Swilena

Edition 15 April 2004

Raphael Poss and Nicolas Burrus

This document is intended to describe Swilena, a simplified set of wrappers around the
image processing library Olena.

Chapter 1: Introduction 2

1 Introduction

Swilena aims at providing interpreted languages access to the Olena image software pro-
cessing library. In order to reach this goal, it relies on SWIG to create interfaces to Olena
in different languages.

Swilena is made of three software components:
o SWIG definition files describing Olena,
e SWIG definition files describing Swilena components,
e a source tree able to generate extensions for Python, and hopefully Perl and other
languages.
When compiled for a target interpreted language, the following modules are created:

swilena Contains definitions for pixel types.

swilena_imageld, swilena_image2d, swilena_image3d
Contain definitions for image and point types.

swilena_structeltld, swilena_structelt2d, swilena_structelt3d
Contain definitions for structural elements.

swilena_conversionld, swilena_conversion2d, swilena_conversion3d
Contain conversion functions between image types.

swilena_morphold, swilena_morpho2d, swilena_morpho3d
Contain morphological operators over images.

swilena_arithld, swilena_arith2d, swilena_arith3d
Contain arithmetical operators over images.

The primary target language for Swilena is Python, because Python is the best sup-
ported back-end for SWIG. However, the SWIG definition files of Swilena are not bound
to a particular interpreted language: any SWIG target language providing enough expres-
siveness can be used. Ruby modules are defined too, they are not documented here but
they work almost the same way as Python modules. Here are the required features from
the interpreted language:

e [t must support overloading. O’Caml is therefore excluded.

e [t should support objects. Else all method calls must be transformed into function
calls, and object destruction must be made explicit.

e It must support dynamically loaded modules with dependencies between them.

Typically “ideal” target languages are Python, Ruby, Perl5, Tcl, Scheme.

Currently, the source tree only knows about Python and Ruby, but this may evolve in
the future.

1.1 Using Swilena for Olena development

Obviously, Swilena provides the developer with a programming framework around Olena
that has much shorter development cycles: new algorithms can be tested in Python without
waiting for the compilation of C++ test sources.

Moreover, because compiling Swilena actually means instantiating Olena templates for
a nearly complete Cartesian product of types, the success of the Swilena build process
proves Olena’s completeness.

Chapter 2: Of SWIG and Swilena principles 3

2 Of SWIG and Swilena principles

As already suggested, Swilena and SWIG are closely related. In fact, SWIG is a wrapper
generator, and Swilena is a set of input files for SWIG bundled in a package providing
appropriate ‘Makefile’s to ease their handling.

This section provides some information about SWIG itself and presents the general
guidelines that directed Swilena’s development.

2.1 Introduction to SWIG

The following information is partly taken from the SWIG manual.

The best way to illustrate SWIG is with a simple example. Consider the following C
code:

~
/* File : example.c */

double My_variable = 3.0;

/* Compute n factorial */
int fact(int n) {
if (n <= 1) return 1;
else return n * fact(n-1);

3

/* Compute n mod m */
int my_mod(int n, int m) {
return n % m;

}

=

J

Suppose that you wanted to access these functions and the global variable My _variable
from Python. You start by making a SWIG interface file as shown below (by convention,
these files carry a .i suffix) :

2.1.1 SWIG interface file

/* File : example.i */

%module example

A

/* Put headers and other declarations here */

h}

extern double My_variable;
extern int fact(int);
extern int my_mod (int n, int m);

J

The interface file contains ANSI C function prototypes and variable declarations. The
Jmodule directive defines the name of the module that will be created by SWIG. The
%{,%} block provides a location for inserting additional code such as C header files or
additional C declarations.

Chapter 2: Of SWIG and Swilena principles 4

2.1.2 The swig command

SWIG is invoked using the swig command. We can use this to build a Python module
(under Linux) as follows :

unix > swig -python example.i

unix > gcc -c¢ -fPIC example.c example_wrap.c -I/usr/include/python2.2
unix > gcc -shared example.o example_wrap.o —-o _example.so

unix > python

Python 2.2.2 (#4, Oct 15 2002, 04:21:28)

[GCC 2.95.4 20011002 (Debian prerelease)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> from example import *

>>> fact(4)

24

>>> my_mod (23,7)

2

>>> My_variable + 4.5

7.5

>>>

The swig command produced two new files called ‘example.py’ and ‘example_wrap.c’.
The file ‘example_wrap.c’ should be compiled along with the ‘example.c’ file. Most
operating systems and scripting languages now support dynamic loading of modules. In
our example, our Python module has been compiled into a shared library that can be
loaded into Python. When loaded, Python can now access the functions and variables
declared in the SWIG interface. A look at the file ‘example_wrap.c’ reveals a hideous
mess. However, you almost never need to worry about it.

2.2 SWIG and C++

Hopefully for our purpose, SWIG knows about many C++ language features. The following
sections present SWIG features and their application with Olena.

2.2.1 A first example

For instance, it knows about classes: a SWIG description of a class yields the availability
of this class in the target interpreted language. Here is an example:

Chapter 2: Of SWIG and Swilena principles 5)

e ~
/* oln_window.i */
%module oln_window
YA
#include "oln/basics2d.hh"
hx
namespace oln
{
class window2d
{
window2d () ;
unsigned card() const;
int delta() const;
window2d& add(int, int) ;
};
const window2d& win_c4pQ);
}
N J

This SWIG definition file can be used with Python'® as follows:

unix > swig -c++ -python oln_window.1

unix > g++ -c¢ -fPIC oln_window_wrap.cxx -I/usr/include/python2.2 -Ipath_to_olena
unix > g++ -shared oln_window_wrap.o —o _oln_window.so

unix > python

Python 2.2.2 (#4, Oct 15 2002, 04:21:28)

[GCC 2.95.4 20011002 (Debian prerelease)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> from oln_window import *

>>> w = window2d ()

>>> w.card()

0

>>> w.add(1,1).add(-1,-1)

<C window2d instance at _60bd2a08_p_oln__window2d>

>>> w.delta()

1

>>> w.card()

2

>>> w2 = win_c4p()

>>> w2.card()

5

This example exhibits several key points:
— SWIG knows about class constructors and references and treats them trivially.

— The SWIG description need not follow exactly the strict C++ definition. In the pre-
vious example, the Olena class window2d is far more complex than what is expressed
in the SWIG declaration; however, for a SWIG description to be valid, it only needs
to describe a class more general than the real one.

! for a Python primer, See Chapter 3 [Python Usage|, page 10

Chapter 2: Of SWIG and Swilena principles 6

— Although it is possible to do so, the SWIG description need not express class inheri-
tance.

2.2.2 Operators and class extensions

When the target interpreted language allows overloading arithmetical operators for classes,
SWIG can propagate this C++ feature. However, if it does not, it is needed to provide an
artificial method-like interface to the class operators.

Here is a demonstration:

/* oln_window.i */
%module oln_window
i
#include "oln/basics2d.hh"
#include <sstream>
h}
%include std_string.i // for SWIG to know about std::string
namespace oln
{
class window2d
{
window2d () ;
window2d operator-() const;
// the negation cannot be overload in all interpreted
// languages. Therefore, we create on-the-fly a new
// method in class window2d to call operator- :
%extend {
window2d neg() const
{ return -(*self); }
s
// Similarly, interpreted languages cannot cope
// with C++ iostreams. Therefore, here is a workaround:
hextend {
std::string describe() const
{
std::ostringstream s;
s << xgelf;
return s.str();
}
¥
s
b

The module generated by SWIG can then be used as follows:

unix > python

>>> from oln_window import x*

>>> w = window2d ()

>>> w.add(1,1).add(0,1).describe()

Chapter 2: Of SWIG and Swilena principles 7

YL, 0,11

>>> w2 = -wl

>>> w2.describe()
»[(-1,-1)(0,-1)]°

>>> w2.neg().describe ()
Y[, 0,11

>>>

Here are the key points exhibited by this example:

— When the interpreted language allows so, SWIG understands C++ operator overload-
ing and treats it trivially.

— The %extend SWIG sections allows adding pseudo-methods to interfaced classes. It
can be used to provide function names to C++ operators for interpreted languages
that do no not cope with operator overloading (e.g. Perl).

— When the description file includes ‘std_string.i’, SWIG knows about the C++ stan-
dard type std::string, and knows how to convert it to and from the interpreted

language’s native string type.

2.2.3 SWIG and C++ templates

In addition to function, variables, structures and classes, SWIG knows about templates.
However, because scripting languages do not support templates and template instancia-
tion, information must be provided to SWIG to explain what template instances must be

available to the scripting language.

Here is a demonstration:

Chapter 2: Of SWIG and Swilena principles

~
/* oln_window.i */
Y%module oln_window

A
#include "oln/basics2d.hh"
#include <sstream>

h}
%include std_string.i // for SWIG to know about std::string

namespace oln

{
template <typename T>
class w_window2d

{

w_window2d () ;
window2d& add(int, int, T) ;

unsigned card() const;
T w(unsigned) const;

%hextend {
std: :string describe() const
{
std::ostringstream s;
s << xgelf;
return s.str();

};
}

%template(w_win2d_int) oln::w_window2d<int>;
%template(w_win2d_float) oln::w_window2d<float>;

=

This module allows e.g. the following Python session:

unix > python

>>> from oln_window import x*

>>> w = w_win2d_int ()

>>> w.add(1,1,10).add(0,1,3) .describe()
»[((1,1),10)((0,1),3)]”

>>> w2 = w_win2d_float ()

>>> w2.add(1,1,10.4).add(0,1,3.14) .describe()
’[((1,1),10.5)((0,1),3.14)1°

>>> w2.w(1)

3.1400001049041748

>>>

Here are the key points exhibited by this example:

— SWIG can only wrap template instances. The instantiation must be made explicit.

Chapter 2: Of SWIG and Swilena principles 9

— However, when instantiating a template class, all its methods are instantiated at the
same time.

— Template instances must be given a unique identifier (e.g. w_win2d_int), because
C++ template instance names (e.g. oln::w_window2d<int>) are not valid scripting
type identifiers.

2.2.4 SWIG & C++ gotchas

When using SWIG and C++ sources, the following notes need be taken into consideration.

— SWIG collates all C++ namespaces in the global module namespace. Therefore, be-
ware of wrapped function or class names that appear simultaneously in several names-
paces with different definitions: they are not handled properly by SWIG.

— The C++ parser in SWIG cannot deal with C++ template partial specialization. There-
fore, C++ tricks such as static hierarchies and virtual types cannot be exposed to
SWIG. Consider hiding the static inheritance tree and exposing the most derived
classes instead.

— Families of similar template functions cannot be instantiated with a single SWIG
directive. Use SWIG macros and appropriate naming conventions for this purpose:

~
template<typename T>

void foo(T x);

template<typename T>
void bar(T x);

%define Instantiate_Templates_For (Type)
%template (foo_ ## Type) foo<Type >;
%template (bar_ ## Type) bar<Type >;
%henddef

Instantiate_Templates_For(int);
// yields foo_int and bar_int

Instantiate_Templates_For (float);
// yields foo_float and bar_float

2.3 Olena and SWIG

Chapter 3: Python Usage 10

3 Python Usage

3.1 Starting Python

Start your python interpreter in the usual way:

“/src/swilena/python % python

Python 2.2.2 (#4, Oct 15 2002, 04:21:28)

[GCC 2.95.4 20011002 (Debian prerelease)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>>

The >>> text is the Python standard prompt, where you can enter Python statements.
You can also write Python programs as scripts, using the following script template:

#! /usr/bin/env python

. your program here ...

3.2 Python Basics

Python does not have mandatory statement terminators. Statements end at the end of
the line. However, you can use the semicolon (‘;’) as a command separator.

>>> print "hello"

hello

>>> print "hello"; print "world"
hello

world

Python data types are the integer (signed), the float (C ‘double’), and the character
string. Constants can be expressed intuitively:

>>> print "hello"; print 123
hello

123

>>> 1./3

0.33333333333333331

>>>

Assigning variables is also simple:
>>> i=123
>>> print 1
123
>>> i+=42
>>> 1

165
>>>

There are several forms of loops. The most intuitive are:
>>> k=0

>>> for i in range(0, 10, 1):
k=k+1

>>> print k
45
>>> k=0;1=0

Chapter 3: Python Usage 11

>>> while i < 100:
k=k+i
i+=1

>>> print k
45
>>>

3.2.1 Python Modules

Python is module- and object- oriented. It has a unique scope operator (the period, ‘.”)
to access module components and object methods and attributes.

Modules must be loaded before their functions can be used:

>>> os.getcwd() # FAILS

Traceback (most recent call last):
File "<stdin>", line 1, in 7

NameError: name ’os’ is not defined

>>> import os # load the "os" module

>>> os.getcwd() # OK, access getcwd() in module "os"
’/home/1lrde/stud/raph/src/swilena/python’

>>>

You can import all fields of a module in the global scope, to avoid prefixing function
calls:

>>> from os import *

>>> getcwd() # "os." is not needed anymore
> /home/lrde/stud/raph/src/swilena/python’
>>>

3.2.2 Python Objects

By convention, standard Python Classes have names that start with a capital. This helps
disambiguate class names and module names:

>>> import random
>>> r=random.Random() # call constructor for class Random in module random

As shown in the previous example, constructors have the name of the class, as in C++.
Method calls are also very intuitive:

>>> r.randint (10, 20) # call method "randint" over object r just constructed
17

>>> r.randint (10, 20)

12

3.3 Using Swilena

3.3.1 Fooling around
First, start Python and load the Swilena modules for 2D:
>>> from swilena_image2d import *

If everything succeeds, you can start creating images and saving them. Here is how to
create a random images using the standard Python class ‘Random’ and Olena:

>>> import random;r=random.Random()
>>> i=image2d_u8(10, 10)

Chapter 3: Python Usage 12

>>> for x in range(0, i.ncols(), 1):
for y in range(0, i.nrows(), 1):
i.at(x, y) = r.randint(0,255)

>>>
The previous code creates an empty 2D image using 8-bit unsigned integers to store
pixel values, with a size of 10x10 pixels. It then initalizes all pixels in the image using
loops.
It is then possible to store this image in a file:

>>> i.save("foo.pgm")
1
>>>

The ‘save’ method takes a file name and attemps saving the image with the format
specified as extension. Intuitively, there is also a ‘load’ method:
>>> i.load("lena.pgm")
1
>>> i.at(3,3)
162
>>>

Both ‘load’ and ‘save’ return a boolean set to 1 if the operation succeeded, 0 else.

As demonstrated in the previous example, Swilena images have methods. However,
there are not many:

‘load’ load an image from a file.

‘save’ save the image to a file.

‘at’ return a reference to the indicated pixel.

‘set’ set the value of the indicated pixel.

‘ncols’ return the number of columns in the image. This method is valid for 1D, 2D

and 3D images.

‘nrows’ return the number of rows in the image. This method is only valid for 2D and
3D images.

‘nslices’ return the number of slices of a 3D image.

Also it hasn’t been demonstrated yet, the ‘at’ method is polymorphic, and accepts a
‘point’ instead of coordinates as a pixel location:

>>> i.at(point2d(3, 3))
162
>>>

Algorithms are grouped in corresponding modules. For example, morphological oper-
ators are grouped in the “*morpho’ modules:

>>> import swilena_structelt2d

>>> import swilena_morpho2d

>>> i2=swilena_morpho2d.erosion (i, win_c4p())
>>> i3=swilena_morpho2d.dilation(i, win_c4p())

These function are polymorphic and should work for nearly all image types. Refer to
the following chapter (see Chapter 4 [API Reference|, page 13) for a description of what
are valid calls.

Chapter 4: API Reference 13

4 API Reference

4.1 Pixel Types

Swilena Type C++ Type Description

int_u8 ntg::int_u8 8-bit unsigned integer

int_u32 ntg::int_u32 32-bit unsigned integer

int_s8 ntg::int_s8 8-bit signed integer

int_s32 ntg::int_s32 32-bit signed integer

bin ntg::bin 1-bit value

float_d ntg::float_d double precision float

cplx_rect ntg::cplx<rect, complex number in rectangular
float_d> representation.

cplx_polar ntg::cplx<polar, complex number in polar representation.
float_d>

All pixel types are represented by classes in Swilena.

All pixel types share the following interface:

(default constructor)
Create a default pixel value, typically 0 (or 0,0,0 for rgb).

(constructor from value)
Create a pixel with the specified value.

operator==(pixel), equals(pixel)
Compare the pixel with another.

In addition, scalar (integer, floating) pixel types share the following interface:
val() Get the scalar value of the pixel.

value(integer or float)
Set the value of the pixel.

The module name for these types is swilena.

4.2 Point Types

Here are the ‘point’ and ‘dpoint’ types:

Swilena Type C++ Type
pointld oln::point1d
point2d oln::point2d
point3d oln::point3d
dpointld oln::dpoint1d
dpoint2d oln::dpoint2d
dpoint3d oln::dpoint3d

These classes share the following interface:

(default constructor)
Create a point designating the origin of an image.

(constructor with coordinates)
Create a point designating the specified location.

col(), row(), slice()
Access the coordinates of the point.

Chapter 4: API Reference 14

col(unsigned), row(unsigned), slice(unsigned)
Set the coordinates of the point.

“dpoints” represent distances between points, hence can be added to “points”.
The module names for these types are swilenald, swilena2d and swilena3d.

4.3 Image Types

Here are the image types corresponding to pixel data types:

Swilena Type C++ Type Status
imageld_bin oln::imageld<oln::bin> ready
imageld_u8 oln::imageld<oln::int_u8> ready
imageld_u32 oln::imageld<oln::int_u32> ready
imageld_s8 oln::imageld<oln::int_s8> ready
imageld_s32 oln::imageld<oln::int_s32> ready
imageld_float_d oln::imageld<oln::float_d> ready
image2d_bin oln::image2d<oln::bin> ready
image2d_u8 oln::image2d<oln::int_u8> ready
image2d_u32 oln::image2d<oln::int_u32> ready
image2d_s8 oln::image2d<oln::int_s8> ready
image2d_s32 oln::image2d<oln::int_s32> ready
image2d_float_d oln::image2d<oln::float_d> ready
image3d_bin oln::image3d<oln::bin> ready
image3d_u8 oln::image3d<oln::int_u8> ready
image3d_u32 oln::image3d<oln::int_u32> ready
image3d_s8 oln::image3d<oln::int_s8> ready
image3d_s32 oln::image3d<oln::int_s32> ready
image3d_float_d oln::image3d<oln::float_d> ready

All image types are classes in Swilena.
All images types share the following interface:

(default constructor)
Create an empty image. After calling this constructor, the image does not yet
“exist” and must be (for example) ‘load’ed or ‘convert’ed to.

(constructor with dimensions and border)
Create a blank image with the specified dimensions, and a hidden zone aiming
to serve as a “border” for algorithms.

(constructor with dimensions)
Create a blank image, using a default border width of 2.

at(point)
Access the pixel at ‘point’, which can be of type ‘pointid’, ‘point2d’ or
‘point3d’.

at(dimensions)
Access the pixel at point specified by one, two, or three coordinates.

set (point, value)
Set the value of the pixel at ‘point’.

set (dimensions, value)
Set the value of the pixel at the given coordinates.

Chapter 4: API Reference 15

ncols(), nrows(), nslices()
Retrieve the dimensions of the image.

load(filename), save(filename)
Input/output to files.

The module names for these types are swilena_imageld, swilena_image2d and
swilena_image3d.

4.4 Structural Element types

Here are the structural elements:

Swilena Type C++ Type

window1ld oln::window1ld
window2d oln::window2d
window3d oln::window3d

All these types family share the following interface:

(default constructor)
Create an empty window.

(constructor from size)
Create an empty window with the specified size.

delta() Return the magnitude of the window.

unary operator-(), neg()
Return the symmetric window.

card() Return the number of points defined in the window.
dp(1) Return the i'nth “dpoint” in the window.
has(dpoint)

Return true if the window contains the specified dpoint.

describe ()
Return a string describing the structure of the window.

In addition, members of the “window” family share the following interface:

add (dpoint), add(coordinates)
Add the specified relative point to the window.

inter (other window)
Return the intersection of this window and another.

uni (other window)
Return the union of this window and another.

Here are the corresponding instantiation functions, which have the same name as their
C++ counterpart:

Swilena Name Return Type
win_c2_only() window1ld
win_c2p() window1ld
mk_win_segment(width) windowld
win_c4_only() window2d

win_c4p() window2d

Chapter 4: API Reference

win_c8_only()
win_c8p()

mk_win_rectangle(nrows,ncols)
mk_win_ellipse(yradius,xradius)
mk_win_square(width)
mk_win_disc(radius)

win_c6_only()
win_c6p()
win_c18_only()
win_c18p()
win_c26_only/()
win_c26p()

mk_win_block(nslices,nrows,ncols)
mk_win_ellipsoid (zradius,yradius,xradius)
mk_win_cube(width)

mk_win_ball(radius)

See the documentation of Olena for a description of these functions.

window2d
window2d
window2d
window2d
window2d
window2d

window3d
window3d
window3d
window3d
window3d
window3d
window3d
window3d
window3d
window3d

16

The module names for these types and functions are swilenald, swilena2d and

swilena3d.

4.5 Neighborhood Types
Here are the neighborhoods:

Swilena Type

neighborhood1d
neighborhood2d
neighborhood3d

Neighborhoods behave like windows in regards to their interface.

C++ Type

oln::neighborhood1d
oln::neighborhood2d
oln::neighborhood3d

Here are the corresponding instantiation functions, which have the same name as their

C++ counterpart:

Swilena Name

neighb_c2()

mk_neighb_segment(width)
mk_win_from_neighb(neigh1d)

neighb_c4()

mk_neighb_square(width)
mk_neighb_rectangle(nrows,ncols)
mk_win_grom_neighb(neigh2d)

neighb_c6()
neighb_c18()
neighb_c26()

mk_neighb_block(nslices,nrows,ncols)
mk_neighb_cube(size)
mk_win_from_neighb(neigh3d)

Return Type

neighborhood1d
neighborhood1d

windowld

neighborhood2d
neighborhood2d
neighborhood2d
window2d

neighborhood3d
neighborhood3d
neighborhood3d
neighborhood3d
neighborhood3d
window3d

The module names for these types and functions are swilenald, swilena2d and

swilena3d.

Chapter 4: API Reference 17

4.6 Conversion Functions

An image can be converted into another kind of image if it their types are compatible.
Several conversions are possible: with truncation, with stretching or direct.

The naming scheme is simple, append the name of the destination type to the kind of
conversion. For example, to perform a conversion from an image of int_u32 toward an
image of int_u8 with stretching, use stretch_to_int_u8(your_image_in_int_u32).

Reducing conversions
Stretching (stretch_to) and truncation (bound_to) are available.

Here are the possible reduction conversions:

Source type Destination type
int_u32 int_u8
int_s32 int_s8

Direct conversions

Direct conversions (cast_to) are possible between all scalar types. Some additional con-
versions are possible:

Source type Destination type
bin any scalar type
any integer type bin

The module names for these functions are swilena_conversionsld,
swilena_conversions2d and swilena_conversions3d.

4.7 Morpho Functions

The following morpho functions are available, from their counterpart in the C++
namespaceoln: :morpho:

Swilena

fast_opening(img, win)
fast_closing(img, win)
fast_dilation(img, win)
fast_erosion(img, win)
fast_beucher_gradient (img, win)
fast_internal_gradient(img, win)
fast_external_gradient(img, win)
fast_white_top_hat(img, win)
fast_black_top_hat(img, win)
fast_self_complementary_top_hat(img, win)
fast_thinning(img, win)
fast_thickening(img, win)

opening(img, win)
closing(img, win)
dilation(img, win)
erosion(img, win)
beucher_gradient(img, win)
internal_gradient(img, win)

Chapter 4: API Reference 18

external_gradient(img, win)
white_top_hat(img, win)
black_top_hat(img, win)
self_complementary_top_hat(img, win)
thinning(img, win, win)
thickening(img, win, win)

simple_geodesic_dilation(img, img, neighb)
simple_geodesic_erosion(img, img, neighb)
geodesic_dilation(img, img, neighb)
geodesic_erosion(img, img, neighb)

sure_geodesic_reconstruction_dilation(img, img, neighb)
sequential_geodesic_reconstruction_dilation(img, img, neighb)
vincent_sequential_geodesic_reconstruction_dilation(img, img, neighb)
hybrid_geodesic_reconstruction_dilation(img, img, neighb)
exist_init_dilation(point img, img, win)

sure_geodesic_reconstruction_erosion(img, img, neighb)
sequential_geodesic_reconstruction_erosion(img, img, neighb)
hybrid_geodesic_reconstruction_erosion(img, img, neighb)
exist_init_erosion(point img, img, win)

watershed_seg(img_int, img, neighb)
watershed_con(img-int, img, neighb)
watershed_seg_or(img, img_int, neighb)

FIXME: laplacian and hit_or_miss are missing.

Some of them do not actually work with every image type. The exact list of supported
algorithms for each kind of image should be added to the documentation. This list may
evolve soon between Olena releases though.

The module names for these functions are swilena_morphold, swilena_morpho2d and
swilena_morpho3d.

Chapter 4: Index and Table of contents

Index and Table of contents

(Index is nonexistent)

19

Table of Contents

1 Introduction iiiiinnnnnnnn. 2
1.1 Using Swilena for Olena development 2

2 Of SWIG and Swilena principles 3
2.1 Introduction to SWIG 3
2.1.1 SWIG interface file....... ... 3

2.1.2 The swig commandoiiiuimiiii 3

2.2 SWIG and CH+ .o 4
221 Afirst example 4

2.2.2 Operators and class extensionsc.ooviiiinn... 6

2.2.3 SWIG and C++ templatesoooo ... 7

224 SWIG & C++gotchas 9

2.3 Olena and SWIG 9

3 PythonUsage.............iiiiiiiiiiiiiiiinnnn.. 10
3.1 Starting Python...... ... 10

3.2 Python Basics ... 10
3.2.1 Python Modules 11

3.2.2 Python Objects. 11

3.3 Using Swilena.o 11
3.3.1 Fooling around 11

4 APIReference........... ... 13
4.1 Pixel TYPeS. . oot 13

4.2 Point Types . ..o 13

4.3 Image TyPes. ..o 14

4.4 Structural Element types 15

4.5 Neighborhood Typeso 16

4.6 Conversion Functions........ i 17
Reducing conversionsoouiuiiiin 17

Direct conversions 17

4.7 Morpho Functions.o 17

Index and Table of contentsccvivin.... 19

	Introduction
	Using Swilena for Olena development

	Of SWIG and Swilena principles
	Introduction to SWIG
	SWIG interface file
	The swig command

	SWIG and C++
	A first example
	Operators and class extensions
	SWIG and C++ templates
	SWIG & C++ gotchas

	Olena and SWIG

	Python Usage
	Starting Python
	Python Basics
	Python Modules
	Python Objects

	Using Swilena
	Fooling around

	API Reference
	Pixel Types
	Point Types
	Image Types
	Structural Element types
	Neighborhood Types
	Conversion Functions
	Reducing conversions
	Direct conversions

	Morpho Functions

	Index and Table of contents

