
Outline

Milena: A Tutorial—Part 1

Milena Team

EPITA Research and Development Laboratory (LRDE)

November 2007

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 1 / 90

Outline

Outline

1 About OLENA and MILENA
What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

2 A Short Tour of C++
Very Basic Notions
References
Inheritance
What a Class Can Contain

3 Genericity in C++
Genericity for Routines
Genericity for Classes

4 Understanding MILENA
First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 2 / 90

Outline

Outline

1 About OLENA and MILENA
What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

2 A Short Tour of C++
Very Basic Notions
References
Inheritance
What a Class Can Contain

3 Genericity in C++
Genericity for Routines
Genericity for Classes

4 Understanding MILENA
First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 2 / 90

Outline

Outline

1 About OLENA and MILENA
What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

2 A Short Tour of C++
Very Basic Notions
References
Inheritance
What a Class Can Contain

3 Genericity in C++
Genericity for Routines
Genericity for Classes

4 Understanding MILENA
First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 2 / 90

Outline

Outline

1 About OLENA and MILENA
What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

2 A Short Tour of C++
Very Basic Notions
References
Inheritance
What a Class Can Contain

3 Genericity in C++
Genericity for Routines
Genericity for Classes

4 Understanding MILENA
First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 2 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

Outline

1 About OLENA and MILENA
What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

2 A Short Tour of C++
Very Basic Notions
References
Inheritance
What a Class Can Contain

3 Genericity in C++
Genericity for Routines
Genericity for Classes

4 Understanding MILENA
First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 3 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

What is OLENA?

OLENA is the name for
the project of building some modern image processing
tools
the platform, including

a library
command line executables
some documentation
etc.

MILENA

MILENA is the C++ image processinga library of OLENA.
aIn the following, IP is “Image Processing” for short.

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 4 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

Yet Another Image Processing Library (YAIPL) ?

Yes!
Many libraries exist that can fulfill one’s needs.
If you’re happy with your favorite tool, we cannot force you
to change for MILENA...
Though, you might have a look at MILENA and be seduced!

No!
MILENA is rather different than available libraries.
A lot of convenient data structures that really help you in
developing IP solutions.

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 5 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

A Short History of the OLENA Project

2000: Start of the project.

From Nov. 2001 to April 2004: Evolution from version 0.1 to 0.10.
The level of genericity we expected from the lib was partially
obtained...

February 2007: Update to conform modern C++ compilers =
version 0.11.

During those 3 years we developed a prototype to experiment with
genericity and to try to meet our objectives.

From June 2007 up to now: Re-writing of the library with a
programming paradigm that rocks.

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 6 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

Illustration of the Evolution

Algorithm:
∀p ∈ D(f), f (p) = h(f (p))

In 2007:
template <typename I, typename H>
void transform inplace(Image<I>& f ,

const Function v2v<H>& h)
{

I& f = exact(f);
const H& h = exact(h);
mln piter(I) p(f.domain());
for all(p)

f(p) = h(f(p));
}

The same code in 2000:
template< typename H,

template< class U > class get A = get value,
typename P = Pred true >

struct transform inplace
{

template< typename I > static
void on(I& f,

P pred = P())
{

H h;
get A< I::value type > access;
I::iterator type iter(f);
for (iter.first(); ! iter.isDone(); iter.next())

if (pred(access(iter())))
access(iter()) = h(access(iter()));

}
};

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 7 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

Outline

1 About OLENA and MILENA
What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

2 A Short Tour of C++
Very Basic Notions
References
Inheritance
What a Class Can Contain

3 Genericity in C++
Genericity for Routines
Genericity for Classes

4 Understanding MILENA
First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 8 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

What’s In a Library

algorithms:
procedures dedicated to image processing and pattern
recognition

data types for pixel values:
e.g., gray level types, color types

data structures:
image types or point set types for instance

auxiliary tools...

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 9 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

MILENA as a Feature List

Generic...
Efficient so that one can process large images.
Almost as easy to use as a C or Java library.
Many tools to help writing readable algorithms in a concise
way.

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 10 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

Genericity

MILENA is generic
Put shortly it works on various types of images.
Algorithms are highly reusable.

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 11 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

Efficiency

MILENA is efficient
Written in C++ without the cost of function calls.
Specialized algorithms are provided.

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 12 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

Easy to Use

MILENA is easy to use
Just slightly more difficult to use than a library in C or Java.
The user mainly write routine calls.

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 13 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

Many Tools

MILENA provides many tools
A maximal amount of work is saved for the user.
Claim: you do not think that IP people are ready to add
tools to a lib.

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 14 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

Outline

1 About OLENA and MILENA
What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

2 A Short Tour of C++
Very Basic Notions
References
Inheritance
What a Class Can Contain

3 Genericity in C++
Genericity for Routines
Genericity for Classes

4 Understanding MILENA
First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 15 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

What Is Needed

A C++ compiler (g++-4 is great and fast).
A browser (e.g., Firefox)
A pdf reader (e.g., kpdf)
Either unzip or (gzip and tar)
A directory to uncompress the MILENA archive.

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 16 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

Installation

1 Get a snapshot of MILENA from the web
http://olena.lrde.epita.fr/

2 Uncompress the archive.
3 Have a look.

For instance:

tegucigalpa% cd
tegucigalpa% mkdir milena
tegucigalpa% cd milena
tegucigalpa% mv /tmp/milena-1.0-alpha.tar.gz .
tegucigalpa% tar zxvf *
tegucigalpa% ls doc
tegucigalpa% ls mln

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 17 / 90

http://olena.lrde.epita.fr/

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

The Main Directories

doc some documentation materials
img few tiny images to play with
demo several examples of what can be done with MILENA

mln the library

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 18 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

MILENA Brief Overview of the Library Contents

In mln:
accu accumulator objects arith arithmetical operators
border routines about virtual border canvas canvases
convert conversion routines core the library core
debug debugging tools display display tools
draw drawing routines estim estimation operators
fun functions geom geometrical routines
histo histogram-related tools io input/output routines
labeling labeling algorithms level point-wise operators on levels
linear linear operators literal definitions of literals
logical logical operators make routines to make objects
math mathematical functions metal static hard-core (metallic) tools
morpho mathematical morphology norm norms and related distances
pw tools to point-wise expressions set mathematical set routines
tag some tags test testing routines
trace tracing helpers trait definitions of traits
util miscellaneous utilities value types of values
win windows

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 19 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

Why Choosing MILENA?

rather different...

a strong potential

you want to focus on what you do,
not on implementation details about how to do it

you have not yet found a library to easily process your
particular types of data

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 20 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

Dev status

alpha
some cleanings remain to be done
an intensive test phase is upcoming...
rough documentation (yet in progress)

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 21 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

The Running Example

A class that represents:
a discrete point of the 2D plane
a node of a square grid
a point of a “classical” 2D image
basically a couple of integer coordinates
namely point2d

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 22 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Outline

1 About OLENA and MILENA
What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

2 A Short Tour of C++
Very Basic Notions
References
Inheritance
What a Class Can Contain

3 Genericity in C++
Genericity for Routines
Genericity for Classes

4 Understanding MILENA
First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 23 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Class v. Object

Class
A class is a type that describes at the same time both data and
behavior.

the data are described by attributes
(equiv.) structure fields of a struct

the behavior is described by methods
(equiv.) procedures/functions attached to the class

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 24 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Object v. Class

Object
An object is an instance of a class.

the object data are a set of values: the state of the object

the object behavior is what happens at run-time when a
method is called on that particular object

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 25 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Getting an Object

Constructor
A constructor is a special method to instantiate a class / to get
an object.

it allows initializing the state of this object

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 26 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Example

point2d is a class
p is a variable that represents a point object
this variable designates one particular 2D point
at a given couple of coordinates: row and column.

point2d p(5,1); // construction of an object
std::cout << p << std::endl; // print this object on the std output

gives: (5,1)

meaning that p represents the point of the 2D grid located at
row 5 and column 1.

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 27 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Accessing the State of an Object

data are usually protected / hidden from the user
reading and modifying them is performed through method
calls

Here is a call to the method row() defined in the point2d class:
std::cout << p.row() << std::endl; // gives: 5

p is the object targeted by the method call: we want to print the
row of this particular point.

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 28 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Methods are just like C functions!

The previous example is just the C++ equivalent of this C code:
#include <stdio.h>

struct point2d {
int row, col;

};

int get row(struct point2d p) {
return p.row;

}

int main() {
struct point2d p;
printf(”%d\n”, get row(p));
return 0;

}

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 29 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Modifying the State of an Object (1/2)

modifying an object is performed through method calls:
p.row() = 7; // method call
std::cout << p.row() << std::endl; // now gives 7

the C equivalent of this method would be:
void set row(struct point2d∗ p, int r) {

assert(p != 0);
p−>row = r;

}

int main() {
struct point2d p;
set row(&p, 7);
return 0;

}

note that p.row() = 7 looks more natural than set row(&p, 7).

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 30 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Modifying the State of an Object (2/2)

accessing and modifying through method calls allow for some
control:

one cannot do anything with an object
especially putting it in an invalid state

imagine that ima is a 3×3 image (starting from (0,0))
trying to access the image value at point p, like with:
std::cout << ima(p) << std::endl; // remind that p is at a row 7...

will hopefully produce an error at run-time!

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 31 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Operators

In C++ some operators can be re-defined to get a high
expressiveness in client code.

“ima(p)” is a call to the parenthesis operator defined as a
method in every image class

that’s great, an image looks like a function from points to
values

2 * p calls a multiplication operator defined as a procedure
(function):

this way one can easily use arithmetics over points
the result is a 2D point which coordinates are twice those of
p

Operators are very convenient!

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 32 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Outline

1 About OLENA and MILENA
What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

2 A Short Tour of C++
Very Basic Notions
References
Inheritance
What a Class Can Contain

3 Genericity in C++
Genericity for Routines
Genericity for Classes

4 Understanding MILENA
First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 33 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Reference v. Pointer

A reference looks like a pointer, yet:
without the pointer notations

no need to take the address (with &) of an object
no pointer arithmetics
no − > to access members

it always designates the same object
one can reuse a pointer and make it points elsewhere,
that’s not the case for a reference
it is like a “constant pointer”
“int*const”, not “int*”
it has to be initialized

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 34 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Example (1/2)

This C program:
void set row(point2d∗ p, int r) {

p−>row = r;
}
// used with:
point2d p;
set row(&p, 7);

can be re-written as:
void set row(point2d& p, int r) {

p.row = r; // no “− >” here
}
// used with:
point2d p;
set row(p, 7);

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 35 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Example (1/2)

and this one:
int get row(point2d p) { // copy of a point at procedure call

return p.row;
}

is better written as:
int get row(const point2d& p) {

return p.row;
}
// used with:
point2d p;
int i = get row(p);

which avoids the copy of a point at function call.

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 36 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

References rock!

Realize that with:
class point2d {
public:

int& row() { return row ; }
// ...

private:
int row , col ;

};

one can write:
point2d p;
p.row() = 5;

so it really performs p.row = 5

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 37 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

A few Remarks

the attribute row of the class point2d is not accessible from
the user

thanks to the keyword private
writing p.row outside this class is not allowed (does not
compile)

the method row() is accessible (keyword public)
in the method body we have some room to add code
a simple access to data can perform some clever stuff that
you do not really have to know (neither want to)!

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 38 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Outline

1 About OLENA and MILENA
What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

2 A Short Tour of C++
Very Basic Notions
References
Inheritance
What a Class Can Contain

3 Genericity in C++
Genericity for Routines
Genericity for Classes

4 Understanding MILENA
First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 39 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

The “Is-A” Relationship

Inheritance
The inheritance between classes maps the “is-a” relationship.

For instance, since we can say that a rabbit is an animal:
it is safe to make the rabbit class inherits from the animal

one
we also say that:

rabbit derives from animal

animal is a base class for rabbit

In C++ we write:
class animal { ... };
class rabbit : public animal { ... };

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 40 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Using the “Is-A” Relationship

When one wants to have a procedure to feed an animal, one
can write:
void feed(animal& a) {

...
}

then the following use is valid
int main() {

rabbit r;
feed(r); // works fine since a rabbit “is-an” animal
...

}

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 41 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

One Object but Several Variables and Types (1/2)

Considering only the feed routine:
void feed(animal& a) {

...
}

we can say that:
the variable a can represent an object being of any type
deriving from animal

it may be a rabbit

yet we do not really know!
it might be a sheep instead...

This routine is general since it can work on objects of different
types.

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 42 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

One Object but Several Variables and Types (2/2)

Now considering the entire program, with:
int main() {

rabbit r;
feed(r); // first call
sheep s;
feed(s); // another call

}

the variable r represents an object whose type precisely
rabbit

we say that it is the exact type behind this variable
for the first call to feed, we know that a represents a rabbit

during this execution, the exact type of a is rabbit

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 43 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Static type

Static type
A variable is declared with one type.
This type can be read in the code; it is known at
compile-time.
For instance, in “animal& a”: a is an animal.

The variable type is said to be the static type.

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 44 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Exact type

Exact type
A variable represents an object.
Its static type can be a base class (like in “animal& a”)
In that case

at compile-time: there are many possible types of objects
represented
at run-time: there is one object represented so just one
type.

At run-time, the type of the object behind a variable is said to be
the exact type.

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 45 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

A Clue to Understand MILENA

About “classical” object-orientation:

abstractions (like animal) lead to poor performance at
run-time when involved in intensive scientific code.
it is due to the fact that the exact type is lost
(the virtual keyword has an effective cost)

The clue:

genericity leads to dedicated code, thus it is efficient at
run-time
though we really want abstractions!

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 46 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Outline

1 About OLENA and MILENA
What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

2 A Short Tour of C++
Very Basic Notions
References
Inheritance
What a Class Can Contain

3 Genericity in C++
Genericity for Routines
Genericity for Classes

4 Understanding MILENA
First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 47 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Methods and Attributes

class point2d {
public:

point2d(int r, int c) { // constructor
row = r; col = col;

}
int& operator[](unsigned i) {

assert(i < 2);
return i == 0 ? row : col ;

}
int row() const { return row ; }
int& row() { return row ; }
// ...

private:
int row , col ;

}

Sample use:
point2d p(5, 1);
assert(p[0] == p.row());

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 48 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Values and Typedefs

class point2d
{
public:

enum { dim = 2 }
typedef int coord;
// ...

}

Sample use:
std::cout << point2d::dim << std::endl; // gives 2
point2d::coord c; // c is an int

At first glance, that seems weird to equip this class with dim and coord (but is is not!)

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 49 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Very Basic Notions
References
Inheritance
What a Class Can Contain

Associated Types

Associated Type
A typedef (type alias) defined in a class (e.g., coord in point2d) is
called an “associated type.”

We have defined macros to access those types:
given a type T, mln something(T) gives the associated type
something defined in T

example of use: mln coord(point2d)

we can see mln coord like a function that takes a type and
returns a type

mln something(T) is for a template d piece of code,
whereas mln something (T) is for a non-template d code

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 50 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Genericity for Routines
Genericity for Classes

Outline

1 About OLENA and MILENA
What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

2 A Short Tour of C++
Very Basic Notions
References
Inheritance
What a Class Can Contain

3 Genericity in C++
Genericity for Routines
Genericity for Classes

4 Understanding MILENA
First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 51 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Genericity for Routines
Genericity for Classes

About Naming

we say a C or C++ user says
attribute a field (C) or member (C++)

procedure function
method a member function

In the following:

routine
A routine designates either a procedure (function) or a method
(a member function).

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 52 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Genericity for Routines
Genericity for Classes

A rationale for Genericity

Suppose that you want a routine that computes twice its input:
int twice(int i) { return 2 ∗ i; }

Suppose now that you want the “twice” operation to work also
with values of type float.

you can rely on overloading
that is the ability of defining several versions of a function

having the same name
but different signatures

Precisely, you write:
int twice(int i) { return 2 ∗ i; }
float twice(float f) { return 2 ∗ f; }

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 53 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Genericity for Routines
Genericity for Classes

Overloading is Limited

This code is quite poor:

it is redundant
tedious to write (copy-paste, many lines at the end)
thus error-prone

it is still limited to int and float

so it is not re-usable!
understand that “twice” should be able to work with point2d

too

Nevertheless overloading is great; think of operator*...

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 54 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Genericity for Routines
Genericity for Classes

We Want Genericity

Actually

for every type T, twice a value t of type T returns 2 * t which is
of type T

So this procedure definition looks like
// ...
T twice(T t) {

return 2 ∗ t;
}

except that we have to say first what T is:
template <typename T>
T twice(T t) {

return 2 ∗ t;
}

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 55 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Genericity for Routines
Genericity for Classes

Syntax of Genericity

In template <typename T> T twice(T t)

the declaration “<typename T>” is very similar to the one of
the procedure argument “(T t)”
the nature of t is T, the nature of T is typename (so it
designates a type)
the C++ keyword introducing a generic piece of code is
template

it can be read as “for all” (the universal quantifier ∀)
so you read here: “for all <type T>, we have...”
the definition (symbolized by “...”) follows a classical C++
syntax

yet the major difference is that:
t is valued at run-time, whereas T is valued at compile-time

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 56 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Genericity for Routines
Genericity for Classes

Use of a Generic Procedure

With
int main() {

int i = 1;
int j = twice(i); // Calls twice with T being int
float pi = 3.14;
float two pis = twice(pi); // Calls another “version” of twice with T being float

}

Once this program is compiled
two different versions of twice cohabits:

int twice(int t) return 2 * t; and
float twice(float t) return 2 * t;

so it is not so different than overloading
except that:

this generic definition of twice is reusable

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 57 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Genericity for Routines
Genericity for Classes

Generic Procedures and Reusability

Precisely
the generic definition of a procedure is written once
and is possibly usable in a large number of different
versions

If the client wants to write this kind of use:
point2d p(2,3), pp;
pp = twice(p);
std::cout << pp << std::endl; // writes (4,6)

it also works!

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 58 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Genericity for Routines
Genericity for Classes

Exercise

Consider this mathematical parameterized function:

∀a ∈ Z, fa :

{
R → R
x 7→ cos(ax)

how can it be translated in C++?
how can a call to such a function work?

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 59 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Genericity for Routines
Genericity for Classes

Outline

1 About OLENA and MILENA
What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

2 A Short Tour of C++
Very Basic Notions
References
Inheritance
What a Class Can Contain

3 Genericity in C++
Genericity for Routines
Genericity for Classes

4 Understanding MILENA
First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 60 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Genericity for Routines
Genericity for Classes

A First Generic Class

We want to define a class to represent couples of values,
whatever their respective type is; it gives:
template <typename T1, typename T2>
struct pair {

T1 first;
T2 second;

};

A sample use is:
pair<float, int> c;
c.first = 3.14, c.second = 3;

Another possible use is:
pair<bool, point2d> c;
c.first = true, c.second = p;

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 61 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

Genericity for Routines
Genericity for Classes

Exercise

Consider this:
template <typename T1, typename T2>
struct pair
{

template <typename S>
void operator∗=(S scalar)
{

first ∗= scalar;
second ∗= scalar;

}
T1 first;
T2 second;

};

explain what you see
then write a program to use this class

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 62 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Forewords (1/2)

We want some arithmetics over points:
a “delta-point” is a difference between two points
a point + (plus) a delta-point gives a point
the addition (resp. subtraction) of a couple of delta-points
gives a delta-point.

For instance
point2d p(4, −1);
dpoint2d dp(1, 2); // dpoint is “delta-point” for short
std::cout << (p + dp) << std::endl; // gives (5, 1)

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 63 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Forewords (2/2)

Our objectives:

write the operator+ (resp. ’-’) routine corresponding to

“a point2d + a dpoint2d 7→ a point2d”

understand that we actually want:

“any point P + a compatible dpoint D 7→ a point P”
for instance with P and D being respectively point3d and dpoint3d

make different versions of operators cohabit...

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 64 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Outline

1 About OLENA and MILENA
What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

2 A Short Tour of C++
Very Basic Notions
References
Inheritance
What a Class Can Contain

3 Genericity in C++
Genericity for Routines
Genericity for Classes

4 Understanding MILENA
First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 65 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Overloading

point2d operator+(const point2d& p, const dpoint2d& dp)
{

point2d q(p.row() + dp.row(), p.col() + dp.col());
return q;

}
point3d operator+(const point3d& p, const dpoint3d& dp)
{

point3d q;
for (unsigned i = 0; i < 3; ++i) q[i] = p[i] + dp[i];
return q;

}

What do you think of that?

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 66 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

A Solution with Genericity

template <typename P, typename D>
P operator+(const P& p, const D& dp)
{

P q;
for (unsigned i = 0; i < P::dim; ++i)

q[i] = p[i] + dp[i];
return q;

}

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 67 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Continuing with Genericity

Now the subtraction:
template <typename P>
? operator−(const P& p1, const P& p2)
{

? dp;
for (unsigned i = 0; i < P::dim; ++i)

dp[i] = p1[i] − p2[i];
return dp;

}

What shall we write instead of the question mark?

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 68 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Solution

template <typename P>
mln dpoint(P) operator−(const P& p1, const P& p2)
{

mln dpoint(P) dp;
for (unsigned i = 0; i < P::dim; ++i)

dp[i] = p1[i] − p2[i];
return dp;

}

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 69 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Make Things Better

In the addition:
template <typename P, typename D>
P operator+(const P& p, const D& dp)
{

P q;
// accessing the dimension is really useful:
for (unsigned i = 0; i < P::dim; ++i)

q[i] = p[i] + dp[i];
return q;

}

How can we ensure that the delta-point type D really
corresponds to P? (we really do not want P and D resp. being point3d and

dpoint2d!)

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 70 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Solution

template <typename P>
P operator+(const P& p, const mln dpoint(P)& dp)
{

...
}

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 71 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Cohabitation is Hard

Consider:
template <typename D>
D operator+(const D& dp1, const D& dp2) {

... // addition of a couple of delta-points
}

template <typename I>
I operator+(const I& ima1, const I& ima2) {

... // addition of a couple of images
}

What is the problem? (Hint: read both signatures out loud)

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 72 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Outline

1 About OLENA and MILENA
What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

2 A Short Tour of C++
Very Basic Notions
References
Inheritance
What a Class Can Contain

3 Genericity in C++
Genericity for Routines
Genericity for Classes

4 Understanding MILENA
First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 73 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

“Classical” Object-Orientation

In “classical” OO programming (OOP), we would write:
Dpoint operator+(const Dpoint& dp1, const Dpoint& dp2) {

... // addition of a couple of delta-points
}

Image operator+(const Image& ima1, const Image& ima2) {
... // addition of a couple of images

}

which is clearly not ambiguous (but slow at run-time...)
where Dpoint and Image are abstract classes.

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 74 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Between OOP and Genericity

Can we try to mix OOP and Generic Programming (GP)?

That is, getting something between:
Dpoint operator+(const Dpoint& dp1, const Dpoint& dp2) {

...
}

and
template <typename D>
D operator+(const D& dp1, const D& dp2) {

...
}

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 75 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

MILENA Paradigm

Yes:
template <typename D>
D operator+(const Dpoint<D>& dp1, const Dpoint<D>& dp2) {

...
}

here dp1 is a delta-point (Dpoint) of type D

it is not ambiguous at compile-time
it is efficient at run-time

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 76 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Reading a MILENA Signature of Routine

template <typename D>
D operator+(const Dpoint<D>& dp1, const Dpoint<D>& dp2) {

...
}

The operator+ takes a couple of Dpoint of type D and returns the
same type.

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 77 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Outline

1 About OLENA and MILENA
What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

2 A Short Tour of C++
Very Basic Notions
References
Inheritance
What a Class Can Contain

3 Genericity in C++
Genericity for Routines
Genericity for Classes

4 Understanding MILENA
First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 78 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Reading Again

In MILENA:

when we have something like “Point<P>& p”
it means that p is actually a point of type P

For instance, if the type of p is point2d, then “another” type for p
is Point<point2d>.
So

in “Point<P>& p”, P is the exact type of p
a type of point P derives from the abstraction Point<P>

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 79 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Conclusion

More generally:

Abstractions and Exact Types
When a concrete class T is related to an abstraction named
Abstraction, then T derives from Abstraction<T>.
Every abstraction in MILENA has exactly one parameter, which
represents its exact type.

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 80 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Examples

the class derives from (“is a”)

point2d Point< point2d >

point3d Point< point3d >

image2d<float> Image< image2d<float> >

image3d<int> Image< image3d<int> >

win::rectangle Window< win::rectangle >

box2d Point Set< box2d >

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 81 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Excerpts from MILENA

namespace level
{

template <typename I, typename J>
void paste(const Image<I>& data, Image<J>& destination);

}

namespace morpho
{

template <typename I, typename W>
mln concrete(I) erosion(const Image<I>& input, const Window<W>& win);

}

namespace convert
{

template <typename S>
array p<mln point(S)> to array p(const Point Set<S>& pset);

}

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 82 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Outline

1 About OLENA and MILENA
What is MILENA?
Features of the MILENA Library
Getting Started with MILENA

2 A Short Tour of C++
Very Basic Notions
References
Inheritance
What a Class Can Contain

3 Genericity in C++
Genericity for Routines
Genericity for Classes

4 Understanding MILENA
First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 83 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

A Hierarchy

We have dpoint2d

template <typename E>
class Dpoint
{};

class dpoint2d : public Dpoint< dpoint2d >
{
public:

int& operator[](unsigned i);
...

};

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 84 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

A Troubleshooting

This routine is almost (so not) correct:
template <typename D>
D operator+(const Dpoint<D>& dp1, const Dpoint<D>& dp2)
{

D dp;
for (unsigned i = 0; i < D::dim; ++i)

dp[i] = dp1[i] + dp2[i];
// above: dp[i] is OK
// but dp1[i] and dp2[i] do not compile!

return dp;
}

because the operator[]

is defined in concrete classes like dpoint2d

but not in the abstract class Dpoint<dpoint2d>

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 85 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

The exact Routine

This updated routine works fine:
template <typename D>
D operator+(const Dpoint<D>& dp1 , const Dpoint<D>& dp2)
{

const D& dp1 = exact(dp1); // Cast to the exact type.
const D& dp2 = exact(dp2);
D dp;
for (unsigned i = 0; i < D::dim; ++i) dp[i] = dp1[i] + dp2[i];
return dp;

}

Exact
The “exact” routine allows getting a variable with the exact type
of an object.

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 86 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Remember about Genericity

When this routine is called with dpoint2d objects, then the
compiled version is this one:
dpoint2d operator+(const Dpoint<dpoint2d>& dp1 , const Dpoint<dpoint2d>& dp2)

and its definition is finally:
{

dpoint2d dp;
dp[0] = dp1[0] + dp2[0];
dp[1] = dp1[1] + dp2[1];
return dp;

}

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 87 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Conclusion

This routine:

is generic
it works for any delta-point type

is fast, you cannot get more efficient code

is user-friendly, just write “dp1 + dp2” to add a couple of delta-points

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 88 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Exercise 1

Explain the code below:
template <typename I>
void set(const Image<I>& ima , const mln point(I)& p, const mln value(I)& v)
{

const I& ima = exact(ima);
ima(p) = v;

}

What do have we in image classes?

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 89 / 90

About OLENA and MILENA

A Short Tour of C++
Genericity in C++

Understanding MILENA

First Attempts
MILENA Programming Paradigm
How does it Work
From Abstractions to Exact Types

Exercise 2

Explain the code below:
template <typename I, typename H>
void oper(Image<I>& f , const Function v2v<H>& h)
{

I& f = exact(f);
const H& h = exact(h);
mln piter(I) p(f.domain());
for all(p)

f(p) = h(f(p));
}

What do have we in image classes?

Milena Team Milena: A Tutorial—Part 1 EPITA-LRDE 2007 90 / 90

	Outline
	Main Talk
	About Olena and Milena
	What is Milena?
	Features of the Milena Library
	Getting Started with Milena

	A Short Tour of C++
	Very Basic Notions
	References
	Inheritance
	What a Class Can Contain

	Genericity in C++
	Genericity for Routines
	Genericity for Classes

	Understanding Milena
	First Attempts
	Milena Programming Paradigm
	How does it Work
	From Abstractions to Exact Types

