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Abstract
The Skolem problem is a long-standing open problem in linear dynamical systems: can a linear
recurrence sequence (LRS) ever reach 0 from a given initial configuration? Similarly, the positivity
problem asks whether the LRS stays positive from an initial configuration. Deciding Skolem (or
positivity) has been open for half a century: The best known decidability results are for LRS with
special properties (e.g., low order recurrences). On the other hand, these problems are much easier
for “uninitialized” variants, where the initial configuration is not fixed but can vary arbitrarily:
checking if there is an initial configuration from which the LRS stays positive can be decided by
polynomial time algorithms (Tiwari in 2004, Braverman in 2006).

In this paper, we consider problems that lie between the initialized and uninitialized variant.
More precisely, we ask if 0 (resp. negative numbers) can be avoided from every initial configuration
in a neighborhood of a given initial configuration. This can be considered as a robust variant
of the Skolem (resp. positivity) problem. We show that these problems lie at the frontier of
decidability: if the neighborhood is given as part of the input, then robust Skolem and robust
positivity are Diophantine-hard, i.e., solving either would entail major breakthrough in Diophantine
approximations, as happens for (non-robust) positivity. Interestingly, this is the first Diophantine-
hardness result on a variant of the Skolem problem, to the best of our knowledge. On the other hand,
if one asks whether such a neighborhood exists, then the problems turn out to be decidable in their
full generality, with PSPACE complexity. Our analysis is based on the set of initial configurations
such that positivity holds, which leads to new insights into these difficult problems, and interesting
geometrical interpretations.
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51:2 On Robustness for the Skolem and positivity problems

1 Introduction

A linear recurrence relation (LRR) is a relation un+κ =
∑κ−1
j=0 aj ·un+j for all n, κ ∈ N, κ ≥ 1,

defined by a tuple of non-negative, rational coefficients (a0, . . . , aκ−1) . Given the first κ
entries of the recurrence u0, . . . uκ−1 (called the initial configuration), the LRR uniquely
defines an infinite sequence (un)n∈N, called a Linear Recurrence Sequence (LRS). The Skolem
problem asks, given an LRS, i.e., a recurrence relation and an initial configuration, whether
the sequence ever hits 0, i.e. does there exist n ∈ N with un = 0. The positivity problem is a
variant where the question asked is whether for all n ∈ N, un ≥ 0. Both these problems have
applications in software verification, probabilistic model checking, discrete dynamic systems,
theoretical biology, economics.

While the statements seem simple, the decidability of these problems remains open since
their introduction in the 1930’s. Only partial decidability results are known, e.g., when the
dimension is <5 [29]. For a subclass of LRS called simple, positivity is decidable for order
<10 [23]. On top of the inability to provide an algorithm to decide Skolem or positivity in
the general case, the authors of [24] prove an important hardness result: solving positivity
would entail a major breakthroughs in Diophantine approximations. More precisely, one
would be able to approximate the type of many transcendental numbers t, i.e., how close one
can approximate t with rational numbers with small denominators.

This hardness result contrasts with positive results obtained for relaxations of the problems.
First, the continuous relaxation, where instead of considering discrete steps for the recurrence,
Chonev et al [13] considers a continuous process, and some corresponding questions turn out
to be decidable subject to Schanuel’s Conjecture. Second, instead of considering a fixed initial
configuration, [28, 12] consider every possible configuration as initial, i.e., they ask if there
exists an initial configuration starting from which ensures that all entries of the sequence
remain positive (this is sometimes called the uninitialized positivity problem). Surprisingly
they show that this problem can be decided in PTIME. More recently, this result has been
extended to processes with choices [5].

In this paper, we consider a natural variant that lies between the hard question of fixed
initial configuration [24], and the easy question when the initial configuration is totally
unconstrained [28, 12]. More precisely, we ask whether starting from an initial configuration
in a neighborhood, all entries of the recurrence sequence remain positive (we call this the
robust positivity problem) or away from zero (we call this the robust Skolem problem). An
immediate question that arises is whether the neighborhood is part of the input or not
and it turns out that this has a significant impact on decidability, as we discuss next. Our
motivation to look at these problems comes from their role in capturing a powerful and
natural notion of robustness, where the exact initial configuration cannot be fixed with
arbitrarily high precision (which is often the case with real systems).

Since we need to tackle multiple initial configurations, we reason about the set of initial
configurations from which positivity holds, which is sufficient to answer robustness questions.
For that, we revisit the usual algebraic equations in a more graphical manner, which forms
the crux of our approach. This allows us to reinterpret and generalize the hardness result of
[23], giving our first main contribution: if the neighborhood is given as a fixed ball, then
the problems remain hard: both robust Skolem and robust positivity are Diophantine-hard.
Interestingly, this holds regardless of whether the ball is open or closed.

We then turn to the problems where the ball is not fixed, and ask if there exists a radius
ψ > 0 such that 0 or negative numbers can be avoided from every initial configuration in
the ψ ball around a given initial configuration. Our second main contribution is to show



S. Akshay, H. Bazille, B. Genest and M. Vahanwala 51:3

that this robust version of the Skolem and positivity problems are both decidable in full
generality, with PSPACE complexities.
Related work. As mentioned earlier, the Skolem problem and its variants have received a
lot of attention. Given the hardness of these problems, ε-approximate solutions have been
considered, e.g., in [9, 1] with different definitions of approximations. In comparison with
our work, these are designed towards allowing approximate model checking. More recently
the notion of imprecision in Skolem and related problems was considered in [6, 15]. In [6],
the authors consider rounding functions at every step of the trajectory. In [15], the so called
Pseudo-Skolem problem is defined, where imprecisions up to ε are allowed at every step of
the trajectory, which is shown to be decidable in PTIME. These are quite different from
our notion of robustness, which faithfully considers the trajectories generated from a ball
representing ε-perturbations around the initial configuration. Lastly, [22] considers real
numbers as input (instead of rational numbers). This allows one to consider the set of initial
configurations for which decidability of Skolem is not known, and show that this set has
Lebesgue measure 0.

2 Preliminaries

Let κ be any non-negative integer (which will be used to denote the order of the LRS). Let
c,d be two vectors of Rκ that can be seen as one dimensional matrices of Rκ×1. The distance
between c,d is defined as ||c− d|| =

√
(c− d)T (c− d), the standard L2 distance. In this

paper, we will consider two norms on vectors: the first is the standard L2 norm ||c||. The
second is size(c), denoting the size of its bit representation i.e., number of bits needed to
write down c (for complexity). We use the same notation for scalar constants with size(a)
denoting the number of bits to represent a real/rational constant a. An algebraic number α
is a root of a polynomial p with integer coefficients. It can be represented uniquely [20] by a
4-tuple (p, a, b, r) as the only root of p at distance < r of a + ib, with a, b, r ∈ Q (also see
Appendix 8.1). We define size(α) as the size of the bit representation of (p, a, b, r).

2.1 Linear Recurrence Sequences
We start by defining linear recurrence relations and sequences over rationals.

▶ Definition 1. A linear recurrence relation (un)n∈N of order κ is specified by a tuple of
coefficients a = (a0, . . . , aκ−1) ∈ Qκ. Given an initial configuration c = (c0, . . . , cκ−1) ∈ Qκ,
the LRR uniquely defines a linear recurrence sequence (LRS henceforth), which is the sequence
(un(c))n∈N, inductively defined as uj(c) = cj for j ≤ κ− 1, and

un+κ(c) =
κ−1∑
j=0

ajun+j(c) for all n ∈ N

The companion matrix associated with the LRR/LRS (it does not depend upon the initial
configuration c) is:

M =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
a0 a1 a2 . . . aκ−1
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The characteristic polynomial of the LRR/LRS is Xκ −
∑κ−1
j=0 ajX

j. The LRS is said to be
simple if every root of the characteristic polynomial has multiplicity one. The size s of the
LRS is the size of its bit representation and is given by s =

∑κ−1
j=0 (size(aj) + size(cj)).

Notice that given an initial configuration c ∈ Qκ, we have that Mnc = (un(c), . . . , un+κ−1(c)).
Reasoning in the κ dimensions (un, . . . , un+κ−1) is a very useful technique that we will use
throughout the paper as it displays the LRR as a linear transformation M.

The characteristic roots of an LRR/LRS are the roots of its characteristic polynomial,
and also the eigenvalues of the companion matrix. Let γ1, . . . , γr ∈ C be the characteristic
roots of the LRR/LRS. An eigenvalue γi is called dominant if it has maximal modulus
|γi| = maxj≤r |γj |, and residual otherwise. For all j ≤ r, γj is algebraic and size(γj) = sO(1).
We denote by mj the multiplicity of γj . We have

∑r
j=1 mj = κ.

▶ Proposition 2 (Exponential polynomial solution [16]). Given an initial configuration c, there
exists a unique tuple of coefficients (αij(c))i≤r,j<mr

such that for all n,

un(c) =
r∑
i=1

mr−1∑
j=0

αij(c)nj
 γni

The coefficients αij(c) can be solved for from the initial state c [17]. It is implicit in
the solution that for all i, j, both αij and 1

αij
are algebraic with values and norms upper

bounded by 2sO(1) . A formal proof of this claim can be found in [2, Lemmas 4, 5, 6].
If the LRS is simple, then by definition mi = 1 for all i, and un =

∑r
i=1 αi(c)γni , with

αi(c) linear in c, ie αi(λc + λ′c′) = λαi(c) + λ′αi(c′).

▶ Example 3. Consider the Linear Recurrence Relation of order 6 with a = (−1, 4,−8, 10,−8, 4),
i.e. un+6 = 4un+5 − 8un+4 + 10un+3 − 8un+2 + 4un+1 − un. The roots of the characteristic
polynomial are 1, ei2πθ, e−i2πθ, with θ = 1

3 , each with multiplicity 2, and all dominant
(they have the same modulus 1). The exponential polynomial solution is of the form
un(c) = z(c)n+ z′(c) + (x(c)n+ x′(c))ei2πnθ + (y(c)n+ y′(c))e−i2πnθ. As un(c) is real, we
must have that x(c), y(c) are conjugates, as well as x′(c), y′(c), and thus:

un(c) = z(c)n+ z′(c) + 2(Re(x(c))n+Re(x′(c))) cos(2πnθ) + 2(Im(x(c))n+ Im(x′(c))) sin(2πnθ)

2.2 Skolem and positivity problems
▶ Definition 4 (Skolem problem). Let (un)n∈N an LRR and c ∈ Qκ. The Skolem problem is
to determine if there exists n ∈ N such that un(c) = 0. The positivity (resp. strict positivity)
problem is to determine if for all n ∈ N, un(c) ≥ 0 (resp. un(c) > 0).

In this work, we will be more interested in the complement problem of Skolem: namely,
whether un(c) ̸= 0 for all n. This is of course equivalent in terms of decidability, but this
formulation is more meaningful in terms of robustness, where we want to robustly avoid 0.

The famous Skolem-Mahler-Lech theorem states that the set {i | ui(c) = 0} is the union
of a finite set F and finitely many arithmetic progressions [27, 18, 8]. These arithmetic
progressions can be computed but the hard part lies in deciding if the set F is empty:
although we know that there is N such that for all n > N , n /∈ F , we do not have an effective
bound on this N in general. The Skolem problem has been shown to be decidable for LRS of
order up to 4 [21, 29] and is still open for LRS of higher order. Also, only an NP-hardness
bound is known if the order is unrestricted [10, 3].

For simple LRS, positivity has been shown to be decidable up to order 9 [23]. In [25],
it is proved that positivity for simple LRS is hard for co∃R, the class of problems whose
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complements are solvable in the existential theory of the reals. A last result, from [24],
shows the difficulty of positivity, linking it to Diophantine approximation: how close one can
approximate a transcendental number with a rational number with small denominator. We
will follow the reasoning from [24]. The Diophantine approximation type of a real number x
is defined as:

L(x) = inf
{
c ∈ R |

∣∣∣x− n

m

∣∣∣ < c

m2 , n,m ∈ Z
}

As mentioned in [24], the Diophantine approximation type of most transcendental numbers
is unknown. Let A = {p+ qi ∈ C | p, q ∈ Q \ {0}, p2 + q2 = 1}, i.e., the set of points on the
unit circle of C with rational real and imaginary parts, excluding 1,−1, i and −i. The set A
consists of algebraic numbers of degree 2, none of which are roots of unity [24]. In particular,
writing p+ qi = 2i2πθ = (−1)2θ, we have that θ /∈ Q [24]. We denote:

T =
{
θ ∈ (−1/2, 1/2] | e2πiθ ∈ A

}
As argued in [24], the set T is dense in (− 1

2 ,
1
2 ], and is made only of transcendental

numbers. In general, we don’t have a method to compute L(θ) for θ ∈ T (or approximate it
with arbitrary precision):

▶ Definition 5. We say that a problem is T -Diophantine hard if its decidability entails that
for all θ ∈ T and ε > 0, one can compute a number ℓ such that |ℓ− L(θ)| ≤ ε.

Remarkably, in [24], it is shown that if one can solve the positivity problem in general,
then one can also approximate L(θ). That is,

▶ Theorem 6. [24] Positivity for LRS of order 6 is T -Diophantine hard.

3 Robust Skolem and Robust Positivity

Both Skolem and Positivity consider a single initial configuration c. In this article, we
investigate the notion of robustness, that is, whether the property is true in a neighborhood
of c, which is important for real systems, where setting c with an arbitrary precision is not
possible. We will consider two variants. The first one fixes the neighborhood as a ball Bψ of
radius ψ > 0 around an initial configuration c, while the second one asks for the existence of
an ψ > 0 such that for every initial configuration in Bψ, the respective condition is satisfied.

▶ Definition 7 (Robustness for Skolem and Positivity). Let (un)n∈N be a linear recurrence
relation (specified by the coefficient a ∈ Qκ), and c ∈ Qκ an initial configuration.

Given ψ > 0, the robust Skolem (resp. robust positivity) problem is to determine if
for all c′ with ||c′ − c|| < ψ (open balls), or ||c′ − c|| ≤ ψ (closed balls), we have un(c′) ̸= 0
(resp. un(c′) ≥ 0) for all n ∈ N.

The ∃-robust Skolem (resp. ∃-robust positivity) problem is to determine if there exists
ψ > 0 such that for all ||c′ − c|| < ψ we have un(c′) ̸= 0 (resp. un(c′) ≥ 0) for all n ∈ N.

Notice that we do not consider explicitly the case of closed balls for ∃-robust Skolem (resp.
positivity), because there exists an open ball of radius ψ > 0 for which robust Skolem (resp.
positivity) holds iff there exists a closed ball of radius ψ′ > 0 (e.g. ψ′ = ψ

2 ) for which it holds.
Our main results investigate the decidability and complexity of these problems.

▶ Theorem 8. Robust Skolem and robust positivity are T -Diophantine hard, even restricted
to recurrence relations of order 6 for open or closed balls of rational radius ψ.

STACS 2022
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Our first result means that uninitialized positivity really needs the initial configuration
to take a value possibly anywhere in the space rather than in a fixed neighborhood to obtain
decidability via [28, 12]. We remark that Diophantine-hardness is known for the non-robust
variant of positivity [24], but to the best of our knowledge, it was not known for any variant
of the Skolem problem.

Surprisingly, by relaxing the neighborhood to be as small as desired, one obtains decidab-
ility in full generality, as stated by our second main result:

▶ Theorem 9. ∃-robust Skolem and ∃-robust positivity are decidable in PSPACE.

The main difference between our techniques and several past works (except [4] which
is restricted to eigenvalues being roots of unity) is as follows: given an LRR (un)n∈N, our
intuition and proofs hinge on representing the set P of initial configurations d from which
positivity holds. Formally:

P = {d ∈ Rk | un(d) ≥ 0 for all n ∈ N}.

We may note that the set P is convex. To see this, observe that for d, d′ ∈ P , for all
α, β > 0 with α+ β = 1, we have αd + βd′ ∈ P as un(αd + βd′) = αun(d) + βun(d′) ≥ 0
for all n. We also remark that a definition similar to P is possible for the set S of initial
configurations from which 0 is avoided. But it turns out that that set is much harder to
represent (e.g., it is not convex in general). Using P surprisingly suffices to deal with robust
Skolem as well.

In Section 4, we provide the geometric intuitions behind our ideas as well as set up the
notations for the proofs of the above theorems. We exploit the geometric intuitions from
Section 4 in Section 5, to prove Theorem 8 and in Section 6, to prove Theorem 9.

4 Geometrical representation of an LRR for Diophantine-hardness

We will show that, as for the non-robust variant, hardness starts at order 6. Hence, in this
section and the next, we will focus on a particular LRR of order κ = 6, sufficient for the
proof of hardness, i.e. Theorem 8. In Section 6, we will generalize some of the constructions
explored here to obtain decidability of ∃-robust Skolem.

Let θ ∈ T , i.e. ei2πθ = p+ qi ∈ A, with both p, q rational and p2 + q2 = 1. We want to
approximate L(θ) (indeed this is the problem that is “Diophantine-hard”). Consider the
Linear Recurrence Relation of order 6 defined by a = (−1, 4p+ 2,−(4p2 + 8p+ 3), 8p2 + 8p+
4,−(4p2 + 8p + 2), 4p + 2). The roots of the characteristic polynomial are 1, ei2πθ, e−i2πθ,
each with multiplicity 2, and all dominant (they have the same modulus 1). Example 3
is a particular case of this a, with p = 1

2 = cos(π3 ). However, notice that θ = 1
3 /∈ T as it

corresponds to q = sin(π3 ) =
√

3
2 /∈ Q. Now, since un(c) is a real number for any n and real

initial configuration c, we can write the exponential polynomial solution in the form:

un(c) = zdom(c)n−xdom(c)n cos(2πnθ)−ydom(c)n sin(2πnθ)+zres(c)−xres(c) cos(2πnθ)−yres(c) sin(2πnθ)

The coefficients zdom(c), xdom(c), ydom(c) and zres(c), xres(c), yres(c) are associated with
the initial configuration c of the LRS. In the following, we reason in the basis of vectors
−−→zdom,−−−→xdom,

−−→ydom,−−→zres,−−→xres,−−→yres, as the geometrical interpretation is simpler in this basis. We
will eventually get back to the original coordinate vector basis at the end of the process.
From e.g., [17, Section 2], we know that we can transform from one basis to the other using
an invertible Matrix C with C · c = (zdom(c), xdom(c), ydom(c), zres(c), xres(c), yres(c)).

We study the positivity of un by studying the positivity of vn = un

n , for all n ≥ 1. We
denote vdomn (zdom, xdom, ydom) = zdom − xdom cos(2πnθ) − ydom sin(2πnθ), which we call
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−−→zdom

(0, . . . , 0)
Hyperplane H1

Figure 1 Visual representation of the cone P(0,0,0).

the dominant part of vn, while we denote vresn (zres, xres, yres) = 1
n (zres − xres cos(2πnθ)−

yres sin(2πnθ)), which we call the residual part of vn. The residual part tends towards 0
when n tends towards infinity because of the coefficient 1

n .

4.1 High-Level intuition and Geometrical Interpretation
We provide a geometrical interpretation of set P . We cannot characterize it exactly, even
in this particular LRR of order κ = 6 (else we could decide positivity for this case which is
known to be Diophantine hard). To describe P , we define its “section” over (zdom, xdom, ydom)
given (zres, xres, yres):

P(zres,xres,yres) = {(zdom, xdom, ydom) | vn(zdom, xdom, ydom, zres, xres, yres) ≥ 0 for all n}

It suffices to characterize P(zres,xres,yres) for all (zres, xres, yres) in order to characterize P ,
as P = {(zdom, xdom, ydom, zres, xres, yres) | (zdom, xdom, ydom) ∈ P(zres,xres,yres)}. Among
these sets, one is particularly interesting: P(0,0,0), as it is the set of tuples (zdom, xdom, ydom)
such that vdomn (zdom, xdom, ydom) ≥ 0 for all n ∈ N. Our reason for focussing on this
representation of P is three-fold. First, unlike P , the set P(0,0,0) can be characterized exactly,
as a cone depicted in Figure 1 (this will be formally shown in Lemma 10 below). Second,
the set P(zres,xres,yres) is in 3 dimensions that we can represent more intuitively than a
6 dimensional set. Last but not least, we can show that P(zres,xres,yres) ⊆ P(0,0,0) for all
(zres, xres, yres) (Lemma 12).

On the other hand, we also consider a related set in 6 dimensions:

Pdom = {(zdom, xdom, ydom, zres, xres, yres) | ∀n, vdomn (zdom, xdom, ydom)) ≥ 0},

We note that P(0,0,0) is the projection of Pdom over the 3 dimensions (zdom, xdom, ydom). Also,
characterizing P(0,0,0) is sufficient to characterize Pdom as (zdom, xdom, ydom, zres, xres, yres) ∈
Pdom iff (zdom, xdom, ydom) ∈ P(0,0,0). As P(zres,xres,yres) ⊆ P(0,0,0) for all (zres, xres, yres),
we have P ⊆ Pdom.

We are now ready to represent P(zres,xres,yres) given some value (zres, xres, yres). We can
interpret P(zres,xres,yres) in terms of half spaces: P(zres,xres,yres) =

⋂∞
m=1 H

+
m(zres, xres, yres),

with H+
m(zres, xres, yres) = {(zdom, xdom, ydom) | vm(zdom, xdom, ydom, zres, xres, yres)) ≥ 0}.

The half space H+
m(zres, xres, yres) is delimited by hyperplane

Hm(zres, xres, yres) = {(zdom, xdom, ydom) | vm(zdom, xdom, ydom, zres, xres, yres)) = 0}

which is a vector space (cos(2πmθ) and sin(2πmθ) are constant when m is fixed).

STACS 2022
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Figure 2 Sections of P(0,0,0) (in black) and P(zres,xres,yres) (in dashed red), carved out by
hyperplanes (Hi) (in black) and (Hi(zres, xres, yres)) (in red) respectively.

Consider the case of (zres, xres, yres) = (0, 0, 0). We denote H+
m = H+

m(0, 0, 0) and
Hm = Hm(0, 0, 0) for all m. For instance, H0 = {(zdom, xdom, ydom) | zdom = xdom}, as
vdom0 (zdom, xdom, ydom) = zdom − xdom.

Let Mdom be the matrix associated with LRS (vdomn )n∈N. We have Hm = MdomHm−1 =
Mm

domH0. We characterize Mdom in Lemma 11 as a rotation around −−→zdom of angle −2πθ,
which allows to characterize Hm as the hyperplane which is the rotation of H0 of angle 2mπθ
around −−→zdom. That is, the cone shape for P(0,0,0)is obtained by cutting away chunk of the
3D space delimited by hyperplanes (Hm), the rotation 2nπθ being dense in [−π, π].

Coming back to some value (zres, xres, yres) ̸= (0, 0, 0), we have that the hyperplane
Hn(zres, xres, yres) is parallel to the hyperplane Hn (which is tangent to the cone P(0,0,0)),
because for Hn of the form uzdom+vxdom+wydom = 0, we have Hn(zres, xres, yres) is defined
by {(zdom, xdom, ydom) | uzdom+vxdom+wydom = C}, for C = zres+xres cos(2πnθ)+yres sin(2πnθ)

n

a constant as n is fixed.
Thus, with this idea in mind, we can visualize P(zres,xres,yres) as depicted in Figure 2,

using P(0,0,0) and the hyperplanes Hn(zres, xres, yres) parallel to Hn, with an explicit bound
on the distance from Hn(zres, xres, yres) to Hn, which further tends towards 0 as n tends
towards infinity. Next, we formalize the above intuition/picture into lemmas.

4.2 Characterization of P(0,0,0) and representing P(zres,xres,yres)

We now formalize some of the ideas in the above subsection. First, we start with Lemma 10
which shows that P(0,0,0) describes a cone, as displayed on Figure 1.

▶ Lemma 10. P(0,0,0) = {(zdom, xdom, ydom) | zdom ≥
√
x2
dom + y2

dom}.

Proof. We have cos(2πnθ)2 + sin(2πnθ)2 = 1 and cos(2πnθ) is dense in [−1, 1] as θ /∈ Q. De-
note X = cos(2πnθ), and study the function f(X) = xdomX + ydom

√
1−X2. Its derivative

is f ′(X) = xdom − ydomX√
1−X

√
1+X . We have f ′(X) = 0 iff X = X0 = xdom√

x2
dom

+y2
dom

. This gives

a maximum for f(X0) = x2
dom+y2

dom√
x2

dom
+y2

dom

=
√
x2
dom + y2

dom. Thus, for all (zdom, xdom, ydom) with

zdom ≥
√
x2
dom + y2

dom, we have zdom ≥ max(f(X)) and vn((zdom, xdom, ydom, zres, xres, yres) ≥
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zdom − f(X) ≥ 0 for all n. On the other hand, if zdom <
√
x2
dom + y2

dom, then there ex-
ists n such that f(cos(2πnθ)) is arbitrarily close to max f(X) > zdom, and in particular
vn = zdom − f(cos(2πnθ)) < 0. ◀

We show in Appendix 8.2 the following lemma which states the linear function Mdom

associated with the LRR (vdomn )n∈N is actually a rotation of angle −2πθ.

▶ Lemma 11. Mdom(zdom, xdom, ydom) = (zdom, xdom cos(2πθ)+ydom sin(2πθ), ydom cos(2πθ)−
xdom sin(2πθ)), that is Mdom is a rotation around axis −→z of angle −2πθ.

Finally, the following lemma implies that P ⊆ Pdom.

▶ Lemma 12. For all zres, xres, yres, we have P(zres,xres,yres) ⊆ P(0,0,0).

Proof. We use the following simple but important observation. Let (un)n∈N be an LRS
where all roots have modulus 1, i.e., each root is of the form γ = eiθ, with distinct values of
θ. Let uj be the jth element of the LRS, with j ∈ N. Then for all ε,N , there exists n > N

with |un − uj | < ε. That is, for each value visited, the LRS will visit arbitrarily close values
an infinite number of times. This is the case in particular of vdomn .

Now, assume for contradiction that there is a configuration (zdom, xdom, ydom) in P(zres,xres,yres)\
P(0,0,0). Since (zdom, xdom, ydom) /∈ P(0,0,0), there exists m with vdomm (zdom, xdom, ydom) < 0.
We let ε = |vdom

m (zdom,xdom,ydom)|
3 and N such that for all n > N , |vresn | < ε (because it

converges towards 0 when n tends towards infinity). From the above observation, we obtain
an n > N such that |vdomn (zdom, xdom, ydom)− vdomm (zdom, xdom, ydom)| < ε. Thus:

vn(zdom, xdom, ydom, zres, xres, yres) < vdomn (zdom, xdom, ydom) + vresn (zres, xres, yres)
< vdomm (zdom, xdom, ydom) + ε+ ε < 0

A contradiction with (zres, xdom, ydom) ∈ P(zres,xres,yres). ◀

5 Proof of Theorem 8

5.1 Intuition for hardness of (robust) positivity
Consider a vector d = (zdom, xdom, ydom, zres, xres, yres) on the surface of Pdom, that is,
(zdom, xdom, ydom) ∈ P(0,0,0). Consider the subset of P(0,0,0) which consists of points whose
first coordinate zdom is the same as that of d. For all n, let en be the point of this section
where hyperplane Hn is tangent to P(0,0,0). Let τ be the angle made between the center b of
the section, e0 and d. Hence, e0 is at angle 0 and en at angle 2πnθ mod 2π. We depict this
pictorially in Figure 3.

We have that un(d) ≥ 0 for all n iff d is in the intersection of all half spaces defined by
Hi(zres, xres, yres). As 2πnθ mod 2π is dense in [0, 2π), for all β > 0, there is a n such that
en is at angle αn ∈ [τ − β, τ + β], hence Hn will be ε-close to d. To know whether d is in
the half space defined by Hn(zres, xres, yres), we need to compare the distance ε between
Hn and d, with the value of n. If the value of n is too large, then the distance between
Hn(zres, xres, yres) and Hn is smaller than ε, and d is in the half space H+

n (zres, xres, yres).
In other words, for (un(d))n∈N not to be positive, n needs to be both small enough and

such that 2πnθ mod 2π is close to τ . This is similar to L(θ) being small, as shown in Lemma
13.

Now, for robust positivity (Theorem 8), we consider a ball B entirely in Pdom, tangent to
the surface of Pdom only on point d. The ball will be positive iff the curvature of the ball is
steeper than the curvature from hyperplanes Hn(zres, xres, yres)n∈N around d, as shown in
Lemma 14. This will correspond again to computing L(θ), thus showing hardness.
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Figure 3 Representation of a section of P(0,0,0), with hyperplanes H0, H10 being represented.

5.2 Formalizing the proof for closed balls and robust positivity
In this section, we formalize the intuition given above, in the case of a closed ball and for
robust positivity. We will extend this to the full proof of Theorem 8 in the next subsection.

We start by picking L(θ) = inf(c ∈ R | |θ − k
n | ≤

c
n2 , k, n ∈ N \ {0}), i.e., L(θ) =

inf(c ∈ R | |2πnθ − 2πk| ≤ 2πc
n , k, n ∈ N \ {0}). Denoting L+(θ) = inf(c ∈ R | 2πnθ

mod 2π ≤ 2πc
n , n ∈ N) and L−(θ) = inf(c ∈ R | | − 2πnθ mod 2π| ≤ 2πc

n , n ∈ N), we get
L(θ) = min(L+(θ), L−(θ)).

We show how to ε-approximate L+(θ) in the following, using an oracle for robust positivity,
following ideas in [24]. To compute some ℓ that is ε-close to L+(θ) for a given ε > 0, we
perform a binary search on ℓ. An old observation of Dirichlet shows that every real number
has Diophantine approximation type at most 1. Further, L(θ) ≥ 0 by definition. So, for the
binary search, we start with a lower bound ℓmin = 0 and an upper bound ℓmax = 1. For
ℓ := ℓmin+ℓmax

2 , we want to know if ℓ ≥ L+(θ)− ε (and then we set ℓmin := ℓ) or whether
ℓ ≤ L+(θ) + ε (and then we set ℓmax := ℓ). Approximating L−(θ) is done in a symmetric
way, and L(θ) can be approximated accordingly.

For an interval I of N, we denote L+
I (θ) = inf(c ∈ R | 2πnθ mod 2π ≤ 2πc

n , n ∈ I). For
instance, we have L+

N (θ) = L+(θ). We will denote > n1 for the interval I = {n1+1, n1+2, . . .}.

Let ε > 0 and ℓ be a guess to check against L+(θ). Consider the closed ball Bℓψ of
radius

√
2ψ, centered at c = (2 + ψ, 2− ψ, 0, 0, 0, 2πℓ), with ψ < 1

3 and ψ < πℓ. Notice that
d = (2, 2, 0, 0, 0, 2πℓ) ∈ Bℓψ, on its surface, as ||c − d|| =

√
2ψ. The ball Bℓψ is entirely in

Pdom (see Lemma 20 in Appendix 8.3, which is not necessary for the rest of the proofs, it
is a sanity check because of Lemma 12). Further, the surface of the ball is tangent to the
surface of Pdom in d as 22 = 4 = (2 + 0)2 satisfies the equation of Lemma 10. In other words,
this the only point where the ball Bℓψ intersects the surface of Pdom.

We first explain the relationship between the positivity of (un(d)) and L(θ), which is the
crux of the proof of Theorem 6 by [24].

▶ Lemma 13. There is a computable n1 > 0 such that for all n2 ≥ n1, we have (un(d))n>n2

positive implies L+
>n2(θ) > ℓ− ε and (un(d))n>n2 not positive implies L+

>n2(θ) < ℓ+ ε.

Proof. Let αn = 2πnθ mod 2π ≥ 0. Considering the Taylor development for αn > 0 close
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to 0 of (1− cos(αn)) and sin(αn), we get un(d) = 2
2α

2
n− 2πℓαn

n +f(αn), with f(αn) = O(α3
n).

We have un(d) ≤ 0 iff 2πℓαn

n is larger than α2
n(1 + f(αn)

α2
n

), that is iff αn ≤ 2πℓ
n(1+ f(αn)

α2
n

)
.

There exists a value α0 > 0 such that αn < α0 implies 1− ε
ℓ ≤

1
(1+ f(αn)

α2
n

)
≤ 1 + ε

ℓ . That

is, if un(d) ≤ 0 and αn < α0, then L+(θ) ≤ ℓ+ ε. Let n0 = ⌊ πℓ
1−cos(α0)⌋+ 1. As | sin(α)| ≤ 1,

if αn > α0, then for all n > n0, un(d) > 2(1− cos(α0))− 2πℓ 1−cos(α0)
πℓ = 0 is positive. We

define n1 = max(n0, ⌊ 2π(ℓ−ε)
α0

⌋+ 1).
That is, if un(d) ≤ 0 with n > n1, then n > n0 and αn < α0, and thus L+

>n1(θ) ≤ ℓ+ ε.
Otherwise, for all n > n1, we have un(d) is positive and 2πnθ mod 2π > ℓ− ε. Thus we

have L+
>n1(θ) ≥ ℓ− ε. ◀

The ball Bℓψ is chosen to have the following crucial Lemma to approximate L+(θ):

▶ Lemma 14. If L+(θ) ≥ ℓ+ ε, there exists an explicitly computable ψ such that un(d′) ≥ 0
for all n > n1 and all d′ ∈ Bℓψ, for the n1 from Lemma 13.

The proof of Lemma 14 uses Lemmas 10, 11 and the description of Hn(zres, xres, yres) as
parallel and at a bounded distance to Hn.

Proof. Let e = (2 + ψ + z′
dom, 2− ψ + x′

dom, ydom, zres, xres, 2πℓ+ y′
res) ∈ Bℓψ, and use the

same notation λ1, λ2, λ3 as in the proof of Lemma 20. We write λ3 = cos(β), and we get
x′
dom =

√
2 cos(β)λ2λ1ψ and y′

dom =
√

2 sin(β)λ2λ1ψ.
Consider the Circle Cdom, section of P(0,0,0) over −−−→xdom,−−→ydom for zdom = 2 +ψ+ z′

dom. It is
of diameter 2+ψ+z′

dom. Let α the angle (bd′,be) with b = (2+ψ+z′
dom, 0, 0, zres, xres, 2πℓ+

y′
res) and d′ = (2 + ψ + z′

dom, 2 + ψ + z′
dom, 0, zres, xres, 2πℓ+ y′

res).
Consider r the distance between b and e. We have cos(α) = 2−(1−

√
2 cos β|λ2|λ1)ψ
r . Hence

x ≥ 2 − ψ ≥ 1. We also have sinα =
√

2|λ2|λ1ψ sin β
r ≤ ψ. Thus α is small wrt 1, and

r = 2−(1−
√

2 cos β|λ2|λ1)ψ
cos(α) = (1 +O(α2))(2− (1−

√
2 cosβ|λ2|λ1)ψ).

We want to know whether e is in P(zres,xres,2πℓ+y′
res). It is not the case iff there exists an

half space H+
n (zres, xres, 2πℓ+y′

res) such that e /∈ H+
n (zres, xres, 2πℓ+y′

res). Take n with nθ
mod 2π < α. As L+(θ) ≥ ℓ+ ε, we have n > 2π(ℓ+ε)

α > 2πℓ
α . That is, the remainder for this

Figure 4 Representation of B in the section over −−−→xdom,−−→ydom at height ℓ = 2 +ψ+ z′
dom over −−→zdom.
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α is bounded by ψ
√

2−2λ2
1

n + 2πℓ
n sinα < α(sinα+ ψ

√
2−2λ2

1
2πℓ ). The diameter of the Cdom circle

is 2 + ψ + z′
dom. By Lemma 10 and the description of Hn(zres, xres, yres) as parallel to Hn,

characterized by Lemma 11, and at a distance from Hn which we can effectively bound for
all n ∈ N, we obtain that if r is smaller than 2 + ψ ±

√
2
√

1− λ2
2λ1ψ − α(sinα+ ψ

√
2−2λ2

1
2πℓ ),

then e is in P(zres,xres,2πℓ+y′
res).

That is, we want 2+ψ±
√

2
√

1− λ2
2λ1ψ−α(sinα+ ψ

√
2−2λ2

1
2πℓ )−r = ψ(2±

√
2
√

1− λ2
2λ1−

√
2 cosβ|λ2|λ1)−α

√
2−2λ2

1
2πℓ ))+O(α2) > 0. Now remark that |

√
2
√

1− λ2
2λ1ψ+

√
2 cosβ|λ2|λ1| ≤

λ1(
√

2 + 2 cos2 β). And also |λ1(
√

2 + 2 cos2 β) + α
ψ
√

2−2λ2
1

2πℓ )| ≤
√

2 + 2 cos2 β + α2 ψ2

πℓ , ap-
plying twice the same reasoning as in the proof of Lemma 15.

We now prove that we have ψ(1− cos2 β) = ψ sin2 β dominates any O(α2) for ψ small,
i.e., we prove that for any f = O(α2), we have f

ψ(sin2 β) tends to 0 as ψ tends to 0. In
particular, for all ψ small enough, the fraction is below 1, i.e., (sin2 β)ψ > f . We have
(sin2 β)ψ ≥ r2 sin2(α)

ψ ≥ sin2(α)
ψ as r ∈ [1, 3]. This indeed dominates any function O(α2), as

α
sinα is bounded in [−π2 ,

π
2 ]. In particular, sin2 β > α2 ψ2

2πℓ ) for ψ small enough.

Now, we write
√

2 + 2 cos2 β + α2 ψ2

πℓ = 2
√

1− 1
2 (sin2 β − α2 ψ2

2πℓ ) ≤ 2(1 − 1
4 (sin2 β −

1
4α

2 ψ2

2πℓ )) using the Taylor development of
√

1− r, and the fact that (sin2 β − α2 ψ2

2πℓ ) > 0
because ψ is small enough. Thus, we obtain ψ(2−2(1− 1

4 (sin2 β))+O(α2) = ψ
4 (sin2 β)+O(α2),

which is positive for ψ small enough, and e is in P(zres,xres,2πℓ+y′
res).

Notice that the function in O(α2) is well defined and well known, and thus Ψ small
enough can be effectively computed. ◀

Let us explain why these two Lemmas suffice, provided that we have an oracle for ψ-robust
positivity, to answer either L+(θ) ≤ ℓ + ε or L+(θ) ≥ ℓ − ε, which proves Theorem 8 for
robust positivity and closed balls. Intuitively, if the ball Bℓψ is positive, then in particular
(un(d)) is positive since d ∈ Bℓψ and we have L+

>n1(θ) > ℓ− ε by Lemma 13. Otherwise, the
ball is not positive and Lemma 14 shows that L+(θ) < ℓ+ ε, granted that the radius of the
ball is small enough.

Proof of Theorem 8 for robust positivity and closed balls. Let ε > 0. Assume that an ℓ

has been fixed, such that we want to know either L+(θ) < ℓ + ε or L+(θ) > ℓ − ε. First,
we fix ψ given by Lemma 14. We remark that Bℓψ corresponds to a ball in the coordinates
(zdom, xdom, ydom, zres, xres, yres) (which are not necessarily orthonormal), not in the original
coordinates (v0, v1, v2, v3, v4, v5). Taking the transformation from the latter to the former,
which is a linear operator H, the ball Bℓψ corresponds to an ovaloid O in the original
coordinates. We can explicitly define a ball B′ ⊆ O in the original coordinates, with d ∈ B′.
Notice that we can choose B′ with an arbitrarily small radius, so in particular we can choose
this radius to be rational without loss of generality.

We first compute L+
≤n1

(θ), which is easy as it only involves a bounded number of indices
n. If L+

≤n1
(θ) < ℓ+ ε, then we know L+(θ) ≤ L+

≤n1
(θ) < ℓ+ ε and we stop.

Otherwise L+
≤n1

(θ) ≥ ℓ + ε, and we check whether un(d′) ≥ 0 for all n > n1 and all
d′ ∈ B′, using the robust positivity oracle (by starting from Mn1(v0, . . . , vk) rather than
(v0, . . . , vk)). If it is positive, then in particular it is for d′ = d, and applying Lemma 13, we
obtain L+

>n1(θ) > ℓ− ε. Combined with L+
≤n1

(θ) ≥ ℓ+ ε, we obtain L+(θ) > ℓ− ε.
The last case means that there is un(d′) < 0 for some n > n1 and d ∈ B′ ⊆ Bℓψ. Applying

the contrapositive of Lemma 14, we obtain that L+(θ) < ℓ+ ε.
◀
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5.3 Case of Open Balls and robust Skolem
In this subsection, we extend the proof of Theorem 8 to show that considering open or
closed balls does not make a difference for the Diophantine-hardness. Further, there is also
no difference whether we consider the robust Skolem problem (0 is avoided), the robust
positivity problem (negative numbers are avoided), or the robust strict positivity problem
(negative and 0 are avoided).

Let B be an open ball and cl(B) its topological closure, which is the closed ball consisting
of B and its surface. Consider the following statements:
1. Robust Positivity holds for the closed ball cl(B)
2. Robust Positivity holds for the open ball B
3. Robust Strict Positivity holds for the open ball B
4. Robust Skolem holds for the open ball B
5. Robust Strict Positivity holds for the closed ball cl(B)
6. Robust Skolem holds for the closed ball cl(B)

We show that equivalence results between these statements. This allows us to conclude
that having open or closed balls does not make a difference for T -Diophantine hardness of
Skolem and (strict) positivity. Formally, we have the following.

▶ Lemma 15. (1), (2) and (3) are equivalent. Further, for balls B containing at least one
initial configuration d0 in its interior that is strictly positive, i.e. un(d0) > 0 for all n, both
(3) and (4) are equivalent and (5) and (6) are equivalent.

Proof. (1) implying (2) is trivial. (2) implies (1): we show the contrapositive. Suppose
there exists an initial configuration d on the surface of the ball B and an integer n such that
un(d) = y < 0. Recall that M is the companion matrix, and un(d) is the first component of
(Mn.d), so un(x) is a continuous function. Thus, there exists a neighbourhood of d, such
that for all d′ in the neighbourhood, un(d′) < y/2 < 0. This neighbourhood intersects the
open ball B enclosed by the surface, and picking d′ in this intersection shows that Robust
Positivity does not hold in the open ball.

(3) implying (2) is trivial. (2) implies (3): Assume for the sake of contradiction that there
is an initial configuration c′ in the open ball B such that un(c′) = 0. Consider any open O

around c′ entirely in the open ball B. We have that c′ is on hyperplane Hn by definition.
That is, there are initial configurations in O on both sides of Hn. In particular, there is an
initial configuration c′′ in O, hence in B, with c′′ /∈ H+

n , i.e. un(c′′) < 0, a contradiction
with B being robustly positive.

(3) implies (4) is trivial. (4) implies (3): We consider the contrapositive: if we have an
initial configuration d1 of B which is not strictly positive, then un(d1) ≤ 0 for some n, and
there is a barycenter d2 between d0,d1 which satisfies un(d2) = 0, i.e. negation of (4). To
be more precise, we can choose d2 = −un(d1)

un(d1)−un(c) d0 + un(d1)
un(d1)−un(d0) d1.

Now, (5) and (6) are equivalent for balls containing at least one initial configuration d0
that is strictly positive in its interior (same proof as for the equivalence between (3) and (4)
above). However, notice that (5,6) are not equivalent with (1,2,3,4) in general. ◀

We are now ready to prove Theorem 8 for open balls B. It suffices to remark that the
center c of Bℓψ is strictly in the interior of Pdom, and thus it will be eventually strictly positive
by Lemma 10, that is there exists n2 > n1 such that un(c) > 0 for all n > n2, and we can
choose d0 = c. Hence by Lemma 15, robustness (for n > max(n1, n2)) of positivity, strict
positivity and Skolem are equivalent on B, and these are equivalent with robust positivity of
cl(B) which was proved T -Diophantine hard in the previous section.
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It remains to prove Theorem 8 for robust Skolem for closed balls B. For that, it suffices
to easily adapt Lemma 13, replacing (un(d))n>n2 positive by strictly positive, and obtain the
T -Diophantine hardness for robust strict positivity of closed balls. We again apply Lemma
15 ((5) and (6) are equivalent) to obtain hardness for robust Skolem of closed balls.

6 Proof of Theorem 9

We now turn to the proof of Theorem 9, generalizing elements from Section 4.

6.1 Intuitions for the proof of Theorem 9
Let (un)n∈N be a recurrence relation defined by coefficients a ∈ Qκ. As before, we will
consider (vn)n∈N = (un

fn
)n∈N, for fn such that the dominant coefficients of (vn)n∈N are of the

form αeinθ. We will then decompose the exponential solution of (vn)n∈N as a dominant term
(vdomn )n∈N made of coefficients αeinθ, and a residue (vresn )n∈N with (vresn )n∈N −→

n→+∞
0. For

an initial distribution a, we denote by adom its projection on dominant space. As before, we
define Pdom = {a | ∀n, vdomn (adom) ≥ 0}.

To solve ∃-robust Skolem and ∃-robust positivity, the reasoning is based on the range of
the dominant term. For ∃-robust Skolem, we consider the minimum absolute value ν of the
dominant term |vdomn (c0)| obtained for the center of the neighborhood c0.

ν > 0. Then as the residue has negligible contribution to (vn)n∈N for large n, we show
that the LRS will ultimately avoid zero beyond a threshold index nthr. Having assured
ourselves of the long run behaviour, it suffices to check the value of the LRS up to nthr,
where the residue can have significant contribution, to see whether the LRS satisfies
robust Skolem.
ν = 0. Then we show in Proposition 18 that the LRS does not satisfy robust Skolem: no
matter how small we pick a neighbourhood around c0, there will always exist a c in that
neighbourhood that hits zero at some iteration.
Further, Proposition 17 states that ν can be computed effectively.

For robust positivity, we let µ be the minimum value of the dominant term (and not of its
absolute value). Thus, µ can take three kinds of values: µ > 0 (c0 ∈ Pdom) and we proceed
as for ν > 0; µ < 0 (c0 /∈ Pdom) and then there exists a n such that the LRS from c0 is
negative; and µ = 0 (c0 is at the surface of Pdom), and then we can show that there exists a
configuration arbitrarily close to c such that the LRS from that configuration is negative.

6.2 Range of the Dominant Term
We first define the normalized exponential polynomial solution (vn)n∈N:

▶ Definition 16. Let (un)n∈N be an LRS of general term un(c) =
∑r
i=1

∑mr−1
j=0 pijn

jγni ,
with ρ being the modulus of the dominant roots and m + 1 the maximal multiplicity of a
dominant root. Define vn(c) = un(c)

nmρn for n > 0, and v0(c) = u0(c).

We call every term of vn which converges towards 0 as n tends towards infinity residual,
while the other terms, of the form αeiθ are dominant. We denote {θj | j = 1, . . . , k} the set
of θ in dominant terms, and αj(c) the associated coefficient. We define:

vdomn (c) =
∑

αj(c)einθj and vresn (c) = vn(c)− vdomn (c) = O( 1
n

)→n→∞ 0

As we explained in Section 6.1, knowing the range of (vdomn )n∈N is crucial in order to solve
∃-robust Skolem and positivity. In Section 4 and 5, we dealt with hardness via an example
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which had 3 dominant roots, and it was rather simple to determine the min/max value
(computed in the proof of Lemma 10). The general case is not so easy however, because
there may be relationships between the θj which may alter the range of (vdomn )n∈N.

A tedious but now rather classical way to compute the range of (vdomn )n∈N is by invoking
Masser’s theorem [19] (Theorem 21 in Appendix 8.4), to describe the set of tuples that can
be reached (at least arbitrarily close) by sn = (einθ1 , . . . , einθk ) for n ∈ N, as used in [23,
Theorem 4]. We can describe a continuous relaxation of {sn | n ∈ N} as a set T of tuples
t = (t1, . . . , tk) of complex numbers with |tj | = 1 for all j. The set T is the set of linear
combinations of the finite basis given by Theorem 21, which describes a Torus, independent
of the initial configuration c. Notice that T may be discrete and have finitely many points
(the case where θj

2π ∈ Q), else, it is continuous and has uncountably many points.
We have sn ∈ T for all n ∈ N. Further, Kronecker [11] (Theorem 22 in Appendix 8.4)

implies that for all t = (t1, . . . , tk) ∈ T and ε > 0, there exists an n such that |tj − einθj | ≤ ε
for all j ≤ k. For every initial configuration c and element of the torus t ∈ T , we denote
dominant(c, t) =

∑
j αj(c)tj . Thus, for all n and all c, we have vdomn (c) = dominant(c, sn).

Conversely, for all t ∈ T, ε > 0, there exists n with |vdomn (c)− dominant(c, t)| ≤ ε, for all c.
Using Renegar’s result [26], one can compute effectively the range of dominant(c, t) over T ,

and thus of (vdomn )n∈N. A simple adaptation allows to compute the range of |dominant(c, t)|.
In the following, we fix c0 to be the center of the neighborhood and define

µ = min
t∈T

(dominant(c0, t)) and ν = min
t∈T
|dominant(c0, t)|

▶ Proposition 17. µ and ν are algebraic and can be efficiently computed. Further, we have
|µ|, |ν| < 2sO(1) and 1

|µ| ,
1

|ν| < 2sO(1)

Proof. The statement for µ comes directly from Renegar [26], stating that we can compute
the min and max values µ = mint∈T (dominant(c0, t)) and µ′ = maxt∈T (dominant(c0, t))
over t in the torus T . The statement for ν is a corollary obtained as follows:

If µ > 0 (un(c0) ≥ µ > 0 for all n ∈ N), then ν = µ and we are done.
If µ′ < 0 (un(c0) ≤ µ′ < 0 for all n), then ν = −µ′.
If T is discrete, we enumerate the polynomially many values of t (noting that they all
correspond to λth roots of unity, and Masser polynomially bounds λ) to compute ν as
the minimum of the absolute values.
Otherwise, we have µ < 0 < µ′, that is there exist two elements t, t′ ∈ T with
dominant(c0, t) < 0 < dominant(c0, t′). As x 7→ dominant(c0,x) is continuous over
T , there is a t′′ ∈ T with dominant(c0, t′′) = 0, that is ν = 0.

◀

We now state that if µ ≤ 0, then ∃-robust positivity does not hold, while if ν = 0, then
∃-robust Skolem does not hold.

▶ Proposition 18. If µ ≤ 0, then ∀ε > 0, ∃n, cε with |c0 − cε| ≤ ε such that vn(cε) < 0.
If ν = 0, then ∀ε > 0, ∃n, cε with |c0 − cε| ≤ ε such that vn(cε) = 0.

To prove Proposition 18, we reason as follows. For every n, let distance(c, Hn) be the
distance between an initial configuration c and the hyperplane Hn = {c′ | vn(c′) = 0} =
{c′ | un(c′) = 0}. If distance(c0, Hn) < ε, then there exists a cε with |c0 − cε| ≤ ε such
that vn(cε) = 0 (∃-robust Skolem does not hold). It also implies the existence of a c′

ε with
|c0 − c′

ε| ≤ ε and vn(c′
ε) < 0, as there will be initial configurations in the ε neighborhood

of c0 on both sides of Hn, thus some will be outside of H+
n = {c′ | vn(c′) ≥ 0}, thus with

vn(cε) < 0 (∃-robust positivity does not hold).
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▶ Lemma 19. There exists C such that for all n, distance(c, Hn) ≤ C · |vn(c)|.

Lemma 19, proved in Appendix 8.4, implies that if for all α > 0, there exists nα with
|vnα(c)| < α, then there exists n with distance(c, Hn) < ε (choose n = nα for α = ε

2C ).

Proof of Proposition 18. Consider the first statement. If µ < 0, then there exists n with
|vresn (c0)| ≤ µ

2 as vresn (c0)→n→∞ 0. Thus vn(c0) = vdomn (c0)+vresn (c0) < µ
2 . That is, cε = c0

satisfies the statement. Otherwise, µ = 0. We prove that for all α > 0, we have a nα such that
|vnα

(c0)| ≤ α, which suffices by Lemma 19. Let α > 0 arbitrarily small, and let N such that
for all n > N , |vresn (c0)| ≤ α

2 . This N exists as vresn (c0)→n→∞ 0. By Kronecker, as µ = 0,
there exists nα > N with |vdomnα

(c0)| < α
2 . Thus |vnα(c0)| ≤ |vdomnα

(c0)|+ |vresnα
(c0)| ≤ α.

We now prove the second statement in the same way. Assume ν = 0, and let ε > 0.
We again prove that for all α > 0, we have a nα such that |vnα(c0)| ≤ α, which suffices by
Lemma 19. Let α > 0 arbitrarily small, and let N such that for all n > N , |vresn (c0)| ≤ α

2 .
This N exists as vresn (c0) →n→∞ 0. By Kronecker, as ν = 0, there exists nα > N with
|vdomnα

(c0)| < α
2 . Thus |vnα

(c0)| ≤ |vdomnα
(c0)|+ |vresnα

(c0)| ≤ α. ◀

6.3 Decidability and complexity for ∃-robust Skolem and ∃-robust
positivity

We now turn to deciding ∃-robust Skolem and positivity as stated in Theorem 9, using
Proposition 18. The algorithm for ∃-robust Skolem is as follows (as detailed in Algorithm 1
in Appendix 8.4). First, we compute ν ← mint∈T |dominant(c, t)| using Proposition 17, for
c the initial configuration around which we are looking for a neighborhood. If ν = 0, then
∃-robust Skolem does not hold. Otherwise, we compute N such that vresn (c0) < ν

2 for all
n > N . Then we check if vn(c0) = 0 for some n ≤ N . If yes, then ∃-robust Skolem does not
hold, otherwise it holds. This algorithm can readily be adapted to provide an ε > 0 such
that for all c with |c− c0| ≤ ε, we have uc ̸= 0, as well as to decide robust positivity.

The correctness of the above algorithm follows from Proposition 18, because if ν > 0,
then for all n > N , vn(c0) > ν − ν

2 ≥
ν
2 > 0, and this remains > 0 in a neighborhood of c0.

Denoting ν′(c) = minn≤N |vn(c)|, if ν′(c0) > 0, then also ν′(c) for c in a neighborhood of c0.
We now argue about the complexity. Both µ and 1/µ = 2sO(1) are bounded (Proposition

17). We thus have nthr = 2sO(1) because vresn (c0) = O( 1
n ). This is the number of iterates

we have to explicitly check, which gives the PSPACE complexity. This finally completes the
proof of Theorem 9.

7 Conclusion

We have formulated a natural notion of robustness for the Skolem and positivity problems and
shown several results: for a given neighborhood around an initial configuration c0, we show
Diophantine-hardness for both problems. Interestingly, this is the first Diophantine-hardness
result for a variant of Skolem as far as we know. This implies that for uninitialized positivity,
the fact that the initial configuration c0 is arbitrary is crucial to decidability [28, 12], as
having a fixed ball around c0 is not sufficient.

On the other hand, we proved decidability of ∃-robust Skolem/Positivity around an
initial configuration in full generality, hence this problem is simpler. It is also more practical
because in a real system, it is often impossible to determine the initial configuration with
absolute accuracy. Our results can provide a precision with which it is sufficient to set the
initial configuration. Beyond these results, we provided geometrical reinterpretations of
Skolem/positivity, shedding a new light on this hard open problem.
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8 Appendix

8.1 Regarding algebraic numbers and their bit representation
A complex number α is said to be algebraic if it is a root of a polynomial with integer
coefficients. For an algebraic number α, its defining polynomial pα is the unique polynomial
of least degree of Z[X] such that the GCD of its coefficients is 1 and α is one of its roots.
Given a polynomial p ∈ Z[X], we denote the length of its representation size(p), its height
H(p) the maximum absolute value of the coefficients of p and d(p) the degree of p. When
the context is clear, we will only use H and d.

A separation bound provided in [20] has established that for distinct roots α and β of a
polynomial p ∈ Z[x], |α− β| >

√
6

d(d+1)/2Hd−1 . This bound allows one to represent an algebraic
number α as a 4-tuple (p, a, b, r) where α is the only root of p at distance ≤ r if a+ ib, and
we denote sizeα the size of this representation, i.e., number of bits needed to write down this
4-tuple.

Further, we note that two distinct algebraic numbers α and β, are always roots of pαpβ ,
and we have that

1
|α− β|

= 2(||α||+||β||)O(1)
(1)

Given a polynomial p ∈ Z[X], one can compute its roots in polynomial time wrt size(p)
[7]. Since algebraic numbers form a field, given α, β two algebraic numbers, one can
always compute the representations of α+ β, αβ, 1

α , Re(α), Im(α) in polynomial time wrt
size(α) + size(β) [7, 14].

8.2 Proofs for Section 4
▶ Lemma 11. Mdom(zdom, xdom, ydom) = (zdom, xdom cos(2πθ)+ydom sin(2πθ), ydom cos(2πθ)−
xdom sin(2πθ)), that is Mdom is a rotation around axis −→z of angle −2πθ.

Proof. We use the formulas cos(a + b) = cos(a) cos(b) − sin(a) sin(b) and sin(a + b) =
sin(a) cos(b) + cos(a) sin(b).

Matrix Mdom transforms vdomn (zdom, xdom, ydom) into vdomn+1(zdom, xdom, ydom). Using the
formulas above with a = 2πnθ, b = 2πθ, we have that for all n ≥ 1, vdomn+1(zdom, xdom, ydom) =
vdomn (zdom, xdom cos(2πθ) + ydom sin(2πθ), ydom cos(2πθ)− xdom sin(2πθ)) for all n, and thus
Mdom transforms (zdom, xdom, ydom) into (zdom, xdom cos(2πθ)+ydom sin(2πθ), ydom cos(2πθ)−
xdom sin(2πθ)).

Now, consider a point p in 2D space at cartesian coordinates (xdom, ydom). Its polar
coordinates are (r, α), with r =

√
x2
dom + y2

dom the distance between (0, 0) and p. Con-
sider the point at polar coordinates (r, α − 2πθ). Thus it is at cartesian coordinates
(r cos(α − 2πθ), r sin(α − 2πθ)) = (r cos(α) cos(2πθ) + r sin(α) sin(2πθ), r sin(α) cos(2πθ) −
r cos(α) sin(2πθ)) = xdom cos(2πθ)+ydom sin(2πθ), ydom cos(2πθ)−xdom sin(2πθ)). Hence the
rotation of angle−2πθ transforms (xdom, ydom) into (xdom cos(2πθ)+ydom sin(2πθ), ydom cos(2πθ)−
xdom sin(2πθ)). ◀

8.3 Proofs for Section 5
We now show that Bℓψ is fully in Pdom, tangent to the surface of Pdom, for d = (2, 2, 0, 0, 0, 2πℓ).

▶ Lemma 20. Let d = (2, 2, 0, 0, 0, 2πℓ). For all d′ ̸= d with d′ ∈ Bℓψ, we have d′ is strictly
in Pdom, ie for all n vdomn (d′) > 0.
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Proof. Let d′ = (2 + ψ + z′
dom, 2 − ψ + x′

dom, ydom, zres, xres, 2πℓ + y′
res) ∈ Bℓψ \ {d}. We

now show that d′ is strictly in Pdom, i.e. (2 + ψ + z′
dom)−

√
(2− ψ + x′

dom)2 + y2
dom > 0.

We have z′
dom

2 +x′
dom

2 + y2
dom ≤ 2ψ2, and we write z′

dom
2 +x′

dom
2 + y2

dom = 2λ2
1ψ

2, with
λ1 ∈ [0, 1] and λ1 = 1 iff (zres, xres, y′

res) = (0, 0, 0). We also write x′
dom

2 + y2
dom = 2λ2

2λ
2
1ψ

2

with λ2
2 ∈ [0, 1], i.e. z′

dom
2 = 2(1− λ2

2)λ2
1ψ. We write x′

dom
2 = 2λ2

3λ
2
2λ

2
1ψ

2, with λ3 ∈ [0, 1]
and λ3 = 1 iff ydom = 0. We write x′

dom =
√

2λ3λ2λ1ψ and z′
dom = ±

√
2
√

1− λ2
2λ1ψ. That

is, d is the configuration with λ1 = λ3 = 1 and λ2 =
√

2
2 .

We have (2 − ψ + x′
dom)2 + y2

dom = (2 − ψ)2 + x′2
dom + y2

dom + 2(2 − ψ)x′
dom = (2 −

ψ)2 + 2λ2
2λ

2
1ψ

2 + 2
√

2(2 − ψ)λ3λ2λ1ψ ≤ (2 − ψ)2 + 2λ2
2λ

2
1ψ

2 + 2
√

2(2 − ψ)|λ2|λ1ψ = (2 −
ψ +
√

2|λ2|λ1ψ)2, with equality iff λ3 = 1, ie when ydom = 0. Given that ψ < 1
3 , we have

2− ψ +
√

2|λ2|λ1ψ > 0.
Thus (2 + ψ + z′

dom)−
√

(2− ψ − x′
dom)2 + y2

dom ≥ 2 + ψ ±
√

2
√

1− λ2
2λ1ψ − (2− ψ +√

2|λ2|λ1ψ) = 2ψ −
√

2(|λ2| ±
√

1− λ2
2)λ1ψ ≥ 2ψ − 2λ1ψ ≥ 0 as (|λ2| ±

√
1− λ2

2) ≤
√

2,
with equality iff λ2 = ±

√
2

2 . That is, for all d′ ∈ Bℓψ, d′ ∈ Pdom, and it is strictly inside
whenever d′ ̸= d (one can check that λ1 = λ3 = 1 and λ2 = −

√
2

2 does not yield the overall
equality). ◀

8.4 Results and Proofs for Section 6
A deep result of Masser [19] shows that integer multiplicative relationships between algebraic
numbers can be elicited efficiently.

▶ Theorem 21 (Masser [19]). Let k, be fixed, and let eiθ1 , ..., eiθk be complex algebraic
numbers of unit modulus. Consider the free abelian group L under addition given by L =
{(λ1, ..., λk) ∈ Zk : eiλ1θ1 ...eiλkθk = 1}. L has a basis {l1, ..., lp} ⊂ Zk with p ≤ k. The
basis can be computed in time polynomial and each entry in the basis vector is polynomially
bounded in size(eiθ1), ..., size(eiθk ).

Kronecker theorem [11] states that each linear combination t of the basis given by Masser
theorem can be approximated by a power sn of s = (eiθ1 , . . . , eiθk ).

▶ Theorem 22 (Kronecker [11]). Let θ1, ..., θk, ϕ1, ..., ϕk ∈ [0, 2π). The following two state-
ments are equivalent:

For any ϵ′ > 0, there exist n,m1, ...,mk ∈ Z such that for 1 ≤ j ≤ k we have |nθj − ϕj −
2mjπ| ≤ ϵ′
For every tuple (λ1, ...λk) of integers such that

∑k
j=1 λjθj ∈ 2πZ we have

∑k
j=1 λjϕj ∈

2πZ

Finally, we provide the reasoning why constant C independent of n exists which bounds
the distance, i.e., we prove Lemma 19.

▶ Lemma 19. There exists C such that for all n, distance(c, Hn) ≤ C · |vn(c)|.

Proof. Let n ∈ N. We have distance(c, Hn) = |un(c)|
||y|| for y the first row of Mn by basic

geometry. Let H be the transformation matrix between the basis of initial configurations
and the basis of the exponential polynomial solution of (un)n∈N. Let x = (x1, . . . , xκ)
with xi = nkρnj so that to cover every root ρj and multiplicities k = 1, . . . ,mj . We have
un(c) = y · c = x · (H · c) for all initial configurations c, i.e., y = x · H. That is, there
exists a constant D > 0 depending upon H with ||y|| ≥ Dnmρn for ρ the modulus of
a dominant root and m + 1 the highest multiplicity of a root of modulus ρ. We obtain
distance(c, Hn) ≤ |un(c)|

Dnmρn = |vn(c)|
D . ◀

Finally, we provide Algorithm 1 for ∃-robust Skolem.
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Algorithm 1 Robust Skolem

Data: Companion matrix M ∈ Qκ×κ of (un)n∈N and center of ball c0 ∈ Qκ
1 {γj}j ← eigenvalues of M, ρ← maxj |γj |, {eiθj}kj=1 ← {γi/ρ | |γi| = ρ}
2 Determine T Torus obtained by applying Masser’s result (Theorem 21) to {θj}kj=1
3 ν ← mint∈T |dominant(c, t)| (Proposition 17)
4 if ν = 0 then
5 return NO (Proposition 18)
6 else
7 Compute N such that vresn (c0) < ν

2 for all n > N

8 foreach n ∈ {0, 1, . . . , N} do
9 if vn(c0) = 0 then

10 return NO
11 end
12 end
13 return YES
14 end
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