score after 1000 iterations.

• Predicted The predicted strategy always selects the actions that are predicted by the cur-
rently learned policy. This correspond the strategy of CRank, which always takes the top-ranked
actions.

• Optimal The optimal strategy assumes that we know the Optimal Learning Trajectories.
Given these trajectories, it only selects optimal actions. This is the strategy that underlies
Incremental Parsing and LaSO.

Figure 5.15, Figure 5.16 and Figure 5.17 respectively give the results for left-to-right labeling,
order-free labeling and multiple-pass labeling. In nearly all cases, the Predicted strategy leads to Predicted Vs

Optimalbetter results than the Optimal strategy. In order to understand this result, let us consider the
way both exploration strategies handle prediction errors during learning. In left-to-right labeling
for example, the Optimal strategy leads to perfect contexts: (ŷt−C , . . . , ŷt−1) = (yt−C , . . . ,y1),
while the Predicted strategy leads to contexts that may contain the errors made by the currently
learned policy. The latter is much more close to the real use of the policy: in practice, learning
is often imperfect, and we should learn our policies to recover from their previous errors. The
main advantage of the Predicted exploration strategy is that if the system makes an error it will
then have been trained to predict the best possible sequence of labels given this error.

Algorithms from the field of reinforcement learning suggest the use of explicit exploration
during learning. A simple approach consists in selecting random actions from time to time:

• Epsilon Greedy The Epsilon Greedy strategy mixes exploitation and exploratory steps with
a ε−greedy policy (see Section 2.2.3). Exploitation steps correspond to the Predicted strategy
and exploratory steps select actions randomly.

We have made experiments using ε-greedy policies with various values of ε. The results are Epsilon Greedy

given in Figure 5.18. The more ε is big, the more there is noise into the action selection process.
Not surprisingly, the biggest values of ε particularly degrade the test-accuracies. However, it
can be seen that for small values (ε = 5%), the results seems to be competitive with the pure
Predicted strategy (ε = 0%). Anyway, we believe that approximation errors are a sufficient
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Figure 5.15: Optimal vs Predicted exploration in left-to-right labeling. The X-axis
corresponds to the context size parameter C and the Y-axis corresponds to test accuracies. We
compare two exploration strategies: Predicted and Optimal.
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Figure 5.19: Training behavior of CRank with rollouts. Each curve represents a particular
ranking loss / CR-algorithm combination on the HandWritten-Small dataset. The X-axis
corresponds to the number of training iterations and Y-axis corresponds to test-accuracies. Red
curves show the behavior of the normally supervised CRank. Green curves show the behavior of
CRank with rollouts.

source of exploration in our CR-algorithms. Since we deal with many training examples, the
policy visits continuously new states, which reduces the importance of explicit exploration.

5.3.3 Learning with rollouts

In problems where action costs cannot be simply computed, one must learn by using the rewards
only. In Section 5.3.1, we discussed the use of classical reinforcement learning in such cases. In
order to use CRank, an alternative consists in using empirically estimated action-costs. Such as
discussed in Chapter 4, these regrets can be evaluated empirically by using rollouts.

Figure 5.19 compares the training behavior of CRank with normal supervision and CRank

with rollouts on the HandWritten-Small dataset. Much can be said about these curves. First,
in some cases, rollouts work well and make it possible to reach the same accuracy level as the fully
supervised method. In other cases (e.g. multiple-pass most-violated-pair), the training process
converges toward a local minimum. In the worst cases (typically with the all-pairs decomposition
strategy), the training process does neither converge, nor lead to good accuracies. It should be
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noted that no tuning on the learning rate was performed for these experiments10. It would not
be surprising that this parameter has a crucial effect on the training behavior with rollouts.

The kinds of results we obtain with rollouts are well known in approximated reinforcement
learning (see for example [Bertsekas et Tsitsiklis, 1996], for some experiments where approxi-
mated RL methods diverge). How to ensure convergence toward a good solution is still a very
open question in this field. One direction for future work would be to apply a conservative policy
iteration scheme to CRank [Kakade et Langford, 2002]. This would make it possible to ensure
convergence after a finite time.

5.3.4 Collective classification

Our multiple-pass labeling approach closely resemble to existing methods in collective classifi-
cation. In particular, the stacked learning approach [Cohen et Carvalho, 2005] and the Gibbs
sampling [XX citation] methods can be used for sequence labeling. A possible approach to com-
pare these methods with our work consists in writing their inference procedures as CR-algorithms.
The way inference is performed in Gibbs sampling is described in CR-algorithm 7. Similarly the
stacked learning inference procedure is given in CR-algorithm 8. The main difference between
our approach and these related method is related to the way learning is performed.

CR-algorithm 7 CR-algorithm corresponding to Gibbs sampling
Input: An input sequence x
Input: The set of possible labels L
Input: The context size C
Input: The number of passes P
Training Input: The correct labels y
Output: A predicted sequence of labels

1: ŷ← (ε, . . . , ε)
2: n ← card(x)
3: ∀t, l ∈ [1, n]× L,M [t, l]← 0
4: for p = 1 to P do . For each pass
5: for t in order(1,n) do . For each element
6: ŷt ← choose[x, ŷp−1

pos−C/2, . . . , ŷ
p−1
pos+C/2] L

7: M [t, ŷt]←M [t, ŷt] + 1
8: end for
9: end for

10: for t = 1 to n do
11: ŷt ← argmaxl∈LM [t, l]
12: end for
13: if training then . Learning objective:
14: reward - ∆hamming(ŷ,y) . Hamming Loss
15: end if
16: return ŷ

Stacked learning relies on a cross-validation based method for generating the intermediate
labels. Gibbs sampling learn classifiers by assuming perfectly predicted neighboring labels. The
CR-algorithms key idea is to incorporate inference into the learning process. With algorithms

10We kept using the heuristic described in Section 5.1.4
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CR-algorithm 8 Stacked Multiple Pass Left Right Sequence labeling
Input: An input sequence x
Input: The set of possible labels L
Input: The context size C
Input: The number of passes P
Training Input: The correct labels y
Output: A predicted sequence of labels

1: ŷ0 ← (ε, . . . , ε)
2: n ← card(x)
3: for p = 1 to P do . For each pass
4: for t = 1 to n do . For each element
5: ŷpt ← choose[p,x, ŷp−1

pos−C/2, . . . , ŷ
p−1
pos+C/2] L

6: end for
7: end for
8: if training then . Learning objective:
9: reward - ∆hamming(ŷ,y) . Hamming Loss

10: end if
11: return ŷP

Ner-Small Ner-Large HandWritten-Small HandWritten-Large Chunk

Best baseline 93.8 96.96 77.59 82.78 96.71
left-to-right 93.78 97.19 83.04 91.49 96.72
order-free 93.19 97.11 85.28 96.47 96.47

order-free more-feats 93.46 97.09 85.88 97.01 96.58
multiple-pass 93.82 97.19 94.81 98.79 96.72

Table 5.9: Summary of sequence labeling results. This table summarizes the test-
accuracies that we obtained with our CR-algorithms. These results are contrasted with the
scores of the best baselines from Section 5.1.3.

such as CRank, the classifiers of stacked learning or Gibbs sampling would be learned by simu-
lating the inference procedure. We plan to make an exhaustive comparison of the CR-algorithm
approach against stacked learning and Gibbs sampling in our future work.

5.4 Conclusion

In this chapter, we have illustrated the use of CR-algorithms for sequence labeling and we
demonstrated experimentally the multiple advantages of this approach:

• CR-algorithms can model high order dependencies between the labels. Contrary to most
SP approaches, CR-algorithms are not restricted by the Markov assumption. On many
datasets, increasing the length of the dependencies dramatically increases the performance
of the models. Thanks to these long-term dependencies, CR-algorithms are competitive
against state-of-the-art. In particular, we have shown that greedy inference performs as
well as dynamic programming based inference.
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Ner-Small Ner-Large HandWritten-Small HandWritten-Large Chunk

left-to-right CRank 2.59 ms 3.04 ms 1.10 ms 1.09 ms 1.17 ms
order-free CRank 16.10 ms 16.31 ms 3.14 ms 3.04 ms 3.19 ms

multiple-pass CRank 6.36 ms 6.92 ms 3.04 ms 3.04 ms 3.42 ms

Table 5.10: Inference times for various sequence labeling methods. We give the average
inference cpu-time per sequence for the left-to-right, order-free and multiple-pass CR-algorithms
(with P = 3). All the experiments were performed on a standard desktop machine.

Ner-Small Ner-Large HandWritten-Small HandWritten-Large Chunk

left-to-right CRank ≈ 30 s ≈ 20 min ≈ 40 s ≈ 7 min ≈ 10 min
order-free CRank ≈ 6 min ≈ 5h ≈ 4 min ≈ 40 min ≈ 1h

multiple-pass CRank ≈ 4 min ≈ 3 h ≈ 5 min ≈ 1h ≈ 90 min
Crf - ≈ 8h - ≈ 2h -

SvmIso - > 3 days - > 3 days -
Simple Searn ≈ 30 min ≈ 6h ≈ 20 min ≈ 3h ≈ 2h
L2-Maxent ≈ 30 s ≈ 1 h ≈ 60 s ≈ 8 min ≈ 15 min
L1-Maxent ≈ 40 s ≈ 25 min ≈ 70 s ≈ 8 min ≈ 8 min

Svm ≈ 40 s - ≈ 15 s ≈ 15 min -

Table 5.11: Training times for various sequence labeling methods. Approximate train-
ing times for various sequence labeling methods. Top: CR-algorithms learned with CRank.
We use P = 3 for multiple-pass labeling. Middle: structured prediction baselines. Bottom:
independent classification baselines.

• CR-algorithms is a very expressive framework in which many different inference proce-
dures can be written. We studied three CR-algorithms for sequence labeling: left-to-right
labeling, order-free labeling and multiple-pass labeling. Learning order-free and multiple-
pass inference procedure is an original idea of this work. Table 5.9 summaries the results
corresponding to these CR-algorithms. On some datasets, our new inference procedures
significantly outperform state-of-the-art results.

• We did not discuss execution times until now. Since they rely on greedy inference, CR-
algorithm approaches are very fast. Table 5.10 summarizes the inference times of various
models that were learned with CRank. Most of time, sequences are inferred in less than 5
ms, which is very satisfying for applications.

• CRank has been conceived to be a fast training algorithm able to deal with large-scale
tasks. Table 5.11 summarizes the training times for the various approaches we compare. It
can be seen that CRank based approach perform training in a relative small time, which
makes it possible to deal with very large corpora.

The CR-algorithms that we introduced in this section were easy to supervise: we had access
to Optimal Learning Policies that were used to compute the optimal regrets associated to actions.
The knowledge of an Optimal Learning Policy is a strong assumption that is not always verified.
In the next chapter, we introduce a new task, which is much harder than sequence labeling, where
it is not possible to compute the Optimal Learning Policy. We will show that CR-algorithm can
still be used, only the learning methods must be changed.
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This chapter introduces a new challenging SP task: ordered labeled tree transformation.
This task deals with large trees (thousand of nodes), complex transformations (structure and
text processing, node creations, deletions and displacements) and very high dimensional learning
(often more than one million distinct features).

This tree transformation task is motivated by the amount of semi-structured available on
the Web and the diversity of existing formats used to describe such data. Most documents
available on the Web are expressed in layout-oriented formats (flat text, wiki-text and HTML),
while document-processing applications require more and more semantic-oriented information,
in the form of XML dedicated formats for example. This leads to the need of automatic conver-
sion tools between semi-structured document formats [Wisniewski et al., 2007] with application
in domains like document engineering [Chidlovskii et Fuselier, 2005] and information retrieval
[Denoyer et Gallinari, 2007, Jousse et al., 2006]. We propose here to model such conversions as
an SP task, where both inputs and outputs are ordered labeled trees. From the point of view of
the user, it is enough to provide a set of documents expressed in both source and target format,
to learn the conversion process.
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Figure 6.1: Example of XML heterogeneity. The same movie description extracted from
three sources: two HTML styles and one XML general movie schema.

6.1 Introduction

We introduce here the ordered labeled tree transformation task. Section 6.1.1 describes the
context that motivates the task. Section 6.1.2 describes related work in connected fields. The task
is formalized as an SP problem in Section 6.1.3. Finally, we discuss the relevancy of Incremental
SP methods for this problem in Section 6.1.4.

6.1.1 Context

Semantically rich data like textual or multimedia documents tend to be encoded using semi-
structured formats. Content elements are organized according to some structure that reflectsSemi-structured data

logical, syntactic or semantic relations between these elements. For instance, XML and, to a
lesser extent, HTML allow us to identify elements in a document (like its title or sections) and
to describe relations between those elements (e.g. we can identify the author of a specific part
of the text). Additional information such as metadata, annotations, etc., is often added to the
content description leading to richer descriptions.

The question of heterogeneity is central for semi-structured data: documents often come inHeterogeneity

many different formats and from heterogeneous sources. Web data sources for example use a
large variety of models and syntaxes, as illustrated in Figure 6.1. Although XML has emerged
as a standard for encoding semi-structured sources, the syntax and semantic of XML documents
following different DTDs or schemas will be different. For managing or accessing an XML
collection built from several sources, a correspondence between the different document formats
has to be established. Note that in the case of XML collections, the schemas themselves may
be known or unknown depending on the source. For HTML data, each site will develop its
own presentation and rendering format. Thus even in the case of HTML where the syntax is
homogeneous across documents, there is a large variety of formats. Extracting information from
different HTML web sites also requires to specify some type of mapping between the specific
Web sites formats and the predefined format required by an application.

Designing tree transformations, in order to define correspondences between the differentTree transformation

schemas or formats of different sources is thus a key problem to develop applications exploit-
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ing and accessing semi-structured sources. This problem has been addressed for some times by
the database and to a lesser extent by the document communities for different conversion tasks
and settings. Anyway, the real world solution is to perform a manual correspondence between
heterogeneous schemas or towards a mediated schema via structured document transformation
languages, like XSLT. Although special tools have been developed for helping programmers at
this task, the process remains complex, it requires expert skills and the resulting mappings are
often very complicated. This is not adapted to situations where document sources are multiple
and change frequently. Furthermore, languages such as XSLT are limited by two important
properties of real world document collections:

• The schema for large document collections are often very loose and impose only few con-
straints on valid documents1. In this case, the schema itself does not provide enough
information and writing an XSLT script for document transformations can be very difficult
and time consuming.

• Many sources, especially on the Web, come without schema and the only evidence comes
from the document itself. The transformation problem has then to be studied from a
document centric perspective as opposed to the data centric view developed for databases.
This means that the semantic of the document is important and that transformations shall
take into account both the textual content and the structure of the document. Here, the
order of the document leaves and nodes is meaningful and shall be taken into account by
the transformation.

Automating the design of these transformations has rapidly become a challenge. Several ap- Automatic Tree
Transformationproaches have been explored ranging from syntactic methods based on grammar transformations

or tree transducers to statistical techniques. However, these methods are still hard to use in
practical cases. Many of them heavily rely on task specific heuristics. Current approaches to
document transformation are usually limited to one transformation task or to one type of data.
A majority of techniques only consider the structural (logical or syntactic) document information
and do not exploit content nodes. Even this structural information is used in a limited way and
most methods exploit only a few structural relationships. Besides, most proposed techniques do
not scale to large collections.

In this chapter, we propose to model automatic tree transformation as a SP task. Instead of
writing complex transformation scripts, in this framework, the user has only to provide a set of
examples of the transformation, i.e. pairs composed of input and associated target documents.
The tree transformation task encompasses a large variety of real-world applications like:

• Semantic Web conversion from raw HTML to semantically enriched XML. Example sources
include forums, blogs, wiki-based sites, domain specific sites (music, movies, houses, ...).

• Wrapping of Web pages conversion from pages coming from many sources to a unified
format.

• Legacy Document conversion The document-engineering field were document mapping
has been at the heart of many applications like document annotation or document conversion Document Annota-

tion/Conversionof flat text, loosely structured text, HTML or PDF formats onto a predefined XML schema
[Chung et al., 2002, Chidlovskii et Fuselier, 2005].

1This is the case for example for the Wikipedia [Denoyer et Gallinari, 2006] or the IEEE INEX XML collections.
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• Heteregeneous Search Tree transformation is also relevant to the field of Information
Retrieval. When searching in XML collections, targets are no more documents but document
elements. Queries may address either the content of the document, or both its content and
structure. In both cases, the goal will be to retrieve the most specific relevant elements in a
document. The INEX initiative [Fuhr et al., 2002a] launched in 2002 has focused on the devel-
opment of XML search engines. The initial collections at INEX were homogeneous, all documents
sharing a common DTD. Recently a heterogeneous search track has been launched where the
goal is to query collections coming from different sources and with different formats.

6.1.2 Related Work

Three domains have been mainly concerned up to now with the document conversion problem :
Information Retrieval, Document Engineering and Databases. We briefly review below related
work in these three domains.

Structured document transformation is a relatively new topic in the document community.Information
Retrieval and

Document
engineering models

Automating XML document transformation from one source format onto a target schema is a
key issue for document reuse and several approaches have been recently proposed. Work in this
area only consider schema transformations and thus requires that the input schema is provided.
Content information is completely ignored. This class of methods is thus restricted to collections
with well-defined schema and few content like bibliographic data. It does not apply to large
document collections. Leinone and al. in [Leinonen, 2003] for example propose a syntax directed
approach based on finite state tree transducers. The system automatically generates mappings
when the user specifies a correspondence between document leaves. Su et al. in [Su et al., 2001]
propose a tree-matching algorithm, which decomposes the mapping into a sequence of basic
operation. The algorithm relies on heuristics for exploring the ”‘action”’ space and on user
provided semantic information. Boukotaya and al. in [Boukottaya et Vanoirbeek, 2005] also
propose a heuristic algorithm, which combines multiple criteria (semantic relationships between
label names, data types compatibility, path similarity, etc). Another interesting topic in the
document and web communities is document annotation, which is the transformation of rendering
formats like HTML or PDF formats onto a target XML schema. Annotation is a special case
of structure mapping where for example the input and output documents have similar leave
sequences. Yip Chung and al. in [Chung et al., 2002] consider an HTML to XML conversion
problem. They use unsupervised machine learning and manually defined rules to discover tree
patterns in the input document and to produce the output structure. Closest to us is the work by
Chidlovskii and colleagues [Chidlovskii et Fuselier, 2005] which has been used here as a baseline
model for comparison. They also consider the conversion of HTML or PDF documents to a target
XML schema. They use classifiers and probabilistic grammars to label input document elements
and build output trees. The complexity of these methods however limits their application to
small collections (e.g. Shakespeare corpus in the tests presented here).

It is worth mentioning here the work of Collins et al. [Collins et Roark, 2004] who recently
proposed an incremental method based on machine learning for parsing. This method, which
achieved impressive results, also uses a sequence of actions quite similar to ours for building the
parse tree from an input sentence but it used for natural language processing and cannot be
easily adapted to our structure mapping task.

In the database community automatic or semi-automatic data integration — known asSchema Matching
(DB) Models schema matching — has been a major concern for many years and there is a profusion of work

and topics in this area. Surveys of these techniques can be found in [Rahm et Bernstein, 2001]
and [Shvaiko et Euzenat, 2005]. We briefly review below three groups of matching models.



6.1 Introduction 127

• Schema-based models: they transform schemas and ignore the document content
([Palopoli et al., 1998, Doan et al., 2000, Castano et al., 2001]).

• Instance-level approaches: they consider both the schema and the meaning of the schema
elements. They are used when the schema information is limited ([Doan et al., 2001,
Li et Clifton, 2000]). Some of these models use basic machine learning techniques like
rule learners, neural networks, ...

• Multiple-Matchers approaches: they use several type of matchers in order to compute
the matching of two schemas ([Doan et al., 2001, Embley et al., 2001]). Some approaches
in this field have explored the inference of mapping using machine learning techniques.
A remarkable series of work has been developed in this direction by Halevy, Doan and
colleagues. In [Doan et al., 2003], Doan and al. propose a methodology which combines
several sources of evidence in the documents (tag names, schema description, data types,
local structure, etc), using a regression function learned from a dataset. This method
has been developed for different matching problems, and has been used in Section ?? for
comparison on the RealEstate corpus.

.
Past work on schema matching has mostly been done in the context of a particular application

domain. As far as we know, there is no benchmark in this domain and no comparison of the
different existing approaches.

6.1.3 Formalization as an SP problem

The tree transformation task can be formalized as an SP task, which consists in learning a
mapping f : X → Y from input documents x ∈ X to target documents y ∈ Yx. Both input and Inputs and Outputs

target documents are modeled as rooted labeled ordered trees. In the following, we denote xi
the i-th leaf of the input document x and yi the i-th leaf of the target document y. The user
provides a set of examples of the transformation: D = {(x(i),y(i))}i∈[1,n]. In order to restrict
the set of possible target documents Yx for a given input x, we consider a target schema G.
The information contained by this schema, such as the set of possible labels a target document
may contain, will be detailed below. The schema can either be provided by the user (with a
DTD in the case of XML documents for example) or induced automatically given a set of target
documents.

Many different kinds of transformations may appear in real-world applications. In the follow-
ing, we discuss two kinds of transformations that are illustrated in Figure 6.2: one-to-one tree
transformation and tree transformation with unaltered text. In one-to-one tree transformation, One-to-one tree

transformationthe input and target document leaves are aligned: each leaf xi of the input corresponds to the
leaf yi of the target. Furthermore, the textual content of the leaves is preserved during the trans-
formation: the text appearing in xi is the same as this appearing in yi. A particularly interesting
instance of the one-to-one tree transformation problem consists in extracting the structure of a
flat-segmented textual document.

In many real world tree transformation problems, the one-to-one assumptions are not verified-
. Ideally, a tree transformation system should handle as many kinds of transformations as General tree

transformationpossible. In particular, during the transformation, leaves may appear and disappear or they may
be reordered. We could even imagine applications where the document text may be altered.
Transformations on the text may range from low-level operations (e.g. text splitting, grouping,
capitalizing) to high-level semantic operations (e.g. text summarizing, automatic translation). In
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Figure 6.2: One-to-one tree transformation and tree transformation with unaltered
text. This figures illustrates two tree transformation problems. Pairs of input and target leaves
sharing the same textual content are shown with blue links. Left: one-to-one tree transformation,
each target leaf yi corresponds to the input leaf xi. Right: tree transformation with unaltered
text. Leaves may be reordered or suppressed, however, the text contained by each target leaf yi
exists in at least one input leaf xj .

the following, we restrict ourself to tree transformation with unaltered text: each text contained
in a target leave yi should exist in at least one input leave xj .

The aim in SP is to minimize the expectation of the loss function ∆. Several such lossLoss Function

functions may be relevant to tree transformation. Ideally, evaluating the quality of a tree trans-
formation should be made in the context of a specific application such as a search system on
heterogeneous collections or a specific document conversion tasks. Our approach was developed
to solve a large variety of tasks and we propose here to evaluate the general performance of the
method by measuring generic tree-similarities between predicted output documents and correct
output documents.

In our experiments, we make use of three tree-similarity F1 scores, which are illustrated inF1 Scores

Figure 6.3. The Fstructure, Fpath and Fcontent measures are computed by decomposing each tree
into a set of elements and by computing the F1 scores2 on these decompositions. The three F1

scores are always in the interval [0, 1] and perfectly predicted trees lead to similarity scores of
1. The three measures give complementary information: Fcontent focuses on the proportion of
correctly labeled leaves, Fpath concerns the proportion of correctly recovered paths and Fstructure

2The F1 score between two sets a and b is: F1(a, b) =
2×card(a∩b)

card(a)+card(b)
.
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Figure 6.3: Computation of the Fstructure, Fpath and Fcontent similarity measures. The
left and right parts of the figure respectively correspond to the predicted tree and the correct tree.
For each similarity measure, the trees are decomposed into set of elements (structure elements,
path elements or content elements). The bottom part of the figure gives the similarity scores,
which are the F1 score between predicted and correct elements.

concerns the proportion of correctly recovered subtrees. By default, we maximize the Fstructure
measure by using the following loss function:

∆(ŷ,y) = 1− Fstructure(ŷ,y)

6.1.4 Relevancy of the Incremental SP approach

Tree transformation is a particularly challenging large-scale SP task with several real-world
applications. We provide below a short discussion on why global SP algorithms cannot cope
with the complexity or the scale of such a task.

Global SP models assume that the argmax problem (see Section 3.2) can be solved efficiently:

fθ(x) = argmax
y∈Yx

F (x,y; θ)

In tree transformation, this argmax computation is intractable for the following reasons:

• The size of Yx – the set of potential solutions for a given input – is, in general, exponential
w.r.t. the number of nodes of input documents.
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• The loss function Fstructure is not additively decomposable. This disables the use of dy-
namic programming algorithms. Solving the argmax leads to a hard combinatorial opti-
mization problem.

• Even with a simpler loss and the one-to-one tree transformation assumptions, the optimiza-
tion is intractable with dynamic programming algorithms. For example, [Wisniewski et al., 2007]
and [Chidlovskii et Fuselier, 2005] propose methods using dynamic programming for one-
to-one tree transformation. The complexity of the dynamic programming algorithm is:

O((number of leaves in the input document)3 × C)

where C is a constant that measure the complexity of the output schema3. This complexity
is prohibitive even for moderate size documents.

Incremental SP approaches are built around greedy inference procedures that lead to much
lower complexities. For example, if there is one decision step per input leaf, the complexity will
remain linear w.r.t. the number of leaves of the input document.

6.2 CR-algorithms for tree transformation

In this section, we show how to use the CR-algorithm formalism in the context of tree transfor-
mation. We first describe CR-algorithms for one-to-one tree transformation in Section 6.2.1 and
tree transformation with unaltered text in Section 6.2.2. We then discuss a feature function able
to describe tree transformation actions in Section 6.2.3. We finally discuss supervision issues in
Section 6.2.4.

6.2.1 One-to-one tree transformation

We start with a CR-algorithm that solves the one-to-one tree transformation problem. This
CR-algorithm processes the leaves xi one by one, in a similar way to the left-to-right sequence
labeling approach presented in the previous chapter. In order to process a leaf xi, it enters in
a node-creation loop that aims at adding new nodes to the current partial output. This node-
creation loop creates at least a leaf node yi that has the same textual content as xi. Where and
what nodes to create is expressed thanks to choose instructions.

The proposed solution is given in CR-algorithm 9. The core of the CR-algorithm proceeds in
the following way. The main loop (line 5–35) iterates over input leaves. For each such leaf, the
node-creation loop (line 7–34) constructs new nodes in the current output tree. A key variable in
the node-creation loop is the currentNode variable. This variable represents the current position
in the current output tree. When starting processing a leaf, we initialize the current position to
the root of the current output tree (line 6) and then repeat the following four steps:

1. Create choices (line 8–14) This step creates the set of currently available choices. There
are two kinds of choices: create and enter. The aim of create is to append a new node
to the childrens of currentNode and then to set currentNode to the created node. The aim
of enter is only to change the value of currentNode. Entering the current node means
selecting its last children as being the new current position. This makes it possible to move
into the output tree without creating new nodes. There is one create choice per possible
label. The set of possible labels may be restricted by information contained in the output

3often greater than the number of possible output node labels
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CR-algorithm 9 One-to-one tree transformation CR-algorithm
Input: An input segmented text x
Input: An output schema G
Training Input: The correct output tree y
Output: A predicted output tree ŷ

1: ŷ← emptyTree(G)
2: if training then
3: currentLoss ← ∆(ŷ,y)
4: end if
5: for i = 1 to card(x) do . For each input leave
6: currentNode ← getRootNode(ŷ)
7: while currentNode 6= null do

8: choices ← ∅ . Create choices
9: for label ∈ possibleLabels(G, currentNode) do

10: choices.insert((create, label))
11: end for
12: if currentNode.getNumSubTrees() > 0 then
13: choices.insert((enter))
14: end if

15: choice ← choose[xi, ŷ, currentNode] choices . Choose

16: if choice = (create, label) then . Apply selected choice
17: if isInternalNode(G, label) then
18: newNode ← createInternalNode(label)
19: currentNode.addSubTree(newNode)
20: currentNode ← newNode
21: else
22: newNode ← createTextualNode(label, xi)
23: currentNode.addSubTree(newNode)
24: currentNode ← null
25: end if
26: else if choice = (enter) then
27: currentNode ← currentNode.getLastSubTree()
28: end if

29: if training then . Reward
30: newLoss ← ∆(ŷ,y)
31: reward -(currentLoss - newLoss)
32: currentLoss ← newLoss
33: end if
34: end while
35: end for
36: return ŷ
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schema (line 9). In order to have access to the enter choice, currentNode must contains
at least one children node (line 12).

2. Choose (line 15) Given the current input leaf xi, the current output tree ŷ and the current
position currentNode, choose between the currently available choices. Each action of the
MDPs induced by CR-algorithm 9 corresponds to one choice. We therefore equivalently
use the action and choice terms in the following.

3. Apply selected choice (line 16–28) Once a choice as been selected, this step modifies the
current output tree and the current output position accordingly. We distinguish two kind
of create choices: those creating internal nodes (line 18–20) and those creating leaf nodes
(line 22–24). When creating a leaf node, the current input text is added to the leaf and
currentNode is set to null, in order to break the node-creation loop.

4. Reward (line 29–33) This step computes a reward corresponding to the previously made
choice. A simple solution to define rewards would be to give the whole negative loss ∆(ŷ,y)
at the end of the episodes. However, as discussed in Section 5.3.1, this kind of rewards
leads to hard learning problems, where the credit assignment problem is maximal. In order
to ease learning, rewards should be dispatched among the successive decision steps. We
here dispatch the reward by computing the delta of loss ∆(ŷ,y) induced by choices. The
currentLoss variable, initialized in line 3 and updated in line 32, keeps a trace of the current
loss in order to compute these rewards.

The number of decision-steps required to construct a target document is bounded by the
maximal height of target documents times the number of leaves contained by the documents.
The complexity of inference when using this approach is thus:

O(maximalHeight× card(x))

6.2.2 Tree transformation with unaltered text

In many real world tree transformation problems, the one-to-one assumptions are not verified.
Thanks to the expressiveness of our formalism, the previous CR-algorithm can easily be extended
to support new kind of transformations. We have explored two such extensions: node skipping
and node reordering. These extensions makes it possible to manage tree transformation problems
with unaltered text, such as the one illustrated in the right part of Figure 6.2.

The new tree transformation inference process is given in CR-algorithm 10. The differences
with CR-algorithm 9 are displayed in italic text. Changes related to node reordering are shown
in blue and changes related to node skipping are shown in red.

• Node reordering In order to support node reordering, the create and enter choices are
now parameterized with a position argument. This position either specifies where a new node
should be created, or which existing node should be entered. The cost of node reordering is to
multiply the number of possible choices at each decision step by roughly the number of children
of currentNode.

• Node skipping In order to suppress leaf nodes during the transformation, we introduce a
new choice available at anytime: skip. The effect of skip is to set currentNode to null, which
breaks the current node-creation loop. This choice makes it possible to completely ignore an
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CR-algorithm 10 CR-algorithm for tree transformation with node reordering and skipping.
Input: An input sequence of leaves x
Input: An output schema G
Training Input: The correct output tree y
Output: A predicted output tree ŷ

1: ŷ← emptyTree(G)
2: if training then
3: currentLoss ← ∆(ŷ,y)
4: end if
5: for i = 1 to card(x) do . For each input leave
6: currentNode ← getRootNode(ŷ)
7: while currentNode 6= null do

8: choices ← ∅ . Create choices
9: for position = 0 to currentNode.getNumSubTrees() + 1 do

10: for label ∈ possibleLabels(G, currentNode, position) do
11: choices.insert((create, label, position))
12: end for
13: end for
14: for position = 0 to currentNode.getNumSubTrees() do
15: choices.insert((enter, position))
16: end for
17: choices.insert((skip))

18: choice ← choose[xi, ŷ, currentNode] choices . Choose

19: if choice = (create, label, position) then . Apply selected choice
20: if isInternalNode(G, label) then
21: newNode ← createInternalNode(label)
22: currentNode.addSubTree(newNode, position)
23: currentNode ← newNode
24: else
25: newNode = createTextualNode(label, xi)
26: currentNode.addSubTree(newNode, position)
27: currentNode ← null
28: end if
29: else if choice = (enter, position)) then
30: currentNode ← currentNode.getSubTree(position)
31: else if choice = (skip) then
32: currentNode ← null
33: end if

34: if training then . Reward
35: newLoss ← ∆(ŷ,y)
36: reward -(currentLoss - newLoss)
37: currentLoss ← newLoss
38: end if

39: end while
40: end for
41: return ŷ
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input leaf, or to create only a set of internal nodes, without inserting the current textual content
in the output tree.

Note that, although we did not experiment them, many other extensions of the previous CR-
algorithms are possible. One direction in particular, would be to add text-processing operations,
such as capitalize-the-current-text or split-the-current-text-by-spaces.

6.2.3 Action descriptions

In order to learn the previous CR-algorithms, we have to provide a feature function φ : S ×A →
R
d. We describe here the feature function that has been used in our experiments. This feature

function shares a number of important properties with the feature functions presented in the
previous chapter. Firstly, it leads to very high dimensional feature spaces: there are often moreSparse

high-dimensional
description

than 106 distinct features. Secondly, it leads to sparse descriptions. For a given state-action pair,
the number of active features, i.e. features that have a non-null value, is relatively low. Finally,
sparsity can be exploited through a smart implementation that focuses only on the set of active
features. Our implementation contain feature generation functions that in a given situations
directly lists the set of active features. The features are thus generated automatically from the
data. In general, the complexity of feature generation functions is linear w.r.t. the number of
active features.

Figure 6.4 illustrates the feature function for the action a = create(phone, 2). We use only
binary features. Each features is a conjunction made of conditions on the action and conditionsConjunctions

on the state. The action is described through its kind (enter, create or skip) and the label it
is related to, which is either the label of the created node or the label of the entered node. In
our example, all the active features share the following form:

fl,...(s,a) =

{
1 if create ∧ label = l ∧ ...
0 otherwise

i.e. only features corresponding to “create with label l” actions may be active.

There are four kinds of features used in the experiments:

Input Content Features describe the textual content of the current input leaf. The input
leaf content is first summarized by the C first and the C last leaf word where C is a context
parameter, which depends on the application. Then, features are computed only for these words.
There are three types of features called word, character type and pattern:

• Word features are computed for each first or last word: there is one feature denoted
fk,l,j,w for each action kind k ∈ {enter, create, skip}, output label l, word position j in the
leaf word sequence and word w:

fk,l,j,w(s,a) =

{
1 if k ∧ label = l ∧ inputWord[j] = w

0 otherwise

where inputWord[j] is the word number at position j in the current leaf.

• Character type features correspond to the type of characters used in words. The type of
a character can be a digit, an upper case or lower case letter of the alphabet. The character
type features of a word are constructed by replacing each lower letter of the word by ’l’,
each upper letter by ’u’ and each digit by ’d’.
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Figure 6.4: Tree transformation action features. Top-left: the current partial output and
a candidate action. The current node is the double-circled contact node. The candidate action
consists in creating a phone node into this node. Bottom-left: the input tree and the current
input leaf x5. Right: list of the active features corresponding to the action create(contact, 2).
The active features are those that have a value of 1. The rectangles in red indicate the context
considered for each feature type. This context is the number of ancestors, siblings or adjacent
words that appear in the features. Since there is only one word in the current textual content,
the same word appears both in the first words features and the last words features.

• Pattern features of a word are built based on the Character type features by replacing
successive occurrences of the same character type by a unique occurrence. This roughly
corresponds to a regular expression over the type of characters of a particular word. Figure
6.4 gives examples of such features.

Input Path Features Input Path Features correspond to the structural context of the current
input leaf xi. They encode the labels of the ancestors of the input leaf. There is one such feature
per action kind k ∈ {enter, create, skip}, output label l, input label l′ and height h in the input
tree:

fk,l,l′,h(s,a) =

{
1 if k ∧ label = l∧ inputLabel[h] = l′

0 otherwise
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where inputLabel[h] is the label of the h-th ancestor of the current leaf.

The last two types of features encode the current partial output tree.

Prediction Path Features Prediction Path Features encode the label of the ancestors of
currentNode. There is one such feature per action kind k ∈ {enter, create, skip}, pair of labels
(l, l′) and ancestor height h:

fk,l,l′,h(s,a) =

{
1 if k ∧ label = l∧ parentLabel[h] = l′

0 otherwise

where parentLabel[h] is the label of the h-th ancestor of the node concerned by triplet i.

Prediction Neighborhood Features These features are similar to the prediction path fea-
tures, except that they encode the children labels of currentNode instead of its parent labels.
These features are relative to the position of the node to be created, or the position of the node
to be entered. There is one such feature per action kind k ∈ {enter, create, skip}, label pair
(l, l′) and context position δ:

fk,l,l′,δ(s,a) =

{
1 if k ∧ label = l ∧ neighboringLabel[δ] = l′

0 otherwise

where neighboringLabel[δ] is the label of the δ-th sibling of node concerned by the action.

At last we introduce a special label called N/A to denote out-of-bounds elements, i.e. elements
that do not exists in the tree. Typically, if we consider a leaf with only one word and we want
to compute the feature of the second word (see Input Content Features), which does not exist,
we will use this special label. This is illustrated in Figure 6.4.

With these definitions, the number d of active features for a given state-action pair is:

d = 3× 2× word context size + input path context size
+ prediction path context size + 2× prediction neighborhood context size

where word context size, input path context size, prediction path context size and prediction
neighborhood context size are parameters of the feature function φ. The values given to these
parameters will be detailed below. In general, the number of active features for a given state-
action pair is relatively low (e.g. less than 50).

6.2.4 Supervision

In the previous chapter, we introduced sequence labeling, which had the nice property to be
easy to supervise. Indeed, we only considered CR-algorithms where the optimal learning policy
(OLP) was easy to compute. In the case of tree transformation, computing the OLP is not a
trivial problem (see Figure 6.5 for example).

In such cases, the authors of Searn suggest to use a search-procedure to (approximately)
find the best action. Consider for example a greedy beam-search procedure. The complexity ofBeam-search of the

best action searching the optimal actions for one training trajectory4 is O(T 2 × b× a2), where b is the size
4Given a state-action pair, finding the best completion of the partial output, takes O(T × b × a) time. This

search has to be launched for each action a ∈ As in each visited state s of the trajectory: O(T × a) times.
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Figure 6.5: Illustration of the difficulty of finding the optimal actions in tree trans-
formation. Left: the current partial output which is partially wrong. The red nodes (contact,
phone) have not been put at the correct location. Right: the correct output tree. Center: two
possible sequences of actions that have both advantages and drawbacks. a1 puts the (contact,
name) nodes at the good location w.r.t. the correct output tree, but at the cost of duplicating
the contact node. a2 correctly reconstructs the (contact, name, phone) sub-tree, but does not
solve the location problem. In this example, selecting the optimal action is a non-trivial problem.

of the beam, T is the depth of the search (in our case the number of input leaves) and a is the
mean number of available actions per state.

On large-scale tasks such as tree transformation, determining an approximate OLP with beam
search has a prohibitive complexity. Let us perform a naive computation of the time required to
process one typical document with T = 100 leaves and up to a = 5, 000 actions per state with
a beam size of 5. On such documents, our implementation performs inference – with O(T × a)
complexity – in ≈ 1s. The time required to search the best action in each visited state for one
document is thus of the order of 1s× 100× 5000× 5 ≈ 1 month computation time. This solution
is then clearly intractable.

One major contribution of the CR-algorithm formalism is to provide new supervision means,
when the OLP assumption is too strong. In particular, we investigated two alternatives: Alternative

supervision means

• Content-driven heuristic We describe below a heuristic to select not too bad actions. This
heuristic can be used within CRank to quickly find a not too bad policy.

• Pure reinforcement learning Reinforcement learning techniques are particularly relevant
to tree transformation problems. Indeed, we will show that general approximate reinforcement
learning are able to find good policies on a wide range of problems, using only the reward
feedbacks.

We now describe the content-driven heuristic hcontent : S ×A → R that was used in some of Content-driven
heuristicour experiments. Note that the details of this heuristic are slightly subtle and are not of primary

importance for the remaining of this chapter. We therefore only give a brief description of the
ideas underlying it.
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Algorithm 9 Content-driven Heuristic for tree transformation
Require: A state s = (xi, ȳ, currentPosition)
Require: An action a
Require: The correct output y
Ensure: A score ∈ R

1: currentText ← getTextualContent(xi)
2: occurencesInOutput ← findOccurencesOfText(currentText, y)
3: matchings ← matchPositions(currentNode, occurencesInOutput)
4: if a = skip then
5: return 1 {card(matchings) = 0}
6: else
7: update machings with respect to a
8: s′ ← executeAction(s,a)
9: retrieve the new value of currentNode from s′

10: res ← 0
11: for each correctOutputNode ∈ machings do
12: res ← res + similarityOfNeighborhingLabels(currentNode, currentOutputNode)
13: end for
14: return res
15: end if

The pseudo-code of the content-driven heuristic is given in Algorithm 9 and illustrated in
Figure 6.6. The central idea of the heuristic is to use the textual content of the documents to
guess the quality of a given action. This is performed thanks to the following steps:

1. Retrieve the current input text (line 1).

2. Find occurrences of the text in the correct output tree (line 2). The findOccurence-
sOfText function returns the set of positions of the leaves yi that contains currentText.
This set can empty if currentText does not appear in y. It can also contain more than one
element, if currentText appear more than once in y.

3. Match the current position to correct-tree positions (line 3). Since the current
predicted document might be partially wrong, we need a heuristic matching mechanism
in this step. The matchPositions function tries to determine which nodes of the correct
tree best match currentNode. Two nodes can be matched if they share the same label. If
multiple nodes have the same label, we select the node of the correct tree that maximizes
a neighborhood similarity function:

matching = argmax
candidateNode

similarityOfNeighborhingLabels(currentNode, candidateNode)

where similarityOfNeighborhingLabels roughly computes the percentage of identical labels
between the neighborhood of a predicted node and this of a correct node.

4. skip action (line 5). The current input leaf should be skipped if it does not appear in the
correct output tree. We therefore give a score of 1 to the skip action if the set of matching
output nodes is empty.

5. enter and create actions (line 7–13). The score assigned to enter and create actions
is computing in the following way. First, each matching is updated w.r.t. the action a (line



6.2 CR-algorithms for tree transformation 139

Figure 6.6: Illustration of the content-driven heuristic for tree transformation. This
figures illustrates the computation of the content-driven heuristic for the action create(E, 2),
i.e. the action that creates a new node with label E at position 2 under the current node B. Top:
the matchings computed by the heuristic in line 3. Bottom: the matchings as updated by lines
7–9 of the heuristic. Here, the action create(E, 2) is a good choice, since its leads to one valid
matching with a good neighborhood similarity: in both trees, the parent of the matched nodes
have the label B and their grand-parents have the label A.
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Corpus RealEstate Mixed-Movie Shakespeare Inex-Ieee Wikipedia

Input Format XML HTML Segmented Text Segmented Text HTML
Target Format XML XML XML XML XML
Node skipping yes yes no no yes

Node reordering yes yes (±10) no no yes (±10)
Num. Documents 2,367 13,048 750 12,107 10,681

Internal Nodes ' 33 ' 64 ' 236 ' 650 ' 200
Leaf Nodes ' 19 ' 39 ' 194 ' 670 ' 160

Depth ' 6 5 ' 4.3 ' 9.1 ' 7.7
Labels 37 35 7 139 256

Table 6.1: Tree transformation corpora properties and statistics. The top part of the
table gives properties of the tree transformation problem. From top to bottom: the name of the
corpus, the input format, the target format and two flags that tell if the transformation requires
node skipping and if it requires node reordering. The bottom part of the table gives statistics on
the target documents of the dataset. From top to bottom: the number of documents, the mean
number of internal nodes per tree, the mean number of leaves per tree, the mean tree depth and
the number of output labels.

7), such as illustrated in Figure 6.6. We then compute the new state, i.e. the new predicted
tree and the new value of currentNode (line 8). The heuristic score is then computing by
summing the similarityOfNeighborhingLabels measure over all matchings between the new
currentNode and the corresponding nodes of the correct output.

The quality of the heuristic hcontent depends on the tree transformation problems. When
dealing with one-to-one transformation problems, the heuristic generally performs nearly per-
fectly, i.e. good actions have better score than bad actions. With more complex transformations,
the quality of the heuristic may seriously be degraded, as shown by some of our experiments.
Failures of the heuristic typically happen when the current predicted tree is partially wrong, or
when the current text appears in several different places of the correct output tree.

6.3 Experiments

In this section, we describe the set of experiments that was performed on the challenging tree
transformation task. We first present the datasets that were in Section 6.3.1. We then develop
three series of experiments. First, we deal with one-to-one tree transformation in Section 6.3.2.
We then give results for tree transformation with node skipping and reordering in Section 6.3.3.
Finally, we introduce a technique called action collapsing that greatly improves the results for
reinforcement learning approaches in Section 6.3.4.

6.3.1 Datasets

We used three medium-scale datasets and two large-scale datasets that are described below:



6.3 Experiments 141

• RealEstate [Doan et al., 2003]. This corpus, proposed by Anhai Doan5 is made of 2,367
data-oriented XML documents. The documents are expressed in two different XML formats.
The aim is to learn the transformation from one format to the other.

• Mixed-Movie [Denoyer et Gallinari, 2007]. The second corpus is made of more than 13,000
movie descriptions available in three versions: two mixed different XHTML versions and one XML
version. This corresponds to a scenario where two different websites have to be mapped onto
a predefined mediated schema. The transformation includes node suppression and some node
displacements.

• Shakespeare [Chidlovskii et Fuselier, 2005]. This corpus is composed of 60 Shakespeare
scenes6. These scenes are small trees, with an average length of 85 leaf nodes and 20 internal
nodes over 7 distinct tags. The documents are given in two versions: a flat segmented version
and the XML version. The tree transformation task aims at recovering the XML structure using
only the text segments as input.

• Inex-Ieee [Fuhr et al., 2002b]. The Inex-Ieee corpus is composed of 12,017 scientific ar-
ticles in XML format, coming from 18 different journals. The tree transformation task aims at
recovering the XML structure using only the text segments as input.

• Wikipedia [Denoyer et Gallinari, 2006]. This corpus is composed of 12,000 wikipedia pages.
For each page, we have one XML representation dedicated to wiki-text and the HTML code. The
aim is to use the layout information available in the HTML version, for predicting the semantical
XML representation.

The properties and statistics of our corpora are summarized in Table 6.1. For each corpus,
we mention if node skipping and node reordering are required to fulfill the transformation.

For each corpus, we randomly extracted 100 examples to form the training set. The schema
G is constructed automatically given these 100 examples. The schema is composed of a set of
valid sibling bi-grams and parent bi-grams, which have the following form:

• Sibling bi-gram : Label l1 may appear before Label l2, or equivalently: label l2 may appear
after label l1

• Parent bi-gram : Label l1 may appear as a child of label l2

The set of valid bi-grams in G are those that appear at least once in the 100 training examples.
When enumerating the set of possible labels for a new node in CR-algorithm 9 and CR-algorithm
10, the function possibleLabels restricts the set of possible labels to those that respect all the
bi-grams of G. Depending on the corpora, we applied some simple rules to further limit the
number of possible actions per state: Constraints on

actions
• We always used the simplest CR-algorithm that is able to fulfill the required tree transfor-

mation, i.e. if node skipping is not required, we do not use skip actions.
5http://www.cs.wisc.edu/~anhai/
6http://metalab.unc.edu/bosak/xml/eg/shaks200.zip

http://www.cs.wisc.edu/~anhai/
http://metalab.unc.edu/bosak/xml/eg/shaks200.zip
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Corpus RealEstate Mixed-Movie Shakespeare Inex-Ieee Wikipedia

Content 0 6 6 6 6
Input Path 2 6 0 0 6
Pred. Path 2 6 5 5 6

Pred. Neighborhood 2 4 6 6 4

Table 6.2: Tree transformation feature function parameters. From top to bottom: the
dataset name, the context size for content features, the context size for input path features,
the context size for prediction path features and the context size for prediction neighborhood
features.

• We limited the size of the possible moves in node re-ordering on the Mixed-Movie and
Wikipedia corpora. This is performed by restricting the range of the parameter position
in CR-algorithm 10 to be at a maximum distance of 10 from the lastly created node in
currentNode.

• On the Wikipedia corpus, we restricted the schema G to bi-grams that appeared at least
5 times in the training set.

Table 6.2 gives the context size parameters that were used into the feature function φ. FewFeature function
parameters tuning effort was spent on these parameters. For the RealEstate dataset, the transformation

that has to be learned only depends on the labels, so we removed the content features. For
the Shakespeare and Inex-Ieee datasets, the input documents are flat-segmented documents,
which makes input path features unavailable, i.e. the only available input features are those
coming from the text.

6.3.2 One-to-one tree transformation

Our first set of experiments explores the use of CRank with CR-algorithm 9 to perform one-to-one
tree transformation.

Since most of our datasets do not respect the one-to-one assumptions, we created artificial
problems denoted RealEstate 1 → 1, Mixed-Movie 1 → 1 and Wikipedia 1 → 1 in theArtificial Problems

following way: given a target document y (an XML file), we extract the sequence of text blocks
contained by leaves yi, to automatically create the associated input document x = (y1, . . . ,yn).
Input documents are flat-segmented texts and the aim is to predicted the missing XML structure.
Each corpus is composed of 100 randomly selected training examples and evaluation is performed
on all the remaining documents.

In these experiments, we supervise CRank with the content-driven heuristic hcontent. In orderCRank with heuristic

to introduce hcontent into the action cost function, we simply compute the difference between the
best action’s heuristic score and the current action’s heuristic score:

c(s,a) =
(

max
a′∈As

hcontent(s,a′)
)
− hcontent(s,a)

We use same learning rate and regularization parameters as in Chapter 5. The resulting
training behavior of CRank is given in Figure 6.7. The results show that, for the one-to-one tree
transformation problem, even with an approximated heuristic, CRank is able to learn policies
in a relative few number of iterations. We now describe baselines, which makes it possible to
appreciate the quality of these policies.
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Figure 6.7: CRank training behavior for one-to-one tree transformation. The X-axis
corresponds to number of training iterations, i.e. the number of passes over the whole training set.
The Y-axis corresponds to the mean Fstructure score between predicted documents and correct
documents. For each dataset, the curves are the train and test Fstructure scores as functions of
the number of training iterations.
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Sequence Constraint Sequence One to one transformation
Fleaf Fsubtree Fleaf Fsubtree Fleaf Fpath Fsubtree

RealEstate 1→ 1 98.32 82.95 97.03 82.42 96.07 95.81 96.74
Mixed-Movie 1→ 1 91.63 74.31 87.22 77.95 84.92 84.39 84.13

Shakespeare 40.16 16.24 26.35 50.93 98.44 98.10 97.95
Wikipedia 1→ 1 41.98 08.07 32.93 52.07 79.21 65.01 68.13

Table 6.3: Sequence labeling models vs one-to-one tree transformation. This table
gives the mean Fleaf , Fpath and Fsubtree scores between predicted documents and correct docu-
ments of the test-set. We compare three approaches: left-to-right sequence labeling, constraint
left-to-right sequence labeling and one-to-one tree transformation. For each corpus, the best
scores are shown in bold.

We performed a set of experiments with the left-to-right sequence labeling CR-algorithmSequence

described in Chapter 5. Sequence labeling models are only able to predict the sequence of labels
of the leaf nodes yi. Since they do not reconstruct the full structure of y, only the Fleaf scores
are truly comparable between sequence labeling and tree transformation approaches. The Fpath
score is generally 0 for sequence labeling models, since these models do not construct full paths
from the root to the leaves. The Fsubtree score reflects how much the correctly predicted leaves
contribute to the whole output structure.

In addition to the left-to-right sequence-labeling baseline, we have tried a constraint versionConstraint Sequence

of left-to-right labeling. This version restricts the set of available labels at each step by using
the sibling bi-grams from the output schema G.

Table 6.3 gives the comparison between the sequence labeling approaches and the one-to-oneResults

tree transformation approach. Sequence labeling methods optimize the Hamming loss, which is
closely related to Fleaf , while one-to-one tree transformation focuses on the Fsubtree score. It
seems thus natural that the sequence labeling approaches behave better w.r.t. Fleaf than the
one-to-one transformation approach on RealEstate and Mixed-Movie. However, on Shake-
speare and Wikipedia our results exhibit a fully different behavior. Here, sequence labeling
models perform poorly compared to the tree transformation model. This result tends to demon-
strate that structure plays a major role in these datasets. Structure may be exploited in two
ways. Firstly, the schema provides a set of constraints to delimit the set of valid outputs, which
leads to a smaller search-space. Secondly, structure – even if it has been predicted in the previ-
ous steps – provides a rich context through the feature function, which may be decisive for some
decision steps.

On all our datasets, the Fsubtree score of the one-one-transformation method significantly
outperforms those of the sequence labeling approaches. CRank supervised by hcontent proves
thus to be an efficient solution for one-to-one tree transformation. Furthermore, the complexity
of our approach is reasonable: inference time is linear w.r.t. the number of leaves of the trees.
In practice, inference takes most of the time less than one second per document.

6.3.3 Node skipping and reordering

This section explores CR-algorithm 10 that provides the support for node skipping and node
reordering. We compare two approaches: CRank supervised with hcontent and reinforcement
learning with Sarsa and Olpomdp.

CRank is configured as in Section 6.3.2 and the reinforcement learning algorithms are tunedTuning
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Figure 6.8: Tree transformation: impact of the discount parameter on Sarsa. The X-
axis corresponds to the value of the discount factor and the Y-axis corresponds to mean Fsubtree
percentages. We give the train and test scores for three datasets: Mixed-Movie, RealEstate
and Shakespeare.
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Figure 6.9: Tree transformation: impact of the discount parameter on Sarsa. The X-
axis corresponds to the value of the learning rate parameter and the Y-axis corresponds to mean
Fsubtree percentages. In our experiments we use learning rates that are inversely proportional
functions of the time. The learning rate parameter is a scaling parameter of this function.
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Figure 6.10: Tree transformation: impact of the parameters of Olpomdp. Left: the
impact of the discount factor on the mean Fsubtree score. Right: the impact of the learning rate
parameter on the mean Fsubtree score.
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Supervised Reinforcement learning
CRank πgreedyh−content Sarsa Olpomdp

Inex-Ieee 60.09 100 61.73 61.73
Mixed-Movie 63.60 69.45 76.68 87.33

Wikipedia 50.69 67.97 29.95 31.95
RealEstate 99.94 100 51.10 81.97
Shakespeare 97.95 100 77.52 61.27

Table 6.4: CRank with heuristic vs reinforcement learning for tree transformation.
We give the mean Fsubtree scores on the test-set for the following methods: CRank supervised
with hcontent, the optimistic bound πgreedyh−content and two reinforcement learning algorithms Sarsa
and Olpomdp. For each corpus, the best scores of the learning-based methods in shown in bold.

in the same way as in chapter ??, with 100 training iterations for each tuning trial. Figure 6.8
and Figure 6.9 show the impact of the discount factor and learning rate parameters on Sarsa.
Figure 6.10 shows the impact of the β parameter on Olpomdp. On most datasets, the quality
of learned policies crucially depends on these parameters. The reinforcement learning approach
thus requires a careful tuning of the hyper-parameters.

We have also computed scores for the greedy policy w.r.t. the hcontent heuristic. This policy,Heuristic-greedy
policy denoted πgreedyh−content is defined in the following way:

πgreedyh−content(s) = argmax
a∈As

hcontent(s,a)

If multiple actions are optimal, one of those actions is selected randomly. Note that the greedy
policy w.r.t. hcontent makes use of the correct outputs, does not rely on learning and is thus not
able to generalize to new inputs. The scores given by πgreedyh−content are optimistic bounds of the
performance that can be reached by the learning process of CRank.

Table 6.4 summaries compares the reinforcement learning approach with the supervised ap-Results

proach for CR-algorithm 10. As shown by πgreedyh−content, the heuristic does not perform very well
on Mixed-Movie and Wikipedia. This motivates the use of reinforcement learning techniques
that are theoretically not limited by this bound. In practice, reinforcement learning significantly
outperforms the supervised method on the Mixed-Movie corpus with + 23.7 % improvement
of the Fsubtree score. However, on three other corpora (Wikipedia, RealEstate and Shake-
speare), it is significantly worst than CRank.

The mixed results of reinforcement learning on tree transformation may be due to the huge
amount of exploration which is required in this problem. Indeed, most tree transformation actions
have long-term consequences. Furthermore, the immediate reward is only poorly informative on
the quality of actions. For example, enter and skip actions lead to an immediate reward of 0
(the predicted tree remains unchanged by these actions). Only create actions lead to non-null
rewards. But, even in this case, the immediate rewards may be poorly correlated to the long-term
quality of the action. The next section proposes an alternative way to define tree transformation
actions to ease the reinforcement-learning problem.
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6.3.4 Action collapsing

In the previous section, we showed that reinforcement learning give mixed results on CR-
algorithm 9 and CR-algorithm 10. We propose here an alternative CR-algorithm, which makes
the reinforcement learning problem much easier.

The new CR-algorithm relies on the idea of action collapsing . In order to get rewards closer to Action collapsing

related actions, we use a new set of actions by collapsing those of CR-algorithm 9 or CR-algorithm
10. Each collapsed action corresponds to a whole sequence of node-creation actions for a given
input leaf. Thanks to collapsed actions, a non-null reward is perceived after each decision step7.
Compared to the previous CR-algorithms, the actions still have long-term consequences, but the
immediate rewards are much more related to the true long-term quality of actions.

CR-algorithm 11 Tree transformation CR-algorithm with collapsed actions.
Input: An input segmented text x
Input: An output schema G
Training Input: The correct output tree y
Output: A predicted output tree ŷ

1: ŷ← emptyTree(G)
2: if training then
3: currentLoss ← ∆(ŷ,y)
4: end if
5: for i = 1 to card(x) do . For each input leave
6: currentNode ← getRootNode(ŷ)
7: choices ← all possible node-creation action-sequences of CR-algorithm 9 or 10.

8: (a1, . . . ,an)← choose[xi, ŷ, currentNode] choices . Choose

9: for j = 1 to n do . Apply collapsed action
10: apply aj on ŷ and on currentNode
11: end for

12: if training then . Reward
13: newLoss ← ∆(ŷ,y)
14: reward -(currentLoss - newLoss)
15: currentLoss ← newLoss
16: end if
17: end for
18: return ŷ

The idea of collapsed actions is depicted in CR-algorithm 11. Line 7 first enumerates the
set of all possible node-creation action-sequences (a1, . . . ,an) for the current input leaf. Line 8
then chooses a node-creation action-sequence among this set. Lines 9–11 finally apply the chosen
action-sequence iteratively.

Thanks to collapsed actions, the predicted tree changes after each decision step. We can thus Non-learning
baselinesexpect the greedy policy w.r.t. the immediate reward to perform not too bad. Furthermore,

since each action adds a full path in the predicted tree, maximizing the immediate Fpath gain
also makes sense. We thus introduced two new non-learning baselines πgreedystructure and πgreedypath .

7Except for skip actions.
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RL Baselines
Corpus Score Sarsa Olpomdp πgreedystructure πgreedypath πrandom Pcfg+Me

RealEstate

Fstructure 99.54 99.99 87.09 97.09 3.27 49.8
Fpath 99.87 99.99 84.42 100 3.91 7
Fcontent 99.88 100 100 100 5.10 99.9

Mixed-Movie

Fstructure 86.22 86.50 47.04 44.15 3.54 /
Fpath 91.53 91.88 52.02 52.18 5.29 /
Fcontent 91.53 92.05 52.02 52.18 5.67 /

Shakespeare

Fstructure 96.03 95.88 98.65 75.16 11.34 94.7
Fpath 97.88 97.72 98.91 100 16.47 97.0
Fcontent 98.87 98.40 99.83 100 18.25 98.7

Table 6.5: Tree transformation with collapsed actions, medium-scale datasets. For
each dataset and each method, we give the three average similarity scores Fstructure, Fpath and
Fcontent between the predicted and correct trees of the test set. The two first columns correspond
to the Sarsa and Olpomdp reinforcement learning algorithms. The next three columns are non-
learning baselines. The last column is the Pcfg+Me [Chidlovskii et Fuselier, 2005] baseline.
The / symbol denotes results that could not be computed due to the complexity of Pcfg+Me.

These greedy policies make use of the correct output and select actions whose execution most
increase the immediate Fstructure or Fpath similarity scores. The scores of πgreedystructure could be
considered as upper bounds for the performance reachable by learning to maximize the immediate
reward, e.g. with Sarsa and a discount factor of 0. We also computed the scores of the random
policy πrandom, which selects actions randomly.

We only have one learning-based baseline on two of these datasets for the complexity rea-Learning-based
baseline sons explained in Section ??. The baseline model Pcfg+Me [Chidlovskii et Fuselier, 2005] is a

global model for one-to-one tree transformation. It models the probability of outputs by using
probabilistic context free grammars (PCFG) and maximum-entropy (ME) classifiers. Inference
is then performed with a dynamic-programming algorithm that has a cubic complexity in the
number of input leaves. This model can only operate on the two smallest datasets RealEstate
and Shakespeare.

Our experimental results on the three medium-scale datasets are given in Table 6.5. OnMedium-scale results

RealEstate and Mixed-Movie, the reinforcement learning approaches give significantly better
results than the greedy policy baselines. This result is very satisfactory and has two major
implications. Firstly, it shows that reinforcement-learning algorithms are able to find a better
strategy than greedily moving toward the correct output. Secondly, it shows that the algorithms
perform an effective learning and generalization of this strategy. On Shakespeare, the scores
of reinforcement learning algorithms is slightly inferior to those of the greedy policies. Since
greedy policies perform nearly perfectly on this corpus, the main difficulty here is more related
to generalization than exploration.

The RealEstate collection corresponds to an XML database where we need to label theComparison with
state-of-the-art leaves correctly and to put them in the correct order. The task is easy, and most RL approaches

achieve > 99% on the different scores. Pcfg+Me only performs 7 % on the Fpath score and
about 50 % on the Fstructure score because it does not handle node skipping and node reordering,
which are required on this collection. On the Shakespeare corpus, Pcfg+Me gives slightly
lowers results than RL methods. This result might be related to the different kind of features
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exploited by the methods. Since Pcfg+Me relies on a PCFG, it cannot deal with some of the
features that we use here (e.g. the prediction path features, see Section 6.2.3).
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Figure 6.11: Training behavior of Sarsa and Olpomdp on tree transformation with
collapsed actions. We give the train and test Fstructure scores for each method as a func-
tion of the number of training iterations. Left: results for Mixed-Movie. Right: results for
Shakespeare.

The training behavior of Sarsa and Olpomdp is illustrated by Figure 6.11. We have often Training behavior

observed that the training behavior of Sarsa is slightly noisier than that of Olpomdp. On our
datasets, the number of training iterations needed to converge was reasonable in all cases.

The impact of the discount factor on Sarsa is illustrated in Figure 6.12. The optimal Impact of parameters

discount factor values highly depend on the corpus. On some corpora, such as Mixed-Movie,
discount factors close to 1 are required to outperform the greedy policy baselines. In some other
cases, such as Shakespeare, the optimal discount factors are close to 0.5. As for sequences,
the optimal discount factors are not 1. We believe that discount factors smaller than 1 lead to
simpler exploration problems, which makes learning easier. This may also be related to the use
of Sarsa with a limited amount of training material. Figure 6.13 gives the impact of the β on
Olpomdp. It can be seen that β has a similar impact on Olpomdp as the discount on Sarsa
has. For the Mixed-Movie and Shakespeare corpora, the best β value were respectively 0.85
and 0.5.

In order to demonstrate the scalability of our approach, we have performed experiments with Large-scale tree
transformationSarsa on the two large-scale corpora. Since, in our implementation, episodes with Olpomdp

take about 50 more time than episodes with Sarsa8, we did not use Olpomdp on the large-
scale datasets. These experiments required ≈ 5 days training time in order to perform 1000
training iterations, i.e. 105 Sarsaepisodes, for each dataset. This huge amount of time has
to be contrasted with the scale of the task: these corpora involve particularly large documents
(the biggest documents in these corpora contain up to 10.000 nodes), complex operations (nodes
displacements or nodes deletions), highly heterogeneous documents and large number of labels
(139 labels for Inex-Ieee and 256 labels for Wikipedia).

8Sarsa runs much faster thanks to a particularity of our implementation, which is able to compute 〈φ(s,a), θ〉
dot products without storing the φ(s,a) vectors in memory. In Olpomdp, the main cpu-time bottleneck is the
allocation and deletion of data structures for storing these vectors.
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Figure 6.12: Impact of the discount factor in tree transformation with Sarsa and
collapsed actions. The curves correspond to the training scores after 100 and 1000 training
iterations and the test scores after 1000 training iterations.
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Figure 6.13: Impact of the β parameter in tree transformation with Olpomdp and
collapsed actions. The curves correspond to the training scores after 100 and 1000 training
iterations and the test scores after 1000 training iterations.

RL Baselines
Corpus Score Sarsa πgreedystructure πgreedypath πrandom

Inex-Ieee
Fstructure 67.5 76.32 49.94 2.17
Fpath 74.4 39.23 97.20 1.00
Fcontent 75.8 82.91 97.20 8.62

Wikipedia
Fstructure 65.6 57.37 23.53 5.51
Fpath 74.3 2.28 32.28 0.12
Fcontent 80.2 72.92 39.34 12.35

Table 6.6: Tree transformation with collapsed actions, large scale datasets. For each
method and each dataset, we give the three average similarity scores on the test set. We compare
Sarsa with the baseline policies, which do not use learning.
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The results for large-scale tree transformation are given in Table 6.6. On Wikipedia, Sarsa
outperforms the scores of the greedy policy baselines, which is very satisfactory, given the large
number of labels on this corpus. On Inex-Ieee, Sarsa does not reach the level of the greedy
policy baselines. However, this corpus contains a huge amount of noise, which could explain this
result.

6.4 Conclusion

In this chapter, we have illustrated the use of CR-algorithms for the tree transformation task.
We have focused on two tasks: one-to-one tree transformation and tree transformation with
unaltered text. We developed a set of experiments, which led to the following main conclusions:

• One-to-one tree transformation CRank supervised with the content-driven heuristic
hcontent is an efficient solution to the one-to-one tree transformation problem. Its complex-
ity is only linear w.r.t. the number of leaves. Previous state-of-the-art models for the one-to-one
transformation tasks had a restricting cubic complexity w.r.t. the number of leaves.

• Tree transformation with unaltered text On some problems, hcontent is not very sat-
isfying. We showed that reinforcement learning can be applied to solve such weakly supervised
problems. Up to our knowledge, there are not yet other approaches than ours able to solve the
tree transformation with unaltered text task on real world data.

• Collapsed actions We introduced a new CR-algorithm, where each action directly con-
structs a whole path in the predicted output. On this new problem, reinforcement learning gave
very satisfying results. In particular, reinforcement-learning algorithms find better strategies
than the greedy behavior and succeed in learning and generalizing these strategies.

• Scalability and inference speed All the proposed solutions have low complexities and
good scalability properties. In practice, most documents are processed in less than one second,
which, on the small datasets, is about 50 times faster than Pcfg+Me inference. The Sarsa
method is the only method able to learn with all our large-scale real-world datasets.

One key feature of the CR-algorithm formalism that was not fully exploited in this chapter
is its expressiveness. It is easy to conceive many extensions to CR-algorithm 9 or CR-algorithm
10, in order to deal with more advanced transformations. Furthermore, we could conceive totally
different architectures for tree transformation. For example, one could think at tree transforma-
tion as the problem of finding a sequence of tree operators that maps the input tree to the target
tree (e.g. relabel all A labels into Bs, suppress all nodes that have label C, ...). Another approach
would be to adopt a divide-and-conquer approach, by decomposing the tree transformation prob-
lem into simpler sub-problems recursively. For example, in order to transform a whole document,
start by transforming each section and then put the glue between the transformed sections. The
next chapter presents some on-going work, including a CR-algorithm compiler. Such a compiler
should greatly ease the development of new CR-algorithms such as those evoked here.
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H
euristic search algorithms are used for a large variety of artificial intelligence problems like
constraint solving, planning, diagnosis or natural language processing. General heuristics

allow us to deal with a large family of problems but are limited to small problem sizes. On the
opposite, domain dependent heuristics use additional information and scale much better with the
problem size but are restricted to specific areas. A promising direction for developing efficient
and general search methods is the learning-for-search approach, which aims at using machine
learning to improve existing search techniques or to learn search heuristics.

Although most of this manuscript is dedicated to structured prediction, CR-algorithms may
be applicable to a wider range of problems. In particular, we show in this chapter that CR-
algorithms prove to be well adapted to deal with learning-for-search problems. Our core con-
tribution is a general methodology to learn CR-algorithms for learning for search. In order to
illustrate this methodology, we focus on a particular search algorithm – best-first search – and
show how to learn an optimal heuristic for this algorithm. Note that the work that is presented
here is still prospective and may be completed in several ways. In particular, the validation of
our approach is still not fully satisfactory and would require experiments on much more different
domains.

The chapter is structured as follows. Section 7.1 introduces the leaning-for-search problem
and describes how to use the CR-algorithm framework for this problem. Section 7.2 describes
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a set of experiment related to the learning problem of best-first search heuristics. Section 7.3
describes another set of experiment dealing with the approximate computation of tree-edition
distances.

7.1 Learning for search

This section introduces the learning-for-search domain and our contributions related to this
domain. We first overview related work in Section 7.1.1. We then describe CR-algorithms
that correspond to various search problems in Section 7.1.2. We present a general approach to
learn such CR-algorithms in Section 7.1.3. In particular, this leads us to an original solution to
the problem of learning the optimal heuristic of a best-first search procedure. This solution is
experimented in the next section.

7.1.1 Context

The learning-for-search domain has already motivated a substantial amount of work to deal with
three major problems: combinatorial search, planning and continuous optimization.

Early efforts in the 80es make use of symbolic machine learning for learning rules to improveCombinatorial
Search search with practice [Langley, 1983]. Several models relying on statistical machine learning have

been proposed since. [Doan et Wong, 1997] describes Shapes, an algorithm to learn a linear
heuristic for best-first search. [Petrovic et al., 2007] proposes to learn a linear mixture of heuris-
tic to drive depth-first search for solving constraint satisfaction problems. Linear learning is
also at the core of LaSO∗ [Xu et Fern, 2007]. This algorithm extend the SP method LaSO,
which was presented in Section 3.3.3, to perform supervised learning of beam-search heuris-
tics. Non-linear learning methods have also been proposed in the context of learning-for-search.
[Hou et al., 2002] explores the use of artificial neural networks (ANN) and k-nearest neighbors
to learn search heuristics. [Ernandes et Gori, 2004] and [Samadi et al., 2008] extend the ANN
approach to bias the learning process toward approximately admissible heuristics, in order to
maximize the probability to find optimal solutions quickly.

Using machine learning to improve planning methods has also been studied. [Veloso et al., 1995]Planning

presents a whole architecture called Prodigy, to integrate learning and planning. More recent
work includes [Yoon et al., 2006] where the author propose to learn a plan-rewriting heuristic
by combining generic features of a database extracted from solved problems. This approach,
which relies on linear regression, sometimes outperforms the state-of-the-part planning baseline
[Hoffmann et Nebel, 2001]. Instead of using regression, it has been proposed to perform discrim-
inative learning, for example by applying the LaSO∗ algorithm to planning [Xu et al., 2007].
This approach was shown to outperform [Hoffmann et Nebel, 2001] on all tested domains. In
order to ensure better generalization guaranties, [Ratliff et al., 2006b] extends previous work
by modeling the supervised learning problem of a planning policy as a maximum-margin SP
problem.

Machine learning has also led to interesting results for continuous optimization problems. AContinuous
optimization funding method to integrate learning with continuous optimization is Stage [Boyan et Moore, 2001].

The main idea of this method is to learn a evaluation function that predicts the outcome of local
search algorithm, given features of the current search state. This function is then used to bias
future search toward better optima on the same problem. Extensive empirical results show the
effectiveness of Stage on several large-scale search domains.

XX ”Tuning Local Search by Average-Reward Reinforcement Learning”
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7.1.2 CR-algorithms for learning-for-search

In this part, we describe how to formalize various learning-for-search problems within the for-
malism of CR-algorithms. The problem of learning these CR-algorithms is discussed in Section
7.1.3. We use the following notations to denote search problems. The search space N is the
set of search nodes the problem. A search node is denoted n ∈ N and the initial search node
is denoted n0 ∈ N . Search nodes are arranged into a tree and we have access to the successor
function succ : n→ P(N ), where P(N ) is the power set of N .

Best-first search (BFS) is a simple, yet widely used, search algorithm. It usually relies on Best-first search

a domain-specific user-defined heuristic h : N → R that defines an order over search nodes.
Given this heuristic, BFS works by visiting the most promising nodes first. The availability of a
good heuristic function is the key condition to have an efficient BFS procedure. Automatically
learning such a prioritizing function can be done within the framework of CR-algorithms.

CR-algorithm 12 Simple best-first search CR-algorithm
Input: A search problem (n0,N , succ)
Input: A time limit Tmax
Output: A solution or no solutions

1: openedNodes ← ∅
2: closedNodes ← {n0}
3: while card(openedNodes)< Tmax do

4: n← choose closedNode . Choose
5: if isSolution(n) then
6: return s
7: end if

8: closedNodes ← (closedNodes \ {n}) ∪ succ(n)
9: openedNodes ← openedNodes ∪ {n}

10: reward −1 . Reward: cost of one step
11: end while
12: return no solutions

CR-algorithm 12 describes the learning problem of BFS with a binary search problem: nodes
n are either solutions or non-solutions. BFS relies on a set of closed nodes and a set of opened
nodes. At each search step, the choose instruction (line 4) selects one node to explore among
the set of closed nodes. If this node is a solution, search stops and return the solution (line
6). Otherwise, the node becomes an opened node and its successors are added to the set of
closed nodes (lines 8–9). Each search step has a cost of 1 (line 10), i.e. the aim of learning is to
minimize the number of search steps required to find a solution.

Policies of CR-algorithm 12 are functions that choose which candidates to explore dur- Policies of
CR-algorithm 12ing search. Any search algorithm that proceeds by iteratively exploring candidates in a tree-

structured search space can be seen as such a policy. For example, random search is the policy
that selects actions randomly and breadth-first search is the policy that selects actions corre-
sponding to search nodes at lowest depth. The classical BFS procedure, which rely on the
user-defined heuristic h : N → R, can also be seen as a policy of CR-algorithm 12 defined in the
following way:

πh(s) = argmax
a∈As

h(a)
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i.e. at each step this policy selects the closed node that maximizes the heuristic function.

CR-algorithm 13 Multiple-solutions best-first search CR-algorithm
Input: A search problem (n0,N , succ)
Input: A time limit Tmax
Output: A set of solutions

1: solutions ← ∅
2: openedStates ← ∅
3: closedStates ← {n0}
4: while card(openedStates)< Tmax do

5: n← choose closedStates . Choose
6: if isSolution(n) then
7: reward qualityOfSolution(n) . Reward
8: solutions ← solutions ∪ n
9: end if

10: closedStates ← (closedState \ {n}) ∪ succ(n)
11: openedStates ← openedStates ∪ {n}
12: reward −1
13: end while
14: return solutions

The previous CR-algorithm was restricted to finding a unique solution in a binary search
problem. These restrictions can easily be removed. As an example, CR-algorithm 13 performsExtensions

search with real-scored solutions and multiple-solutions. The differences with the previous CR-
algorithm are shown in blue italic text. We consider the following search-optimality criterion:

R =
∑

n∈solutions

qualityOfSolution(n) − number of search steps

i.e. the aim is to find a maximum of good quality solutions in a minimum of time. Note that
this only one example of possible optimality criterions. Depending on the application, several
other optimality criterions may be of interest.

Another popular form of search is depth-first search. Similarly to BFS, this search algorithmDepth-first search

can formalized with CR-algorithms. CR-algorithm 14 describes depth-first search for a binary
search problem. The algorithm relies on a stack of search nodes that makes it possible to
implement backtracking. Furthermore, it uses a set of marked nodes to keep a trace of the already
explored nodes. Prioritization of the search space relies on the choose instruction of line 15. The
aim here is to choose a successor node of n that has not been explored yet (n′ /∈ markedNodes).
If no such successor exists, backtracking is performed in line 11. If the whole search space has
been explored without finding any solutions, the algorithm stops (line 8). When a node nsucc
has been chosen, we test if it is a solution (line 16). If not, we store the current node in the stack
and continue with nsucc (lines 19–20).

Depending on the application specificities, the depth-first search CR-algorithm may be mod-Extensions

ified in several ways. Support for real-valued solutions or multiple solutions may be taken into
account, such as in CR-algorithm 13. Another particularly extension is the learning-to-backtrack
problem. Instead of performing one-step backtracks, search may be fastened thanks to multiple-
steps backtracking. This raises a new learning problem, which is to choose the number of



7.1 Learning for search 157

CR-algorithm 14 Depth-first search CR-algorithm
Input: A search problem (n0,N , succ)
Input: A time limit Tmax
Output: A solution or no solutions

1: n← n0

2: stack ← ∅
3: markedNodes ← ∅
4: for t = 0 to Tmax do
5: candidates ← {n′ ∈ succ(n),n′ /∈ markedNodes}
6: if candidates = ∅ then
7: if stack = ∅ then
8: break . Exhaustive search failed
9: else

10: markedNodes ← markedNodes ∪ {n} . n has been fully explored
11: n = stack.pop() . Backtrack
12: continue
13: end if
14: else

15: nsucc ← choose candidates . Choose

16: if isSolution(nsucc) then
17: return nsucc . Search success
18: else
19: stack.push(n) . Go forward
20: n← nsucc
21: end if

22: reward −1
23: end if
24: end for
25: return no solutions
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backtracking steps that should be performed. This problem can be expressed thanks to a choose
instruction: when backtracking, choose one node to continue with, among those in the current
stack.

We described CR-algorithms for best-first search and depth-first search. We believe that
many other approaches to combinatorial search may be written as CR-algorithms. Here areOther search

algorithms some example approaches that could be revisited within the framework of CR-algorithms :

• Bi-directional search Bi-directional search runs two simultaneous searches: one forward
from the initial state, and one backward from the goal and stops when the two meet in the
middle. A bi-directional search CR-algorithm could for example be centered on a choose that
selects which side of the search is the most promising. Another way to tackle bi-directional
search, would be to directly choose among the union of the forward-search successors and the
backward-search successors at each search step.

• Divide-and-conquer search Many search problems can be solved by breaking them recur-
sively into simpler search sub-problems, until these become simple enough to be solved directly.
In this context, choose instructions could be used to choose among different kind of problem
decompositions. A choose instruction could also be used to select among different resolution
methods for the sub-problems.

• Branch and bound search Branch and bound is a search algorithm for finding optimal
solutions. It consists of a systematic enumeration of all search nodes, where large subsets of
nodes are discarded by using upper and lower estimated bounds of the quantity being optimized.
Depending on the order in which the search space is explored, this bounding mechanism may
be more or less efficient. A choose could be used here to prioritize the search space, in order to
optimize the quality of the bounding mechanism.

7.1.3 Learning and supervision

In the previous part, we have introduced several CR-algorithm for learning for search. We
now discuss the key problem of learning these CR-algorithms. As discussed in the previous
chapters of this manuscript, we mainly have the choice between two approaches: supervised
learning and reinforcement learning. The former assumes the knowledge of optimal learning
trajectories (OLTs) or of the optimal learning policy (OLP), while the latter only makes use
of the information conveyed by rewards. In theory, reinforcement learning is applicable to all
the previous CR-algorithms. However, in practice, it is often desirable to inject supervision
knowledge to improve or to speed-up learning. We propose here a general methodology to inject
such supervision knowledge.

Our key idea to learn search CR-algorithms is post-episode supervision: each time that aPost-episode
supervision solution has been found, we can supervise the whole sequence of actions that led to this solution.

For example, in CR-algorithm 12, if we know that n∗ ∈ N is a solution, we know that the
ancestors of n∗ are better choices than the other nodes of the search space. This knowledge can
then be injected in a supervised learning such as CRank with a heuristic action-cost.

Since the action costs must be available immediately in CRank, the learning algorithm hasCRank with
post-supervision to be modified to support post-episode supervision. The modified algorithm is called CRank

post,
and it repeats the following steps:

1. Sample a new initial state of the CR-algorithm.



7.1 Learning for search 159

2. Perform an episode by storing the trace of the visited state sequence (s1, . . . , st).

3. If solutions were found:

(a) Given the structure of the search algorithm, extract supervision information from
their knowledge.

(b) Convert this supervision information into a heuristic action-cost function applicable
to the visited states (s1, . . . , st).

(c) Given the action-cost function and the visited state sequence, computes the episode
gradient of CRank and update the parameters θ.

The policy used to perform episodes in step (2) may either be an initial heuristic to solve the
search problem, or the currently learned policy πθ. The only requirement of the CRank

post approach
is that some solutions should be found from times to times in order to initiate learning in step
(3). The steps (3.a) and (3.b) are dependent from the target CR-algorithm.

In the remaining of this part, we instantiate the post-supervision approach on the BFS CR-
algorithm. We first discuss supervision and then discuss feature functions for this CR-algorithm.

In best-first search, the knowledge of a solution n∗ gives the information that all the ancestors Best-first search
supervisionof n∗ are good nodes to explore. Thus, actions that do not open ancestors of n∗ should have a

higher cost than those that do. A simple way to incorporate this information in the action-cost
function cn∗ is the following one:

cn∗(s,a) =

{
0 if the node a is an ancestor of n∗

1 otherwise

i.e. each action that is not necessary to complete search has a cost of 1. A key property of cn∗
action costs is that they are tightly related to the regrets c∗(s,a) of the actions w.r.t. optimal
policies. Most of the time, both functions are equivalent: cn(s,a) = c∗(s,a). Approximation
occurs in the following cases:

1. If there are multiple solutions, cn∗ may assign a cost of 1 to a node n′ leading to another
solution than n∗.

2. If multiple paths connect n0 to n∗, the optimal behavior is to open only nodes that belong
to shortest paths to the solution. This information is not taken into account by cn∗ that
may assign a cost of 0 to search nodes that do not belong to the shortest paths to the
solution.

Although our action-costs are not exactly equal to the regrets w.r.t. optimal policies, these
approximates seems to be reasonable in the experiments performed on BFS in Section 7.2.

In order to learn CR-algorithm 12, we have to provide an action feature function φ : S×A → Feature function

R
d. Here, states are composed of the openedNodes and closedNodes sets and actions are nodes

of the search space. Two kinds of feature functions are possible for best-first search:

• State-action description The φ function may incorporate any feature related to the set of
opened nodes, the set of closed nodes and a candidate node. This makes it possible to take into
account some general statistics of the search process, such as search progression or statistics of
the set of opened nodes.
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• State-independent description A state-independent φsi function is a feature function
that only depends on the current action: φ(s,a) = φsi(a). In the context of BFS, where actions
are search nodes, a state-independent feature function is a function from nodes to features:
φ : N → R

d. Given a node description function, we can thus automatically induce a state-
independent feature function.

An optimal BFS heuristic h : N → R is a heuristic that minimizes the expected number ofOptimal heuristic for
BFS required steps to find a solution. A key property of CR-algorithm 12 is that it can be used to

learn optimal heuristics through the use of state-independent descriptions. Indeed, thanks to
this property, the policies πθ learned by CRank are also state-independent:

πθ(s) = argmax
a∈A

〈φsi(a), θ〉

Since the policy only depends on a node n, the key idea is that the scoring function 〈φsi(a), θ〉
can be re-interpreted as a classical BFS heuristic hθ : N → R, defined in the following way:

hθ(n) = 〈φsi(n), θ〉

After learning, the function hθ can thus be returned to the user to perform classical BFS search.
Furthermore, state-independance makes it is possible to implement inference in CR-algorithm
12 exactly in the same way as in classical BFS (with a queue of nodes sorted by their heuristic
score), which leads to chooses with a logarithmic complexity.

In summary, given a node description function φ : N → R
d, CRank

post provides a solution the
learn the heuristic minimizing the expected number of search steps required to find a solution.
The key idea of CRank

post is post-supervision: once we know a solution, we can re-visit all the
previous search steps and update a ranking functions to prefer ancestors of the solution over all
other nodes of the search space. Although we only detailed learning in CR-algorithm 12, we
believe that the CRank

post approach generalizes relatively well to other search problems. This is a
major direction of future work.

7.2 Experiments with best-first search

We describe here a set of preliminary experiments that show the promise of the learning approach
described in the previous section. We illustrate CRank

post on a little but complex search problem:
LCeB. This problem is first introduced in Section 7.2.1. We then describe a feature function to
describe LCeB search nodes in Section 7.2.2. Finally, we give a set of experimental results in
Section 7.2.3.

7.2.1 The LCeB problem

The LCeB (Le Compte est Bon) problem comes from the French game show Des chiffres et
des lettres (Numbers and Letters), created by Armand Jammot. Over 4,000 episodes of this
game have been presented on the British game show Countdown, which makes it one of the
longest-running game shows in the world1.

The rules of LCeB are the following. Six numbers are randomly sampled from the setLCeB rules

{1, 1, 2, 2, 3, 3, . . . , 10, 10, 25, 50, 75, 100} and a target number is randomly sampled in [100, 999].
The goal is to combine the six numbers by using additions, subtractions, multiplications and

1from wikipedia, Countdown (game show).
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Figure 7.1: An instance of the LCeB search problem. Top: A LCeB game composed
of six numbers and a target. Bottom: One of the solutions of the game and the sequence of
computations to construct this solution.

Mean size of the search space ' 106

Mean number of solutions ' 370
Median number of solutions 17
Percentage of solvable games 94%

Branching factor at depth 1 ' 42, 8
Branching factor at depth 2 ' 29, 8
Branching factor at depth 3 ' 18, 7
Branching factor at depth 4 ' 9, 7
Branching factor at depth 5 ' 3, 3

Table 7.1: Statistics of the LCeB search space. Left: statistics on the search space and on
the solutions, Right: branching factors – the average number of successors depending the depth
of a search node.

divisions in order to produce the target number2. Numbers can be used as many times as they
appear in the selection, and need not all be used. Only integers may be used at any stage of the
computation. Figure 7.1 gives an example game with one solution.

Each LCeB search node n ∈ N contains a set of numbers and nodes are solutions of the LCeB search space

problem if one of their numbers is equal to the target. The initial search node contains the six
game numbers. The successors of a node are all the nodes that can be reached by replacing two
numbers by their combination using an elementary operation (+,−,× and /).

We apply the following simple constraints to the successor function. Rule 1 : Since decimals
and fractions are forbidden in LCeB, an operation can only be performed if its result is a
strictly positive integer. Constraint 1 : A number that appears multiple times is only considered
once. Constraint 2 : We remove symmetries in additions a+ b and multiplications a× b by only
considering cases where a >= b. These choices lead to the statistics3 given in table 7.1. Note
that only 94% of the possible search problems have a solution and no method is able to do better
than 94% of resolved games.

An interesting aspect of the CR-algorithm formalism is that, since search spaces are special Defining search-space
thanks to
CR-algorithms

2We only consider the binary search case; in the traditional rules the aim is to get as near as possible to the
target.

3More statistics about the LCeB game can be found on http://www.crosswordtools.com/numbers-game/.
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CR-algorithm 15 CR-algorithm defining LCeB search space
Input: The six input numbers n1, . . . n6

Input: The target number target
Output: A candidate solution

1: expressions ← {leaf(ni), i ∈ [1, 6]}
2: while card(expressions) > 1 do
3: choices ← ∅
4: markedValuePairs ← ∅
5: for each exprLeft ∈ expressions do
6: for each exprRight ∈ expressions, exprRight 6= exprLeft do
7: valueLeft ← compute(exprLeft)
8: valueRight ← compute(exprRight)
9: if (valueLeft, valueRight) ∈ markedValuePairs then

10: continue . Constraint 1
11: else
12: markedValuePairs ← markedValuePairs ∪ {(valueLeft, valueRight)}
13: end if
14: if valueLeft ≥ valueRight then . Constraint 2
15: choices.insert( (plus, exprLeft, exprRight) )
16: choices.insert( (times, exprLeft, exprRight) )
17: if valueLeft > valueRight then . Rule 1
18: choices.insert( (minus, exprLeft, exprRight) )
19: end if
20: if valueLeft is a multiple of valueRight then . Rule 1
21: choices.insert( (divide, exprLeft, exprRight) )
22: end if
23: end if
24: end for
25: end for

26: (operation, left, right) ← choose[expressions] choices
27: expressions ←

(
expressions \ {left, right}

)
∪ {operation(left, right)}

28: for each expr ∈ expressions do
29: if compute(expr) = target then
30: reward +1 . A solution was found
31: return
32: end if
33: end for
34: end while
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Figure 7.2: Feature function for the LCeB search problem. This figure illustrates the
feature function φ : N → R

d that we used to describe LCeB search nodes. The center part
of the figure illustrates the current search node, which is composed of two expressions resulting
to 927 and 8. Here, the aim is build the target number 919. The left and right parts of the
figure respectively give the features for the first and second expression. The bottom part of the
figure gives product and sum features. Only active features are shown (i.e. features that have a
non-null value). The blue numbers correspond to (approximate) feature values.

cases of MDPs, a search space can be defined formally with a CR-algorithm. In such a CR-
algorithm, states are interpreted as search nodes, the initial search node corresponds to the
initial state and the successor function is defined in the following way:

succ(n) = {T (s,a),a ∈ As} with s = n

The isSolution function can be defined through rewards, e.g. a reward of +1 means that the cur-
rent state is a solution. As an example of this use of CR-algorithms, CR-algorithm 15 defines the
search space of LCeB, accordingly to the description above. Each state of this CR-algorithm
is defined by a set of tree-structured expressions that are either input numbers or binary op-
erations between two expressions (additions, multiplications, divisions or subtractions). Each
decision step of LCeB involves the combination of two of the current expressions (lines 26–27).
Final search state are either reached when one of the current expressions equals the target (lines
29–32) or when there is single remaining expression (condition line 2).

7.2.2 Feature function

In order to apply CRank
post to learn a BFS heuristic, we have to provide a node feature function

φ : n → R
d. We use three kinds of features: distance-to-target features, distance-to-secondary-

targets features and product/sum distance-to-target features. These features are illustrated in
Figure 7.2 and described below:

• Distance-to-target These features focus on the relation between the value of an expression
and the target. Let e be the value of an expression, t the target number and [.] the operator that
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Figure 7.3: Number features in the LCeB problem. This figure illustrates number fea-
tures. There is one feature per reference number (1, 2, 5, ...). For a given number (e.g. 13), only
two features are non-null (e.g. F10 ' 0.8 and F20 ' 0.2).

returns the nearest integer of a real number. In order to compute distance-to-target features, we
first compute the three following numbers for each current expression:

• The difference t − e. In our example, the difference values are 919 − 927 = −8 and
919− 8 = 911.

• The distance-to-multiple e
t −

[
e
t

]
. In our example, the distance-to-multiple values are:

927/919− [927/919] ' 8, 705.10−3 and 8/919− [8/919] ' 8, 705.10−3.

• The distance-to-divisor t
e −

[
t
e

]
. In our example, the distance-to-divisor values are :

919/927− [919/927] ' −8, 63.10−3 and 919/8− [919/8] = −0.125.

Once the difference, distance-to-multiple and distance-to-divisor values are computed, we
describe them through number features. Number feature are illustrated in Figure 7.3 and measure
the proximity between one of the previous numbers and a reference number among the set
{. . . , 1.10−3, 2.10−3, 5.10−3, 1.10−2, 2.10−2, 5.10−2, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, . . .}. Intuitively,
the kind of features that are generated measure if differences are rather small, medium, large and
so forth. This kind of representations for number is also motivated by the fact that we mainly deal
with linear learning. Indeed, a linear function of number features can be a non-linear function
of the underlying numbers.

• Distance-to-secondary-targets These features focus on the relation between one of the
expressions and a secondary target. Given the value of an expression e and the target t, the
secondary targets are t+ e, t− e (if t > e), e/t (if e is a multiple of t) and t/e (if t is a multiple
of e). For each of these secondary targets, we compute the previous distance-to-target features.

• Product/Sum distance-to-target These features describe the relation between the prod-
uct or the sum of all expressions and the target number. In our example, the product of the
expressions is 927× 8 = 7416 and their sum is: 927 + 8 = 935.

A good heuristic for LCeB may depend on the number of computations that have already
been performed in the current search node, i.e. the depth of the search node. In order to
incorporate this information, we clone the feature described above and represented in Figure 7.3
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to form depth-specific features. For example, given a feature fdistance−to−targetdifference'5 (n) = 0.3, at a
depth of 4, we add the following feature:

fdistance−to−targetdepth=4∧difference'5(n) = 0.3

This cloning operation doubles the number of active features per search node and multiply
the number of possible features by the maximum depth. As in all our experiments with CR-
algorithms, the feature function of LCeB is sparse and high dimensional (up to 8,000 distinct
features). Furthermore, the set of active features is generated directly and efficiently from the
data, without enumerating the whole set of possible features.

7.2.3 Experiments

We have compared various approaches to solve LCeB. CRank
post is the supervised approach, de- Learning-based

modelsscribed in Section 7.1.3, to learn CR-algorithm 12. We compare this supervised approach with
a pure reinforcement learning algorithm, namely Monte-Carlo Control [Sutton et Barto, 1998]
(Mcc), applied to CR-algorithm 12. In order to evaluate the interest of modeling the BFS pro-
cedure explicitly, we also launched the Monte-Carlo Control algorithm directly on CR-algorithm
15 (Mcc-direct). We compare these methods with the recently proposed learning-for-search
algorithm LaSO∗.

In order to evaluate the benefit of learning, we also performed experiments with two non-
learning baselines: Random and Greedy. The former corresponds to a player that chooses Non-learning based

modelsactions randomly while the latter corresponds to a player that chooses actions that minimize
the distance to the target greedily. Formally, Greedy is a BFS procedure with the following
heuristic:

h(n) = min
expr∈n

|expr − target|

where expr are the expressions of the current search node and target is the target number.

The learning-based methods were trained on 10,000 randomly generated games. All the Tuning

methods have been tested on 10,000 other generated games. CRank
post was configured as CRank in

the previous chapters. We tried two ranking losses, most-violated-pair (mvp) and all-pairs (ap),
combined with the large-margin criterion. The discount factor in Mcc and Mcc-direct was
tuned manually and equal to 0.9 in both cases. The parameters of LaSO∗ have also been tuned
manually in order to obtain the best performance. This tuning process led to a beam size of 20.

The results of our experiments are given in Figure 7.4. The performance measure used here Results

is the percentage of games that are solved with less than a given number of explored nodes. For
example CRank

post is able to solve more than 85% of the games exploring less than 100 nodes while
Mcc-direct only solves about 50% of the games and LaSO∗ about 30% in the same time.
The results of CRank

post are quite satisfying: all the solvable games are solved in a maximum of
10,000 nodes, which correspond to an exploration of only 1% of the total search space. The other
following conclusions can be drawn from the results:

• The all-pairs ranking loss seems to be more adapted here than the most-violated-pair
ranking loss.

• The supervised approach CRank clearly outperforms the value-based reinforcement-learning
algorithm Mcc.

• The interest of explicitly modeling the BFS procedure appears clearly by comparing Mcc
and Mcc-direct. The main difference between these two methods concerns the number



166 Learning for search with CR-algorithms

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000

P
er

ce
nt

ag
e 

of
 G

am
es

 S
ol

ve
d

Number of Opened Nodes

CRank ap
CRank mvp

MCC
MCC-direct

Laso*
Greedy

Random

Figure 7.4: Comparison of various search methods for LCeB. These curves show the
percentages of LCeB games solved exploring less than a certain amount of nodes. Methods from
top to bottom: CRank

post with the all-pairs ranking loss, CRank
post with the most-violated-pair loss,

Monte-Carlo Control on CR-algorithm 12, Monte-Carlo Control on CR-algorithm 15, LaSO∗,
greedy BFS and random search.
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LCeB game Humans BFS CR-algorithm
Numbers Target Mcc CRank

post

5 3 6 4 100 2 659 10, 10, 28, 5, 5, >12, 15 69 57
10 7 8 75 3 9 584 7, 6, 10, 4, 4, 4, 3, 6 3 3
8 9 10 3 6 7 864 24, 11, 12, 7, 33, >25, 25 16 25
4 8 7 100 6 9 844 12 ,6, 6, 3, 5, >11, 4, 3, 9 8 6
8 2 9 4 4 6 342 18 , 5, 25, >10, 10, >5, >33, 7 4 3

Table 7.2: Comparison of machine-learning and human players on LCeB. We give the
number of explored nodes by both human players and learning-based algorithms on 5 randomly
selected games. > n denotes human players that stopped after n steps without finding a solution.

of search nodes explored per episode. On one side, Mcc-direct draws a single trajectory
in the search space per episode and learns to maximize the probability that this unique
trajectory leads to a solution. On the other side, Mcc can open any number of search
nodes before finding the solution and it directly learns to minimize the expected number
of required search steps to find a solution.

• LaSO∗ relies on a beam-search procedure and we used a beam size of 20. Thus, it requires
opening at least 20 × d search nodes to find a solution at depth d. This mainly explains
the relative low performance of this method.

• All learning-based methods clearly out-perform the non-learning baselines on this problem.

We performed a comparison of our learning-based approach against 7 human players that Comparison to
human playersare members of our research team. The results are given in Table 7.2. We gave the following

instructions to human players:

• On a paper, write one mark per performed computation,

• Count trivial computations that may have been done unconsciously, e.g. 6 × 100 in the
first example of Table 7.2.

• Do not count target adjustment computations, e.g. “if I do 6 × 100, the new problem is
to construct 59 with the remaining numbers”. These computations are performed by the
feature function φ, so they should not be counted for human players.

If we consider that a human player is an expert for solving this type of problem, our method
behaves very well on most instances of the problem. Interestingly, the first game, where the
learning-based approach is less competitive, corresponds to a less intuitive solution. Most humans
start by computing 6 × 100 in this game and then try to construct 59 with the remaining
numbers. It can then be quickly seen that this strategy does not work, which causes most human
to switch on completely different solutions. Our approach to solve LCeB is state-invariant:
the set of previously explored nodes does not appear in the features, which makes the kind of
reasoning human players use impossible to represent. On the four other problems, learning-based
approaches are competitive to human players4.

The policy learned with CRank
post can be tested thanks to an applet, which is available at Try it: Web Applet

4Naturally, the results concerning human players are not precise, since some computations may have been
done unconsciously. However, we believe that they are still good indicators to show the competitiveness of our
approach.
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Figure 7.5: Applet demonstrating our approach for learning BFS heuristics. Left: an
example BFS trajectory computed by the applet available at http://nieme.lip6.fr/Nieme/
LCeB. Right: The part of the search space that was explored to solve the game. The double-
circled node is the solution that was found.

http://nieme.lip6.fr/Nieme/LCeB
http://nieme.lip6.fr/Nieme/LCeB
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http://nieme.lip6.fr/Nieme/LCeB. This applet is illustrated in Figure 7.5. Its use is simple:
the user selects the six input numbers and the target number and then the applet displays the
search trajectory that was performed to solve the game. For each decision step, it displays
the step number, the computation that correspond to the explored node n, the result of this
computation, the heuristic score hθ(n) and the parent node of n.

7.3 Experiments with tree-edition distances

This section presents a five-months prospective work that was done in our team by Stéphane
Peters during its internship. This work deals with the problem of computing edition distance
between labeled trees. The tree edition distance between two trees TA and TB is the minimum
number of nodes deleting, inserting and relabeling operations required to transform TA into TB .
This problem has a wide range of applications in domains ranging from computational biology
or structured text databases to compiler optimization, see [Bille, 2002] for an overview.

The tree-edition distance problem has been stated formally thirty years ago [Selkow, 1977,
Tai, 1979] and various solutions based on dynamic programming have been proposed since
[Zhang et Shasha, 1989, Klein, 1998]. Today, the best algorithms to compute tree edition dis-
tances have a complexity worst than O(n3) where n is the number of nodes of the trees. This
complexity is prohibitive for many applications, in particular those dealing with large trees con-
taining thousands or millions nodes. This motivates the development of methods to compute
approximate tree-edition distances with lower complexities.

7.3.1 Tree-edition CR-algorithm

The tree-edition distance problem can be formalized within the framework of CR-algorithms
through a tree-edition CR-algorithm. The central idea is to learn the policy for transforming
trees TA into TB thanks to the basic deleting, inserting and relabeling operations. Each operation
is penalized by a negative reward corresponding to its cost, so that the total reward of an episode
corresponds to a candidate distance between TA and TB . The tree-edition distance between TA
and TB corresponds to the minimum of these candidate distances.

CR-algorithm 16 defines the tree-edition problem and works in the following way. At each
time-step, we have access to the current tree TA and the target tree TB . While these two trees
are different (line 2), we modify TA using a basic operation (lines 3–14). We then count the cost
of this operation (line 15) and give a negative reward accordingly (line 16). There are three basic
operations: delete removes a node from TA (line 5), relabel changes a label in TA (line 7) and
create creates a new leaf node inside TA (line 9). As in our experiments with tree transformation
(see Chapter 6), the basic operations are parameterized by the node and eventually by a label
and a children position. At a given time-step, the number of basic operations is in O(n.l.c) where
n is the number of nodes of TA, l is the number of distinct labels in TB and c is the maximum
number of children in nodes from TA. The complexity of inference with CR-algorithm 16 is thus
in O(n.l.c.Dmax) where Dmax is the maximum tree edition distance. This is quite satisfactory
since the complexity is close to be linear w.r.t. the number of nodes of the tree.

An optimal policy π∗ in CR-algorithm 16 is a policy that minimizes the total cost to trans-
form TA into TB . This total cost is equal to the tree-edition distance between TA and TB . The
values returned by the tree-edition CR-algorithm with an optimal policy are thus the exact edi-
tion distances. In practice, learning, due to the use of approximation, will not reach the optimal
policy. Executing CR-algorithm 16 with a near-optimal policy returns approximated edition dis-
tances, which are over estimates of the exact edition distance. The quality of the approximation

http://nieme.lip6.fr/Nieme/LCeB
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CR-algorithm 16 Approximate tree-edition distance CR-algorithm
Input: A source tree TA
Input: A target tree TB
Input: A maximum distance Dmax

Output: An approximate tree-edition distance

1: distance← 0
2: while TA 6= TB ∧ distance < Dmax do

3: choices ← ∅ . Create choices
4: for each node ∈ TA do
5: choices.insert((delete, node))
6: for label ∈ labelsOfTree(TB) do
7: choices.insert((relabel, node, label))
8: for each position ∈ node do
9: choices.insert((create, node, label, position))

10: end for
11: end for
12: end for

13: choice ← choose[TA, TB ] choices . Choose

14: modify TA with respect to choice

15: distance← distance+ 1
16: reward -1 . Cost of one operation
17: end while
18: return distance
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Figure 7.6: An example MDP induced by CR-algorithm 16. Circles are states and
arrows are transitions. The circle with red edges is a final state. Each state contains a current
tree (left) and the target tree (right).

depends on the quality of the policy. More formally, given a policy π, the approximated distance
d̂π(TA, TB) is equal to:

d̂π(TA, TB) = d(TA, TB) +
(
V ∗(s1(TA, TB))− V π(s1(TA, TB))

)
where d(TA, TB) is the true edition distance between TA and TB , s1(TA, TB) is the initial state
of the tree-edition CR-algorithm and V ∗(s0(TA, TB)) (resp. V π(s0(TA, TB))) is total reward
perceived by an optimal policy (resp. the policy π) when starting from the initial state. In other
words, the approximation error is equal to the regret of π.

7.3.2 Features and supervision

We now discuss feature functions φ : S × A → R
d for CR-algorithm 16. Such a function Feature Function

jointly describes the current tree, the target tree and a basic operation. Designing features
for this problem is far from being trivial. Since the main objective is to select operations that
reduces the distance between TA and TB , we have experimented a set of features that depends on
similarity functions between both trees. As in Chapter 6, we use F1 similarity measures, which
are computed in linear time w.r.t. the number of nodes of the trees. We have 11 such similarity
functions, denoted F

(1)
1 , . . . , F

(11)
1 , including Fstructure, Fpath and Fcontent. These similarities

appear in three kinds of features:
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• Delta-similarities Delta-similarity features measure the variation of similarity caused by
an action a. There is one such feature fdeltai per similarity score F (i)

1 :

fdeltai (s,a) = F
(i)
1 (TA′ , TB)− F (i)

1 (TA, TB)

where TB is the target tree, TA is the current tree and TA′ is the current tree of the successor
state T (s,a).

• Delta-similarity conjunctions We introduced delta-similarity conjunctions to enable non-
linear functions w.r.t. delta-similarities5. For each pair of similarity scores (F (i)

1 , F
(j)
1 ), there is

one delta-similarity conjunction defined in the following way:

fdelta.deltai,j (s,a) = fdeltai (s,a).fdeltaj (s,a)

• Similarity-delta-similarity conjunctions These features are motivated by the idea that
the current distance between the source and target trees may play an important role in the
optimal tree edition behavior. Similarity-delta-similarity features are conjunctions between cur-
rent similarities and delta-similarities induced by an action. For each pair of similarity scores
(F (i)

1 , F
(j)
1 ), there is one such feature defined in the following way:

fsim.deltai,j (s,a) = F
(i)
1 (TA, TB).fdeltaj (s,a)

The feature function φ described above computes dense descriptions. Given that we have 11
similarity functions, the dimension of these descriptions is: d = 11 + 11× 11 + 11× 11 = 253.

Supervision is the most difficult part in CR-algorithm 16. On the tree edition problem,Supervision

following the random policy leads to very poor success rates. Since there are much more create
actions than delete actions, the most frequent behavior of the random policy is to grow TA, which
results in states with very large current trees TA w.r.t. the target trees TB . Pure reinforcement-
learning algorithms seem thus difficult to apply. How to learn CR-algorithm 16 is still a largely
opened question and, for the moment, we assume the availability of a set of OLTs. Thanks to
this assumption, it is possible to use CRank to perform supervised learning of the policy.

7.3.3 Experiments

For the moment, we only experimented tree-edition distance computation on relatively small
trees. We use an artificial dataset, which is composed of 22350 randomly generated tree pairs.Dataset

Each tree contains between 4 and 6 nodes with three different possible labels. Furthermore,
these trees have a maximal arity of 4, i.e. there are no nodes with more than 4 children. The
distribution of tree-edition distances of the tree pairs is given in Figure 7.7. The training set is
composed of 90% of the examples while the remaining examples form the test set.

In order to learn, we assume the availability of OLTs for all the training examples. This
makes it possible to use CRank with the following action-cost function:CRank

c(s,a) =

{
0 if T (s,a) belongs to the OLT
1 otherwise

We tried two ranking losses – best-against-all and all-pairs – combined with the large-margin
criterion and roughly tuned CRank manually. We limited the length of episodes to Dmax = 20.
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Figure 7.7: Tree-editition distance distribution in the synthetic dataset. This curve
gives the number of tree pairs in the synthetic dataset classified by tree edition distances.
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Figure 7.8: Training behavior of CRank on the tree-edition CR-algorithm. Left: the
percentage of solved episodes in less than Dmax = 20 steps in function of the number of training
episodes. Right: the percentage of correctly predicted actions in function of the number of
training episodes. An action a is correctly predicted if its cost c(s,a) is null.
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Figure 7.8 illustrates the training behavior of CRank on CR-algorithm 16. It can be seen
that the best-against-all loss seems here more adapted. Most of the learning with this loss is
performed in 50.103 training episodes. We believe that this large number of training episodes
can be lowered with more careful tuning of CRank. Given that on our dataset, there are about
10% correct actions per step (actions with a null cost), a random policy would predict about
10% actions correctly. It is thus quite interesting that CRank reaches a percentage of correctly
predicted action of ' 75%
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Figure 7.9: Comparison between true edition distances and predicted edition dis-
tances. This x-axis corresponds to correct edition distances and the y-axis corresponds to mean
predicted edition distances. Ideally, the predicted edition distances should be equal to the correct
edition distances (diagonal line).

Figure 7.10 gives the evaluation of CRank on the test set and Figure 7.9 gives the comparison
between correct edition distances and average predicted edition distances. The error between
the approximate edition distance and the correct edition distance seems to be proportional to
the correct edition distance: the more trees are close, the better the estimated edition distance
will be. In all cases, the mean approximation error is lower than 1, which is a satisfying result.

For the moment, the main limitation of our approach is its high computational cost. Although
it has a relatively low complexity, each decision step needs much computation. In practice, the
major bottleneck is the computation of the similarity-based features for each available action
in each state. In order to reduce the number of available actions at each step, an alternative
approach would be to completely change the CR-algorithm, to fit more closely to the ideas of
existing dynamic programming algorithms for tree-edition distance computation. Briefly, this
would consist in applying a heuristic-learning method such as this presented in Section 7.2 on
the search-space of one of the existing dynamic programming algorithms. A promising approach
here would be to develop a learning-based depth-first search algorithm that approximates the
exhaustive computation performed by dynamic programming.

5These features are motivated by the use of learning linear. Note that a different approach here would be to
use kernel-based machines with, for example, a polynomial kernel.
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Figure 7.10: Evaluation of the tree-edition CR-algorithm trained with CRank. Left:
the percentage of episodes where the error is less than a given threshold. Here, the error is dif-
ference between the approximate edition distance and the correct edition distance. For example,
the predicted edition distance with CRank - best-against-all has an error lower than 5 for ' 98%
of test examples. Right: the percentage of episodes where the error is less than a given threshold,
sorted by correct edition distance.

7.4 Conclusion

In this chapter, we presented a domain, which is slightly beyond the main topic of this manuscript:
learning-for-search. Learning-for-search relies on the intuition that machine learning techniques
may be of interest to perform efficient search in the various combinatorial search problems that
exists in artificial intelligence. We developed a set of search CR-algorithms: CR-algorithms that
formalize learning-for-search problems. These CR-algorithms may be learned with reinforcement-
learning techniques or supervised-learning techniques. We developed a general methodology,
called post-supervision, to introduce supervision. This general methodology was applied to
the problem of learning optimal heuristics for best-first search algorithms. We performed a
set of experiments on a simple numbers game and obtained competitive results w.r.t. human
players, which is quite satisfying. We also described another learning-for-search application to
approximately compute tree-edition distances, which demonstrated that learning is also possible
in complex search spaces with tree-structured data.

We believe that the CR-algorithms approach to learning-for-search is promising, but the
work presented here is still prospective and much could be done to extend it. We envisage three
major perspectives: extend the post-supervision idea to other search CR-algorithm, perform
experiments on larger and more known search domains and develop a better understanding of
the relations between CR-algorithms and other learning-for-search approaches.
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I
n this manuscript, we introduced the CR-algorithm formalism to integrate inference proce-
dure and associated learning problems and presented extensive experiments with this formal-

ism and associated learning algorithms. CR-algorithms raise various perspectives with both
machine-learning aspects and programming-language aspects. We give a structured overview
of our research perspectives in Section 8.1. Complementary to these perspectives, the on-going
project of creating a useable CR-algorithm programming language in described in Appendix ??.
The main conclusions that can be drawn from this work are given in Section 8.2.

8.1 Perspectives

We overview here the main long-term perspectives related to the CR-algorithm framework. These
perspectives are structured into three directions: automating the CR-algorithm learning system
(Section 8.1.1), extending the CR-algorithm formalism (Section 8.1.2) and developing new ap-
plications of CR-algorithms (Section 8.1.3).

8.1.1 Automating the learning system

One of the main goals of CR-algorithms is to form the basis for a new learning-based programming
language (see Appendix ??). Ideally, such a language should be simple enough to be accessible
to non-specialists in machine learning. In particular, the learning system should be entirely
automatic. Learning CR-algorithms could even be thought as a part of the compilation process
leading to an executable program. Fully automatizing the learning of CR-algorithms is a long-
term perspective that raises multiple challenging issues that are discussed below.
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Automatic tuning of hyper-parameters All the learning methods that we introduced for
CR-algorithms have some hyper-parameters that must be carefully tuned. The problem of hyper-
parameter tuning is frequent in machine learning and must be solved to automatize learning.
Common hyper-parameters include the learning rate (in all methods), the discount factor (in
value-based reinforcement-learning methods), the β parameter (in Olpomdp), the regularizer
weight λ or the loss function (in CRank).

An interesting direction to tuning learning rates automatically is to make use of learning meth-Learning rates

ods with adaptive learning rates [Sutton, 1992, Riedmiller et Braun, 1993, Plagianakos et al., 1998,
Schraudolph et al., 2006]. These methods generally have one learning rate parameter αi per pa-
rameter θi, which are automatically adjusted during learning. Adaptive learning rate methods
still have hyper-parameter (e.g. a meta learning-rate parameter), but these parameters can
generally be set to default values, which give satisfying results in all situations.

Automatically tuning the discount factor in reinforcement learning or the β parameter of
Olpomdp is a difficult problem. One possible direction is to use a general optimization algorithm,Discount factor

such as genetic algorithms [Cline, 2004]. Another approach, which is claimed to be biologically
plausible, is based on gradient learning [Schweighofer et Doya, 2003].

It is still not clear to what extent regularization can be helpful to improve the generalizationRegularization

performances of policies. In our experiments, we did not use this capability of CRank, by using a
regularization parameter equal to 0. How to determine efficiently to best value for this parameter
is an open question.

Stopping criterion In our work, we did not propose a stopping criterion for the learning
algorithms and selected the number of training iterations manually. Usually, stopping criterion
are based on performance evaluation with a validation dataset. Separating validation data from
training data makes it possible to evaluate the generalisation ability of a learning machine.
Learning should stop when this generalization measure does not increase anymore. Note that
evaluation of the validation dataset may be a costly operation. Furthermore, it is not clear how
often these evaluations should be done and how much time is necessary to consider that a policy
will not improve anymore.

Choosing learning algorithms Depending on our experiments, we used various learning
algorithms by selecting them by hand. An automated learning system for CR-algorithm should be
able to automatically select which learning method is the most appropriate. Another perspective
is to chain or mix different learning algorithm:

• Chaining learning algorithms An example of chaining is to first learn an heuristic
policy by imitation and then perform reinforcement learning to improve the policy. This
chaining would, for example, be particularly relevant to tree transformation (see Chapter
??). Since most approximated reinforcement learning only optimizes the policy locally,
learning to imitate an heuristic policy is a good mean to provide a good initial policy.
Chaining imitation learning and reinforcement learning would have two strong advantages:
making learning faster and reaching better policies.

• Mixing learning algorithms In CR-algorithms with multiple choose instructions, each
choose may be strongly or weakly supervised. For example, the two-step order-free sequence
labeling CR-algorithm(see Section 5.2.3), has a position choose and a label choose. The
latter can be supervised with the OLP, while the former requires reinforcement learning.
A good learning algorithm for two-step order-free labeling would thus be to mix CRank for
the label choose with a reinforcement learning algorithm (e.g. Olpomdp) for the position
choose.
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As a conclusion, the problem of automatically learning CR-algorithms is far from being solved.
However, several approaches can be explored to improve this aspect of CR-algorithms.

8.1.2 Extending the CR-algorithm formalism

The CR-algorithm formalism can be extended in various directions to cover a wider range of
problems.

Generality of representable MDPs All CR-algorithms implicitly define MDPs, however
not all MDPs are representable by CR-algorithms with the current formalism. Here are the
main possible extensions to widen the set of representable MDPs:

• Other optimality criterions We always assumed the total-reward criterion in our prob-
lems. Many MDPs are naturally expressed as discounted-reward or average-reward maxi-
mization problems. The definition of the optimality criterion may be part of a CR-algorithm
in order to support this kind of problems.

• Stochasticity Reinforcement learning is generally used in stochastic environments. Most
CR-algorithms of this manuscript where deterministic. However, nothing forbids to use
stochastic operations between two choose instructions or between a choose and a reward.
This makes it possible to simulate stochastic environments within CR-algorithms.

• Continuous actions Many control problems involve the use of continuous actions, e.g.
A = R or A = R

d. Extending the syntax of CR-algorithms to support such actions seems
relatively simple. However, efficiently supporting such actions in the learning process is an
open question.

Generality of learning problems We presented CR-algorithms as a general approach to
solve structured prediction (SP) problems in a supervised learning setting. CR-algorithms could
be extended to other learning settings:

• Semi-supervised learning A common situation in real-world applications of machine
learning is that labeled example (x(i),y(i)) have a high cost, whereas it is easy to collect
a large amount of unlabeled examples x(i). Semi-supervised learning is a class of machine
learning techniques that make use of both labeled and unlabeled examples. The idea of
semi-supervised learning can be transposed to CR-algorithms. This would correspond to a
situation where we have access to few training inputs and a large amount of normal inputs.
Several approaches may be explored to provide solutions to this new problem.

• Active learning Another approach to tackle the labeling cost of training examples is to
actively query labels to the user/teacher. Active learning methods have been developed to
select among the set of unlabeled examples, those that, once labeled, may help learning
the most. The idea of active learning may also be transposed to CR-algorithms. In such
scenario, the learning system should actively ask for training inputs corresponding to most
promising episodes.

• Multitask learning/Transfer learning An old question in machine learning is this of
multitask learning [Caruana, 1993, Baxter, 2000]: how to exploit the structure of multiple
related problems to improve learning. Transfer learning [Pan et Yang, 2008] focuses on a
similar problem : how to exploit the knowledge acquired from previous problems into a new
learning problem. We believe that, in the long-term, these advanced definitions of learning
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may be fully relevant to CR-algorithms. In particular, we wish to study transfer between
CR-algorithms. Multiple CR-algorithms of increasing complexity can be use to define
solutions to the same problem. Let us give the example in sequence labeling: the simplest
solution is to perform independent classification. The left-to-right approach then introduces
the use of previous predicted labels to improve prediction accuracy. Multiple-pass labeling
then introduces the idea to correct the first predictions in latter passes. This sequence of
increasingly complex problems seems particularly well fitted to transfer learning.

CR-algorithm 17 A CR-algorithm that chooses between multiple other CR-algorithms.
Input: input parameters
Output: result

1: method ← choose[input parameters] {1, 2, 3, 4} . Choose the method to use

2: if method = 1 then return crAlgorithm1(inputParameters)
3: else if method = 2 then return crAlgorithm2(inputParameters)
4: else if method = 3 then return crAlgorithm3(inputParameters)
5: else if method = 4 then return crAlgorithm4(inputParameters)
6: end if

CR-algorithm 18 Divide-and-conquer CR-algorithm
1: procedure divideAndConquer(p) . Solve the search problem p
2: // decompose p into subproblems
3: // this decomposition may rely on choose/reward instructions
4: for each sp ∈ subproblems do
5: divideAndConquer(sp) . Recursive CR-algorithm call
6: end for
7: end procedure

Miscellaneous other extensions We present here a few other possible extensions to CR-
algorithms:

• CR-algorithm calls A very nice extension to CR-algorithms would be to support CR-
algorithms calls within the body of other CR-algorithms. CR-algorithm 17 and CR-
algorithm 18 illustrates two natural use cases of this extension. The former uses a choose
to select which CR-algorithm to use (e.g. to choose between left-to-right labeling, order-
free labeling or multiple-pass labeling). The latter illustrates a divide-and-conquer CR-
algorithm based on a CR-algorithm recursive call. The key idea to support CR-algorithm
calls is that the state of induced MDPs, in addition to the current parameters and variables,
contains the whole stack of CR-algorithm calls at each given time step. An interesting as-
pect of this extension is its connection with the hierarchical reinforcement learning domain
[Barto et Mahadevan, 2003], which could be a source of ideas to develop learning algorithm
to support CR-algorithm calls.

• Multiple heuristics For the moment we only experimented CR-algorithms with a single
action value (or action cost) function. In many real-world problems, there exists multiple
well-known heuristics that could all be used to bias the learning process. How to exploit
such knowledge is an open question.
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• Multi agent A long-term perspective is to analyze the relevancy of CR-algorithms for
multi-agent systems. A direction could be to study the behavior of CR-algorithms in
multi-threaded execution schemes.

8.1.3 Developing new applications

Developing new applications of CR-algorithms will become much more easier thanks to the
CR-algorithm programming language (see Appendix B). The ambition of this language is to
become relevant to a wide range of applications that use some learning components. Some of
the applications that could be developed include:

• Structured prediction We believe that CR-algorithms are powerful enough to tackle any
SP problem. In particular, we are currently experimenting the behavior of CR-algorithms
on the graph-labeling problem (i.e. prediction of a set of interdependent variables orga-
nized in a graph). The first results seem promising. We also made some experiments on
the dependency-parsing task, which is a key step in natural language processing systems
[Nivre, 2005].

• Unsupervised learning In the unsupervised learning problem, the user provides a set of
examples {x(i)}i∈[1,n] i.i.d. from an unknown distribution DX . Given this training set, can
we use CR-algorithms to learn a policy π able to create elements sampled from DX ?

• Learning-for-search As discussed in Chapter 7, we believe that CR-algorithms may have
several applications in learning-for-search.

• Code dynamic-optimization Another domain where CR-algorithms may be useful is
code dynamic optimization. The aim here is to produce code whose running time decreases
with experience. A key idea therefore is to connect rewards to the negative execution time
of the code. Then, choose instructions can be used to tune the implementation dynamically.
The learning system of CR-algorithms could then learn the mapping between situations
and appropriate implementation choices, in order to optimize the running time of the code.

• Bootstrapping A particularly existing perspective with the previous application fields is
that the learning problem of CR-algorithms raises itself several structured prediction and
combinatorial search or optimization problems. This leads to the idea of bootstrapping1:
the training system could be partially written with CR-algorithms, to solve other CR-
algorithms more efficiently. Bootstrapping assumes that we have a initial CR-algorithm
solver that could be this presented in this manuscript. This initial solver may then be
used to learn the advanced CR-algorithm solver embedded into the compiler. Examples
of CR-algorithms that may play a role during compilation include constraint satisfaction
solvers, automatic provers or code transformation CR-algorithms.

8.2 Conclusions

We first briefly summarize the work presented in this thesis in Section 8.2.1. We then present
conclusions relevant to structured prediction (Section 8.2.2), to reinforcement learning (Section
??) and to learning-based programming (Section 8.2.4).

1http://en.wikipedia.org/wiki/Bootstrapping_(compilers)

http://en.wikipedia.org/wiki/Bootstrapping_(compilers)
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8.2.1 Summary

In this thesis, we introduced CR-algorithms: a formalism to integrate inference procedures and
associated learning problems. The inference procedure is a piece of code that solves a given prob-
lem by using machine-learning based decisions. The learning problem defines a quality criterion
that should be maximized to find the optimal decision sequences to take during inference. CR-
algorithms rely the well-established Markov decision process formalism and can be learned thanks
to existing algorithms coming from domains ranging from structured prediction to reinforcement
learning.

We illustrated the use of CR-algorithms on numerous different applications. We first consid-
ered sequence-labeling problems and developed three approaches for these problems: left-to-right
labeling, order-free labeling and multiple-pass labeling. The resulting solutions where shown
competitive with state-of-the-art models, while having lower complexities of most existing meth-
ods. We then moved on a more complex structured prediction problem: rooted ordered labeled
tree transformation. In these problems, perfect supervision is rarely available. We showed the
relevancy of reinforcement-learning algorithms in this context. We presented multiple solutions
based on CR-algorithms, which accurately and precisely solve tree transformation problems.
Furthermore, these solutions where shown to scale well with the size of data. This enabled our
approaches to deal with all our real-world datasets, where previous methods failed.

Although most of this thesis was about structured prediction, we showed that the CR-
algorithm formalism might also be relevant to other domains. In particular, we described CR-
algorithms in the context of learning-for-search and showed promising results in this direction.

8.2.2 Structured Prediction

From the point of view of structured prediction, most of our conclusions meet those of [Daumé III, 2006].
Incremental approaches to structured prediction provide efficient solutions to complex predic-Incremental SP

tion problems. They do not make assumptions on feature functions nor on loss functions. This
is particularly interesting, since incremental approaches can deal with non-decomposable losses
and can incorporate long-term dependencies in the features. Our results on sequence labeling
clearly show that long-term dependencies are of primary importance on some datasets (up to
+8% improvement over dynamic-programming based models).

Dynamic programming is generally used to find the best compromise for a whole sequence of
labels. In incremental approach, inference is greedy and may suffer from local ambiguities. WeWork around

greedy-inference developed original approaches to sequence labeling to work around this limitation: order-free
labeling and multiple-pass labeling. An important idea that should be focused is the following:
although we perform greedy inference, we may be greedy in very large spaces corresponding to
non purely greedy algorithms. The less greedy algorithm, multiple-pass labeling, showed very
nice results (up to +11.8% improvement between left-to-right and multiple-pass).

Our major contribution to the field of structured prediction was to introduce reinforcement
learning as a concrete mean to solve hard-to-supervise tasks. On the tree-transformation task,Reinforcement-

learning based
SP

reinforcement learning gave very satisfying results: reinforcement-learning algorithms find better
strategies than the greedy behavior and succeed in learning and generalizing these strategies (up
to 40% improvement). Nevertheless, reinforcement learning has two major drawbacks. Firstly, it
requires huge numbers of training iterations. Secondly, if the exploration problem is too complex,
reinforcement learning may not find globally optimal policies.

We believe that a very promising approach to perform weakly supervised incremental struc-Chaining supervised
and reinforcement

learning
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tured prediction is to chain supervised learning with reinforcement learning in a two-step ap-
proach. In the first, such an approach consists in learning to imitate a not too bad heuristic
with supervised learning. The aim of this step is to provide an initial not too bad policy in few
training time. The second step can then optimize this policy locally using reinforcement-learning
techniques (e.g. a policy-gradient method).

8.2.3 Reinforcement learning

The Markov decision processes discussed in this thesis share some unusual properties from the
point of view of reinforcement learning. They are mostly deterministic and have extremely
large state spaces, the reward function may only be defined for a set of training examples and
additional supervision knowledge may be available. We reported numerous successful results Reinforcement

learning successwith general reinforcement learning algorithms on our problems. In particular, these algorithms
led to competitive results with state-of-the-art domain-specific structured prediction models.

We introduced the idea of policy as ranking machine with the CRank algorithm. This ap- CRank: action
rankingproach showed nice results in supervised problems and we proposed the use of rollouts to deal

with weakly supervised problems. Using CRank in a pure reinforcement-learning setting with
rollouts gave mitigated results. In particular, this approach seems sensible to hyper parameters,
has a high computational cost and do not always lead to optimal policies. In its current version,
CRank is the algorithm of choice to deal with supervised learning of CR-algorithms. An inter-
esting aspect of CRank is that it learns policies that have the same form as those used in policy
gradient methods such as Olpomdp2. CRank can thus be chained with Olpomdp to provide
an efficient solution to CR-algorithms for which we know a not too bad heuristic.

One key of the successful results we developed is the kind of feature representation and
learning machine that where used: sparse high-dimensional vectors with linear learning. Linear Sparse

high-dimensional
features

learning has multiple nice properties: it is simple, it leads to efficient computations and it leads
to accurate models. Furthermore, since virtually anything can be put in the feature function,
linear learning machine can learn highly non-linear functions of the raw data. The kind of repre-
sentations we used are particularly good at describing structured or relational data. Along with
the work presented in this thesis, we developed a new formalism to describe feature generators
(see Appendix B and Appendix C). We hope that this framework will prove its value in the
future, and help to spread to use of sparse high-dimensional descriptions combined with linear
learning machines.

8.2.4 Learning-based programming

A key idea that guided the development of CR-algorithms is this of learning-based programming
[Roth, 2006]. We believe that a key step in the development of machine learning toward complex
learning-based tasks is to provide new programming languages that gives a central place to
learning. CR-algorithms form the basis for such a learning-based programming language (see
Appendix B).

Interestingly, this work shares a number of conclusions with [Roth, 2006]. In particular, both
solutions put classification as the core learning-based operation and both solutions rely on feature
generators and linear learning. A major contribution of our work is to explicitly describe learning-
based programs as sequential decision-making problems. Another difference is that [Roth, 2006]
introduces an inference engine in its learning-based programming language, whereas with CR-
algorithms we propose to view inference as a trainable sequential decision-process, separated

2Both methods have a parameter vector θ that defines scores given action features 〈θ, φ(s,a)〉.
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from the core of the language. We believe that these differences and similarities will help to get a
better understanding of learning-based programming and contribute to move this new approach
from academics to practitioners.
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A

Nieme toolkit

All the experiments described in this manuscript where performed with our open-source machine-
learning toolkit. This toolkit provides an experimental environment particularly tailored to
the needs of our framework. In particular, it provides support for supervised learning and
large decision processes. It also implements all the learning algorithms experimented in this
manuscript. Since Nieme has reached a certain level of maturity we spent some time to release
to source code.

Nieme is released under the GPL license. It is efficiently implemented in C++, it works on
Linux, Mac OS X and Windows and provides interfaces for C++, Java and Python. The Nieme
website includes a quick-start guide with compilation instructions and tutorials to get started
with Nieme. Furthermore, it includes a complete reference documentation of the interface. All
functions of Nieme’s interface are unit-tested within the python unittest framework. Nieme is
published in the Journal of Machine Learning Reseach in the special issue on Machine Learning
Open Source Software (MLOSS) [XX cite].

In this appendix, we first describe the general architecture of Nieme (Section A.1) and then
focus on the two domains convered by Nieme: supervised learning (Section A.2) and learning in
decision processes (Section A.3).

A.1 Architecture of Nieme

Figure A.1 illustrates the general architecture of Nieme. The core of Nieme is implemented in
C++ and we gave a special care to its design, which is entirely object-oriented and makes use of Core implementation

several design patterns. The core of Nieme contains code for features, vectors, tables, datasets,
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Figure A.1: Architecture of the Nieme toolkit. Each box corresponds to one software
component of Nieme. Top: implementation in C++. Bottom: Nieme entry points: the scripting
interfaces and the graphical user interface.

learning machines, learning algorithms, decision processes, value functions, policies and policy
learning algorithms. Nieme can be extended through a mechanism of plugins, which are written
in C++. We usually develop such a plugin for each new application (e.g. sequence labeling, tree
transformation or best-first-search heuristic learning).

Nieme provides two entry points that are illustrated by Figure A.2: a set of scripting inter-Entry points

faces for C++, Java and Python and a graphical user interface, called “Nieme explorer”. The
former ease the work of developing machine-learning experiments while the latter is a visualiza-
tion tool for demonstration and debugging purpose. Nieme relies on a generic mechanism of
introspection1, which enables generic operations such as loading, saving, comparing and cloning
objects or visualizing objects with the user interface. Thanks to this mechanism all objects in
Nieme can be created and serialized from the scripting interfaces. Any saved object can then
be opened with Nieme explorer. The explorer can be extended through plugins, which makes it
possible to develop custom graphical components to display or manipulate objects.

A.2 Supervised learning

Most learning machines in Nieme rely on the unified framework of energy-based models intro-Energy-based models

duced by [LeCun et al., 2006]. In this framework, illustrated in Figure A.3, a learning machine
can be interpreted as a combination of an architecture A with parameters θ, a per-example loss
∆, a set of regularizers {Ω1, . . . ,ΩR} and a learner L. Given the architecture, the per-example
loss, the regularizers and a set of training examples D = {e(1), . . . , e(n)}, we can define the
learning energy, which is a generalized form of regularized empirical risk (see Section 2.1.3):

R̂(θ) =
1
n

n∑
i=1

∆(e(i),A, θ) +
R∑
i=1

Ωi(θ)

1http://nieme.lip6.fr/Nieme/IntrospectiveFeature

http://nieme.lip6.fr/Nieme/IntrospectiveFeature
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Figure A.2: Nieme entry points: explorer and scripting interfaces. Top: Nieme
explorer. Any object in Nieme can be opened in the explorer for visualization and debugging
purpose. We give here examples for parameter vectors, experimental result tables, decision
processes and images. Bottom: scripting interfaces. We give the same program in three languages
(Python, Java and C++). The program loads a classification data set, trains a maximum-entropy
classifier and saves the resulting model in a file called “example.model”.
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Figure A.3: Energy based models framework. Top: the three components that define the
learning energy. Bottom: the learner component that performs energy minimization.

The aim of the learner is then to find parameters θ∗ that minimize the regularized empirical risk
given the training set D:

θ∗ = argmin
θ∈Rd

R̂(θ)

We now describe each component of the energy-based models framework:

• Architecture The architecture is a parameterized function that computes predictions given
input vectors. A simple example is the linear architecture, which computes a single output as a
scalar product between the input vector and the parameter vector. Nieme supports elementary
architectures (linear, multi-class linear, neural network transfer function), as well as a composition
operation, which allows users to create new architectures by chaining existing ones.

• Per-example Loss The per-example loss quantifies how bad an architecture and its param-
eters perform on a given learning example. The precise nature of the examples e(i) has only to
be known by the per-example loss component in our framework. Nieme implements loss func-
tions for classification examples, for regression examples and for ranking examples. Support a
new kind of learning example (i.e. multi-dimensional regression examples) is simply a matter of
writing an appropriate loss function. Discriminative losses supported by Nieme are the Percep-
tron loss, the hinge loss, the log-binomial loss and the exponential loss. Nieme also provides two
regression losses – the squared loss and the absolute loss – and ranking losses, which are combina-
tions of discriminative losses and decomposition strategies, such as all-pairs, most-violated-pair
or best-against-all.

• Regularizers Regularizers are functions that measure the complexity of an architecture and
its parameters. Up to now, Nieme includes the two most commonly used regularizers: the
l1-norm and l2-norm of the parameters.
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Model Architecture Loss Regularizers Learner
Perceptron linear perceptron none stochastic descent
Logistic regression linear log-binomial none batch quasi-newton
Pegasos linear SVM linear hinge loss l2 pegasos learner
Multilayer perceptron linear ◦ transfer ◦ linear perceptron none stochastic descent
L1-maxent classifier multi-class linear log-binomial l1 batch quasi-newton
Pegasos multi-class SVM multi-class linear hinge loss l2 pegasos learner
Least-square regression linear squared loss none batch quasi-newton
Custom linear ◦ transfer absolute loss l1 + l2 batch rprop
Many others ... ... ... ...

Table A.1: Examples of energy-based models in Nieme. Each model is defined by its
architecture, per-example loss, regularizers and learner. The ◦ symbols denotes architecture
composition.

• Learner The learner is the algorithmic component that optimizes the parameters θ. Nieme
implements three batch learners: the large-scale limited-memory quasi-Newton method of [Lio et Nocedal, 1989],
the recently proposed method of [Andrew et Gao, 2007] for minimizing large-scale l1-regularized
models and the r-prop method of [Riedmiller et Braun, 1993]. If batch learning is not possi-
ble for a given problem, Nieme proposes classical online methods such as stochastic gradient
descent. Finally, Nieme also offers mini-batch methods including the recent SVM solver of
[Shalev-Shwartz et al., 2007].

As illustrated in Table A.1, many combinations are possible in our energy-based framework.
Some correspond to well-known learning machines, others to more original approaches. This
modular design of learning machines of course induces an execution cost when compared to
hard-coded algorithms, as for example a Perceptron made of 20 lines of C. Nevertheless, we
believe that this cost is moderated and does not prevent an efficient implementation.

Composite vectors Vectorial computations are at the core of machine-learning library such
as Nieme. It is thus of primary importance to provide an efficient data-structure to deal with
vectors and vector computations. Instead of storing all the vector components in a flat way (as do
most computing libraries), Nieme introduces an original data structure called composite vectors.
A composite vector is either a flat vector, either the union of multiple sub-vectors. Composite
vectors, which are illustrated in Figure A.4, are advantageous in numerous situations such as the
ones below:

• Generic architecture compositions Multi-layer learning machines have two sets of
parameters: one set for the first layer, another set for the second layer. Composite vectors
make it possible to view the parameters as a single vector, while keeping layer-specific
parameters in separated sub-vectors.

• Feature Descriptions. Often, input objects are described with features coming from
different families (e.g. bigrams, trigrams, content features or structural features). With
composite vectors, features can be grouped in a tree-structured way. See Appendix C for
a longer discussion on this subject.

• Sub-vector sharing. It is often the case that multiple objects share a set of common
features. Thanks to composite vectors, it is easy to share the common corresponding
sub-vectors.
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Figure A.4: Nieme composite vectors. This figures illustrates a use case of composite
vectors. Left: a multi-layer network, where each edge correspond to an element of the parameter
vector. Left-bottom: the classical way to represent vectors – all the parameters are grouped into
a flat structure. Right: a composite vector that represents the parameters in a tree-structured
way. The root node corresponds to the parameters of the multi-layer network. These parameters
are composed of two sub-vectors: parameters for the first layer and parameters for the second
layer. The first layer is itself decomposed into one sub-vector per hidden node. Even the input
features can be represented as composite vectors. Here we have two such groups of features:
“bigram A” and “bigram B”.

• Sub-linear dot products. The last but not the least: when performing dot products
between two composite vectors, computations can be pruned each time a sub-vector appears
on one side but not on the other. Furthermore, in the case of sub-vector sharing, sub dot-
product results may be cached and reused in multiple computations.

A.3 Decision Processes

Nieme provides a set of base classes in C++ to implement large discrete MDPs, such as those
induced by CR-algorithms. An MDP is implemented by inheriting these classes to define states,
actions, reward, transitions, action values/costs and feature generators. Once this work has been
done, Nieme provides the graphical user interface and the scripting environment to manipulate
the MDPs. Figure A.5 illustrates the user interface, which features interactive navigation in the
MDPs. Figure A.6 illustrates the scripting environment, which gives access to all the learning
methods developed in this manuscript.
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Figure A.5: Screenshots of Nieme’s explorer. Nieme explorer is the graphical user-
interface to visualize and to manipulate objects manipulated by Nieme. Top: use cases of the
explorer. Bottom: the user interface to interactively move into MDPs.

Figure A.6: Examples of Python commands to manipulate Nieme’s MDPs. The
example script give some examples of common manipulation of MDPs.
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In the future, the decision-process related features of Nieme may be highly influence by the
development of the CR-algorithm programming language. This language is described in the next
appendix.



B

CR-algorithm programming language

In order to perform our experiments, we have manually implemented the MDPs corresponding to
our CR-algorithms within the Nieme toolbox, described in the previous appendix. This process
has several disadvantages: writing an MDP is much less intuitive than writing a CR-algorithm,
it requires a huge implementation effort and advanced programming skills and it is error-prone.
Now that CR-algorithms reach a certain level of maturity, a natural perspective is to create
a programming language to directly implement CR-algorithms. A CR-algorithm programming
language should incorporate all the information necessary to generate the corresponding MDPs:
choose and reward instructions, and constructions to define action values/costs and feature
generators. We describe in this appendix one of our on-going work, which is a development of
such a language.

We first described technical choices on which our prototype relies (Section B.1). We then
detail a full example (Section B.2) and discuss the automatic transformation of CR-algorithms
into MDP definitions (Section B.3).

B.1 Technical choices

Programming languages can be created in two ways: developing a full compiler from scratch,
or extending an existing language. Clearly, the second option leads to a much smaller develop- Extension of an

existing languagement effort. Furthermore, extending an existing language is interesting for three main reasons.
Firstly, existing languages generally provide advanced standard libraries (e.g. data structures,
input/output functions or string manipulation libraries), which may relevant for CR-algorithms.
Secondly, extending an existing language eases the task of integration between classical code and
CR-algorithm code. It is thus easier to develop a CR-algorithm as an independent software block
that can be integrated in larger software. Lastly, choosing a well-known base language can make
the learning phase of CR-algorithms easier for new users.

Multiple languages may be good candidates as base languages for CR-algorithms. Let us cite
OCaml1 that can directly be extended thanks the Camlp4 tool, Python2 for its simplicity, and
the mainstream compiled languages Java, C# and C++ for their huge user communities. For
our prototype, we adopted a source-to-source C++ transformation approach for the following Source-to-source

C++ transformationpractical issues:
1http://caml.inria.fr/ocaml/
2http://www.python.org/

http://caml.inria.fr/ocaml/
http://www.python.org/
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• Many programmers know C++ and have existing code written in C++.

• Since MDPs in Nieme are written in C++, using C++ as base-language makes it easier
to connect CR-algorithms to the existing architecture of Nieme.

• C++ makes it possible to produce very efficient code. In particular, its capability to inline
source code can be exploited in order to produce efficient combinations of CR-algorithms
and corresponding policies.

• A clear drawback of C++ is that it is a complex language, which is known to be hard to
parse, to manipulate or to extend. We thus overviewed several existing projects focusing
on these problems. One of the most advanced and useable such project is called Synopsis3.
This projects includes a preprocessor and a parser of C++, a set of classes to represent
abstract syntax trees, a visitor mechanism to implement operations on these abstract syntax
trees and symbol/scope analysis tools. All these components can be extended to extend
the C++ language.

Our prototype consists in three parts:

1. A CR-algorithm Synopsis-based compiler that transforms CR-algorithm programs written
in extended C++ into classical C++. In addition to those available in classical C++,
the CR-algorithm language provides a set of constructions to deal with CR-algorithms
definitions, choose and reward instructions, action-values definitions and feature-generators
definitions.

2. Glue code between the C++ code generated by the compiler and Nieme. Since we want to
use our existing architecture Nieme, we developed adaptator code to define Nieme MDPs
given the output of the compiler.

3. The last part of the prototype is the existing code from Nieme on which the experiments
described this manuscript relies.

B.2 An example

We consider the left-to-right sequence labeling CR-algorithm, given in CR-algorithm 3, Section
5.1. The code of to the whole CR-algorithm program, including the feature generator and the
action value function, is given in Figure B.1. We now describe each component of this program.

• crAlgorithm (line 1) The crAlgorithm keyword declares a new CR-algorithm. A CR-
algorithm contains classical C++ code augmented with choose and reward instructions, feature
generators and action values. A crAlgorithm definition closely resembles to a classical function
definition: it has a return type, a set of parameters and a body. In our example, labels are
represented with the std::string type, sequences of labels have the std::vector < std::string >
type, the set of possible labels is a set of strings (std::set < std::string >) and the input sequence
is a vector of feature vectors (std::vector < DoubleV ectorP tr >). Our CR-algorithm returns a
sequence of labels (std::vector < std::string >). Since the correct sequence ycorrect can either
be known (training examples) or unknown (other examples), this parameter is optional.

3http://synopsis.fresco.org
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1 crAlgorithm std::vector<std::string> leftRightLabeling(

2 const std::vector<DoubleVectorPtr>& x,

3 const std::set<std::string>& labels,

4 const std::vector<std::string>* ycorrect = NULL, /* training examples */

5 size_t contextSize = 1)

6 {

7 std::vector<std::string> ypred(x.size());

8 size_t t;

9

10 featureGenerator leftRightFeatures(const std::string& choice) {

11 featureScope (choice) {

12 featureScope ("content") {

13 featureSense (x[t]); /* content features */

14 }

15 featureScope ("structural") {

16 for (size_t delta = 1; delta <= contextSize; ++delta)

17 featureScope (delta) {

18 if (t >= delta)

19 featureSense (ypred[t - delta]); /* previous label feature */

20 else

21 featureSense ("N/A"); /* N/A label feature */

22 }

23 }

24 }

25 }

26

27 actionValue optimalValues(const std::string& choice) {

28 return ycorrect && choice == (*ycorrect)[t] ? 1.0 : 0.0;

29 }

30

31 for (t = 0; t < x.size(); ++t)

32 {

33 ypred[t] = choose <std::string> (labels, optimalValues, leftRightFeatures);

34 if (ycorrect && ypred[t] == (*ycorrect)[t])

35 reward 1.0;

36 }

37 return ypred;

38 }

Figure B.1: An example CR-algorithm program supported by our prototype. This
example implements the left-to-right sequence labeling presented in Section 5.1. All the keyword
of the CR-algorithm programming language are shown in blue.
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• Core of the CR-algorithm (lines 31–37) The core of the CR-algorithm performs the left-
to-right labeling loop. At each iteration of the loop, it chooses a label for ypred[t] and eventually
gives a corresponding reward.

• choose (line 33) The choose keyword denotes a choose expression. Its syntax is the
following:

choose < choose type > (choices, param1, . . . , paramn)

where choices is the set of possible choices to choose among. choices is any C++ container4 (such
as std::vector or std::set). choose type is the type of the elements of choices. param1, . . . , paramn

is a set of parameters that are either feature functions or action values. In our example, we choose
among the set of labels, with the optimalValues and the leftRightFeatures. The value of a choose
expression is one of the element of choices. It can thus be directly be assigned to ypred[t] in our
example.

• reward (lines 34-35) If the correct sequence ycorrect is known, we can compute a reward
corresponding to the previously made choice. In our example, we give a reward of +1 for each
correctly predicted label.

• actionValue (lines 27–29) The actionValue keyword declares a new state-action value
function Q : S×A → R. Such a function can compute any scalar number given the current state
and one of the possible choices. The current state is composed of all the parameters and variables
of the current crAlgorithm. The selected choice is given as a parameter of the actionValue
function. By default, an action-value function should be maximized. When using CRank , action
values are inverted and normalized in order to define the action cost function:

c(s,a) =
(

argmax
a′∈As

Q(s,a′)
)
−Q(s,a)

In our example, the optimalValues function returns +1 for good labels and 0 for bad labels5.

• featureGenerator (line 10–25) Feature generators are functions that generate a set of
active features given a state-action pair. Formally, feature generators define functions φ : S×A →
R
d. Finding an efficient way to express feature generators is key challenge. The solution we

propose here is the result of several design and implementation experiments that are described
in Appendix C.

Similarly to action value functions, feature generators depend both on the current state
(all the parameters and the variables of the CR-algorithm) and on a possible choice, which is
given as a parameter. Features are created and organized in a tree-structured way through two
constructs called featureScope and featureSense. featureScope defines a group of features
and its syntax is the following:

featureScope(groupIdentifier) { body }
4More precisely, the choices can be representation by any class defining an iterator type and begin() and end()

functions to create the iterations.
5Note that the action-value function and the reward may seem redundant here. Remember that action-values

are only hints that are given to the learning system, while rewards specify the learning goal. In left-to-right
sequence-labeling, we have access to the OLP and translate this knowledge into the action-value function. This
is a very special case, since the OLP is unknown in many CR-algorithms. Action-values can then be not-too-bad
heuristic to help the learning process that maximizes the rewards.
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Where groupIdentifier is an identifier (a string or an integer) and body is feature generation
code. featureSense declares an active feature and its has multiple possible syntaxes:

featureSense(featureIdentifier) or
featureSense(featureIdentifier, featureV alue) or
featureSense(aV ectorOfFeatures)

where featureIdentifier is the name of the feature and featureV alue is its value. If no value
is specified, a value of 1 is assumed by default. The last syntax declares the whole set of features
contained in the vector aV ectorOfFeatures.

In our left-to-right sequence labeling example, we use content features and structural features.
Content features where defined in the following way:

fl,...(s,a) =

{
1 if chosen label = l ∧ input features in xt
0 otherwise

Structural features where defined in the following way:

fl,l′,δ(s,a) =

{
1 if chosen label = l ∧ ŷt−δ = l′

0 otherwise

A first remark on these features, is that they all share a “if chosen label = l” part. For a given
state-action pair, all the active features thus share the same l value, i.e. they all belong to
a group of features “if chosen label = l”. This group is created thanks to the featureScope
instruction line 11. Since we have two kinds of features, we create feature subgroups for content
features (line 12–14) and structural features (line 15–24). Line 13 assumes that the input features
are already stored in the vector x[t] and declares all the features contained by this vector with
the featureSense keyword. A key property the featureSense and featureScope constructs
is that generated features are both identified by their name and by the scope they belong to.
Thanks to this mechanism, line 13 can be seen as transforming the set of features x[t] into a set
of content features from the group “if chosen label = l”. The structural features are grouped
per δ value (line 17). For each possible value of δ, we create a feature for the corresponding
ŷt−δ label (line 19) or we create the N/A special feature to denote elements that are before the
beginning of the sequence (line 21).

B.3 CR-algorithms transformation

This section describes the core of our prototype: the CR-algorithm compiler. The compiler takes
a CR-algorithm program as input and transforms it into classical C++ code. CR-algorithm pro-
grams are written in extended C++, whose grammar is defined formally in Figure B.2. The main
task of the compiler is to convert each input CR-algorithm into a C++ class. Each parameter
and local variable of the CR-algorithm becomes a member of this generated class. Furthermore,
the generated class provides the following member methods:

• a constructor to initialize the CR-algorithm with a given set of parameters (e.g. x, labels,
ycorrect and contextSize in our example).

• a copy-constructor that can be used to clone the current state of a CR-algorithm.
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definition ::= classical-C++-definition
| cralgo-definition

statement ::= classical-C++-statement
| reward-statement
| action-value-statement
| feature-generator-statement
| feature-scope-statement
| feature-sense-statement

expression ::= classical-C++-expression
| choose-expression

cralgo-definition ::= crAlgorithm identifier ( function-parameter ) function-body

reward-statement ::= reward expression

action-value-statement ::= actionValue local-state-action-function
feature-generator-statement ::= featureGenerator local-state-action-function
local-state-action-function ::= identifier ( function-parameter ) function-body

feature-scope-statement ::= featureScope ( function-arguments ) function-body
feature-sense-statement ::= featureSense ( function-arguments )

choose-expression ::= choose < type_id > ( function-arguments )

Figure B.2: Extended grammar for the CR-algorithm programming language. This
figure gives the set of extensions that are implemented in our prototype language for CR-
algorithms. The rules are classical BNF grammar rules. Terminal symbols are shown in bold.
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Figure B.3: Nieme explorer on an automatically generated MDP. This screenshot shows
the MDP manipulation tool of Nieme on an MDP, which was generated automatically from the
CR-algorithm program given in Figure B.1.

• introspection methods to enumerate the set of variables composing the state of the CR-
algorithm. These functions are used to display the state of CR-algorithms in the graphical
user interface.

• one method per feature generator and one method per action-value function

• a run method to transmit a choice to the CR-algorithm and execute it until the next choose
occurs. In order to generate the run method, the CR-algorithm must be split into pieces
of code separated by choose instructions. We found a surprisingly simple solution to this
problem, which is based on label and goto statements.

This generated class makes it possible to define an MDP in Nieme and to navigate freely into
this MDP. In particular, states may be cloned, which makes it possible to try multiple possible
executions, to backtrack and so forth. Figure B.3 shows the user interface of Nieme on the
automatically generated MDP from the CR-algorithm program given in Figure B.1.

For the moment, our prototype is far from being complete. Several important features have
not been implemented yet, such as error detection and reporting, type checking or support
for variables defined in local scopes. Continuing the compiler until reaching a fully useable
programming language is one of our main short-term perspectives.
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Overview of our work on feature
generators design

Finding an efficient way to express feature generators is key challenge. We performed several
design and implementation experiments on this question. This appendix briefly summaries this
work, which directly motivates the featureScope/featureSense solution presented in Section
??. Here are the various solutions to express feature generations that we identified:

• Function that returns a dense vector. This is probably the most classical approach,
which consists in storing the feature vector x ∈ Rd into a dense vector. This approach has
a major drawback: each feature must be associated to a manually selected index (dimension
number) and the total number of features must also be computed by hand. Furthermore, dense
vectors are not efficient w.r.t. sparse descriptions which are common in text processing, structure
processing or CR-algorithms.

• Function that returns a sparse vector indexed with integers. This is a common
approach to deal with sparse features. Instead of storing all the features in x ∈ Rd, only the
active features are stored into a sparse data-structure. Such data-structure may be a vector
of (index, value) pairs or a hash-table mapping indices to values. Similarly to the previous
approach, each feature must be associated to a manually selected index in this approach.

• Function that returns a sparse vector indexed with strings. Instead of indexing
features with integer indices, an alternative consists in using feature identifiers represented by
strings. In this approach, it is not necessary to manually define an arbitrary mapping from
features to indices. Instead, this mapping is performed implicitly. Furthermore, representing
features with strings helps to construct understandable debugging or visualization tools for fea-
tures and learning machines.

• Function that returns a composite vector. In many applications, the set of possible
features has some hierarchical structure. For example, there may be different feature groups
(e.g. content features and structural features) and each feature group may itself be decomposed
into sub-groups. Composite vector is an original idea implemented in Nieme, which makes it
possible to explicit this structure. A composite vector is either a classical vector (a mapping from
strings to scalar values) or a vector composed of sub-vectors. Formally, composite vectors can
still be seen as elements of Rd and all the classical operations on vectors can be implemented on
composite vectors. Composite vectors provide a wide range of advantages over classical vectors
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as discussed on the website of Nieme1. Notably, they ease the task of debugging and visualizing
features and learning machines, they enable sub-vector sharing and feature-generation code reuse.
This last point is particularly interesting. Feature groups may be nested as much as wanted.
This makes it possible to decompose the feature-generation task into several different functions,
where each functions only focuses on a particular kind of features. It is thus possible to write a
set of base feature-generators that can be then reused in several different places.

• Function that transmit features to a feature visitor. One the main drawbacks of the
composite vector solution is the cost induced by complex data-structures. Practice with Nieme
showed that, when dealing with CR-algorithm, a huge amount of running time (≈ 20% of cpu-
time) was spent in allocating and freeing these structures, while manipulating φ(s,a) values. A
central idea to avoid dealing with complex data-structures is to store feature values in a vector
only if its really necessary. Indeed, in many cases, feature vectors are only used for a single
operation that does not require to create the feature vector in memory. For example, a dot-
product 〈θ, φ(s,a)〉 can be computed directly while enumerating the features, without creating
the full vector in memory.

We introduced an original design pattern for feature generators in Nieme, called feature
visitors2. Instead of considering feature generators as functions that compute a data-structure
storing feature values, we propose to view feature generators as factory of features. The visitor
represents a client, which is interested by the features generated by the feature generator. Visitors
are passed as arguments when executing a feature generation. For each generated feature, the
feature generator calls a method of the visitor to transmit the name and the value of the feature.
Visitor can then use the generated features in many different ways. Here are some examples of
feature visitors implemented in Nieme:

• Dot-product visitor (parameterized by θ, returns a scalar): d← 〈θ, φ(s,a)〉

• Add-weighted visitor (parameterized by θ and α): θ ← θ + αφ(s,a)

• Store visitor (returns a composite vector) x← φ(s,a)

• Save to file, print to screen, display in the user-interface, ...

Each of these feature visitors, corresponds to operations that can be done with φ(s,a) without
creating the data-structure representing φ(s,a) in memory. In our experiments with Nieme,
implementing the feature-visitor design pattern has led to a major speed-up (≈ ×2 to ≈ ×50)
on all our learning algorithms.

The featureScope and featureSense constructions proposed in Section ?? are directly
linked to the idea of feature visitors. When translating these constructions into classical C++,
featureScope and featureSense become calls of member functions of a feature-visitor.

1http://nieme.lip6.fr/Nieme/CompositeVectorFeature
2The idea of the featureSense instruction come from the work of [XX cite dan roth]. Dealing with tree-

structured feature vectors and featureScope constructions is original in our work. The idea of feature-visitors
is original.

http://nieme.lip6.fr/Nieme/CompositeVectorFeature
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Summary of Notations

Supervised Learning

Inputs
X the input space
x an input in X
xj the j -th component of a sequential input

Outputs

Y the output space
y an output in Y
yj the j -th component of sequential output
ŷ a predicted output
ŷj the j -th component of a predicted sequential output
ȳ a partial output
ε an empty partial output

Examples

DX×Y a learning problem: a distribution over input-ouput pairs
D = (x(i),y(i))i∈[1,n] a training dataset: a set of i.i.d. samples from DX×Y

x(i) the i -th training input
y(i) the i -th training output

Training

φ : X → Rd an input description function
φ : X × Y → Rd a joint input-output description function

R
d the parameters space
θ the parameters being learned
c a vector of costs associated to ranking alternatives
cj the j -th component of a vector of costs
α the learning rate parameter in R+

Sequential Decision Making

States
S the state space
s a state in S
st the state at time step t
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Actions

A the action space
As the set of actions available in state s
a an action in A
at the action at time step t

Transition, Reward
T the transition function
r a reward value
rt the reward perceived at time step t
γ the discount factor in [0, 1]

Policy

π : S ×A → R a stochastic policy
π : S → A a deterministic policy
V π : S → R the state value function of π

Qπ : S ×A → R the action value function of π
π∗ an optimal policy
V ∗ the optimal state value
Q∗ the optimal action value

CR-algorithms

Inputs

IX the space of normal inputs of a CR-algorithm
ix normal inputs values in IX
IY the space of training inputs of a CR-algorithm
iy training inputs values in IY
i(i) the i -th training input

MDP
P a CR-algorithm

MDP (P, i) the MDP corresponding to CR-algorithm P with input parameters i
sinitial(P, i) the initial state of MDP (P, i)

Math Operators

1 {b} the indicator function whose value is 1 if b and 0 otherwise
〈a,b〉 the dot product between two vectors a and b
EB{A} the expectation of A w.r.t. B
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