
Swilena
Edition 15 April 2004

Raphaël Poss and Nicolas Burrus

1

This document is intended to describe Swilena, a simplified set of wrappers around the
image processing library Olena.

Chapter 1: Introduction 2

1 Introduction

Swilena aims at providing interpreted languages access to the Olena image software pro-
cessing library. In order to reach this goal, it relies on SWIG to create interfaces to Olena
in different languages.

Swilena is made of three software components:
• SWIG definition files describing Olena,
• SWIG definition files describing Swilena components,
• a source tree able to generate extensions for Python, and hopefully Perl and other

languages.

When compiled for a target interpreted language, the following modules are created:

swilena Contains definitions for pixel types.

swilena image1d, swilena image2d, swilena image3d
Contain definitions for image and point types.

swilena structelt1d, swilena structelt2d, swilena structelt3d
Contain definitions for structural elements.

swilena conversion1d, swilena conversion2d, swilena conversion3d
Contain conversion functions between image types.

swilena morpho1d, swilena morpho2d, swilena morpho3d
Contain morphological operators over images.

swilena arith1d, swilena arith2d, swilena arith3d
Contain arithmetical operators over images.

The primary target language for Swilena is Python, because Python is the best sup-
ported back-end for SWIG. However, the SWIG definition files of Swilena are not bound
to a particular interpreted language: any SWIG target language providing enough expres-
siveness can be used. Ruby modules are defined too, they are not documented here but
they work almost the same way as Python modules. Here are the required features from
the interpreted language:
• It must support overloading. O’Caml is therefore excluded.
• It should support objects. Else all method calls must be transformed into function

calls, and object destruction must be made explicit.
• It must support dynamically loaded modules with dependencies between them.

Typically “ideal” target languages are Python, Ruby, Perl5, Tcl, Scheme.
Currently, the source tree only knows about Python and Ruby, but this may evolve in

the future.

1.1 Using Swilena for Olena development

Obviously, Swilena provides the developer with a programming framework around Olena
that has much shorter development cycles: new algorithms can be tested in Python without
waiting for the compilation of C++ test sources.

Moreover, because compiling Swilena actually means instantiating Olena templates for
a nearly complete Cartesian product of types, the success of the Swilena build process
proves Olena’s completeness.

Chapter 2: Of SWIG and Swilena principles 3

2 Of SWIG and Swilena principles

As already suggested, Swilena and SWIG are closely related. In fact, SWIG is a wrapper
generator, and Swilena is a set of input files for SWIG bundled in a package providing
appropriate ‘Makefile’s to ease their handling.

This section provides some information about SWIG itself and presents the general
guidelines that directed Swilena’s development.

2.1 Introduction to SWIG

The following information is partly taken from the SWIG manual.

The best way to illustrate SWIG is with a simple example. Consider the following C
code: � �

/* File : example.c */

double My_variable = 3.0;

/* Compute n factorial */
int fact(int n) {

if (n <= 1) return 1;
else return n * fact(n-1);

}

/* Compute n mod m */
int my_mod(int n, int m) {

return n % m;
}
 	

Suppose that you wanted to access these functions and the global variable My variable
from Python. You start by making a SWIG interface file as shown below (by convention,
these files carry a .i suffix) :

2.1.1 SWIG interface file� �
/* File : example.i */
%module example
%{
/* Put headers and other declarations here */
%}

extern double My_variable;
extern int fact(int);
extern int my_mod(int n, int m);
 	

The interface file contains ANSI C function prototypes and variable declarations. The
%module directive defines the name of the module that will be created by SWIG. The
%{,%} block provides a location for inserting additional code such as C header files or
additional C declarations.

Chapter 2: Of SWIG and Swilena principles 4

2.1.2 The swig command

SWIG is invoked using the swig command. We can use this to build a Python module
(under Linux) as follows :

unix > swig -python example.i

unix > gcc -c -fPIC example.c example_wrap.c -I/usr/include/python2.2

unix > gcc -shared example.o example_wrap.o -o _example.so

unix > python

Python 2.2.2 (#4, Oct 15 2002, 04:21:28)
[GCC 2.95.4 20011002 (Debian prerelease)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from example import *

>>> fact(4)
24
>>> my_mod(23,7)

2
>>> My_variable + 4.5

7.5
>>>

The swig command produced two new files called ‘example.py’ and ‘example_wrap.c’.
The file ‘example_wrap.c’ should be compiled along with the ‘example.c’ file. Most
operating systems and scripting languages now support dynamic loading of modules. In
our example, our Python module has been compiled into a shared library that can be
loaded into Python. When loaded, Python can now access the functions and variables
declared in the SWIG interface. A look at the file ‘example_wrap.c’ reveals a hideous
mess. However, you almost never need to worry about it.

2.2 SWIG and C++

Hopefully for our purpose, SWIG knows about many C++ language features. The following
sections present SWIG features and their application with Olena.

2.2.1 A first example

For instance, it knows about classes: a SWIG description of a class yields the availability
of this class in the target interpreted language. Here is an example:

Chapter 2: Of SWIG and Swilena principles 5� �
/* oln_window.i */
%module oln_window
%{
#include "oln/basics2d.hh"
%}

namespace oln
{

class window2d
{

window2d();

unsigned card() const;
int delta() const;

window2d& add(int, int) ;
};

const window2d& win_c4p();
}
 	

This SWIG definition file can be used with Python1 as follows:

unix > swig -c++ -python oln_window.i

unix > g++ -c -fPIC oln_window_wrap.cxx -I/usr/include/python2.2 -Ipath_to_olena

unix > g++ -shared oln_window_wrap.o -o _oln_window.so

unix > python

Python 2.2.2 (#4, Oct 15 2002, 04:21:28)
[GCC 2.95.4 20011002 (Debian prerelease)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from oln_window import *

>>> w = window2d()

>>> w.card()

0
>>> w.add(1,1).add(-1,-1)

<C window2d instance at _60bd2a08_p_oln__window2d>
>>> w.delta()

1
>>> w.card()

2
>>> w2 = win_c4p()

>>> w2.card()

5

This example exhibits several key points:

− SWIG knows about class constructors and references and treats them trivially.

− The SWIG description need not follow exactly the strict C++ definition. In the pre-
vious example, the Olena class window2d is far more complex than what is expressed
in the SWIG declaration; however, for a SWIG description to be valid, it only needs
to describe a class more general than the real one.

1 for a Python primer, See Chapter 3 [Python Usage], page 10

Chapter 2: Of SWIG and Swilena principles 6

− Although it is possible to do so, the SWIG description need not express class inheri-
tance.

2.2.2 Operators and class extensions

When the target interpreted language allows overloading arithmetical operators for classes,
SWIG can propagate this C++ feature. However, if it does not, it is needed to provide an
artificial method-like interface to the class operators.

Here is a demonstration:� �
/* oln_window.i */
%module oln_window
%{
#include "oln/basics2d.hh"
#include <sstream>
%}

%include std_string.i // for SWIG to know about std::string

namespace oln
{

class window2d
{

window2d();
window2d operator-() const;

// the negation cannot be overload in all interpreted
// languages. Therefore, we create on-the-fly a new
// method in class window2d to call operator- :
%extend {

window2d neg() const
{ return -(*self); }

};

// Similarly, interpreted languages cannot cope
// with C++ iostreams. Therefore, here is a workaround:
%extend {

std::string describe() const
{

std::ostringstream s;
s << *self;
return s.str();

}
};

};
}
 	

The module generated by SWIG can then be used as follows:

unix > python

>>> from oln_window import *

>>> w = window2d()

>>> w.add(1,1).add(0,1).describe()

Chapter 2: Of SWIG and Swilena principles 7

’[(1,1)(0,1)]’
>>> w2 = -w1

>>> w2.describe()

’[(-1,-1)(0,-1)]’
>>> w2.neg().describe()

’[(1,1)(0,1)]’
>>>

Here are the key points exhibited by this example:

− When the interpreted language allows so, SWIG understands C++ operator overload-
ing and treats it trivially.

− The %extend SWIG sections allows adding pseudo-methods to interfaced classes. It
can be used to provide function names to C++ operators for interpreted languages
that do no not cope with operator overloading (e.g. Perl).

− When the description file includes ‘std_string.i’, SWIG knows about the C++ stan-
dard type std::string, and knows how to convert it to and from the interpreted
language’s native string type.

2.2.3 SWIG and C++ templates

In addition to function, variables, structures and classes, SWIG knows about templates.
However, because scripting languages do not support templates and template instancia-
tion, information must be provided to SWIG to explain what template instances must be
available to the scripting language.

Here is a demonstration:

Chapter 2: Of SWIG and Swilena principles 8� �
/* oln_window.i */
%module oln_window
%{
#include "oln/basics2d.hh"
#include <sstream>
%}

%include std_string.i // for SWIG to know about std::string

namespace oln
{

template <typename T>
class w_window2d
{

w_window2d();

window2d& add(int, int, T) ;

unsigned card() const;
T w(unsigned) const;

%extend {
std::string describe() const
{

std::ostringstream s;
s << *self;
return s.str();

}
};

};
}

%template(w_win2d_int) oln::w_window2d<int>;
%template(w_win2d_float) oln::w_window2d<float>;

 	
This module allows e.g. the following Python session:

unix > python

>>> from oln_window import *

>>> w = w_win2d_int()

>>> w.add(1,1,10).add(0,1,3).describe()

’[((1,1),10)((0,1),3)]’
>>> w2 = w_win2d_float()

>>> w2.add(1,1,10.4).add(0,1,3.14).describe()

’[((1,1),10.5)((0,1),3.14)]’
>>> w2.w(1)

3.1400001049041748
>>>

Here are the key points exhibited by this example:

− SWIG can only wrap template instances. The instantiation must be made explicit.

Chapter 2: Of SWIG and Swilena principles 9

− However, when instantiating a template class, all its methods are instantiated at the
same time.

− Template instances must be given a unique identifier (e.g. w_win2d_int), because
C++ template instance names (e.g. oln::w_window2d<int>) are not valid scripting
type identifiers.

2.2.4 SWIG & C++ gotchas

When using SWIG and C++ sources, the following notes need be taken into consideration.
− SWIG collates all C++ namespaces in the global module namespace. Therefore, be-

ware of wrapped function or class names that appear simultaneously in several names-
paces with different definitions: they are not handled properly by SWIG.

− The C++ parser in SWIG cannot deal with C++ template partial specialization. There-
fore, C++ tricks such as static hierarchies and virtual types cannot be exposed to
SWIG. Consider hiding the static inheritance tree and exposing the most derived
classes instead.

− Families of similar template functions cannot be instantiated with a single SWIG
directive. Use SWIG macros and appropriate naming conventions for this purpose:� �

template<typename T>
void foo(T x);

template<typename T>
void bar(T x);

%define Instantiate_Templates_For(Type)
%template (foo_ ## Type) foo<Type >;
%template (bar_ ## Type) bar<Type >;
%enddef

Instantiate_Templates_For(int);
// yields foo_int and bar_int

Instantiate_Templates_For(float);
// yields foo_float and bar_float

 	
2.3 Olena and SWIG

Chapter 3: Python Usage 10

3 Python Usage

3.1 Starting Python

Start your python interpreter in the usual way:
~/src/swilena/python % python

Python 2.2.2 (#4, Oct 15 2002, 04:21:28)
[GCC 2.95.4 20011002 (Debian prerelease)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

The >>> text is the Python standard prompt, where you can enter Python statements.
You can also write Python programs as scripts, using the following script template:

#! /usr/bin/env python

... your program here ...

3.2 Python Basics

Python does not have mandatory statement terminators. Statements end at the end of
the line. However, you can use the semicolon (‘;’) as a command separator.

>>> print "hello"
hello
>>> print "hello"; print "world"
hello
world

Python data types are the integer (signed), the float (C ‘double’), and the character
string. Constants can be expressed intuitively:

>>> print "hello"; print 123

hello
123
>>> 1./3

0.33333333333333331
>>>

Assigning variables is also simple:
>>> i=123

>>> print i

123
>>> i+=42
>>> i

165
>>>

There are several forms of loops. The most intuitive are:
>>> k=0

>>> for i in range(0, 10, 1):

... k=k+i

...
>>> print k

45
>>> k=0;i=0

Chapter 3: Python Usage 11

>>> while i < 100:

... k=k+i

... i+=1

...
>>> print k

45
>>>

3.2.1 Python Modules

Python is module- and object- oriented. It has a unique scope operator (the period, ‘.’)
to access module components and object methods and attributes.

Modules must be loaded before their functions can be used:
>>> os.getcwd() # FAILS
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: name ’os’ is not defined

>>> import os # load the "os" module
>>> os.getcwd() # OK, access getcwd() in module "os"
’/home/lrde/stud/raph/src/swilena/python’
>>>

You can import all fields of a module in the global scope, to avoid prefixing function
calls:

>>> from os import *

>>> getcwd() # "os." is not needed anymore
’/home/lrde/stud/raph/src/swilena/python’
>>>

3.2.2 Python Objects

By convention, standard Python Classes have names that start with a capital. This helps
disambiguate class names and module names:

>>> import random

>>> r=random.Random() # call constructor for class Random in module random

As shown in the previous example, constructors have the name of the class, as in C++.
Method calls are also very intuitive:

>>> r.randint(10, 20) # call method "randint" over object r just constructed
17
>>> r.randint(10, 20)

12

3.3 Using Swilena

3.3.1 Fooling around

First, start Python and load the Swilena modules for 2D:
>>> from swilena_image2d import *

If everything succeeds, you can start creating images and saving them. Here is how to
create a random images using the standard Python class ‘Random’ and Olena:

>>> import random;r=random.Random()

>>> i=image2d_u8(10, 10)

Chapter 3: Python Usage 12

>>> for x in range(0, i.ncols(), 1):

... for y in range(0, i.nrows(), 1):

... i.at(x, y) = r.randint(0,255)

...
>>>

The previous code creates an empty 2D image using 8-bit unsigned integers to store
pixel values, with a size of 10x10 pixels. It then initalizes all pixels in the image using
loops.

It is then possible to store this image in a file:
>>> i.save("foo.pgm")
1
>>>

The ‘save’ method takes a file name and attemps saving the image with the format
specified as extension. Intuitively, there is also a ‘load’ method:

>>> i.load("lena.pgm")
1
>>> i.at(3,3)

162
>>>

Both ‘load’ and ‘save’ return a boolean set to 1 if the operation succeeded, 0 else.
As demonstrated in the previous example, Swilena images have methods. However,

there are not many:

‘load’ load an image from a file.

‘save’ save the image to a file.

‘at’ return a reference to the indicated pixel.

‘set’ set the value of the indicated pixel.

‘ncols’ return the number of columns in the image. This method is valid for 1D, 2D
and 3D images.

‘nrows’ return the number of rows in the image. This method is only valid for 2D and
3D images.

‘nslices’ return the number of slices of a 3D image.

Also it hasn’t been demonstrated yet, the ‘at’ method is polymorphic, and accepts a
‘point’ instead of coordinates as a pixel location:

>>> i.at(point2d(3, 3))

162
>>>

Algorithms are grouped in corresponding modules. For example, morphological oper-
ators are grouped in the ‘*morpho’ modules:

>>> import swilena_structelt2d

>>> import swilena_morpho2d

>>> i2=swilena_morpho2d.erosion(i, win_c4p())

>>> i3=swilena_morpho2d.dilation(i, win_c4p())

These function are polymorphic and should work for nearly all image types. Refer to
the following chapter (see Chapter 4 [API Reference], page 13) for a description of what
are valid calls.

Chapter 4: API Reference 13

4 API Reference

4.1 Pixel Types

Swilena Type C++ Type Description

int u8 ntg::int u8 8-bit unsigned integer
int u32 ntg::int u32 32-bit unsigned integer
int s8 ntg::int s8 8-bit signed integer
int s32 ntg::int s32 32-bit signed integer
bin ntg::bin 1-bit value
float d ntg::float d double precision float
cplx rect ntg::cplx<rect,

float d>
complex number in rectangular
representation.

cplx polar ntg::cplx<polar,
float d>

complex number in polar representation.

All pixel types are represented by classes in Swilena.
All pixel types share the following interface:

(default constructor)
Create a default pixel value, typically 0 (or 0,0,0 for rgb).

(constructor from value)
Create a pixel with the specified value.

operator==(pixel), equals(pixel)
Compare the pixel with another.

In addition, scalar (integer, floating) pixel types share the following interface:

val() Get the scalar value of the pixel.

value(integer or float)
Set the value of the pixel.

The module name for these types is swilena.

4.2 Point Types

Here are the ‘point’ and ‘dpoint’ types:
Swilena Type C++ Type
point1d oln::point1d
point2d oln::point2d
point3d oln::point3d
dpoint1d oln::dpoint1d
dpoint2d oln::dpoint2d
dpoint3d oln::dpoint3d

These classes share the following interface:

(default constructor)
Create a point designating the origin of an image.

(constructor with coordinates)
Create a point designating the specified location.

col(), row(), slice()
Access the coordinates of the point.

Chapter 4: API Reference 14

col(unsigned), row(unsigned), slice(unsigned)
Set the coordinates of the point.

“dpoints” represent distances between points, hence can be added to “points”.
The module names for these types are swilena1d, swilena2d and swilena3d.

4.3 Image Types

Here are the image types corresponding to pixel data types:
Swilena Type C++ Type Status

image1d bin oln::image1d<oln::bin> ready
image1d u8 oln::image1d<oln::int u8> ready
image1d u32 oln::image1d<oln::int u32> ready
image1d s8 oln::image1d<oln::int s8> ready
image1d s32 oln::image1d<oln::int s32> ready
image1d float d oln::image1d<oln::float d> ready

image2d bin oln::image2d<oln::bin> ready
image2d u8 oln::image2d<oln::int u8> ready
image2d u32 oln::image2d<oln::int u32> ready
image2d s8 oln::image2d<oln::int s8> ready
image2d s32 oln::image2d<oln::int s32> ready
image2d float d oln::image2d<oln::float d> ready

image3d bin oln::image3d<oln::bin> ready
image3d u8 oln::image3d<oln::int u8> ready
image3d u32 oln::image3d<oln::int u32> ready
image3d s8 oln::image3d<oln::int s8> ready
image3d s32 oln::image3d<oln::int s32> ready
image3d float d oln::image3d<oln::float d> ready

All image types are classes in Swilena.
All images types share the following interface:

(default constructor)
Create an empty image. After calling this constructor, the image does not yet
“exist” and must be (for example) ‘load’ed or ‘convert’ed to.

(constructor with dimensions and border)
Create a blank image with the specified dimensions, and a hidden zone aiming
to serve as a “border” for algorithms.

(constructor with dimensions)
Create a blank image, using a default border width of 2.

at(point)
Access the pixel at ‘point’, which can be of type ‘point1d’, ‘point2d’ or
‘point3d’.

at(dimensions)
Access the pixel at point specified by one, two, or three coordinates.

set(point, value)
Set the value of the pixel at ‘point’.

set(dimensions, value)
Set the value of the pixel at the given coordinates.

Chapter 4: API Reference 15

ncols(), nrows(), nslices()
Retrieve the dimensions of the image.

load(filename), save(filename)
Input/output to files.

The module names for these types are swilena image1d, swilena image2d and
swilena image3d.

4.4 Structural Element types

Here are the structural elements:
Swilena Type C++ Type
window1d oln::window1d
window2d oln::window2d
window3d oln::window3d

All these types family share the following interface:

(default constructor)
Create an empty window.

(constructor from size)
Create an empty window with the specified size.

delta() Return the magnitude of the window.

unary operator-(), neg()
Return the symmetric window.

card() Return the number of points defined in the window.

dp(i) Return the i’nth “dpoint” in the window.

has(dpoint)
Return true if the window contains the specified dpoint.

describe()
Return a string describing the structure of the window.

In addition, members of the “window” family share the following interface:

add(dpoint), add(coordinates)
Add the specified relative point to the window.

inter(other window)
Return the intersection of this window and another.

uni(other window)
Return the union of this window and another.

Here are the corresponding instantiation functions, which have the same name as their
C++ counterpart:
Swilena Name Return Type

win c2 only() window1d
win c2p() window1d
mk win segment(width) window1d

win c4 only() window2d
win c4p() window2d

Chapter 4: API Reference 16

win c8 only() window2d
win c8p() window2d
mk win rectangle(nrows,ncols) window2d
mk win ellipse(yradius,xradius) window2d
mk win square(width) window2d
mk win disc(radius) window2d

win c6 only() window3d
win c6p() window3d
win c18 only() window3d
win c18p() window3d
win c26 only() window3d
win c26p() window3d
mk win block(nslices,nrows,ncols) window3d
mk win ellipsoid(zradius,yradius,xradius) window3d
mk win cube(width) window3d
mk win ball(radius) window3d

See the documentation of Olena for a description of these functions.

The module names for these types and functions are swilena1d, swilena2d and
swilena3d.

4.5 Neighborhood Types

Here are the neighborhoods:

Swilena Type C++ Type
neighborhood1d oln::neighborhood1d
neighborhood2d oln::neighborhood2d
neighborhood3d oln::neighborhood3d

Neighborhoods behave like windows in regards to their interface.

Here are the corresponding instantiation functions, which have the same name as their
C++ counterpart:

Swilena Name Return Type

neighb c2() neighborhood1d
mk neighb segment(width) neighborhood1d
mk win from neighb(neigh1d) window1d

neighb c4() neighborhood2d
mk neighb square(width) neighborhood2d
mk neighb rectangle(nrows,ncols) neighborhood2d
mk win grom neighb(neigh2d) window2d

neighb c6() neighborhood3d
neighb c18() neighborhood3d
neighb c26() neighborhood3d
mk neighb block(nslices,nrows,ncols) neighborhood3d
mk neighb cube(size) neighborhood3d
mk win from neighb(neigh3d) window3d

The module names for these types and functions are swilena1d, swilena2d and
swilena3d.

Chapter 4: API Reference 17

4.6 Conversion Functions

An image can be converted into another kind of image if it their types are compatible.
Several conversions are possible: with truncation, with stretching or direct.

The naming scheme is simple, append the name of the destination type to the kind of
conversion. For example, to perform a conversion from an image of int_u32 toward an
image of int_u8 with stretching, use stretch_to_int_u8(your_image_in_int_u32).

Reducing conversions

Stretching (stretch_to) and truncation (bound_to) are available.

Here are the possible reduction conversions:

Source type Destination type

int u32 int u8
int s32 int s8

Direct conversions

Direct conversions (cast_to) are possible between all scalar types. Some additional con-
versions are possible:

Source type Destination type

bin any scalar type
any integer type bin

The module names for these functions are swilena conversions1d,
swilena conversions2d and swilena conversions3d.

4.7 Morpho Functions

The following morpho functions are available, from their counterpart in the C++
namespaceoln::morpho:

Swilena

fast opening(img, win)
fast closing(img, win)
fast dilation(img, win)
fast erosion(img, win)
fast beucher gradient(img, win)
fast internal gradient(img, win)
fast external gradient(img, win)
fast white top hat(img, win)
fast black top hat(img, win)
fast self complementary top hat(img, win)
fast thinning(img, win)
fast thickening(img, win)

opening(img, win)
closing(img, win)
dilation(img, win)
erosion(img, win)
beucher gradient(img, win)
internal gradient(img, win)

Chapter 4: API Reference 18

external gradient(img, win)
white top hat(img, win)
black top hat(img, win)
self complementary top hat(img, win)
thinning(img, win, win)
thickening(img, win, win)

simple geodesic dilation(img, img, neighb)
simple geodesic erosion(img, img, neighb)
geodesic dilation(img, img, neighb)
geodesic erosion(img, img, neighb)

sure geodesic reconstruction dilation(img, img, neighb)
sequential geodesic reconstruction dilation(img, img, neighb)
vincent sequential geodesic reconstruction dilation(img, img, neighb)
hybrid geodesic reconstruction dilation(img, img, neighb)
exist init dilation(point img, img, win)

sure geodesic reconstruction erosion(img, img, neighb)
sequential geodesic reconstruction erosion(img, img, neighb)
hybrid geodesic reconstruction erosion(img, img, neighb)
exist init erosion(point img, img, win)

watershed seg(img int, img, neighb)
watershed con(img int, img, neighb)
watershed seg or(img, img int, neighb)

FIXME: laplacian and hit or miss are missing.
Some of them do not actually work with every image type. The exact list of supported

algorithms for each kind of image should be added to the documentation. This list may
evolve soon between Olena releases though.

The module names for these functions are swilena morpho1d, swilena morpho2d and
swilena morpho3d.

Chapter 4: Index and Table of contents 19

Index and Table of contents

(Index is nonexistent)

i

Table of Contents

1 Introduction . 2
1.1 Using Swilena for Olena development . 2

2 Of SWIG and Swilena principles . 3
2.1 Introduction to SWIG . 3

2.1.1 SWIG interface file . 3
2.1.2 The swig command . 3

2.2 SWIG and C++ . 4
2.2.1 A first example . 4
2.2.2 Operators and class extensions . 6
2.2.3 SWIG and C++ templates . 7
2.2.4 SWIG & C++ gotchas . 9

2.3 Olena and SWIG . 9

3 Python Usage . 10
3.1 Starting Python . 10
3.2 Python Basics . 10

3.2.1 Python Modules . 11
3.2.2 Python Objects . 11

3.3 Using Swilena . 11
3.3.1 Fooling around . 11

4 API Reference . 13
4.1 Pixel Types . 13
4.2 Point Types . 13
4.3 Image Types . 14
4.4 Structural Element types . 15
4.5 Neighborhood Types . 16
4.6 Conversion Functions . 17

Reducing conversions . 17
Direct conversions . 17

4.7 Morpho Functions . 17

Index and Table of contents . 19

	Introduction
	Using Swilena for Olena development

	Of SWIG and Swilena principles
	Introduction to SWIG
	SWIG interface file
	The swig command

	SWIG and C++
	A first example
	Operators and class extensions
	SWIG and C++ templates
	SWIG & C++ gotchas

	Olena and SWIG

	Python Usage
	Starting Python
	Python Basics
	Python Modules
	Python Objects

	Using Swilena
	Fooling around

	API Reference
	Pixel Types
	Point Types
	Image Types
	Structural Element types
	Neighborhood Types
	Conversion Functions
	Reducing conversions
	Direct conversions

	Morpho Functions

	Index and Table of contents

