Olena: a Developer’s Handbook

Last updated 26 August 2003, for Olena 0.10

Raphael Poss

Chapter 1: Abstract 1

1 Abstract

This is the tenth public release of Olena, a generic image processing library in C++.

Olena is a project developed by the EPITA Research and Development Laboratory
(http://www.lrde.epita.fr) since 1997. We did numerous prototypes and throwaway
experiments before settling into the kind of programming paradigm which is finally here.

The documentation does not cover the whole project. In the ‘doc/’ directory you will
find the first draft of a reference manual. It only documents the image hierarchy and image
processing algorithms. In the ‘doc/demo/’ directory lie a few sample programs. The file
‘doc/demo/tour.cc’ attempts to introduce you to the basics of Olena. For the rest, we're
afraid you will have to dig the code or e-mail us.

Please direct any question or comments to olena@lrde.epita.fr, or
olena-bugs@lrde.epita.fr.

Olena also has a web page, located at http://www.lrde.epita.fr/cgi-
bin/twiki/view/Projects/0Olena.

mailto:olena@lrde.epita.fr
mailto:olena-bugs@lrde.epita.fr

Chapter 2: Olena fast installation guide 2

2 Olena fast installation guide

2.1 Required software

Here is a non-exhaustive list of required software required to build Olena successfully.
e to compile the user tools:
— a POSIX shell, like Bash
— a decent C++ compiler, like GNU C++
— a make utility, like GNU or BSD make
e to compile the documentation:
— a LaTeX distribution
— the ‘listings’ TEX package
— the utility convert from ImageMagick
— GNU Autogen
— hevea, a TEX to HTML conversion tool
— the texinfo utilities from GNU
e to develop in Olena:
— GNU Autotools (Autoconf 2.54, Automake 1.7)

2.2 Configuration

In order to prepare the build process, you need to configure the source tree.

Assuming your Olena distribution is uncompressed in directory ‘olena-0.10’, follow
these steps:

$ mkdir ../build
$ cd ../build && ../olena-0.10/configure CXXFLAGS=’’

Note: take care to set CXXFLAGS always when running configure, for the default value
computed by configure may yield to compilation issues (conflicts between optimization
and debugging).

The build process can be altered by a number of options you can pass to the configure
script. The following sections describe them.

Additionally, if you are an Olena maintainer (a person who runs make distcheck),
prefer setting CXXFLAGS as an environment variable: the flags given on the commandline
to configure are not propagated to recursive runs by make distcheck.

2.2.1 Installation path
By default, Olena is installed in the standard “local” directory of your system. This is
usually ‘/usr/local’ under Unix.

You can change this path with the following flag:

--prefix=<installation prefix>

2.2.2 Compiler selection and compilation flags

By default, configure will try to use the first C++ compiler it encounters on your system.
If CXX is not set, it will look, in order, for:

— the value of the CCC environment variable,

— the GNU C++ compiler (g++),

— the c++ or gpp commands on your system,

Chapter 2: Olena fast installation guide 3

— aCC, the HP-UX standard C++ compiler,

— the CC, cxx, cc++ or ¢l commands on your system,
— KAT’s C++ compiler (KCC),

— RCC, x1C_r or x1C.

You can override the detection system by passing your favourite compiler name to
configure, as follows:

$.../configure CXX=<your-favorite-C++-compiler>

As an alternative, you can also set the environment variable ‘CXX’.

4

For most compilers, configure will select debugging and minimal optimization (‘-g
-02’ with g++), which is wrong. You should override the default C++ flags by giving
configure your selection of flags:

$.../configure CXXFLAGS="<your-favorite-flags>"

This is especially useful to solve a number of problems, described in the following
section.

2.3 Using CXXFLAGS to solve compilation problems
2.3.1 Olena needs C99

While Olena is written in C++, it uses a number of features (math functions) from ISO C99.
However most C++ compilers do not enable these features by default. If your compilation
fails with (e.g.) undefined references to roundf, but you know what flags can activate
these functions, add them to CXXFLAGS.

In case your system does not provide some math functions necessary for Olena, you
can force the use of a local, overloaded, implementation, by using macros of the form
‘~-DOLN_NEED_xxx’, where ‘xxx’ stands for the name of the missing function, in upper-
case. For example, on Darwin (MacOS X), the flag ‘~-DOLN_NEED_SQRTF’ is needed (but
configure should add it anyway).

2.3.2 Olena needs deep template recursion

The C++ design patterns used in Olena use deep template nesting and recursion. However,
the C++ standard specifies that C++ compiler need only handle template recursion upto
19 levels, which is insufficient for Olena. This is a problem for GCC 2.95 and probably
other compilers.

Hopefully, configure tries to fix this automatically by adding ‘~ftemplate-depth-NN’

when necessary, but other compilers than GCC may need other flags. If you know these
flags, add them to CXXFLAGS.

2.3.3 Debugging flags make Olena slow

Because Olena depends on C++ optimizations to provide the best performance, and
enabling debugging flags often disable optimizations, you are advised to override the
CXXFLAGS_OPTIMIZE with any options that gives the best optimization/conformance trade-
off. However, note that passing ‘~-DNDEBUG’ disable many sanity checks, while providing
only a poor performance improvement.

2.3.4 Speeding up the compilation

When using GCC, by default separate phases of the compilation of each file are run
sequentially (compilation then assembly). Using ‘-pipe’ in CXXFLAGS allows GCC to fork

Chapter 2: Olena fast installation guide 4

processes and run compilation phases in parallel, which brings a compilation speedup on
multiprocessor machines or machines with slow storage access (when using ‘-pipe’, no
intermediary data is saved).

2.4 Speeding up the configuration process
configure can manage a cache of autodetected features and values. This cache speeds up
configure runs and can be activated with the ‘-C’ option.

NOTE: the effects of many of the flags passed to configure are stored in the cache.
If you decide to re-run configure with other flags, delete the ‘config.cache’ file first.

2.5 Optional Features

2.5.1 Using external libraries

Several parts of Olena can make use of the Zlib compression library (in Olena I/0O) and
the FFTW fast Fourier transforms library (in Olena fft transforms).

By default, configure will try to autodetect their presence. However, if your version
of any of these libraries is located in a non-standard path, you should specify it as follows:

--with-fftw=<path-to-libfftw>
--with-zlib=<path-to-zlib>
Additionally, if for a reason or another you need to prevent Olena from using any of
these libraries, you can disable their use with the following flags:

——without-fftw
—-without-z1lib

2.5.2 Elidable components

Several build targets can be disabled, in case you are only interested in “parts” of the full
Olena distribution.

The elidable parts are so-called components, and you can obtain a list of them by
running:

$.../configure --help

2.6 Building

Once your build directory is configured, you can run
$ make

to recursively build all selected components.

Additionnally, you can build and run the testsuite and demonstration programs with:
$ make check

However, this process is very time- and memory- consuming. It takes up to 25mn and
250-300Mb of virtual memory on a Debian GNU/Linux 2.54GHz bi-Xeon machine.

2.7 Compiler notes

Olena has been tested on the following configurations :

System Compiler
Linux g++ 3.0, 3.1, 3.2 and 3.3
Linux icc (Intel’s C++ Compiler) v7

MacOS X g++ 3.1

Chapter 2: Olena fast installation guide 5)

NetBSD 1.6 g++ 3.2 and 3.3
FreeBSD 5.0 g++ 3.2 and 3.3
Cygwin g++ 3.2

Olena used to be compatible with g++ 2.95 for performance reasons. With g++ 3.2, this
constraint is becoming obsolete. Moreover, it has many annoying issues, here are the two
more important ones:

— g++ 2.95 rejects valid expressions, often implying ugly workarounds;
— under various circumstances, optimizations sometimes generates invalid code, espe-
cially with intensive inlining.
Actually Olena does not compile with g++ 2.95 anymore.

Compilation time may have important differences between compilers, the following
benchmark gives an idea of the time needed to complete a make check. The tests have
been run on a Bi-Xeon 2.4Ghz machine.

Compiler Time

g++-3.0 23m20s
g++-3.2 20m03s
ice-7 12mb2s

These tests include compilation and running time, the following ones just show the
runtime benchmarks for the ‘extrkiller’ test:

Compiler Options Time

g++-3.0 ‘-03 -finline-1imit-1500’ 2m08s
g++-3.2 ‘-03 -finline-1imit-1500’ 1mb50s
icc-7 ‘-03’ 5m4ls

2.8 Installing

To install the Olena headers, command-lines utilities and additional files on your system,
run:

$ make install
from the build directory.
If not overriden with ‘--prefix’ (see Section 2.6 [Building], page 4) , this will install:
e the headers in ‘/usr/local/include/oln’,
e the utilities in ‘/usr/local/bin’,
e sample images in ‘/usr/local/share/oln’,

e the Autoconf helper ‘oln.m4’ in ‘/usr/local/share/aclocal’.

You can later remove Olena from your system by running
$ make uninstall

from the build directory.

Chapter 3: Upgrading from older versions 6

3 Upgrading from older versions

3.1 Upgrading from 0.9 to 0.10

Nothing should be done since the this release only provide a new documentation system
and many bug fixes.

3.2 Upgrading from 0.8 to 0.9

Abstract interfaces are available and dispatch the methods to their implementations.
Thus, it is not necessary to downcast abstract-typed variables through “Exact_ref”, “Ex-
act_cref”, “Exact_ptr” or “Exact_cptr” macros anymore.

Abstract classes have moved from “oln” to “oln::abstract” namespace.

— oln:
— oln:
— oln:
— oln:
— oln:
— oln:

— oln:

:image => oln::abstract::image

:iter => oln::abstract::iter

:neighborhood => oln::abstract::neighborhood
:point => oln::abstract::point

:struct_elt => oln::abstract::struct_elt
:w_window => oln::abstract::w_window

:window => oln::abstract::window

The “data” concept changed into the “implementation” one. The “implementation”
can be simple data storage, but it will also provide special proxies and function-generated

images.

The access to this “implementation” has changed from “data()” to “impl()”

member function.

Functions modifying borders were made image member functions.

— border::set_width() => abstract::image::border_set_width()
— border::adapt_width() => abstract::image::border_adapt_width()

— border::adapt_copy() => abstract::image::border_adapt_copy()

— border::adapt_mirror() => abstract::image::border_adapt_mirror()

— border::adapt_assign() => abstract::image::border_adapt_assign()

Olena now has its own coding style (http://www.lrde.epita.fr/cgi-
bin/twiki/view/Projects/OlenaCodingStyle).

In particular, macros have been renamed:

— Exact(I) => mlc_exact_type(I)

— Point(I) => oln_point_type(I)
— Tter(I) => oln_iter_type(I)

— Value(I) => oln_value_type(I)

Typedefs have been renamed too:

— image2d<bin>::iter => image2d<bin>::iter_type

— image2d<bin>::point => image2d<bin>::point_type

More details can be found in the coding style web page.

Chapter 3: Upgrading from older versions 7

3.3 Upgrading from 0.7 to 0.8

Olena has been massively reorganized between versions 0.7 and 0.8. The idea was to split
the library into three distinct components:

— Image processing
— Basic data types

— Meta programming tools

Thus, two additional directories and namespaces have been created:
— ‘mlc/’ directory and mlc namespace for meta-programming tools

— ‘ntg/’ directory and ntg namespace for data types

Here is the list of general renaming rules for header files:
‘<oln/types/*.hh> => ‘<ntg/*.hh>’
— ‘<oln/meta/*.hh>’ => ‘<mlc/*.hh>’
— ‘<oln/core/type.hh> => ‘<mlc/type.hh>’
‘<oln/core/contract.hh>’ => ‘mlc/contract.hh>’

Namespaces changes can be deduced from files renaming. Indeed, each file moved into
‘mlc/’ has seen its member moved into the mlc namespace. The same rule stands for ntg.

Chapter 4: The Olena configuration system 8

4 The Olena configuration system

Olena was developed in pure C++ (it does not depend on nonstandard libraries), and a
large amount of work was done so that it can be compiled with any ISO C++ compliant
compiler. Therefore, if all things were perfect, Olena headers could be used as-is, with no
configuration required.

However, two facts darken the picture:

1. Olena uses few but some C99 functions, while ISO C++ was standardized in 1998.

2. C++ compilers are not born equal, and few of them are really ISO C++ compliant.
As a consequence, to ensure that Olena works properly, several known compiler and

language “bugs” or “misfeatures” must be checked, in order to enable workarounds. These
checks and the available workarounds are described in the following sections.

The reason why the workarounds are not all enabled by default, so that checks would
be unnecessary, is that they are inelegant and might break some compiler optimizations
on systems where they are unneeded.

4.1 Known and handled issues

4.1.1 Template recursion support

The ISO C++ standard specifies that compliant compiler must support a recursion depth
of at least 17 levels. Some code pieces in Olena need at least 50. Most compilers happen
to support recursion upto many more levels, however it is not guaranteed.

In particular, GCC 2.95 is known to need the flag ‘~ftemplate-depth-xxx’ to support
extra levels of recursion.

Check and workaround in ‘oln.m4’

The provided Autoconf macro AC_CXX_TEMPLATE_DEPTH takes an optional numeric argu-
ment N (default value 50) and works as follows:

1. attempt to compile a program using recursion depth N;

2. if it works, stop the check, no workaround required.

3. add ‘-ftemplate-depth-N’ to CXXFLAGS, and try again;

4. if it works, add ‘~ftemplate-depth-N’ to CXXFLAGS, then stop.

5. if it does not work, warn the user.

Rationale for the check:

‘~ftemplate-depth’ is not supported by newer versions of GCC and probably other
compilers, and thus cannot be added to CXXFLAGS always.

On the other hand, several compilers, if not GNU, support GCC options : exotic yet
unknown compilers might have the same problem as GCC 2.95 and require the same
option.

Tested configurations

Among ICC, Comeau C++, GCC 3.x and GCC 2.95, none but the latter need extra flags
to support deep template recursion. For GCC 2.95, ‘~ftemplate-depth-N’, with N suffi-
ciently large, fixes the problem.

Chapter 4: The Olena configuration system 9

4.1.2 Numeric limits

ISO C++ specifies that the standard library must provide the class template
std: :numeric_limits and its specializations in header ‘1imits’. Olena uses this class to
retrieve infinity values for the C++ types float and double. However, it is not available
in all implementations of the C++ standard library.

A substitute is known: the C89 constant HUGE_VAL and C99 HUGE_VALF, defined in
‘cmath’. However, they are not satisfying because they are do not really represent infinity.

Therefore, the Olena header ‘oln/config/math.hh’ works as follows:
1. if the macro USE_C_LIMITS is not defined, use std: :numeric_limits.
2. if the macro USE_C_LIMITS is defined, then:
a. include ‘cmath’;

b. if HUGE_VAL is not defined, abort with an error (“Cannot define infinity in this
configuration”).

c. if it is, use it as the infinity value for type double;
d. if HUGE_VALF is defined, use it as the infinity value for type float;
e. if it is not, use HUGE_VAL casted to float instead.

Check and workaround in ‘oln.m4’

The provided Autoconf macro AC_CXX_NUMERIC_LIMITS works as follows:
1. attemt to compile a program using std: :numeric_limits;
2. if it works, do nothing.
3. if it does not, add ‘-DUSE_C_LIMITS’ to CPPFLAGS.

4.1.3 C math functions

Olena uses functions from the C89 and C99 math libraries. However, most C++ envi-
ronments only know about C89 math functions, since the C++ standard predates C99.
It noticeably happens, on several known architectures, that some C99 functions are not
available directly, or indirectly, from C++ code.

A kludge is known, and several workarounds are available:

— When using the GNU C library and headers on a GNU system, it is sufficient to define
the _IS0C99_SOURCE macro to make C99 math available from C++.

— Replacements for (as of 0.7) sqrtf, floorf, round or roundf can be enabled by
defining macros of the form NEED_xxx, where xxx is the function name.

Check and workaround in ‘oln.m4’

The provided Autoconf macro OLN_FLOAT_MATH invokes AC_CXX_CHECK_MATH successively
for sqrtf, floorf, round and roundf.

AC_CXX_CHECK_MATH takes the name of the function to test and works as follows:
try to compile and link a program using the function;
if it works, do nothing.
else, try again to compile the program with ‘-D_IS0C99_SOURCE=1";
if it works, add ‘-D_ISO0C99_SOURCE=1’ to CPPFLAGS.
if it does not work, add ‘~-DNEED_function’ to CPPFLAGS.

Ok W=

Chapter 4: The Olena configuration system 10

4.1.4 Using the FFTW library

The implementation of the FFT transform in Olena requires the FFTW library
(http://www.fftw.org/). Because this library might be unavailable, it is only used if
the macro HAVE_FFTW is defined to nonzero, and the correct include path is given to the
compiler.

Check in ‘oln.m4’
The provided Autoconf macro AC_WITH_CXX_FFTW works as follows:
1. if the user didn’t provide the flag ‘~—-with-fftw’, do nothing.

2. if the user provided a prefix directory with ‘--with-fftw=dir’, add ‘-Idir’ and
‘~-Ldir’ to FFTW_CXXFLAGS and FFTW_LDFLAGS, resp.

3. attempt to compile a program that uses a function from the FFTW library, using the
C++ compiler with FFTW_CXXFLAGS and FFTW_LDFLAGS;

4. if it works, AC_DEFINE HAVE_FFTW to 1.
Rationale for using the C++ compiler (instead of the C compiler): the FFTW library

is a C library and there are systems where C++ programs cannot link with any C library
without options. This ckeck ensures that faulty link configurations fail early.

4.1.5 Using the Zlib library

The implementation of the I/O operators in Olena can make use of the Zlib library fo save
or load images from gzipped files. Because this library might be unavailable, it is only
used if the macro HAVE_ZLIB is defined to nonzero, and the correct include path is given
to the compiler.

Check in ‘oln.m4’
The provided Autoconf macro AC_WITH_CXX_ZLIB works as follows:
1. if the user didn’t provide the flag ‘~-with-z1lib’, do nothing.

2. if the user provided a prefix directory with ‘--with-zlib=dir’, add ‘-Idir’ and
‘~-Ldir’ to ZLIB_CXXFLAGS and ZLIB_LDFLAGS, resp.

3. attempt to compile a program that uses a function from the Zlib library, using the
C++ compiler with ZLIB_CXXFLAGS and ZLIB_LDFLAGS;

4. if it works, AC_DEFINE HAVE_ZLIB to 1.

Rationale for using the C++ compiler: See Section 4.1.4 [Using the FFTW library],
page 10.

4.1.6 Using exceptions

Olena code self-checks using preconditions and postconditions, in addition to static checks
pertaining to the type system. By default, the C/C++ function assert is used for these
checks.

However, failure in a condition checked by assert causes the program to abort, with
no possible error recovery. When using Olena from a dynamic, interpreted language where
the user is likely to call Olena functions with incorrect arguments, this “feature” becomes
a nuisance.

For this purpose, when the OLN_EXCEPTIONS macro is defined, exceptions are thrown
instead. However, this option cannot be used if the compiler does not support proper
exception handling.

Chapter 4: The Olena configuration system 11

Checks in ‘oln.m4’

The provided Autoconf macro OLN_ENABLE_EXCEPTIONS takes an optional boolean argu-
ment (default value yes) and works as follows:

1. if the user does not give the ‘-—enable-oln-exceptions’ flag to configure, and the
argument to OLN_ENABLE_EXCEPTIONS is set to “no”, do nothing.

2. check for the availability of exceptions with AC_CXX_EXCEPTIONS (described below);
3. if exceptions are available, add ‘~DOLN_EXCEPTIONS’ to CPPFLAGS.

The provided Autoconf macro AC_CXX_EXCEPTIONS works as follows:
1. try to compile a program that throws and catches an exception;

2. if it does not compile, fail the test.

4.2 Important variables

Programs using Olena with the provided ‘oln.m4’ have to take the following ‘Makefile’
variables into consideration:

CPPFLAGS C++ preprocessor flags specific to Olena. See Section 4.2.1 [Values for
CPPFLAGS], page 11.

CXXFLAGS C++ compiler flags specific to Olena. See Section 4.2.2 [Values for
CXXFLAGS], page 11.

FFTW_CXXFLAGS
C++ compiler flags to use the FFTW library. See Section 4.1.4 [Using the
FFTW library|, page 10.

FFTW_LDFLAGS
C++ linker flags to use the FETW library. See Section 4.1.4 [Using the FETW
library]|, page 10.

ZLIB_CXXFLAGS
C++ compiler flags to use the Zlib library. See Section 4.1.5 [Using the Zlib
library], page 10.

ZLIB_LDFLAGS
C++ linker flags to user the Zlib library. See Section 4.1.5 [Using the Zlib
library], page 10.

4.2.1 Values for CPPFLAGS

‘~-DUSE_C_LIMITS’
See Section 4.1.2 [Numeric limits]|, page 9.

‘-DHAVE_FFTW=1’
See Section 4.1.4 [Using the FETW library|, page 10.

‘-DHAVE_ZLIB=1’
See Section 4.1.5 [Using the Zlib library]|, page 10.

‘~DOLN_EXCEPTIONS’
See Section 4.1.6 [Using exceptions|, page 10.

4.2.2 Values for CXXFLAGS

‘~ftemplate-depth’
See Section 4.1.1 [Template recursion support], page 8.

Chapter 5: Using Olena from another project

5 Using Olena from another project

12

Chapter 6: The Olena source tree 13

6 The Olena source tree

The Olena source tree is divided into several distrinct components:

‘top source directory’
The base directory for Olena sources. It contains Autoconf/Automake defini-
tions that allow to run, recursively, the following toplevel operations:

— creating initial configuration files and command-line utilities (make all);

— running the testsuite and building the demonstration programs (make
check);

— installing Olena to the system (make install);
‘olena/’ Image processing sources and testsuite.
‘integre/’
Data types sources and testsuite.

‘metalic/’
Meta programming tools and testsuite.

‘doc/’ The documentation and demonstration programs.

‘tools/’ The user programs. This directory and its sub-directories contain auto-
generated sources that yield a set of user programs and commands exhibing
several Olena features.

You can find in the following sections a more detailed description of the contents of
each directory.

The generation of configure from ‘configure.ac’ is led by the toplevel script
bootstrap.sh.

6.1 Image processing library files: ‘olena/’

This directory contains the main Olena sources, the testsuite and some additional pro-
grams.
Here are the subdirectories:

6.1.1 Olena headers: ‘olena/oln/’
This directory contains the Olena library strictly speaking, that is, the C++ header files.

‘oln/config/’
Olena global configuration definitions, reachable by including
‘oln/config/system.hh’. This directory also provides replacements for
missing math functions in ‘math.hh’.

‘oln/core/’
Definitions for image types and various other Olena data types. This directory
contains definitions for:

— image types;
— structural element types (windows, neighborhoods);
— iterators;
— points;
— Dborders.
‘oln/transforms/’

Transformation operators over images. Includes Fast Fourier Transforms
(FFT) and Discreet Wavelets Transforms (DWT).

Chapter 6: The Olena source tree 14

‘oln/morpho/’
Morphological operators.

‘oln/morpher’
Generic morphers.

‘oln/level/’
Level processing operators.

‘oln/convol/’
Convolution operators.

‘oln/arith/’
Arithmetical operators (over images). Covers both arithmetical, conversion
and logical operators.

‘oln/convert/’
Value types conversion functions.

‘oln/io/’ Input/Output operators for several Olena data types.

‘oln/utils/’
Utility operators.

‘oln/math/’
Utility mathematical functions.

In addition to these categories, four multi-purpose headers are provided in ‘oln/’:

‘basics.hh’
Recursively includes all base types definitions from ‘oln/core/’.

‘basicsid.hh’
Recursively includes all definitions from ‘oln/core/’ that allow handling of
1D images.

‘basics2d.hh’
Likewise, for 2D images.

‘pasics3d.hh’
Likewise, for 3D images.
6.1.2 Testsuite files: ‘olena/tests/’

This directory contains most of the Olena testsuite. It contains one directory per test
category, in addition to a library directory.

The directories are:
‘arith/’ Tests pertaining to types arithmetics.

‘convert/’
Tests pertaining to image value conversions (color-color, color-b/w, etc...).

‘convol/’ Tests pertaining to convolution operators.
‘i0/’ Tests pertaining to image 1/0.

‘morpho/’ Tests pertaining to morphological operators.
‘morpho/’ Tests pertaining to morphers.

‘sanity/’ Tests that check that each Olena header can be separately included in C++
programs.

‘transforms/’
Tests pertaining to image transformations (FFT, DWT, ...).

‘check/’ Library containing several utilities used multiple times in other test directories.

Chapter 6: The Olena source tree 15

6.2 Data types library files: ‘integre/’

In ‘integre/’ can be found everything related to basic data types.

6.3 Meta programming library files: ‘metalic/’

In ‘metalic/’ can be found all the meta programming tools used by both olena and intgre.

6.3.1 Autoconf helpers: ‘config/’

In ‘config/’ can be found several files automatically generated by the Autoconf command
autoreconf (with the exception of ‘0oln.m4’ and ‘oln-local.m4’ presented separately).

‘depcomp’ Compute dependencies from files.

‘install-sh’
Installs a file to its final location.

‘missing’ Presents the user with an intelligible error message if a tool is missing to the
build process.

‘mkinstalldirs’
Creates the installation directories.

‘mdate-sh’

Computes the last modification date from a file (used in ‘doc/dev/’ to create
‘version.texi’).

‘texinfo.tex’
Texinfo definitions for the documentation.

‘oln.m4’ M4 file containing general-use macro definitions for use by the Olena distri-
bution and user projects.

‘oln-local.m4’
M4 file containing macro definitions for the ‘configure.ac’ included in the
distribution of Olena.

6.3.2 User configuration tools: ‘olena/conf/’

This directory contains the files used to create the utility scripts of the form oln-
config.sh, which retain compiler-specific flags for later invocation by Olena users.

The files are:

‘oln-config.shin’
Template script used by the accompanying configure to generate the final
utilities.

‘gen-scripts.sh’

A script that calls configure repeatedly to generate various versions of oln-
config.sh.

‘compilers.def’
Compiler list for use by gen-scripts.sh.

‘configure.ac’
Lightweight Autoconf source file, leading to the utility configure used by
gen-scripts.sh.

The creation of configure from ‘configure.ac’ in this directory is led by the toplevel
bootstrap.sh.

Chapter 6: The Olena source tree 16

6.4 User tools source tree: ‘tools/’

In this directory are stored the sources for run-time, user-level utilities.
The subdirectories are:
‘utilities/’
Automatically-generated sources for commandline utilities. Generated pro-

grams allow the use of Olena functions from shell scripts.

‘swilena/’
SWIG (http://www.swig.org/) wrappers for Olena, to allow the use of Olena
functions from scripting languages like Python and Perl. This is EXPFERI-
MENTAL work.

6.5 Documentation source tree: ‘doc/’
This directory contains all files needed to build the documentation, except headers files
from ‘oln/’, which contain comments used in the documentation build process.

Here is a list of the most important files:

‘doc/dev/’
A directory containing Texinfo sources for the Olena Developer’s Handbook.

‘doc/ref/’
A directory containing script to extract documentation and examples from
source code. It noticeably contains:

‘exdoc.pl’

Main script to extract code example.
‘img_conv.pl’

Script to convert image used by extracted code.

‘doxygen.config’
Configuration file used by doxygen.

‘Makefile.am’
Automake definitions that control the build process, which (as of
0.7) depends on GNU Make.

‘out/’ Auto-generated programs that create the pictures included in the
Reference Manual.

‘html/’ The HTML version of the Reference Manual.
‘latex/’ The latex version of the Reference Manual.

Running make all in the ‘doc/’ toplevel subdirectory generates the Reference Manual
and the Developer’s Handbook. To achieve this goal, it uses the Olena headers it can find
in ‘../olena’ and the Texinfo source ‘. ./olena/config/texinfo.tex’.

Chapter 7: Frequently Asked Questions 17

7 Frequently Asked Questions

7.1 Cleaning up the source tree

Question: my source tree behaves strangely.
Answer: make sure you have many development tools installed, and then run:

$ make maintainer-clean
$./bootstrap.sh

(from the toplevel source directory)

This will clear anything that can be regenerated back, and re-generate the project
control files (autoreconf)

7.2 Missing tools
Question: I do not want to involve the documentation in my build process (it takes too
long and/or I do not have the tools to build it). How can I disable it ?

Answer 1: run the toplevel configure with the ‘~-without-doc’ option.

Answer 2: if you do not want to build the reference manuals but still compile the
demonstraction programs and developer’s info files, use ‘--without-doc-ref’.

7.3 Using Olena

Question: How can I use Olena in my projects 7

Answer 1: add ‘-I<path_to_installed_headers>’ to your compile flags and it should
work. In practice, of course, it does not. Proceed with the following answers.

Answer 2: use Autoconf and the provided ‘oln.m4’. Several macros can be used:

AC_WITH_OLN
Checks compiler features and AC_SUBST the variables OLN_CPPFLAGS and
CXXFLAGS.

OLN_ENABLE_EXCEPTIONS
Enable the raise of C++ exceptions instead of aborting on errors. This breaks
some optimizations, so do not use unless required. Updates CPPFLAGS.

See the file ‘configure.ac’ for an example invocation of these macros.

Answer 3: wuse the generated oln-config-xxx.sh, substituting ‘xxx’ with your
favourite compiler. This script dumps to its standard output the flags necessary to build
programs that use Olena successfully with the corresponding compiler. Use the ‘--help’
flag to see what data is available.

7.4 Troubleshooting

Missing functions at link-time

Problem My program compiles successfully, but refuses to link: the linker complains
about missing _roundf.

Explanation
Your standard library headers declare roundf but it is not actually defined.

Solution Add ‘-DNEED_ROUNDF’ to your CXXFLAGS.

Chapter 7: Frequently Asked Questions 18

Incorrect behavior of generated code

Problem My programs compiles and runs, but either the compiler (GCC) issues warn-
ings at compile-time in the Olena headers, or the results are weird and/or
inaccurate.

Explanation 1
You are using GCC 2.95 and heavy optimisation (‘-03’) flags. This is known
to produce invalid code with Olena.

Solution 1 Use ‘-02’ instead.

Explanation 2
You used the default, invalid, value for CXXFLAGS when ‘configure’ has run,
and the sources were compiled using heavy optimization and debug settings,
which is inconsistent.

Solution 2 Run configure CXXFLAGS=’’. See the file ‘BUILD’ at the toplevel source
directory.

Explanation 3
Your compiler has internal problem.

Solution 3 Lower the limit of inlining: set CXXFLAGS_OPTIMIZE to -finline-limit-500
-02
Wrong include path

Problem My source file includes ‘basics2d.hh’ but compilation fails: the compiler
complains about missing ‘oln/config/system.hh’.

Solution Include ‘oln/basics2d.hh’ instead, and use ‘-I/usr/local/include’ instead
of ‘*-I/usr/local/include/oln’ in your compilation flags.
Errors defining Infinity

Problem Compilation fails at points where OLN_FLOAT_INFINITY or std::numeric_
limits is used.

Explanation
Your C++ standard library is broken.

Solution As a workaround, add ‘~-DUSE_C_LIMITS’ to your CXXFLAGS.

Warnings in standard headers

Problem make check fails because warnings are treated as errors and the standard
headers on my system generate warnings (as on e.g. HP-UX and FreeBSD).

Solution = Run configure with CXXFLAGS_STRICT_ERRORS set to more tolerant warning
flags (for example, set ‘-Wall -W’ for GCC but not ‘-Werror’).

Errors in standard headers

Problem The math functions (acos, ...) are not declared.

Solution Set CXXFLAGS to -includemath.h.

Invalid data saved on I/O
Problem High resolution images are saved with invalid data on the Macintosh.

Explanation
You are using a big-endian host and there are known bugs in the image 1/0
operators.

Chapter 7: Frequently Asked Questions 19

Solution Save your images in the “plain pnm” (‘.ppnm’) file format instead of raw.
Beware, while this is a correct workaround, the generated images are bigger.

Chapter 8: Credits 20

8 Credits

8.1 Aknowledgements

The following people contributed to Olena, maybe indirectly through one of the numerous
prototypes Olena has uprisen from. Olena would not be what it is today without their
work.

THIERRY GERAUD
— for managing the project in the first place,
— for his work on the type system,
— for his numerous hours spent thinking about Olena.
ALEXANDRE DURET-LUTZ
— for having maintained the source tree for several years,
— for his work on the type system,
— for his work on the test system,
— for his work on the documentation system,
— for his numerous hours spent on Olena to make it better.
REDA DEHAK
— for managing the project,
— for his work on the color conversions,
— for his contributions to cleanup the sources.
AKIM DEMAILLE
— for his help with the configuration system,
— for his help to keep things clean.
ANTHONY PINAGOT
— for his work on Olena I/0,
— for his work on statistical operators,
— for his study on the FFT.
ASTRID WANG
— for her work on new documentation system,
— for her work on static arrays.
DaMIEN THIVOLLE
— for his contributions to document the code,
— for his work on generic morphers,
— for his work on the configuration system.
DAVID LESAGE
— for his work on the type system,
— for his work on the new paradigm,
— for his contributions to cleanup the sources.

DIMITRI PAPADOPOULOS-ORFANOS
for his work on the type system

EMMANUEL TURQUIN
— for implementing transforms,

Chapter 8: Credits

— for his work on integre.
GIOVANNI PALMA
— for his work on color conversion,
— for his work on attribute opening and closing algorithms,
— for his work on new documentation system,
— for his contributions to document the code,
— for his contributions to cleanup the sources.

HERU XUE
for his work on the color system.

IaNACY GAWEDZKI
for his work on the color system.

JEAN CHALARD
— for his work on colors,
— for implementing vectors and matrices,
— for implementing Olena iterators,
— for his study of wavelets.
JEAN-SEBASTIEN MOURET
— for his work on image I/0,
— for his work on the source tree and configuration system,
— for his work on fast morphological operators.

JEROME DARBON
for his work on image morphology and Olena morpho.

Lubpovic PERRINE
for his study of fuzzy types.

MICHAEL STRAUSS
— for his work on image morphology,
— for his work on the watershed algorithms,
— for his work on Olena I/O.
NicorLAs BURRUS
— for his work on integre,
— for his work on Olena I/0,
— for his work on the source tree.
NIELS VAN VLIET
— for his work on color conversion,
— for his work on attribute opening and closing algorithms,
— for his contributions to document the code,
— for his work on histograms.
PIERRE-YVES STRUB
— for his work on Olena morpho,
— for his work on the source tree and configuration system,
— for his work on the type system.

Quoc PEYROT
for his work on the watershed algorithm.

21

Chapter 8: Credits 22

RAPHAEL Poss
— for his work on the source tree and configuration system,

— for his work on the documentation.
REMI COUPET

— for his work on Olena morpho,

— for his work on data types (pre-0.6),

— for his work on the Olena core,

— for his bibliographic research.

RENAUD FRANCOIS
for his bibliographic research.

SiMoN ODOU
— for his contributions to document the code,
— for his work on generic morphers.
SYLVAIN BERLEMONT
— for his work on combinatorial maps,
— for his contributions to cleanup the sources.
YANN REGIS-GIANAS
— for his work on the type system,
— for his work on graphs,
— for his numerous contributions to various parts of Olena.

YOANN FABRE
for his work on the type system.

VINCENT BERRUCHON

In addition, we would like to thank EPITA and its user groups EpX and Prologin for
giving us access to Solaris, FreeBSD, NetBSD, OpenBSD and CygWin machines.

8.2 Bibliography
Further information about Olena can be found into the following related papers:

e Thierry Graud, Yoann Fabre, Dimitri Papadopoulos-Orfanos, and Jean-Franois Man-
gin. Vers une rutilisabilit totale des algorithmes de traitement d’images. In the
Proceedings of the 17th Symposium GRETSI on Signal and Image Processing, vol.
2, pages 331-334, Vannes, France, September 1999. In French (available in English as
Technical Report 9902: Towards a Total Reusability of Image Processing Algorithms).

e Thierry Graud, Yoann Fabre, Alexandre Duret-Lutz, Dimitri Papadopoulos-Orfanos,
and Jean-Franois Mangin. Obtaining Genericity for Image Processing and Pattern
Recognition Algorithms. In the Proceedings of the 15th International Conference on
Pattern Recognition (ICPR’2000), IEEE Computer Society, vol. 4, pages 816-819,
Barcelona, Spain, September 2000.

e Alexandre Duret-Lutz. Olena: a Component-Based Platform for Image Processing,
mixing Generic, Generative and OO Programming. In the Proceedings of the 2nd
International Symposium on Generative and Component-Based Software Engineering
(GCSE 2000), Young Researchers Workshop (published in "Net.ObjectDays2000";
ISBN 3-89683-932-2), pages 653-659, Erfurt, Germany, October 2000.

Chapter 8: Credits 23

e Alexandre Duret-Lutz, Thierry Graud, and Akim Demaille. Generic Design Pat-
terns in C++. In the Proceedings of the 6th USENIX Conference on Object-Oriented
Technologies and Systems (COOTS’2001), pages 189-202, San Antonio, Texas, USA,
January-February 2001.

e Thierry Graud, Yoann Fabre, and Alexandre Duret-Lutz. Applying Generic Pro-
gramming to Image Processing. In the Proceedings of the IASTED International
Conference on Applied Informatics (AI’2001) — Symposium Advances in Computer
Applications, ACTA Press, pages 577-581, Innsbruck, Austria, February 2001.

e Generic Implementation of Morphological Image Operators, Jrme Darbon, Thierry
Graud, and Alexandre Duret-Lutz, submitted to International Symposium On Math-
ematical Morphology VI (ISMM 2002), April 3-5, 2002, Sydney, Australia.

e Static C++ Object-Oriented Programming (SCOOP) Nicolas Burrus, Alexandre
Duret-Lutz, Thierry Geraud, David Lesage, and Raphal Poss. In the Proceedings
of the Workshop on Multiple Paradigm with OO Languages (MPOOL’03) Anaheim,
CA Oct. 2003.

You can download these papers and related materials from
http://www.lrde.epita.fr/cgi-bin/twiki/view/Publications

Chapter 8: Index and Table of contents

Index and Table of contents

‘~ftemplate-depth’.......................... 8
AC_CXX_CHECK_MATH, 9
AC_CXX_EXCEPTIONS 11
AC_CXX_NUMERIC_LIMITS...................... 9
AC_CXX_TEMPLATE DEPTH...................... 8
AC_WITH_CXX_FFTW 10
AC_WITH CXX_ZLIB...........ciutiinann. 10
‘pasics.hh’. i 14
‘basicsld.hh’ 14
‘basics2d.hh’ 14
‘pasics3d.hh’ 14
big-endian.............. 18
‘bootstrap.sh’...................... ... 13, 15
‘compilers.def’.............. 15
‘configure.ac’ 15
CPPFLAGS ..o oeee e 9, 11
CXXFLAGS . ..o 8, 11, 17, 18
CXXFLAGS_STRICT_ERRORS.................... 18
‘depcomp’. ... 15
AOC/ 16
‘doc/dev/ 16
‘doc/ref/ .o 16
‘doxygen.config 16
errors, in standard headers................... 18
‘exdoc.pl’ ... 16
FFTW_CXXFLAGS 10
FFTW_LDFLAGS i 10
FreeBSD o i i 18
‘gen-scripts.sh’...... 15
HAVE_FFTW. i 10
HAVE_ZLIB.ot 10
HP-UX. . 18
HUGE_VALo e 9

24
‘img_conv.pl’ ... 16
infinity 18
‘“install-sh’ ... 15
link failures............. 17
Macintosh 18
‘Makefile.am’vriininenenann.. 16
‘math.hh’. 13
‘mdate-sh’........... ... 15
‘missing’. ... 15
‘mkinstalldirs’ 15
NEED_ROUNDF.ot 17
NetBSD ... 18
‘olenal/’ ... 13
‘oln-config.sh’......................... 15, 17
‘oln-config.shin’.......................... 15
‘oln-dev.texi’ ... 16
‘oln-local.md’ i 15
oln.md’ L. 15, 17
LN/ 13
OLN_ENABLE_EXCEPTIONS..................... 11
OLN_EXCEPTIONSot 10
OLN_FLOAT_MATH 9
‘peconf.hh’. 13
roundf, missing................. 17
std::numeric_limits..................... 9, 18
‘system.hh’. 13
template recursion L 8
‘tests/arith/’ 14
‘tests/check/’ 14
‘tests/convert/’ 14
‘tests/convol/ 14
‘tests/io/ . 14
‘tests/morpher/’ 14
‘tests/morpho/’ 14

‘tests/sanity/ ... 14

Chapter 8: Index and Table of contents 25

‘tests/transforms/’........................ 14 VV

‘texinfo.texl 15, 16 . .

B00LS/ o 16 warnings, in system headers.................. 18
‘tools/swilena/’c.iiiiiiiii... 16

‘tools/utilities/’ 16

[J- ZLIB_CXXFLAGS i 10

USE_C_LIMITS 0o, 9, 18 ZLIB_LDFLAGS

Table of Contents

1 Abstract..........cciiiiiiiiiiiiiiiiiiinnnnn. 1
2 Olena fast installation guide......................... 2
2.1 Required SOftwareo 2

2.2 Configuration i 2
2.2.1 Installation path....... 2

2.2.2 Compiler selection and compilation flags........................... 2

2.3 Using CXXFLAGS to solve compilation problems............................ 3
2.3.1 Olenaneeds C99 3

2.3.2 Olena needs deep template recursion 3

2.3.3 Debugging flags make Olena slow 3

2.3.4 Speeding up the compilation.............. 3

2.4 Speeding up the configuration process.oiiiiiiiineein .. 4

2.5 Optional Features 4
2.5.1 Using external libraries........... i 4

2.5.2 Elidable components 4

2.6 Building.o 4

2.7 Compiler NOLES.t 4

2.8 Inmstalling 5

3 Upgrading from older versions 6
3.1 Upgrading from 0.9 t0 0.10. 6

3.2 Upgrading from 0.8 t0 0.9. 6

3.3 Upgrading from 0.7 t0 0.8. 7

4 The Olena configuration system 8
4.1 Known and handled issueso 8
4.1.1 Template recursion supportooiiiiiiiii 8

Check and workaround in ‘oln.m4’.........., 8

Tested configurations.o oo 8

4.1.2 Numeric Hmits. 9

Check and workaround in ‘oln.m4’...................iiiiiiinnao... 9

4.1.3 Cmath functions 9

Check and workaround in ‘oln.m4’.......... 9

4.1.4 Using the FFTW library oo i 10

Check in ‘0ln.ma e 10

4.1.5 Using the ZIib library 10

Check in ‘0ln.mé i 10

4.1.6 Using exceptions.o 10

Checks in ‘0ln.mé’ 11

4.2 TImportant variables 11
4.2.1 Values for CPPFLAGSo\ttt ettt et 11

4.2.2 Values for CXXFLAGSottt 11

5 Using Olena from another project 12

6 The Olenasourcetree............ccvvviiiinnnn...
6.1 Image processing library files: ‘olena/’
6.1.1 Olena headers: ‘olena/oln/’ iiiiiniiiiininaa..
6.1.2 Testsuite files: ‘olena/tests/ ...
6.2 Data types library files: ‘integre/’
6.3 Meta programming library files: ‘metalic/’.............
6.3.1 Autoconf helpers: ‘config/’
6.3.2 User configuration tools: ‘olena/conf/’
6.4 User tools source tree: “tools/’ot
6.5 Documentation source tree: ‘doc/

7 Frequently Asked Questions........................
7.1 Cleaning up the source tree,
7.2 MiSSIng tOOISt
7.3 Using Olena i
7.4 Troubleshooting......
Missing functions at link-time
Incorrect behavior of generated code..............
Wrong include path
Errors defining Infinity........
Warnings in standard headers
FErrors in standard headers.........
Invalid data saved on I/O

8 Creditscovtiiiiiiiiiiii ittt
8.1 Aknowledgements
8.2 Bibliographyo

Index and Table of contentsc.oivvien....

	Abstract
	Olena fast installation guide
	Required software
	Configuration
	Installation path
	Compiler selection and compilation flags

	Using CXXFLAGS to solve compilation problems
	Olena needs C99
	Olena needs deep template recursion
	Debugging flags make Olena slow
	Speeding up the compilation

	Speeding up the configuration process
	Optional Features
	Using external libraries
	Elidable components

	Building
	Compiler notes
	Installing

	Upgrading from older versions
	Upgrading from 0.9 to 0.10
	Upgrading from 0.8 to 0.9
	Upgrading from 0.7 to 0.8

	The Olena configuration system
	Known and handled issues
	Template recursion support
	Check and workaround in oln.m4
	Tested configurations

	Numeric limits
	Check and workaround in oln.m4

	C math functions
	Check and workaround in oln.m4

	Using the FFTW library
	Check in oln.m4

	Using the Zlib library
	Check in oln.m4

	Using exceptions
	Checks in oln.m4

	Important variables
	Values for CPPFLAGS
	Values for CXXFLAGS

	Using Olena from another project
	The Olena source tree
	Image processing library files: olena/
	Olena headers: olena/oln/
	Testsuite files: olena/tests/

	Data types library files: integre/
	Meta programming library files: metalic/
	Autoconf helpers: config/
	User configuration tools: olena/conf/

	User tools source tree: tools/
	Documentation source tree: doc/

	Frequently Asked Questions
	Cleaning up the source tree
	Missing tools
	Using Olena
	Troubleshooting
	Missing functions at link-time
	Incorrect behavior of generated code
	Wrong include path
	Errors defining Infinity
	Warnings in standard headers
	Errors in standard headers
	Invalid data saved on I/O

	Credits
	Aknowledgements
	Bibliography

	Index and Table of contents

