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Static C++ allows designers to develop efficient and generic libraries, but for the end user such libraries
are very restricting. Indeed compilation cycles are so long that it forbids prototyping. To overcome this
shortcoming, wrappers generators such as SWIG allow to pre-instantiate static classes and functions and
then make them available in a higher-level language.

In our opinion, such approaches have drawbacks. They force the end user to learn a new language
to use a C++ library and they can not use classes or functions if they are not available yet. From users
feedback, what is really needed is a way to use static C++ from within a C++ dynamic environment and
without facing deadly compilation times.

To respond to that need, we developed a C++ environment that allows static C++ functions and classes
manipulation. We use just in time compilation with a cache system to compile classes and functions on
demand. Using advanced C++ programming techniques, we manage to rend the usage of our environment
very handy for the end user, thus allowing fast and efficient prototyping.
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Chapter 1

Introduction

1.1 Static/Dynamic Bridge

Static C++ provides programmers with techniques allowing to develop efficient and generic
libraries. The two main drawbacks are: the compilation cycles are very long (it often takes more
than a minute) and such libraries can not really be used in dynamic environment.

A static/dynamic bridge aims at making features from a static library available in a dynamic
environment. There exist tools such as SWIG which generate such bridges allowing parts of a
static library to be used from within a dynamic language like Ruby or Python . As far as we
know, a static/dynamic bridge can work in two different ways:

o Using explicit instantations of classes and functions of a static library, it is possible to wrap
them so that they become a module in a dynamic language. Such a method would only
need one compilation but it wouldn’t be possible to use types or functions that were not
compiled.

e The just in time compilation technique allows to compile classes or functions when and
only when they are needed. This makes it possible to bind an entire static library in a
dynamic environment.

1.2 Just in Time Compilation

In order to provide a dynamic mechanism with a static language we must call the C++ compiler
at run-time. Especially with this language, compilation costs are quite heavy thus a lazy system
and a cache are used. They will be described in Cache handling.

Some design choices for generated wrappers:
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e They must be non-dependent upon the return type since the C++ overloading does not take
it in account. See the section Functions return type for more details about this problem.

e Wrappers are call dependent, not function dependent (see Call dependent wrappers), so
the generation must produce the same wrapper for the same parameters:

the fully qualified name of the function.

the type of each argument.

the name of every header needed to find this function definition.

the policy allocation of arguments will also be taken in account.

1.3 Related work

We based our work on Alexandre Duret-Lutz ’s research from 2001 in which he described how
to use the external polymorphism pattern to use Olena (a static library for image processing)
from a graphical interface (i.e. a dynamic environment). He suggested to use JIT compilation in
order to generate for each instance of a function a wrapping function taking a component as an
argument. That component contained the actual function arguments (wrapper within dynamic
proxies) and had all the information needed to downcast those arguments from their proxy to
their real type.

Another work worth to be mentionned is the attempt Loic Fossemade to patch SWIG (a wrapper
generator) so that it could handle statically typed functions. As we aimed at providing a C++
solution to the problem, we did not really use his work since SWIG generates wrappers for
dynamic languages such as Ruby or Python .

1.4 Our approach

We aimed at providing a dynamic C++ environment for using static C++ classes and functions.
In that environment, it is possible to call functions and instantiate objects and then call the
methods provided by those objects. Type conversions are done automatically and return values
are handled correctly so that everything is as intuitive and transparent as possible for the end
user.

This report is a legacy for both the future maintainers and users. It is organized as follows. The
first part is a sort of user documentation, it shows how to use our work, many examples will
guide the readers. The second part is more technical, it explains how we addressed the main
issues we faced and how the whole thing works.
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On the user side

This part deals with the model and the discuss can also stand as a User Documentation.

To have a system as simpler as possible we decided to be very close to the traditional way to
call functions and methods.

2.1 Transparent method and function calls

Our motivations for a very transparent way to make function and method calls were mainly
influenced by the user point of view.

2.1.1 Motivations

We want to stay very close to the classical way in order to make the transition to dynamic version
very easy, but also to make it easily learnable without any knowledge about some complex C++
techniques.

2.1.2 Function calls

Dealing with functions is the main part of this work, other things like methods, operators or
constructors are just a variant of classical functions. So as a first task we search a way to express
dynamic function calls. For instance it will be useful to simply have a sort of special namespace
(call it dyn) containing the dynamic wrappers for each dynamized function.

For example this call:
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a_type result = foo(some, arguments, to, the, foo, function);
Can be turned into this one:

a_type result = dyn::foo(some, arguments, to, the, foo, function);
Or this one (if the type is to complex to type):

var result = dyn::foo(some, arguments, to, the, foo, function);

2.1.3 Method calls

In a same way we want to keep the use simplicity, but methods are slightly different, so to
make every one happy we propose two ways to call a method on an object. The first one is like
a function call but with the object as first argument. The second one behaves like a classical
method call but is a little more complex to setup.

Example:

meth foo("foo"); // declare the foo method.
aClass anObject(...); // a new object.

// Way 1

foo(anObject, some, others, arguments);

// Way 2

DYN_REGISTER_METHOD (foo) ;

anObject.foo(some, others, arguments);

// Operators are already defined

var x = "test.";
std::cout « X « std::endl; // output: test.
x[4] =17,

std::cout « x « std::endl; // output: test!

2.2 User interface

This part describes how to use our work and what we provide to use static functions or classes
in a dynamic C++ environment.

As our work was designed to use static C++ libraries, the following explanations will always
refer to the same static library in our example. This library is a matrix library using the following
interface:

// This is the file matrix.hh
template <unsigned Dim>
struct Matrix

{
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Matrix(std::istream);
Matrix(Matrix<Dim>);
Matrix<Dim> operator*(const Matrix<Dim> rhs) const;
Matrix<Dim> operator+(const Matrix<Dim> rhs) const;
};
template <unsigned Dim>
Matrix<Dim> mult(const Matrix<Dim> lhs, const Matrix<Dim> rhs);
{
return lhs
}
template <unsigned Dim>
Matrix<Dim> add(const Matrix<Dim> lhs, const Matrix<Dim> rhs)
{
return lhs + rhs;

}

#include <matrix.hxx> // Implementations

o

* rhs;

To use such a library, the user needs to indicate where the file &#8216;matrix.hh’ is located. The
JIT module might need additionnal information such as the compiler flags and the link editor
flags:

dyn::include_dir(PATH_TO_MATRIX_HH); // Adds a directory to the include path
dyn::include("matrix.hh"); // Tells the JIT module which files need to be included
dyn::cflags("-0 -W -Wall -Werror"); // Sets the flags to be used by the compiler
dyn::1dflags("-1m"); // Sets the flags to be used by the link editor

Now that everything has been correctly set for the JIT module, we can start using the library.
First we need to instantiate two matrices. To do so, a ctor (constructor) needs to be used. In our
environment, static objects are of the same type: data (var is a typedef on data), therefore the
matrices we instantiate are of the type data.

using namespace dyn::language; // makes available some types fun. var, val...
ctor mk_matrix_2d("matrix<2>"); // Constructor for 2D matrices

var mat_a = mk_matrix_2d(std::cin);

var mat_b = mk_matrix_2d(std::cin);

If one of the matrices was meant to be constant, the correct way to express it, would be to declare
it of type val which means value. A value is just a data that can not be assigned:

val const_mat = mk_matrix_2d(std::cin);

A function needs to be instantiated before it can be called. In the dynamic environment, a
function is represented by a functor so that the calls remain intuitive:

fun mult("mult");
fun add("add");
var mat_c = mult(mat_a, add(mat_b, mat_a)); // c =a * (a + b)
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A method also needs to be instantiated, except for the operators for which we automatically
create wrappers even if they do not exist. One can try to call an operator as a method of an
object but if this operator doesn’t exist in the object class, the call will fail.

var mat_d = a * b + ¢; // Operators are automatically created.
As showed above, every class and every function from a static library can be used within our

environment. To achieve this, we had to address many issues using advanced C++ tricks that
will be presented in the next section.
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Technical Specifications

3.1 External polymorphism pattern

The external polymorphism pattern is a design pattern that consists of wrapping different classes
under a single upper class so that they can be manipulated in a same way.

abstract data

+typel(): std. string
- ———
data_proxy
+obj: T*
+typell: std: string

T typenamen

The data_proxy class has a template parameter that holds the type of the class it wraps. A
data_proxy class inherits from a non-template abstract class called abstract_data which only pro-
vides a type method to retrieve the type of the actual wrapped class.

We used this design pattern to only manipulate objects of type abstract_data in our dynamic
environment. The type() method is used by the JIT (Compilation Just in Time) module to
generate the wrapping function. We will explain the JIT module more thoroughly later. The
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string corresponding to the type of an object is retrieved using the library liberty to demangle the
C++ function names returned by typeid.

This abstract_data is used to pass on the function arguments from the dynamic environment
to the static environment and to retrieve in the dynamic environment the value returned by a
function in the static environment. Therefore we instantiate abstract_data objects and to make
it easier for the end user, we provide a data class that aggregates a abstract_data and that can
be instantiated on every kind of objetcs. It handles automatic conversions (if they are possible)
between objects so that the user can use a data object wrapping an object of type foo as if it was
a real instance of foo.

3.2 Call dependent wrappers

3.2.1 Why not generate function dependent wrappers?

It seems appealing to generate only one wrapper by function but as one knows the C++ over-
loading resolution rules are complex and make our work behave exactly like it should will be a
pain to develop/maintain.

Conversions must also be taken in account because automatic conversions can happen when
conversion operators are used.

Moreover to access to all this prototype information one must either extract this form sources
or maintain a database with all functions’ prototype of the library.

To this list we can add optional arguments, template functions and so on&#8230;

Then in front of all these problems we chose to make a wrapper by call. Of course the cache
system (see Cache handling) tends to be equal to the "one wrapper by function" method when
overloading, conversions, and optional arguments are not used.

Parameters of the wrapper generation: The wrapper generation is parametrized by different
things. It's important to well describe all of them because it helps to understand why two calls
have the same cache entry or not.

The fully qualified function name: It seems obvious to require the name of the function in
order to compile its wrapper. Here we just make it clear that the name required must be non
ambiguous, so all namespaces must be well specified.

The headers: At least one header file name is needed to find the function definition. If you
have an overloaded function you need to supply all headers where the function is to use it in
the dynamic side with its different types.
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3.2.2 The arguments’ type

In order to generate the good wrapper, our library must know the type of each argument of the
call (but is not dependent upon the return type of the function).

Arguments allocation policy: This requirement can be surprising and will be perhaps removed
in a future work but for now it was easier to consider this policy inside the argument’s type.

Example: // call_dependent_wrappers_example.hh
namespace foo {
void bar(long i, std::ostream o, std::string j)
{ 0o « "foo::bar(" « i « ", \"" « j « "\")" « std::endl; }
}
// call_dependent_wrappers_example.cc
#include <iostream>
#include <dyn-all.hh>
using namespace dyn::language;
int mainQ
{
dyn::include_dir(get_current_dir_name());
dyn::fun dyn_foo_bar("foo::bar", "call_dependent_wrappers_example.hh");
int i = 42;
val j = "test";
dyn_foo_bar(i, std::cout, j);

}

In this code snippet the parameters are:

e The name: foo::bar
o The header: call_dependent_wrappers_example.hh

o The arguments’ type:

- int (not long) and in fact it’s dyn::data_proxy_by_ref because argument allocation
policy is used.

- dyn::data_proxy_by_ref > > (not std::ostream)
- dyn::data_proxy_by_ref (not std::string)

3.3 Functions return type

Knowledge about the functions return type was needed in order to choose the right allocation
policy for the data_proxies.
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First of all, we need to introduce a property of the sizeof operator. When calling sizeof on a
function call, it returns the size of the return type of the function. The most important thing is
that the function is not called (meaning that the function code is not executed). If the function
returns void, then the compiler will yield an error. We used sizeof to help us knowing the
functions return type.

Retrieving such information is not trivial since sizeof does not handle functions returning void
and the typeid class does not differentiate pointers from references. Besides the problem can not
be solved in a dynamic way because of functions returning void. Indeed, we have to choose
whether or not the return value is to be assign but the compiler will try to compute both cases
and thus fail since they are antithetical.

We found a trick to handle void functions with sizeof. This trick was made possible thanks to
the overloading of the C++ comma operator. Since sizeof is computed at compile time, it perfectly
matches our needs.

The operator, is left-to-right associative and it can be overloaded in classes. When the overloading
isinvalid or does not exist, the compiler switches back to the C semantic of this operator: it simply
evaluates every expression between the commas (from the left to the right) and the rightmost
one gives its type to the whole expression.

func_returning_void(), func_returning_int(), func_returning_char();

We assume that those functions are respectively returning void, int, and char. The whole expres-
sion has the type char since the rightmost expression is a call to a function returning char. Now
we introduce a class foo with an overloaded operator, and add a function returning foo in the
comma sequence.

struct foo
{
template <typename T>
char operator, (T) {}
1
int main()
{
func_returning_foo(), func_returning int(); // type is char
func_returning_foo(), func_returning void(); // type is void

}

The first sequence is typed as char. Indeed, the first expression in the sequence is of type foo and
foo has overloaded its operator, thus this operator is called with an int argument that comes from
the second expression in the sequence. So the whole expression is typed as the return value of
foo::operator, meaning char. The second sequence is typed as void because it is not valid to call
foo::operator, with a void argument. Facing this, the compiler switches back to the C semantic and
the whole expression has the same type as the rightmost sub-expression.

Using this property, it becomes possible to test whether or not a function returns void:

template <unsigned N>
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struct helper
{
char n[N];
template <typename T>
helper<N+1> operator, (T) { assert(0); }
};
helper<l> is_void;
void foo_void() {}
int foo_int() {}
struct whatever{};
int main()
{
std::cout « sizeof(is_void, foo_void(), whatever()) « std::endl;
std::cout « sizeof(is_void, foo_int(), whatever()) « std::endl;

}

Here is our trick, it consists of enclosing the function call between:

o One object the operator, of which is overloaded and returns an object with an overloaded
operator,.

e An object the type of which does not matter since it is only used to give the expression its
size when the function being tested returns void.

In this example, two cases are differentiated:

o the function returns void, then the comma-separated expression has the type of its right-
most operand. The size is then 1.

o the function does not return void, then the operator, of is_void is called on the value returned
by foo_int() and returns a helper temporary object. The operator, of the temporary object is
then called and returns a helper temporary object which size is 3.

The next step is to differentiate between pointers, constant pointers, references, constant refer-
ences, copies, constant copies. This is a bit tricky since we can not overload the operator, for
references in the same class that handles the values, it would produce a conflict. A new class is
needed:

template <unsigned N>
struct helper
{
char n[N];
template <typename T>
helper<N+1> operator, (T) { assert(0);}
1
template <unsigned N>
struct helper_ref
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{
char n[N];
template <typename T>
helper_ref<N+2> operator, (T) { assert(0);}
b
helper<1> is_void;
helper_ref<l> is_ref;
void foo_void() {}
int foo_int_ref() {}
int foo_int() {}
struct whatever_{} whatever;
int main(Q)
{
std::cout « sizeof(is_void, foo_void(), whatever) +
sizeof(is_ref, foo_void(), whatever)
« std::endl; // displays 2
std::cout « sizeof(is_void, foo_int(), whatever) +
sizeof(is_ref, foo_int(), whatever)
« std::endl; // displays 4
std::cout « sizeof(is_void, foo_int_ref(), whatever) +
sizeof(is_ref, foo_int_ref(), whatever)
« std::endl; //displays 8
}

Now whatever needs to be a reference (at least in the sizeof containing is_ref) so that the operator,
in helper_ref is called a second time. To handle functions returning pointers, one would just
need to overload the operator, for pointers in the helper_ref struct. A complete implementation is
available in our work (src/policy.hh).

This solution allows us to generate a wrapping function which will know the return type of the

actual function to call. Thus the wrapping function will assign the return value if needed and
will choose a satisfying allocation policy for the data proxy.

3.4 JIT module

The just in time module is split in three parts:

e the C++ generation unit
e the compilation unit

e the dynamic library loading, function pointer fetching, casting and calling
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3.4.1 The C++ generation unit

It was done by a Ruby script for development performance reasons and was rewritten in C++ for
time consumption performance reasons.

The generated code is quite short, it’s after all just a function nested in an extern “C” block and in
two namespaces dyn::generated. This function takes const data arguments and returns a data. The
first job of this function is to extract the real value of each data argument using the knowlegde of
its static type and a reinterpret_cast of the proxy. Then an assert is done on each casted pointer.
Then the allocation policy is chosen according to the return type of the function (see Functions
return type to better understand this). After that the call is done and the return value is saved
according to the allocation policy. Finally the data is created and returned using the freshly built
data_proxy.

The generated code is slightly different for methods which have the subject object as first
argument and must be used with the good notation (0.m or o->m). For operators, the generated
code is depending of the kind of the operator (prefix, infix or bracketed). For constructors we
choose to generate a dynamic allocation policy using the new operator.

3.4.2 The compilation unit

The compilation is handled by a Ruby script and a Makefile generated by automake.

The script makes a directory by wrapper, it adds the source code in the file function.cc and
copies the template Makefile to this directory.

The Makefile can build using 1ibtool a good library suitable to dynamic loading via the 1tdl
library.

3.4.3 The dynamic library loading, function pointer fetching, casting and
calling

The dynamic library loading is done using the 1tdl library, and the function pointer fetching
too. The pointer is casted and called according to the number of arguments. The function that
handle this variable argument thing is just the operator() of the fun class that is overloaded N
times according to a constant that makes code expansion using erb.
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Conclusion

4.04 Summary

Using C++ advanced techniques, we manage to develop a dynamic C++ environment to handily
use static C++ classes and functions without facing the usual very long compilation times. We
hope that it will make prototyping easier and that it will be as useful as we think it is.

4.0.5 Future work

The software is not completed yet, a few things still need to be done:

e We did not name the project, we sort of lacked imagination.
e The distribution needs to be improved.

e The code needs to be documented and cleaned up.
The package will have to be maintained because it is necessary to:

e cope with the future changes in the libiberty that we are using for demangling the C++
names.

e stay compliant with future versions of the Gnu C++ Compiler,

e take the users feedback into account.
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Glossary

demangle:

see compiler mangling

functor:

In object oriented prgramming a functor is a object that responds to the operator()
method. From the user side a functor behave like a function.

cache:

The cache is a memory place where you store computation results to avoid to recom-
pute them.

lazy:

Unwilling to work or use energy. In the case of programming it’s a technique that
consist into compute values when they are really needed.

compiler mangling:

In the compiler domain the mangling is a transformation over objects like functions’
prototype, variables’ type, and so on into a compact symbol that can be used in an
object file (.0). The demangling is the reverse operation that redraw the prototype
from the symbol.
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design pattern:

A design pattern is a "solution to a problem in context"; that is, it represents a
high-quality solution to a recurring problem in design.

JIT:

Just in Time
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