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Abstract Among the different flavors of well-compo-

sednesses on cubical grids, two of them, called respec-

tively digital well-composedness (DWCness) and well-

composedness in the sense of Alexandrov (AWCness),

are known to be equivalent in 2D and in 3D. The for-

mer means that a cubical set does not contain critical

configurations when the latter means that the boundary

of a cubical set is made of a disjoint union of discrete

surfaces. In this paper, we prove that this equivalence

holds in n-D, which is of interest because today im-

ages are not only 2D or 3D but also 4D and beyond.

The main benefit of this proof is that the topological

properties available for AWC sets, mainly their sepa-

ration properties, are also true for DWC sets, and the

properties of DWC sets are also true for AWC sets:

an Euler number locally computable, equivalent con-

nectivities from a local or global point of view... This

result is also true for gray-level images thanks to cross-

section topology, which means that the sets of shapes

of DWC gray-level images make a tree like the ones of

AWC gray-level images.
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1 Introduction

Fig. 1: Equivalence between DWCness in Z2 and AWC-

ness in the 2D Khalimsky grid H2: The 3 first sets

in black in the raster scan order are DWC (they do

not contain any critical configuration); their analog in

H2 are AWC (their dark grey boundaries are simple

closed curves). At the opposite, the last set (circled in

red) which is not DWC in Z2 leads to an analog in H2

whose boundary is not a simple closed curve (see the

self-crossing of the boundary of this set in H2 in red)

and then is not AWC in H2.

In 1995, Latecki introduced in [23] the notion of

well-composedness as an elegant manner to get rid of

the connectivity paradoxes well-known in digital topol-

ogy. Roughly speaking, a set in Z2 is said to be well-

composed if its connectivities are equivalent, that is,

its set of connected components is the same whatever

the chosen connectivity. This definition has then been

extended to dimension 3 in [24] and in n-D in 2015

in [10]; at the same moment, this definition of well-com-

posedness has been renamed digital well-composedness

(DWCness).
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Later, in 2013, Najman and Géraud [28] introduced

a new notion of well-composedness: a subset X in a

Khalimsky grid, a topological analog of the cubical grid

Zn but with combinatorial properties, is said to be

well-composed in the sense of Alexandrov (AWC) if its

boundary is made of a disjoint union of discrete (n−1)-

surfaces (the definition of a discrete surface is formally

recalled later). This definition is used to be able to char-

acterize gray-level images defined on a Khalimsky grid

and whose set of shapes makes a tree; then, we can call

“tree of shapes” this last set. This hierarchical repre-

sentation is known to be powerful to make image seg-

mentation or image filtering thanks to shapings (a fil-

tering of the shapes of a given image based on its tree

of shapes).

These two definitions, even if they seem very differ-

ent, are related: it has been observed that in 2D and

in 3D, a digital set is DWC if and only if it is AWC

(see Figure 1). In other words, AWCness and DWCness

are equivalent in 2D/3D on cubical grids. However, the

question about their equivalence in 4D and beyond still

remains an open question. For sake of completion, we

propose here to prove that they are indeed equivalent

in n-D, n ≥ 2 for sets and that it holds for gray-level

images. A study of the relation between the different

flavors can be found in [9] and a list of some of the im-

portant properties of AWCness and DWCness can be

found in [11].

The plan is the following: Section 2 recalls the ba-

sics in matter of digital topology; Section 3 recalls some

mathematical background relative to
(Z
2

)n
and Hn; Sec-

tion 4 recalls how AWCness implies DWCness in n-D;

Section 5 presents some lemmas, propositions and nota-

tions necessary in the next section; Section 6 proves that

DWCness implies AWCness in n-D; Section 7 extends

the proofs seen before from sets to gray-level images;

Section 8 shows some possible applications of well-com-

posedness for gray-level images; Section 9 concludes the

paper; Sections A, B, C and D contains the proofs of

the preceding assertions.

Note that a star has been added in the title of each

assertion which seems to us crucial to understand the

proof of the equivalence between AWCness and DWC-

ness.

2 Digital topology

Let us recall the mathematical background necessary to

define digital well-composedness and well-composedness

in the sense of Alexandrov.

2.1 Digital topology and DWCness

B Orthonormal canonical basis of Zn
xi ith coordinate of x ∈ Zn

N ∗2n(x) 2n-neighborhood of x ∈ Zn
N ∗3n−1(x) (3n − 1)-neighborhood of x ∈ Zn
F (f1, . . . , fk) ⊆ B
× The Cartesian product

L(k)

{
{k} when k ∈ Z,
{k − 1/2, k + 1/2} when k 6∈ Z,

S(z) S(z) = ×i∈J1,nKL(zi)

S(z,F)

z +
∑

i∈J1,kK

λif
i
∣∣λi ∈ {0, 1},∀i ∈ J1, kK


antagS(q) The antagonist of q ∈ Zn in the block S

Table 1: Notations relative to digital topology.

Fig. 2: The two classical neighborhoods used in digital

topology when the dimension n of space is 2. The point

p is depicted in black, and its neighborhoods are de-

picted in blue: the 2n-neighborhood is on the left side
when the (3n − 1)-neighborhood is on the right side.

We can observe that the 2n-neighborhood is made of 4

points and that the (3n− 1)-neighborhood is made of 8

points (because we are in 2D).

The following notations are detailed in Table 1. Let

B = {e1, . . . , en} be the canonical basis of Zn. We use

the notation xi, where i belongs to J1, nK1, to deter-

mine the ith coordinate of x ∈ Zn. We recall that the

L1-norm of a point x ∈ Zn is denoted by ‖.‖1 and

is equal to
∑
i∈J1,nK |xi| where |.| is the absolute value.

Also, the L∞-norm is denoted by ‖.‖∞ and is equal to

maxi∈J1,nK |xi|. For a given point x ∈ Zn, an element

of the set N ∗2n(x) = {y ∈ Zn ; ‖x − y‖1 = 1} (resp. of

the set N ∗3n−1(x) = {y ∈ Zn ; ‖x− y‖∞ = 1}) is a 2n-

neighbor (resp. a (3n−1)-neighbor) of x (see Figure 2).

1 As usual, for any a, b ∈ Z, with a ≤ b, the notation with
double brackets Ja, bK means the set of all the integers in the
interval [a, b]
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For any z ∈ Zn and any F = (f1, . . . , fk) ⊆ B, we

denote by S(z,F) the set:z +
∑

i∈J1,kK

λif
i
∣∣ λi ∈ {0, 1},∀i ∈ J1, kK

 .

We call this set the block associated with the pair (z,F);

its center is z +
∑
f∈F

f
2 , and its dimension, denoted

by dim(S), is equal to k. We denote by S(c) the block

centered at c ∈
(Z
2

)n
. Note that we have:

S(c) = ×i∈J1,nKL(ci),

where L(k) :=

{
{k} when k ∈ Z,
{k − 1/2, k + 1/2} when k 6∈ Z, and

where × is the Cartesian product.

c

z e

e

1

2

3e

Fig. 3: Let z ∈ Z3 be equal to (0, 0, 0). We depict here

the block S(z,F) = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)}
associated to the family F = {e1, e2}; this block is cen-

tered at c = ( 1
2 ,

1
2 , 0) ∈

(
Z3

2

)
. We can remark that

S(c) = ×k∈J1,3KL(k) = {0, 1} × {0, 1} × {0} is equal to

S(z,F) as explained before.

More generally, a set S ⊂ Zn is said to be a block

(see Figure 3) if there exists a pair (z,F) ∈ Zn×P(B)2

such that S = S(z,F). Then, we say that two points

p, q ∈ Zn belonging to a block S are antagonists [9,10]

in S if the distance between them equals the maximal

distance using the L1 norm between two points in S (see

Figure 4); in this case we write p = antagS(q). Note that

the antagonist of a point p in a block S containing p

exists and is unique. Two points that are antagonists in

a block of dimension k ≥ 0 are said to be k-antagonists;

k is then called the order of antagonism between these

two points. We say that a digital subset X of Zn con-

tains a critical configuration in a block S of dimension

2 P(B) denotes the set of subsets of B.

Fig. 4: Some examples of antagonists in Z2: the two

red points are antagonists in the block of dimension

1 encircled by the red curve; the two green points are

antagonists in the block of dimension 2 encircled by the

green curve; the orange point is antagonist with itself

in the block of dimension 0 encircled in orange.

k ∈ J2, nK if there exists two points {p, p′} ∈ Zn that

are antagonists in S s.t. X ∩S = {p, p′} (primary case)

or s.t. S \X = {p, p′} (secondary case).

Definition 1. A digital set X ⊂ Zn is said to be digi-

tally well-composed [10,23] (DWC) if it does not con-

tain any primary or secondary critical configuration.

Fig. 5: An example of 4-path in red in Z2 joining the

black points.

We recall that a 2n-path (see Figure 5) in a subset S

of Zn is a finite sequence of points p0, . . . , pk of S with

k ≥ 0 such that for any m ∈ J1, kK, pm−1 and pm are

2n-neighbors in Zn.

Proposition 1 ([10]). A digital set X ⊂ Zn is DWC

iff for any block S of Zn and for any pair of points

(p, p′) of X (respectively any pair of points (p, p′) of

S \ X) which are antagonists in S, there exists a 2n-

path joining p and p′ in X ∩ S (respectively in S \X).

2.2 Axiomatic digital topology and AWCness

All the notations of Table 2 are detailed below. For A

and B two sets of arbitrary elements, A × B denotes
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A,B Two sets of arbitrary elements

R ⊆ X ×X A binary relation on the set X

R(y) {x ∈ X ; x R y}
R� {(x, y) ∈ X ×X ; x R y and x 6= y}

|X| = (X,R) X supplied with the order relation R

2
X The set of subparts of X

U ⊆ 2
X A topology on X

(X,U) = X A topological space

R−1 The inverse of the order relation R

h An element of a topological space X

αX(h) The closure of h in X

βX(h) The opening of h in X

θX(h) The neighborhood of h in X

α�
X(h) αX(h) \ {h}
β�
X(h) βX(h) \ {h}
θ�X(h) θX(h) \ {h}
S ⊆ X A subset of X

αS(h) αX(h) ∩ S
βS(h) βX(h) ∩ S
θS(h) θX(h) ∩ S
α�
S (h) α�

X(h) ∩ S
β�
S (h) β�

X(h) ∩ S
θ�S (h) θ�X(h) ∩ S
αX(S) ∪p∈SαX(p)

βX(S) ∪p∈SβX(p)

θX(S) ∪p∈SθX(p)

Table 2: Notations relative to axiomatic digital topol-

ogy.

the Cartesian product of A and B and is defined as

{(a, b) ; a ∈ A, b ∈ B}. A binary relation [5] R defined
on a set of arbitrary elements X is a subset of X ×X,

and we denote by x ∈ R(y) or equivalently x R y the

fact that (x, y) ∈ R. An order relation [5] is a binary

relation R which is reflexive, antisymmetric, and transi-

tive. We denote by R� the binary relation on X defined

such that, ∀x, y ∈ X,
{
x R� y

}
⇔ {x R y and x 6= y}.

A set X of arbitrary elements supplied with an order

relation R on X is called a poset and is denoted by

(X,R), or shortly |X| when no ambiguity is possible.

Let X be a set of arbitrary elements, and let U be

a set of subsets of X. We say that U is a topology on X

if ∅ and X are elements of U , if any union of elements

of U are elements of U , and if any finite intersection of

elements of U is an element of U . X supplied with U
is denoted (X,U) or shortly X and is called a topolog-

ical space. The elements of U are then called the open

sets of X and any complement of an open set in X is

called a closed set of X. We say that a subset of X

which contains an open set containing a point x is a

neighborhood of x in X. A topological space X is said

(topologically) connected if it is not the disjoint union

of two non-empty open sets.

A T0-space [2,3,20], let say X, is a topological space

which satisfies the T0 axiom of separation: for two dis-

tinct elements x, y of X, there exists a neighborhood of

x in X which does not contain y or a neighborhood of y

in X which does not contain x. A discrete space [1] is a

topological space where any intersection of open sets is

an open set. Posets are considered as topological spaces

in the sense that we can induce a topology on any poset

based on its order relation (Th. 6.52, p. 28 of [2]): for

a poset (X,R), the corresponding Alexandrov space is

the topological space of domain X where the closed sets

are the sets C ⊆ X such that ∀x ∈ C, R(x) is included

in C. Let us denote by R−1 the inverse of R. Then, by

symmetry, we obtain that open sets are the sets U such

that for any h ∈ U , R−1(h) is included into U . Dis-

crete T0-spaces are generally called Alexandrov spaces.

Details can be found in [15].

On an Alexandrov spaces |X| = (X,R), for any el-

ement h ∈ X, we define respectively the combinatorial

closure of h:

α(h) := {h′ ∈ X ; h′ ∈ R(h)},

its inverse operator called the combinatorial opening of

h:

β(h) := {h′ ∈ X ; h ∈ R(h′)},

and the neighborhood of h:

θ(h) := {h′ ∈ X ; h′ ∈ R(h) or h ∈ R(h′)}.

Obviously, thanks to the properties explained be-

fore, for any h ∈ X, α(h) will be a closed set in X

and each β(h) will be an open set in X. In other words,

combinatorial and topological definitions are equivalent

in Alexandrov spaces.

The operators α, β and θ are also defined for sets:

∀S ⊆ X, α(S) := ∪p∈SαX(p), β(S) := ∪p∈SβX(p), and

θ(S) := ∪p∈SθX(p), where α(S) is closed and β(S) is

open thanks to the properties exposed before.

In this paper, we work with cubical Alexandrov spaces

called Khalimsky grids [21] and denoted by |Hn| =

(Hn,⊆) (see Table 3); they are defined such that:

H1
0 = {{a} ; a ∈ Z} ,

H1
1 = {{a, a+ 1} ; a ∈ Z} ,

H1 = H1
0 ∪H1

1,

Hn =
{
h1 × · · · × hn ; ∀i ∈ J1, nK, hi ∈ H1

}
.
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Hn = (Hn,⊆) The n-D Khalimsky grid

h ∈ Hn A face of Hn
dim(h) The dimension of h

Hnk The faces of dimension k in Hn
α(h) {h′ ∈ Hn ; h′ ⊆ h}
β(h) {h′ ∈ Hn ; h ⊆ h′}
θ(h) {h′ ∈ Hn ; h′ ⊆ h or h ⊆ h′}

|S| = (S,⊆) A suborder of Hn
αS α ∩ (S × S)

βS β ∩ (S × S)

θS θ ∩ (S × S)

αS(h) α(h) ∩ S
βS(h) β(h) ∩ S
θS(h) θ(h) ∩ S
Int(S) Interior of S

CC(S, p) The component of |S| ⊆ Hn
containing p ∈ Hn

CC(S) Components of |S|
ρ(h, |S|) Rank of the face h in the poset |S|
∂S Boundary of S in Hn

|X|∗|Y | Join of the posets |X| and |X|

Table 3: Notations relative to Khalimsky grids.

Elements of Hn will often be called faces (of Hn).

Any face h of Hn which is the Cartesian product of k

elements, with k ∈ J0, nK, of H1
1 and of (n−k) elements

of H1
0 is said to be of dimension k [22], which is denoted

by dim(h) = k, and the set of all the elements of Hn
which are of dimension k is denoted by Hnk .

Fig. 6: Basic operators in axiomatic digital topology:

α is the combinatorial closure, β is the combinatorial

opening, and θ is the neighborhood.

Using Khalimsky grids, for any element h ∈ Hn, we

obtain the following equalities:

α(h) = {h′ ∈ Hn ; h′ ⊆ h},
β(h) = {h′ ∈ Hn ; h ⊆ h′},
θ(h) = {h′ ∈ Hn ; h′ ⊆ h or h ⊆ h′}.

Some examples of such sets are depicted in Figure 6.

On the left column, in blue, we can see that the initial

face h = {x0} leads to α(h) = {h} = {{x0}} since no

Fig. 7: “Squared” versions of the basic operators used

in axiomatic digital topology.

other face in Hn than {x0} is contained in h. On the

left column in red, we can see that the initial face h =

{x0, x0+1} leads to α(h) = {{x0}, {x0, x0+1}, {x0+1}}
since they are the three faces of Hn contained in h. We

can continue this way with h in green which will contain

nine faces. In the middle of Figure 6, the reasoning is

dual: we consider the faces of Hn including h. And the

right column shows that the neighborhood in Khalim-

sky grids is the union of the closure and of the opening

of a face. The “squared” versions of these operators,

that is, α�, β�, and θ� are depicted in Figure 7.

Note that the operators α and β are idempotent :

α ◦ α = α and β ◦ β = β. However, the neighborhood

operator is not idempotent.

From now on, the Khalimsky grids will be supplied

with the order relation ⊆ by default.

Assuming that S is a subset of Hn, the suborder [5]

of |Hn| relative to S is the poset |S| = (S,⊆) with, for

any h ∈ S, αS(h) = α(h) ∩ S, βS(h) = β(h) ∩ S, and

θS(h) = θ(h) ∩ S. For any suborder |S| of |Hn|, we call

interior of S the open set defined such as:

Int(S) := {h ∈ Hn ; β(h) ⊆ S}.

A set S ⊆ Hn is said to be a regular open set (respec-

tively a regular closed set) if S = Int(α(S)) (respec-

tively S = α(Int(S))).

We call path [5] into a set S ⊆ Hn a finite sequence

(p0, . . . , pk) such that for all i ∈ J1, kK, pi ∈ θ�(pi−1)

(see Figure 8). We say that a digital set S ⊆ Hn is

path-connected [5] if for any points p, q in S, there ex-

ists a path into S joining them. Path-connectedness

and topological connectedness are equivalent [5,15] in

|Hn| like in any Alexandrov space. The greatest (path-

)connected set in the digital set S ⊂ Hn containing

p ∈ Hn is called the connected component [2] of S con-

taining p and we denote it by CC(S, p); by convention,

when p does not belong to S, we write CC(S, p) = ∅.
Any non-empty subset of a poset S which can be writ-

ten CC(S, p) for some p ∈ S is called a connected compo-

nent of S. The set of connected components of a poset

S is denoted by CC(S).
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Fig. 8: An example of path in red in H2 joining the

black points: two successive points a and b on the path

satisfy that a ∈ θ�(b).

Fig. 9: On the top-left, a set which is a discrete 1-surface

(a simple closed curve), and on the bottom-right a set

which is not a discrete 1-surface (since it contains a

“pinch” encircled in red).

The rank ρ(h, |S|) of an element h in the suborder

|S| of Hn is 0 if α�
S (h) = ∅ and is equal to:

max
x∈α�

S (h)
(ρ(x, |S|)) + 1

otherwise. The rank of |S| is denoted by ρ(|S|) and is

equal to the maximal rank of its elements. An element

h of S such that ρ(h, |S|) = k is called a k-face [5] of S.

In Khalimsky grids, the dimension is equal to the rank.

Let |S| be a suborder of Hn. |S| is said to be count-

able if S is countable. Also, |S| is called locally finite

if for any element h ∈ S, the set θS(h) is finite. When

|S| is countable and locally finite, it is said to be a CF-

order [5] in Hn.

Let |S| be a CF-order in Hn; |S| is said to be a

(−1)-surface if S = ∅, or a 0-surface if S is made of two

different faces x, y ∈ X such that x 6∈ θ�(y), or a k-

surface, k ∈ J1, nK, if |S| is connected and for any h ∈ S,

|θ�S (h)| is a (k− 1)-surface (see Figure 9). According to

Evako et al. [16], |Hn| is an n-surface.

Any n-surface |S| is said homogeneous [13], i.e.,

∀h ∈ S, βS(h) contains an n-face.

Definition 2 ([28]). The boundary of a suborder |S|
of |Hn| is denoted by ∂S and is defined as :

∂S := α(S) ∩ α(Hn \ S).

Definition 3 (AWCness [28] for sets). Let |S| be a

suborder of |Hn|. Then, S is said to be well-compo-

sed in the sense of Alexandrov (AWC) if the connected

components of its boundary are discrete (n−1)-surfaces.

Let |X| := (X,RX) and |Y | := (Y,RY ) be two

posets; it is said that |X| and |Y | can be joined [5]

if X ∩ Y = ∅. If |X| and |Y | can be joined, the join of

|X| and |Y | is denoted |X|∗|Y | and is equal to:

(X ∪ Y,RX ∪RY ∪X × Y ).

Proposition 2 ([14]). Let |X| and |Y | be two posets

that can be joined. The poset |X|∗|Y | is an (n + 1)-

surface with n ∈ Z iff there exists some integer p ∈
J−1, n + 1K such that |X| is a p-surface and |Y | is a

(n− p)-surface.

We will see in Lemma 10 that Proposition 2 is es-

sential since, for any z in a suborder S, it implies that

when |α�
S (z)| is a (n− p)-surface and when |β�

S (z)| is a

p-surface, then |θ�S (z)| = |β�
S (z)|∗|α�

S (z)| is an (n+ 1)-

surface. This way, we will be able to reformulate AWC-

ness of the immersions studied in this paper using only

the operator β.

Proposition 3 (Property 10 in [13]). Let |S| be a sub-

order of |Hn|. Then |S| is an n-surface iff for any h ∈ S,

|α�
S (h)| is a (k−1)-surface and |β�

S (h)| is a (n−k−1)-

surface with k = ρ(h, |S|).

3 Mathematical background relative to
(Z
2

)n
and Hn

Fig. 10: A set in Z2.

As described before, we juggle with two cubical spa-

ces in this paper (see the notations used here in Ta-

ble 4):
(Z
2

)n
(in Figure 10) and Hn (in Figure 11). More

exactly, we need a bijection from (Z/2) to Hn which
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0 {0}

41 2 5 6 7 80
{0} {0,1} {1} {1,2} {2} {2,3} {3} {3,4} {4}

6 {3}

5 {2,3}

4 {2}

3 {1,2}

2 {1}

1 {0,1}

3

Fig. 11: Different immersions of the set presented in

the preceding figure. In the raster scan order, the direct

transform, the miss transform, the hit transform, and

the image by the Hn operator (described hereafter).

Note that the representation of a set of Z2 is not unique

in H2.

H Transform from (Z/2) into H1

Hn Transform from
(Z
2

)n
into Hn

Z Transform from H1 into (Z/2)

Zn Transform from Hn into
(Z
2

)n
⊗ Product operator

a ∧ b sup (α(a) ∩ α(b))

Card (X) The cardinal of the set X

A tB Disjoint union of A and B

Table 4: Notations relative to the immersion from
(Z
2

)n
to Hn.

preserves the structure between these two spaces. For

this purpose, we define the function H : (Z/2)→ H1:

∀z ∈ (Z/2), H(z) =


{z, z + 1} if z ∈ Z,

{z + 1
2} otherwise.

From H, we can compute its inverse, that we denote

by Z : H1 → (Z/2), and that we define this way: ∀h ∈
H1,

Z(h) =


a if ∃a ∈ Z s.t. h = {a, a+ 1},

a− 1/2 if ∃a ∈ Z s.t. h = {a}.

These bijections are depicted in Figure 12. We define

also the bijection Hn :
(Z
2

)n → Hn as the n-ary Carte-

sian product of H, and we denote by Zn : Hn →
(Z
2

)n
its inverse.

Then, for two sets A,B of faces of Hn, we define the

product operator ⊗:

A⊗B := {a× b ; a ∈ A, b ∈ B} .

As usual, for any a ∈ Hn, n ≥ 1, and for any

i ∈ J1, nK, we denote by ai the ith coordinate of a in

Hn. We can show easily that ∀a ∈ Hn, the closure of

the Cartesian product is equal to the product of the

closures:

α(a) = α
(
×m∈J1,nKam

)
= ⊗m∈J1,nKα(am),

and the same thing holds for the opening thanks to the

symmetry of Alexandrov spaces:

β(a) = β
(
×m∈J1,nKam

)
= ⊗m∈J1,nKβ(am).

3.1 Some relations between
(Z
2

)n
and Hn

Using Hn, we obtain the following lemma.

Lemma 1. Let c be a value in (Z/2) \ Z, and let y be

a value in Z. Then,

y ∈
{
c− 1

2
, c+

1

2

}
⇔ β(H(y)) ⊆ β(H(c)).

In other words, when H(c) is a 0-face of H1, y is a

neighbor of c in (Z/2) iff the opening of H(y) is included

in the opening of H(c).

The proof of this assertion is postponed to page 29.

Notations 1. From now on, for any c ∈
(Z
2

)n
, let 1

2 (c)

denote the set of indices of the coordinates i ∈ J1, nK
satisfying ci ∈ (Z/2) \ Z.

By Lemma 1, we obtain that:

Proposition 4. Let S be a block in Zn, and let c be its

center in
(Z
2

)n
. Then S and c are related this way:

S = Zn(β(Hn(c)) ∩Hnn).

The proof of this assertion is postponed to page 29

and is depicted in Figure 13.

3.2 Supremum in Hn

Notations 2. From now on, we write that an expres-

sion is WD if it is well-defined.

Notations 3. Let a, b be two elements of Hn, then we

denote by a ∧ b the supremum of α(a) ∩ α(b):

a ∧ b = sup (α(a) ∩ α(b))
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{0} {0,1} {1} {1,2} {2}{-1,0}{-1}

-1/2 0 1/2 1 3/2-1-3/2
(Z/2)

H1

Fig. 12: The bijection H between (Z/2) and H1 preserves connectivity between the two spaces.

Hn(c)

β(Hn(c))

β(Hn(c)) β(Hn(c))

Hn(c)

β(Hn(c))

c

S

S

S

S

c

Fig. 13: Explanation of the formula S(c) =

Zn(β(Hn(c)) ∩ Hnn): we start from a block S of cen-

ter c (top left side), we go into the Khalimsky grid

(top right side) using the transformation Hn, then we

compute the n-faces contained in β(Hn(c)) (down right

side), and then we go back into
(Z
2

)n
using Zn (down

left side), we obtain the block S(c).

Lemma 2. Let a, b be two elements of Hn. Then, α(a)∩
α(b) 6= ∅ iff the a∧b is WD. Furthermore, when a∧b is

WD, we can switch the operators × and ∧ in this way:

a ∧ b = (×i∈J1,nKai) ∧ (×i∈J1,nKbi) = ×i∈J1,nK(ai ∧ bi),

and we obtain α(a ∧ b) = α(a) ∩ α(b).

The proof of this assertion is postponed to page 30.

3.3 Some properties relative to antagonism

Let us now expose a simple lemma relative to antago-

nism.

Lemma 3. Let x, y be two elements of Zn. Then, x

and y are antagonists in a block of Zn of dimension

k ∈ J0, nK iff:
Card {m ∈ J1, nK ; xm = ym} = n− k, (1)

and

Card {m ∈ J1, nK ; |xm − ym| = 1} = k. (2)

In other words, x and y are k-antagonists iff they have

(n − k) equal coordinates and that the remaining coor-

dinates differ from 1.

The proof of this assertion is postponed to page 30.

By Lemma 3, it follows that:

Lemma 4. ∀p, p′ ∈ Zn, p and p′ are k-antagonists,

k ∈ J0, nK, iff Hn(p) ∧ Hn(p′) is WD and belongs to

Hnn−k.

The proof of this assertion is postponed to page 30

and is depicted in Figure 14.

By Lemmas 2 and 4, it follows that:

Lemma 5. Let p, p′ be two elements of Zn such that p

and p′ are (3n − 1)-neighbors in Zn or equal. Then,

Hn
(
p+ p′

2

)
= Hn(p) ∧Hn(p′).

The proof of this assertion is postponed to page 31.

By Lemma 5, the following assertion is true:

Proposition 5. Let S be a block and let p, p′ ∈ S be

any two antagonists in S. Then the center of the block

S is equal to p+p′

2 . Furthermore, its image by Hn in Hn
is equal to Hn(p) ∧Hn(p′).

The proof of this assertion is postponed to page 31.

By Lemma 5, we obtain also:

Lemma 6. Let p be an element of Zn, then we can re-

formulate the squared closure of Hn(p) in the following

manner:

α�(Hn(p)) =
⋃

v∈N∗
3n−1

(p)

α(Hn(p) ∧Hn(v)).
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Hn(p) ∧Hn(p′)

Hn(p′)Hn(p)

(a) k = 1

Hn(p) ∧Hn(p′)

Hn(p′)

Hn(p)

(b) k = 2

Hn(p) ∧Hn(p′)

Hn(p′)

Hn(p)

(c) k = 3

Fig. 14: Computation of Hn(p) ∧Hn(p′) in 3D.

f
Hn(v)

N ∗3n−1(p)

α�(Hn(p))

Hn(p)
p

Zn(f) v

Fig. 15: We can observe that to compute the set

α�(Hn(p)) in Hn, it is sufficient to compute in Zn all

the neighbors v (in gray on the left side) of p (in blue on

the left side), then we deduce the corresponding faces

Hn(p) (in white and blue on the right side) and Hn(v)

(in gray on the right side) in Hn that we use to compute

the faces Hn(p)∧Hn(v) (in green on the right side). By

grouping these faces, we obtain finally α�(Hn(p)) in

Hn (the set made of the green vertices and edges on

the right side).

The proof of this assertion is postponed to page 31

and is depicted in Figure 15.

By Lemmas 2 and 4, it follows that:

Lemma 7. Let S be a block in Zn of dimension k ≥ 2.

Now, let p, p′ be two antagonists in S, and v be a 2n-

neighbor of p in S. Then, we have the following relation:

Hn(p) ∧Hn(p′) ∈ α(Hn(p) ∧Hn(v)).

The proof of this assertion is postponed to page 31.

3.4 Property of images of blocks by Hn

Let us observe a basic property of the image of blocks

by the bijection Hn.

Proposition 4 implies that:

Hn(S)

Hn(S) Hn(S)

Hn(S)

z∗

α(Hn(y))

α(Hn(y))

Fig. 16: When y (whose image by Hn is one of the big

square in blue) does not belong to the block S centered

at Zn(z∗) (z∗ is depicted in black), we obtain that the

closure of Hn(y) (the sets of 9 faces in blue) does not

intersect the opening in Hnn of z∗ (in red).

Lemma 8. Let S be a block of Zn, and let z∗ ∈ Hn be

the image by Hn of the center of S. For all y ∈ Zn,

{y 6∈ S} ⇒ {α(Hn(y)) ∩ β(z∗) = ∅}.

The proof of this assertion is postponed to page 32

and is depicted in Figure 16.

3.5 Additional background concerning n-surfaces

The following proposition results from the proof of Prop-

erty 11 (p. 55) in [13].

Proposition 6 (*). Let n ≥ 1 and k ∈ J0, nK be two

integers. Let |X| = (X,αX) and |Y | = (Y, αY ) be two

k-surfaces in Hn. Then, if |X| is a suborder of |Y |, then

|X| = |Y |.

The proof of this assertion is postponed to page 32.

Notations 4. From now on, let us denote by t the dis-

joint union operator: for A and B two sets of arbitrary

elements, we denote by A t B the union of A and B

assuming that A ∩B = ∅.
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Proposition 6 implies then:

Corollary 1. Let |X1| and |X2| be two k-surfaces, k ≥
0, with X1∩X2 = ∅. Then |X1tX2| is not a k-surface.

In other words, the disjoint union of two k-surfaces,

k ≥ 0, is not a k-surface.

The proof of this assertion is postponed to page 32.

Proposition 3 implies the following assertion:

Proposition 7. Let a, b be two elements of Hn with a ∈
β�(b). Then |α�(a)∩β�(b)| is a (dim(a)−dim(b)−2)-

surface.

The proof of this assertion is postponed to page 32.

4 The proof that AWCness implies DWCness

in n-D

n ≥ 2 The dimension of the ambient space

X A non-empty finite subset of Zn
Y The complement of X in Zn
X The image of X by Hn
Y The image of Y by Hn

Ihit(X) The hit-transform of X
Imiss(X) The miss-transform of X

N The boundary of the two last transforms

f(p, z∗) α(Hn(p)) ∩ α(Hn(Y ∩ S)) ∩ β�(z∗)

f(p′, z∗) α(Hn(p′)) ∩ α(Hn(Y ∩ S)) ∩ β�(z∗)

Table 5: Notations relative to the proof that AWCness

implies DWCness.

The new notations introduced in this section are

summarized in Table 5.

Notations 5. From now on, we assume that n is an

integer greater than or equal to 2, that X is a non-empty

finite subset of Zn, that Y is the complement of X into

Zn; also, we define the sets:

X := Hn(X), Y := Hn(Y ).

Notations 6. The hit-transform of X into Hn is de-

fined such as:

Ihit(X) := α(X ),

and the miss-transform, shortly the immersion, of X

into Hn is defined such as:

Imiss(X) := Int
(
Ihit(X)

)
.

For sake of simplicity, the boundary of the immersion

of X is denoted by N:

N := ∂Imiss(X).

Let us begin with a property of the closures of the

sets X and Y.

Proposition 8. The sets α(X ) and α(Y) are regular

closed sets.

The proof of this assertion is postponed to page 32.

Lemma 9. Let X ,Y be two subsets of Hnn such that

X t Y = Hnn. Then,

α(X ) t Int(α(Y)) = Hn.

The proof of this assertion is postponed to page 33.

By Lemma 9 and by Proposition 8, we obtain:

Proposition 9. The hit-transform and the miss-trans-

form of X have the same boundary which is equal to:

α(X ) ∩ α(Y).

The proof of this assertion is postponed to page 33

and is depicted in Figure 17.

By Proposition 3, we obtain:

Proposition 10. For any z ∈ N, we have the property

that |α�
N(z)| is a (dim(z)− 1)-surface.

The proof of this assertion is postponed to page 33.

By Propositions 2 and 10, we obtain that:

Lemma 10 (*). The immersion Imiss(X) of X is AWC

iff ∀z ∈ N, |β�
N(z)| is a (n− 2− dim(z))-surface.

The proof of this assertion is postponed to page 33.

Figure 18 shows how we can compute in the 2D case

if a set is AWC from a local point of view: the set circled

in blue is AWC since for any vertex z ∈ N, |β�
N(z)| is a

0-surface, while the set circled in red is not AWC since

there exists some vertex z such that |β�
N(z)| is not a

0-surface.

By Propositions 5 and 9 and by Lemmas 2, 4, and

7, we obtain that:

Proposition 11 (*). Let S be a block of dimension

k ∈ J2, nK s.t. X ∩ S = {p, p′} (or s.t. Y ∩ S = {p, p′})
and p′ = antagS(p), then Hn

(
p+p′

2

)
∈ N. In other

words, when X contains a primary or secondary criti-

cal configuration, the image by Hn of the center of the

critical configuration belongs to the boundary N of the

immersion of X.
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Hn(X) Imiss(X)

Hn(Y ) Hn \ Imiss(X)

α(Hn(X)) α(Imiss(X))

α(Hn(Y )) α(Hn \ Imiss(X))

α(Hn(X)) ∩ α(Hn(Y )) α(Imiss(X)) ∩ α(Hn \ Imiss(X))

XY Y

=

Fig. 17: The computation of the boundary of Imiss(X) can be made using to different manners: either by computing

directly α(Imiss(X))∩α(Hn \ Imiss(X)) using the definition or by computing α(Hn(X))∩α(Hn(Y )) based on the

closures of the sets Hn(X) and Hn(Y ).

|β�
N(z)||β�

N(z)|
z

z

Fig. 18: AWCness of a subset of a Khalimsky grid can be

expressed using a local point of view using the property

that for any z in its boundary N, |β�
N(z)| is a (n −

dim(z)− 2)-surface.

Fig. 19: β�
N(Hn(c)) (in green and red) when X admits

a 2D/3D critical configuration in the block of center

c (whose image by Hn is depicted in light gray) when

n = 3.

The proof of this assertion is postponed to page 34

and is depicted in Figure 19.

Then the first main result of this paper is as follows.

The summary is presented in Figure 20.

Theorem 1. Let X be a digital subset of Zn. Then,

when its miss-transform (or equivalently its hit-trans-

form) is well-composed in the sense of Alexandrov, then

X is digitally well-composed.

Proof. The proof is the same if we choose the miss-

transform or the hit-transform since their boundaries

are equal by Proposition 9.

So, we want to prove that AWCness implies DWC-

ness in n-D. For this aim, we will show that if X is not

DWC, then Imiss(X) is not AWC. Since by Lemma 10,

Imiss(X) is AWC iff ∀z ∈ N, |β�
N(z)| is a (n − 2 −

dim(z))-surface, it is sufficient to prove that when X is

not DWC, then there exists an element z∗ of N such

that |β�
N(z∗)| is not a (n − 2 − dim(z∗))-surface. So,

let us assume that X is not DWC, that is, X admits a

primary or secondary critical configuration.

Let us treat the primary case, since the reasoning

for the secondary case is similar: let us assume that

there exists a block S of dimension k ∈ J2, nK such that

X ∩ S = {p, p′} with p′ = antagS(p). This way, we can

compute the image z∗ by Hn into Hn of the center of

S. By Proposition 5,

z∗ = Hn(p) ∧Hn(p′).

Let us show that |β�
N(z∗)| is not a (n − 2 − dim(z))-

surface. By Proposition 11,

z∗ ∈ N,

so the expression β�
N(z∗) is WD.

Now, let us compute |β�
N(z∗)|. For this aim, let us

define:

f(p, z∗) := α�(Hn(p)) ∩ β�(z∗).

Using Lemma 6,

f(p, z∗) =
⋃

y∈N∗
3n−1

(p)

α(Hn(p) ∧Hn(y)) ∩ β�(z∗).

Using Lemma 8, we obtain that:

f(p, z∗) =
⋃

y∈S\{p}

α(Hn(p) ∧Hn(y)) ∩ β�(z∗).

Then, since we know that:

α(Hn(p) ∧Hn(p′)) ∩ β�(z∗) = ∅,
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p′

p

H(p′)

H(p)

z∗ ∈ N

f(p, z∗)

f(p′, z∗)

|β�N(z∗)| = |f(p, z∗) ∪ f(p′, z∗)|

0-surf0-surf

not AWC
Fig. 20: Summary of the proof of Theorem 1: since X is assumed not to be DWC, it contains a critical configuration

in a block S whose center z∗ belongs to the boundary N. We can then check that the poset |β�
N(z∗)| is made of

two discrete 0-surfaces and then it is not a 0-surface, which means that X is not AWC.

thus:

f(p, z∗) =
⋃

y∈S\{p,p′}

α(Hn(p) ∧Hn(y)) ∩ β�(z∗).

By Lemma 2,

f(p, z∗) =
⋃
y∈S\{p,p′} α(Hn(p)) ∩ α(Hn(y)) ∩ β�(z∗),

and because S \ {p, p′} = Y ∩ S, we obtain that:

f(p, z∗) = α(Hn(p)) ∩ α(Hn(Y ∩ S)) ∩ β�(z∗),

With a similar calculation based on p′, we obtain

that:

f(p′, z∗) := α�(Hn(p′)) ∩ β�(z∗)
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is equal to:

α(Hn(p′)) ∩ α(Hn(Y ∩ S)) ∩ β�(z∗).

Next,

f(p, z∗) ∪ f(p′, z∗)

= α(Hn(X ∩ S)) ∩ α(Hn(Y ∩ S)) ∩ β�(z∗),

which is equal by Lemma 8 to α(X ) ∩ α(Y) ∩ β�(z∗),

and then to β�
N(z∗) by Proposition 9.

Finally, we have that:

|β�
N(z∗)| = |f(p, z∗) ∪ f(p′, z∗)| .

Figure 19 depicts examples of β�
N(z∗) in the case n = 3.

Let us now remark that |β�
N(z∗)| is the disjoint union

of |f(p, z∗)| and of |f(p′, z∗)|:

α�(Hn(p)) ∩ α�(Hn(p′)) ∩ β�(z∗) = ∅.

However, by Proposition 7, |f(p, z∗)| and |f(p′, z∗)| are

both (n−dim(z∗)−2)-surfaces. By Corollary 1, |β�
N(z∗)|

is not a (n − dim(z∗) − 2)-surface, and then Imiss(X)

is not AWC.

The flow diagram of Theorem 1 (see below) is de-

picted in Figure 21.

Now that we have proved that AWCness implies

DWCness, let us prove the converse, but before let us

present some general results relative to two spaces: Hn
and (Z/2)

n
.

5 General results relative to Hn and (Z/2)
n

In this section, we present notations, lemmas and propo-

sitions necessary to prove in the next section that DWC-

ness implies AWCness in n-D.

5.1 Definition of 1 (x)

Notations 7 (Integral coordinates). From now on, for

each point x ∈ (Z/2)
n

, we will write:

1 (x) = {i ∈ J1, nK ; xi ∈ Z}.

Obviously, 1 (x) = J1, nK \ 1
2 (x), and Card (1 (x)) =

dim(Hn(x)).

J1, nK The set of integers between 1 and n

x An element of
(Z
2

)n
1 (x) The indexes of the integral coordinates
1
2 (x) The complementary of 1 (x) in J1, nK
� The covering relation

a � b The face a covers the face b

oppc(b) The opposite of b relatively to the face c

I A family of indexes in J1, nK
C A family of coefficients in (Z/2)

Hn{h,I,C} Hn
({
Zn(h) +

∑
i∈I λie

i ; ∀i ∈ I, λi ∈ C
})

E β(z) \ (β(t) ∪ β(t′))

Iso(u) Hn
(
Zn(u) + (Z(tm∗)−Z(zm∗)) e

m∗
)

Ckn
n!

(n−k)! k!

Table 6: Notations relative to the relation between to

Hn and (Z/2)
n
.

Proposition 12. Let p, c be two elements in Hn. We

have the following equivalence:

{p ∈ β(c)} ⇔



∀i ∈ 1 (Zn(p)) ∩ 1
2 (Zn(c)) ,

Z(pi) ∈
{
Z(ci)− 1

2 ,Z(ci) + 1
2

}
,

∀i ∈ 1 (Zn(p)) ∩ 1 (Zn(c)) ,

Z(pi) = Z(ci),

∀i ∈ 1
2 (Zn(p)) ∩ 1

2 (Zn(c)) ,

Z(pi) = Z(ci),

1
2 (Zn(p)) ∩ 1 (Zn(c)) = ∅.

The proof of this assertion is postponed to section C

at page 34 and an example of this proposition is de-

picted in Figure 22.

5.2 Covering and opposites

Definition 4 (Covering relation). Let a, b be two ele-

ments of Hn. We say that a covers b, when a ∈ β�(b)

and dim(a) = dim(b) + 1. We denote it a � b.

By Proposition 12, we obtain:

Proposition 13. Let p, c be two elements of Hn. Then,

p � c iff there exists m ∈ J1, nK such that:
1 (Zn(p)) ∩ 1

2 (Zn(c)) = {m}
and

Zn(p) ∈
{
Zn(c)− 1

2e
m,Zn(c) + 1

2e
m
}
.
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Fig. 21: Flow diagram of Theorem 1.

0 1/2 1-1/2-1
0

1/2

1

-1/2

-1

x

x

1

2

Zn(c)

Zn(p)

c

p

Fig. 22: We can observe that p belongs to β(c) on

the right side. At the same time, on the right side in(Z
2

)n
, for i ∈ 1 (Zn(p)) ∩ 1

2 (Zn(c)) = {2}, we have

that Z(pi) = Z(ci) − 1
2 (first condition of Proposi-

tion 12), for i ∈ 1 (Zn(p)) ∩ 1 (Zn(c)) = {1}, we have

that Z(pi) = Z(ci) = 0 (second condition of Proposi-

tion 12), and the two other conditions of Proposition 12

are satisfied too because the intersections in the third

and fourth conditions are empty sets.

The proof of this assertion is postponed to Section C

at page 34.

Definition 5 (Opposites [26]). Let a, b, c be three el-

ements of Hn. We say that a and b are opposite rel-

atively to c and we denote it a = oppc(b) when a �
c, b � c and β(a) ∩ β(b) = ∅.

On Figure 23, some examples of opposite faces are

depicted: we have a = oppc(b) with a in red, b in blue,

and c in pink.

c c

Fig. 23: Examples of opposites in H2: blue and red faces

are opposites relatively to the pink face.

By Propositions 12 and 13, we obtain that:

Lemma 11. Let a, b, c be three elements of Hn such

that a = oppc(b), then there exists m ∈ J1, nK such

that:

– either Zn(a) = Zn(c) − 1
2e
m and Zn(b) = Zn(c) +

1
2e
m,

– or Zn(a) = Zn(c) + 1
2e
m and Zn(b) = Zn(c)− 1

2e
m,

which leads in both cases to:

Zn(a) + Zn(b)

2
= Zn(c).

Furthermore,1 (Zn(a)) = 1 (Zn(c)) t {m} = 1 (Zn(b)) ,

1
2 (Zn(a)) t {m} = 1

2 (Zn(c)) = 1
2 (Zn(b)) t {m}.

The proof of this assertion is postponed to Section C

at page 35.
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5.3 A very particular (n− dim(z)− 2)-surface

Notations 8 (Subspaces of Hn). Let h be an element

Hn, and let be I be a family of indices into J1, nK, and

let be C a set of values in (Z/2). Then we define the

following set:

Hn{h,I,C} = Hn

({
Zn(h) +

∑
i∈I

λie
i ; ∀i ∈ I, λi ∈ C

})
.

It is then obvious that for any element h ∈ Hn, we

have the following relations:

Examples 1. For any element h ∈ Hn,
Hn{h, 12 (Zn(h)),{− 1

2 ,0,
1
2}}

= β(h),

Hn{h,1(Zn(h)),{− 1
2 ,0,

1
2}}

= α(h),

Hn{h,J1,nK,(Z/2)} = Hn.

We recall that a bijection f : X → Y is said to

be an (order) isomorphism if for any x1, x2 ∈ X, then

x1 ∈ αX(x2) is equivalent to f(x1) ∈ αY (f(x2)).

By Proposition 13, we obtain:

Proposition 14. Let t, t′, z three elements in Hn such

that t and t′ are opposite relatively to z. Now let define

E := β(z) \ (β(t) ∪ β(t′)), and let m∗ be the only coor-

dinate in J1, nK such that m∗ ∈ 1 (Zn(t)) \ 1 (Zn(z)).

Then, the application Iso : E → Hn such that, ∀u ∈ E ,

Iso(u) := Hn
(
Zn(u) + (Z(tm∗)−Z(zm∗)) e

m∗
)
.

is an isomorphism from E to β(t). In other words, the

order is preserved from E to β(t).

The proof of this assertion is postponed to Section C

at page 35 and the notion of a “translation” in Khal-

imsky grids is depicted using the usual notion of trans-

lation in Zn (see Figure 24).

As depicted on Figure 25, when t and t′ are opposite

relatively to z, |E| depicted in red is isomorphic (as an

order) to |β(t)| depicted in blue and to |β(t′)| depicted

in green.

By Lemma 11, we have the following lemma:

Lemma 12 (*). Assuming n ≥ 2, let z be an element

of Hn \Hnn and t, t′ be in Hndim(z)+1 such that they are

opposite relatively to z. Then
∣∣β�(z) \ (β(t) ∪ β(t′))

∣∣ is

a (n− dim(z)− 2)-surface.

The proof of this assertion is postponed to Section C

at page 37.

t
z

Fig. 24: We depict here what is a “translation” in a

2D Khalimsky grid as a counterpart of the well-known

notion of translation defined in Zn (and then
(Z
2

)n
by

extension). The dark gray little squares on the left side

represent the 0-faces z and the dark gray nodes on the

right side represent their images by Zn of z. In the same

way, the light gray rectangles on the left side represent

a face t covering z and the light grey nodes on the right

side represent the images of t by Zn. Since we can-

not define naturally a “translation vector” in the 2D

Khalimsky grid on the top left side, we go into
(Z
2

)n
on the top right side. Then we define in this last space

the vector (Zn(tm∗) − Zn(zm∗)) e
m∗ (in red) utilized

to orientate in the good direction the translation (from

z to t); we recall that m∗ is the only coordinate where

t and z differ. Then, we can observe that thanks to

this translation we can transform all the elements p

of the component encircled in blue (on the right down

side) into the component encircled in green thanks to

the operation p → p + (Z(tm∗) − Z(zm∗)) e
m∗ . Going

back to the 2D Khalimsky grid thanks to the Hn trans-

form, we can then translate the suborder encircled in

blue into the suborder encircled in green thanks to the

operation u → Hn
(
Zn(u) + (Z(tm∗)−Z(zm∗)) e

m∗
)
.

Observe that the order is preserved and then this trans-

lation is an isomorphism.

5.4 Definition and properties of the set T (u)

Notations 9. From now on, we will use the notation:

∀z ∈ Hn \Hnn, ∀u ∈ β�(z),

T (u) := α(u) ∩ β�(z) ∩Hndim(z)+1.

This set represents the (dim(z) + 1)-faces of the set

α(u) ∩ β�(z).

By proposition 12, we have:
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t

z

t'

Fig. 25: When t and t′ are opposite relatively to z,

then the orders |β(t)| (in blue), |β(t′)| (in green) and

|β(z) \ (β(t) ∪ β(t′))| (in red) are isomorphic orders.

Lemma 13. For all z ∈ Hn\Hnn and for all u ∈ β�(z),

T (u) =

Hn
(
Zn(z) + (Z(ui)−Z(zi)).e

i
)

;

i ∈ 1 (Zn(u)) ∩ 1
2 (Zn(z))


The proof of this assertion is postponed to Section C

at page 37 and is depicted in Figure 27.

5.5 Infimum

We have seen before the notion of supremum of the

intersection of the closure of two faces in Hn. Let us see

now the infimum of the intersection of the openings of

two elements a, b ∈ Hn.

x

y

x

y

x=y

x y

Fig. 26: Examples of infimum: β(x) is in red, β(y) is in

blue, their intersection is in purple, and the infimum of

β(a) ∩ β(b) is surrounded in green.

Definition 6. Let a, b be two elements of Hn, then we

denote by a ∨ b the infimum of β(a) ∩ β(b):

a ∨ b = inf (β(a) ∩ β(b)) .

The notion of supremum is illustrated in Figure 26.

Lemma 14. Let a, b be two elements of Hn. Then,

{β(a) ∩ β(b) 6= ∅} ⇔ {a ∨ b is WD } .

Furthermore, when a∨b is WD, it satisfies the relations:a ∨ b = ×i∈J1,nK(ai ∨ bi),

β(a ∨ b) = β(a) ∩ β(b).

The proof of this assertion is postponed to Section C

at page 38.

5.6 Decomposition lemma

Now let us show that we can “decompose” any face of

β�(z) as a function of its (dim(z) + 1)-faces.

z
z

Fig. 27: Decomposing faces of β�(z) into (dim(z) + 1)-

faces. On the left, a (dim(z)+2)-face is decomposed into

two (dim(z) + 1)-faces and on the right a (dim(z) + 3)-

face is decomposed into three (dim(z) + 1)-faces.

By Lemma 13, we obtain that:

Lemma 15 (Decomposition lemma). Let z be a face

in Hn \Hnn. Each face u ∈ β�(z) can be decomposed in

the following manner (see Figure 27):

u =
∨

v∈T (u)

v.

The proof of this assertion is postponed to Section C

at page 38.

Lemma 16. Let v, v′ be two elements of β�(z) such

that v 6= v′. Then T (v) 6= T (v′).

Proof. We can easily prove this lemma by counterposi-

tion thanks to Lemma 15.
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f

v

Fig. 28: When f is of dimension 2 (in green) and when

f ∈ β(v) where v is of dimension 0 (in blue), then we

have in α(f) ∩ β(v) a number of one 2-face, of two 1-

faces (in pink) and of one 0-face.

aa, b b

b

a

Fig. 29: We assume that we have n = 2. In this three

pictures, the square whose boundary is in red corre-

sponds to the n-face a, the blue square to the n-face b,

the small black square to the 0-face z, and the green

faces to the set α�(a)∩α�(b)∩ β�(z). We can observe

that when α�(a)∩α�(b)∩β�(z) = ∅ (the figure on the

right side), then Zn(a) and Zn(b) are 2-antagonists.

5.7 Counting the k-faces into α(a) ∩ β(b)

By Proposition 12, we can prove the following assertion:

Lemma 17. Let v, f be two faces of Hn such that f ∈
β(v). For all k ∈ Jdim(v), dim(f)K:

Card (α(f) ∩ β(v) ∩Hnk ) = C
k−dim(v)
dim(f)−dim(v).

The proof of this assertion is postponed to Section C

at page 39, and an example of counting of faces is de-

picted in Figure 28.

5.8 Antagonism and β�
N(z)

By Lemmas 2 and 4, and by Proposition 7, we obtain

that:

Fig. 30: In n-D with n ≥ 3, removing an element p of

Zn and one of its k-antagonists p′ (both in red) with

k ≥ 3 in a k-block S (the set of green and red nodes)

does not separate this same block: S \ {p, p′} (depicted

by the green nodes) is 2n-connected.

Lemma 18 (*). Let us assume that n ≥ 2. Let z be

in Hn such that dim(z) ≤ n − 2, and let a, b be in

Hnn ∩ β�(z). Then α�(a) ∩ α�(b) ∩ β�(z) = ∅ implies

that Zn(a) and Zn(b) are (n− dim(z))-antagonist into

Zn.

The proof of this assertion is postponed to Section C

at page 39 and a demonstration of this assertion is de-

picted in Figure 29.

5.9 Connectivity of S(z) minus two of its antagonists

when dim(z) ≤ (n− 3)

Lemma 19. Let n ≥ 3 be an integer. Let z be in

Hn such that dim(z) ≤ n − 3, and let p, p′ be in S(z)

such that p = antagS(z)(p
′). Then S(z) \ {p, p′} is 2n-

connected into Zn.

The proof of this assertion is postponed to Section C

at page 40 and two examples are given in Figure 30.

6 The proof that DWCness implies AWCness

in n-D

We assume that X is a non-empty finite subset of Zn,

that Y is its complement in Zn, that N is the boundary

of the hit/miss-transform of X.

Notations 10. From now on, we define for any z ∈ N:

{Fi}i∈I = CC(|β�
N(z)|).

In this section, we present lemmas relative to the

suborder
∣∣β�

N(z)
∣∣ in general, and properties relative to

|β�
N(z)| when it is assumed not to be connected and/or

each component of
∣∣β�

N(z)
∣∣ is a (n−dim(z)−2)-surface.
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Then, using these assertions, we prove that DWCness

implies AWCness in n-D.

Now let us present very briefly the proof which fol-

lows. We assume that X is DWC. Then, we show that

in the “2D case” (dim(z) = n−2), the Imiss(X) is AWC

by a case-by-case study (we will show that |β�
N(z)| is a

0-surface). Thanks to this last property, we can start

a proof by induction on the dimension of z (dim(z) ≤
(n− 3)) where we want to prove that |β�

N(z)| is a (n−
dim(z)− 2)-surface, that is, it is connected and for any

u ∈ β�
N(z), we have that

∣∣∣θ�
β�
N(z)

(u)
∣∣∣ is a (n−dim(z)−3)-

surface. This last property is easy to prove thanks to the

induction hypothesis. However, proving that |β�
N(z)| is

connected is much more complex and need the proper-

ties and lemmas detailed hereafter. Finally, thanks to

the last lemma in the following subsection, we will see

that when X is DWC, |β�
N(z)| is connected and we will

end the proof thanks to the induction procedure.

6.1 Properties and lemmas relative to |β�
N(z)| under

some constraints

Let us define two hypotheses that will be very useful in

the sequel.

Hypothesis 1 (n ≥ 3). “There exists z ∈ N such that

dim(z) ≤ (n − 3) and satisfying that
∣∣β�

N(z)
∣∣ is not

connected”.

Hypothesis 2. “Each component Fi of
∣∣β�

N(z)
∣∣ is a

(n− dim(z)− 2)-surface.”

We are going to detail which properties we get when
some of these hypotheses are true.

6.1.1 Basic lemmas

Lemma 20. We assume that X is a non-empty finite

subset of Zn, that Y is its complement in Zn, that N

is the boundary of the hit/miss-transform of X. Then

each component |Fi| of |β�
N(z)| is closed in β�(z).

The proof of this assertion is postponed to page 40.

Lemma 21. We assume that X is a non-empty finite

subset of Zn, that Y is its complement in Zn, that N is

the boundary of the hit/miss-transform of X. Then for

two different components Fi and Fj of |β�
N(z)|:

β(Fi) ∩ Fj = ∅, and α(Fi) ∩ Fj = ∅.

The proof of this assertion is postponed to page 40.

Lemma 22. We assume that X is a non-empty finite

subset of Zn, that Y is its complement in Zn, that N is

the boundary of the hit/miss-transform of X. For each

u ∈ β�
N(z), there exists one unique index i∗ ∈ I such

that u ∈ Fi∗ and it satisfies that:

α�
Fi∗

(u) = α�
β�
N(z)

(u),

β�
Fi∗

(u) = β�
β�
N(z)

(u),

θ�Fi∗ (u) = θ�
β�
N(z)

(u).

The proof of this assertion is postponed to page 40.

6.1.2 Under Hyp. 1 and 2, the components Fi cannot

contain opposite faces

t

opp (t)
z

Fj

z

Fig. 31: Let us assume that two opposite (green) faces t

and t′ := oppz(t) in β�
N(z) belong to a same connected

component Fi of |β�
N(z)| (we just draw the two faces

t and t′ of this component). Then they are connected

in this last poset by some path π (not depicted here)

belonging to Fi. Now, assume that |β�
N(z)| is not con-

nected (Hypothesis 1), then there exists another con-

nected component Fj of |β�
N(z)| and it is included into

the (n−dim(z)−2)-surface |β�(z)\(β(t)∪β(t′))|; other-

wise Fi and Fj would be connected, what is impossible.

Since by Hypothesis 2, Fj is a (n− dim(z)− 2)-surface

included in the (n−dim(z)−2)-surface |β�(z)\ (β(t)∪
β(t′))|, they are equal. Since π must intersect Fj to join

t and t′ in β�(z), we obtain a contradiction.

As a consequence of Hypotheses 1 and 2, and using

Lemmas 12 and 20 and Proposition 6, we obtain:

Property 1 (*). We assume that n ≥ 3 and that there

exists z ∈ N such that dim(z) ≤ (n−3) and that
∣∣β�

N(z)
∣∣

is not connected (Hypothesis 1). We assume also that

each component of
∣∣β�

N(z)
∣∣ is a (n−dim(z)−2)-surface

(Hypothesis 2). Then, ∀i ∈ I, ∀t ∈ Hndim(z)+1,

{t ∈ Fi ⇒ oppz(t) 6∈ Fi} .
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The proof of this assertion is postponed to page 40

and is depicted in Figure 31; its flow diagram is depicted

in Figure 32.

Fig. 32: Flow diagram of Property 1. The blue points

refer to hypotheses assumed to be true.

6.1.3 Under Hyp. 1 and 2, Fi contains at most

(n− dim(z)) (dim(z) + 1)-faces

As a consequence of Hypothesis 1, and using Prop-

erty 1, we obtain:

Property 2. We assume that n ≥ 3 and that there

exists z ∈ N such that dim(z) ≤ (n−3) and that
∣∣β�

N(z)
∣∣

is not connected (Hypothesis 1). For each value i in I,

Fi contains at most (n− dim(z)) (dim(z) + 1)-faces.

The proof of this assertion is postponed to page 41.

6.1.4
∣∣β�

N(z)
∣∣ is a closure of (n− 1)-faces in

∣∣β�(z)
∣∣

Lemma 23. Let x, y be two elements of Zn and S be

a block such that x = antagS(y). Then for all z ∈ S:
α(Hn(x)) ∩ α(Hn(y)) ⊆ α(Hn(x)) ∩ α(Hn(z)),

α(Hn(x)) ∩ α(Hn(y)) ⊆ α(Hn(z)) ∩ α(Hn(y)).

The proof of this assertion is postponed to page 41.

By Lemmas 2, 8 and 23, and Proposition 4, we ob-

tain that:

Lemma 24. Let X be a non-empty finite subset of Zn,

Y its complement in Zn, and N be the boundary of the

miss-tranform of X in Hn. For each z ∈ N:

β�
N(z) =

⋃
f∈Hnn−1∩β�

N(z)

α(f) ∩ β�(z),

in other words, β�
N(z) is equal to the union of the clo-

sures (into β�(z)) of its (n− 1)-faces.

The proof of this assertion is postponed to page 41.

6.1.5 Fi is the closure of some particular (n− 1)-faces

in β�(z)

By Lemma 24, we obtain:

Lemma 25. Let X be a non-empty finite subset of Zn,

Y its complement in Zn, and N be the boundary of the

miss-tranform of X in Hn. For each z ∈ N, and for

any i ∈ I, the component Fi of |β�
N(z)| is the closure

in β�(z) of a set of (n− 1)-faces, i.e.:

Fi =
⋃

f∈Hnn−1∩Fi

α(f) ∩ β�(z).

The proof of this assertion is postponed to page 42.

6.1.6 Under Hyp. 1 and 2, Fi contains faces of each

dimension in Jdim(z) + 1, n− 1K

Lemma 26. Let f, z be two elements of Hn such that

f ∈ β(z), and let be I = {i ∈ J1, nK ; fi 6= zi}. Then,

dim(f) = dim(z) + Card (I) .

The proof of this assertion is postponed to Section C

at page 42.

As a consequence of Hypotheses 1 and 2, and using

Lemmas 25 and 26, we obtain:

Property 3. We assume that n ≥ 3 and that there

exists z ∈ N such that dim(z) ≤ (n−3) and that
∣∣β�

N(z)
∣∣

is not connected (Hypothesis 1). We assume also that

each component of
∣∣β�

N(z)
∣∣ is a (n−dim(z)−2)-surface

(Hypothesis 2). Then, ∀i ∈ I, ∀m ∈ Jdim(z)+1, n−1K:

Fi ∩Hnm 6= ∅.

The proof of this assertion is postponed to page 42,

and its flow diagram is depicted in Figure 33.
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Fig. 33: Flow diagram of Property 3. The blue points

refer to hypotheses assumed to be true.

6.1.7 Under Hyp. 1, we have the “Rank property”

As a consequence of Hypotheses 1, we obtain what we

call the “rank property”:

Property 4. We assume that n ≥ 3 and that there

exists z ∈ N such that dim(z) ≤ (n−3) and that
∣∣β�

N(z)
∣∣

is not connected (Hypothesis 1). We assume also that

each component of
∣∣β�

N(z)
∣∣ is a (n−dim(z)−2)-surface

(Hypothesis 2). Now, ∀i ∈ I, ∀v ∈ Fi,

ρ(v, |Fi|) = dim(v)− dim(z)− 1.

The proof of this assertion is postponed at page 43.

6.1.8 Minimal number of (dim(z) + 1)-faces into Fi
under Hyp. 1 and 2

As a consequence of Hypotheses 1 and 2, and using

Properties 3 and 4 and Lemmas 16, 17 and 20, we ob-

tain:

Property 5. We assume that n ≥ 3 and that there

exists z ∈ N such that dim(z) ≤ (n−3) and that
∣∣β�

N(z)
∣∣

is not connected (Hypothesis 1). We assume also that

each component of
∣∣β�

N(z)
∣∣ is a (n−dim(z)−2)-surface

(Hypothesis 2). Then, for all i ∈ I, Fi contains at least

(n− dim(z)) (dim(z) + 1)-faces.

The proof of this assertion is postponed to page 43;

its flow diagram is depicted in Figure 34.

Fig. 34: Flow diagram of Property 5. The blue points

refer to hypotheses assumed to be true and the red

points are assertions whose diagrams have been already

drawn.

6.1.9 Exact number of (dim(z) + 1)-faces into Fi
under Hyp. 1 and 2

As a consequence of Hypotheses 1 and 2 and using

Properties 2 and 5, we have:

Property 6 (*). We assume that n ≥ 3 and that there

exists z ∈ N such that dim(z) ≤ (n−3) and that
∣∣β�

N(z)
∣∣

is not connected (Hypothesis 1). We assume also that

each component of
∣∣β�

N(z)
∣∣ is a (n−dim(z)−2)-surface

(Hypothesis 2). Then, for all i ∈ I, Fi contains exactly

(n− dim(z)) (dim(z) + 1)-faces.

6.1.10 Number of components of |β�
N(z)| under Hyp. 1

and 2

As a consequence of Hypotheses 1 and 2, and using

Property 6, we have:

Property 7 (*). We assume that n ≥ 3 and that there

exists z ∈ N such that dim(z) ≤ (n−3) and that
∣∣β�

N(z)
∣∣

is not connected (Hypothesis 1). We assume also that
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each component of
∣∣β�

N(z)
∣∣ is a (n−dim(z)−2)-surface

(Hypothesis 2). Then,

Card (I) = 2.

The proof of this assertion is postponed to page 43.

6.1.11 Decomposing components T (Fi) under Hyp. 1

and 2

Notations 11. From now on, for each i ∈ I, we define:

T (Fi) = Fi ∩Hndim(z)+1.

This set represents the (dim(z) + 1)-faces of Fi.

As a consequence of Hypotheses 1 and 2, and using

Properties 1 and 5, we obtain:

Fig. 35: Some possible cases of T (Fi) when n = 3 and

dim(z) = 0.

Property 8. We assume that n ≥ 3 and that there

exists z ∈ N such that dim(z) ≤ (n−3) and that
∣∣β�

N(z)
∣∣

is not connected (Hypothesis 1). We assume also that

each component of
∣∣β�

N(z)
∣∣ is a (n−dim(z)−2)-surface

(Hypothesis 2). For all i ∈ I, T (Fi) is equal to:{
Hn(Zn(z) + λme

m);m ∈ 1

2
(Zn(z))

}
,

with each λm being exactly one value in
{
− 1

2 ,
1
2

}
.

The proof of this assertion is postponed to page 43

and Figure 35 depicts the different possible cases of

T (Fi) when n = 3 and dim(z) = 0.

6.1.12 Characteristical points of each Fi under Hyp. 1

and 2

As a consequence of Hypotheses 1 and 2, and using

Properties 6 and 8, we obtain that:

Property 9. We assume that n ≥ 3 and that there

exists z ∈ N such that dim(z) ≤ (n−3) and that
∣∣β�

N(z)
∣∣

is not connected (Hypothesis 1). We assume also that

each component of
∣∣β�

N(z)
∣∣ is a (n−dim(z)−2)-surface

(Hypothesis 2). For all i ∈ I,∨
t∈T (Fi)

t

exists in Hnn ∩ β�(z). We will call this face the charac-

teristical face of the component Fi.

The proof of this assertion is postponed to page 44;

its flow diagram is depicted in Figure 36.

Fig. 36: Flow diagram of Property 9. The blue points

refer to hypotheses assumed to be true and the red

points are assertions whose diagrams have been already

drawn.

6.1.13 Fi is contained in the closure of its

characteristical point under Hyp. 1 and 2

As a consequence of Hypotheses 1 and 2, using Proper-

ties 1 and 9 and Lemmas 14 and 15, we have:

Property 10 (*). We assume that n ≥ 3 and that there

exists z ∈ N such that dim(z) ≤ (n−3) and that
∣∣β�

N(z)
∣∣

is not connected (Hypothesis 1). We assume also that

each component of
∣∣β�

N(z)
∣∣ is a (n−dim(z)−2)-surface

(Hypothesis 2). For each i ∈ I:

Fi ⊆ α

 ∨
t∈T (Fi)

t

 .

Note that an intuition of this property is given in

Figure 37 and its proof is given at page 44.

6.1.14 Formulas of each component Fi under Hyp. 1

and 2

As a consequence of Hypotheses 1 and 2, using Proper-

ties 9 and 10 and Propositions 6 and 7, we have:
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t1

t2∨t

u

t3
Fig. 37: Assuming the hypothesis of Property 10, let

t1, t2, t3 be the three different (dim(z)+1)-faces into Fi
(we depict the case dim(z) = (n − 3)); these faces are

not opposite to each others. Since β(t1) ∩ β(t2) is not

empty, u = t1 ∨ t2 is WD. Also, since β(u) ∩ β(t3) is

not empty, u ∨ t3 exists and is equal to
∨

t∈T (Fi)

t. This

term is equal to inf (β(u) ∩ β(t3)) and then belongs

to β(u) ∩ β(t3), this way, t3 and u ∈ α

 ∨
t∈T (Fi)

t

.

In the same way, t1 and t2 will belong to α(u) ⊆

α

 ∨
t∈T (Fi)

t

. Finally, t1, t2 and t3 belong to the closure

of

 ∨
t∈T (Fi)

t

, and then Fi is included in α

 ∨
t∈T (Fi)

t

.

Property 11 (*). We assume that n ≥ 3 and that there

exists z ∈ N such that dim(z) ≤ (n−3) and that
∣∣β�

N(z)
∣∣

is not connected (Hypothesis 1). We assume also that

each component of
∣∣β�

N(z)
∣∣ is a (n−dim(z)−2)-surface

(Hypothesis 2). Then,

Fi = α�

 ∨
t∈T (Fi)

t

 ∩ β�(z).

Fig. 38: Flow diagram of Property 11. The blue points

refer to hypotheses assumed to be true and the red

points are assertions whose diagrams have been already

drawn.

The proof of this assertion is postponed to page 45

and its flow diagram is depicted in Figure 38.

6.1.15 The two characteristical points of |β�
N(z)| under

Hyp. 1 and 2

From now on, we will use the following notation:

Notations 12. We assume that n ≥ 3 and that there

exists z ∈ N such that dim(z) ≤ (n−3) and that
∣∣β�

N(z)
∣∣

is not connected (Hypothesis 1). We assume also that

each component of
∣∣β�

N(z)
∣∣ is a (n−dim(z)−2)-surface

(Hypothesis 2). We denote:

a :=
∨

t∈T (F1)

t, and b :=
∨

t∈T (F2)

t.

.

6.1.16 Zn(a) and Zn(b) are (n− dim(z))-antagonist

under Hyp. 1 and 2

As a consequence of Hypotheses 1 and 2, using Prop-

erty 12 and Lemma 19, we obtain that:

Property 12 (*). We assume that n ≥ 3 and that

there exists z ∈ N such that dim(z) ≤ (n− 3) and that∣∣β�
N(z)

∣∣ is not connected (Hypothesis 1). We assume

also that each component of
∣∣β�

N(z)
∣∣ is a (n− dim(z)−

2)-surface (Hypothesis 2). Then, Zn(a) and Zn(b) are

(n− dim(z))-antagonist in Zn.

The proof of this assertion is postponed to page 45.

6.1.17 Hyp. 1 and 2 imply that X is not DWC

z

a

b

Fig. 39: We can observe the structure of β�
N(z) when

we have (n− dim(z)) = 3, assuming that |β�
N(z)| is not

connected: |β�
N(z)| is then made of 6 1-faces in red, of

six 2-faces in blue, and together they correspond to the

disjoint union of two 1-surfaces |F1| =
∣∣α�(a) ∩ β�(z)

∣∣
(on the left) and |F2| =

∣∣α�(b) ∩ β�(z)
∣∣ (on the right).

As a consequence of Hypotheses 1 and 2, using Prop-

erty 12 and Lemma 19, we obtain:

Property 13 (*). We assume that n ≥ 3 and that

there exists z ∈ N such that dim(z) ≤ (n− 3) and that∣∣β�
N(z)

∣∣ is not connected (Hypothesis 1). We assume
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also that each component of
∣∣β�

N(z)
∣∣ is a (n− dim(z)−

2)-surface (Hypothesis 2). Then, X contains a critical

configuration of dimension (n− dim(z)).

The proof of this assertion is postponed to page 45

and is depicted in Figure 39.

Fig. 40: Flow diagram of Lemma 27. The blue points

refer to hypotheses assumed to be true and the red

points are assertions whose diagrams have been already

drawn.

6.1.18 The key lemma

When we group together Hypotheses 1 and 2, we ob-

tain that X is not DWC. It means that Hypothesis 1,

Hypothesis 2 and { X is DWC } are incompatible by

Property 13. In other words, when we know that X is

DWC and that the components Fi are (n−dim(z)−2)-

surfaces (Hypothesis 2), then
∣∣β�

N(z)
∣∣ is connected (be-

cause Hypothesis 1 is false). It leads to the follow-

ing lemma, crucial for the proof that DWCness implies

AWCness.

Lemma 27 (*). Let X be a non-empty finite subset of

Zn, Y its complement in Zn, and N be the boundary

of the miss-transform of X in Hn. For each z ∈ N, let

us consider the suborder
∣∣β�

N(z)
∣∣. When X is DWC and

when each component Fi of
∣∣β�

N(z)
∣∣ is a (n−dim(z)−2)-

surface (Hypothesis 2), then
∣∣β�

N(z)
∣∣ is connected.

The flow diagram of Lemma 27 is depicted in Fig-

ure 40.

6.2 The proof that DWCness implies AWCness

A list of notations inserted in this section are depicted

in Table 7, and the flow diagram of Theorem 2 (see

below) is depicted in Figure 41.

Let n be an integer satisfying n ≥ 2. Let us assume

that X is a non-empty finite subset of Zn, that Y is its

complement in Zn, and that N is the boundary of the

miss-transform of X in Hn.

We want to prove that the fact that X is DWC

implies that Imiss(X) is AWC too. For this aim, let us

assume that X is DWC. Proving that Imiss(X) is AWC

is equivalent by Lemma 10 to prove that for any z ∈ N,

we have the property that |β�
N(z)| is a (n−dim(z)−2)-

surface.

In other words, it is sufficient to prove that for any

k ∈ J1, nK, the property:

(Pk) =

{
∀z ∈ N ∩Hnn−k,
|β�

N(z)| is a (n− 2− dim(z))− surface

}
,

is true. We will proceed by induction.

When k = 1, dim(z) = n − 1, and then β�
N(z) = ∅,

then |β�
N(z)| is a (−1)-surface, which proves that (P1)

is true.

When k = 2, dim(z) = n − 2, and then, since X is

DWC, we have only two possible cases (modulo rota-

tions and symmetries) (see Figure 42). In both DWC

cases, β�
N(z) is made of two faces which are not neigh-

bors, and then |β�
N(z)| is a 0-surface. Note that Fig-

ure 42 shows the case for n = 2 but the reasoning is

exactly the same for any n ≥ 2.

Now, for the case k ≥ 3, we can decompose (Pk)

this way: since (n− dim(z)− 2) ≥ 1, (Pk) is equivalent

to say that:

(PAk ) =

{
∀z ∈ N ∩Hnn−k, ∀u ∈ β�

N(z),∣∣∣θ�
β�
N(z)

(u)
∣∣∣ is a (n− dim(z)− 3)-surface

}
and

(PBk ) =

{
∀z ∈ N ∩Hnn−k,
|β�

N(z)| is connected

}
are true.

To prove that these two properties are true, we are

going to prove that for each k ≥ 3, (PAk ) is true thanks

to the induction hypothesis, that (PAk ) implies Hypoth-

esis 2, and that Hypothesis 2 implies (PBk ).

Let us then prove that assuming that (P`) is true for

any ` ∈ J1, k − 1K (induction hypothesis), the property
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I The indexes of the components of |β�
N(z)|

{Fi}i∈I The components of |β�
N(z)|

T (Fi) The (dim(z) + 1)-faces of Fi

a First characteristical point of β�
N(z)

b Second characteristical point of β�
N(z)

(Pk)

{
∀z ∈ N ∩Hnn−k,
|β�

N(z)| is a (n− 2− dim(z))− surface

}
(PAk )

{
∀z ∈ N ∩Hnn−k, ∀u ∈ β�

N(z),∣∣∣θ�
β�
N(z)

(u)
∣∣∣ is a (n− dim(z)− 3)-surface

}
(PBk )

{
∀z ∈ N ∩Hnn−k,
|β�

N(z)| is connected

}
Table 7: Notations relative to the proof that DWCness implies AWCness

Fig. 41: Flow diagram of the proof that DWCness implies AWCness.

DWC DWC not DWC 

z z z

Fig. 42: When X is DWC, for any z ∈ N ∩Hnn−2, then

|β�
N(z)| is a 0-surface; observe here X ∩ β(z) in blue,

Y ∩ β(z) in red, and |β�
N(z)| is black.

(PAk ) is true. For any u ∈ β�
N(z), we have the following

equalities:

∣∣∣θ�β�
N(z)

(u)
∣∣∣

=
∣∣∣β�
β�
N(z)

(u)
∣∣∣ ∗ ∣∣∣α�

β�
N(z)

(u)
∣∣∣

=
∣∣∣β�(u) ∩ β�(z) ∩N

∣∣∣ ∗ ∣∣∣α�
β�
N(z)

(u)
∣∣∣

=
∣∣∣β�(u) ∩N

∣∣∣ ∗ ∣∣∣α�
β�
N(z)

(u)
∣∣∣

=
∣∣∣β�

N(u)
∣∣∣ ∗ ∣∣∣α�

β�
N(z)

(u)
∣∣∣

=
∣∣∣β�

N(u)
∣∣∣ ∗ ∣∣∣α�(u) ∩ β�

N(z)
∣∣∣

=
∣∣∣β�

N(u)
∣∣∣ ∗ ∣∣∣α�(u) ∩ β�(z) ∩N

∣∣∣
=
∣∣∣β�

N(u)
∣∣∣ ∗ ∣∣∣α�(u) ∩ β�(z)

∣∣∣
However, by the induction hypothesis,

∣∣β�
N(u)

∣∣ is a

(n− dim(u)− 2)-surface, and by Proposition 7,∣∣∣α�(u) ∩ β�(z)
∣∣∣

is a (dim(u)− dim(z)− 2)-surface. It means by Propo-

sition 2 that
∣∣∣θ�
β�
N(z)

(u)
∣∣∣ is a (n − dim(z) − 3)-surface,
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(PAk ) is then true.

Let us prove now that (PAk ) shows Hypothesis 2. For

any i ∈ I, the component |Fi| of
∣∣β�

N(z)
∣∣ is connected

by definition. Also, by Lemma 22, for any u ∈ Fi, we

have that: ∣∣∣θ�Fi(u)
∣∣∣ =

∣∣∣θ�β�
N(z)

(u)
∣∣∣ ,

which is a (n − dim(z) − 3)-surface (see before). Then

|Fi| is a (n−dim(z)−2)-surface, and then Hypothesis 2

is true.

Now, to prove that (PBk ) is true, we just have to

apply Lemma 27,
∣∣β�

N(z)
∣∣ is then connected. Indeed,

as detailed in the proof of Property 13, when Hypothe-

ses 1 and 2 are true, X contains a critical configuration.

However, Lemma 27 tells that when we have X DWC

and when furthermore Hypothesis 2 is true, we obtain

that Hypothesis 1 is false, which explains the connect-

edness of
∣∣β�

N(z)
∣∣, and then (PBk ) is true.

Since (PAk ) and (PBk ) are true, (Pk) is then true.

By induction, (Pk) is then true for any k ∈ J1, nK,
and then Imiss(X) (and Ihit(X) since their boundaries

are the same) are AWC, which leads to the second main

result of this paper:

Theorem 2. Let X be a digital subset of Zn. Then,

when X is DWC, its miss-transform and equivalently its

hit-transform are well-composed in the sense of Alexan-

drov.

The flow diagram of Theorem 2 is depicted in Fig-

ure 43.

7 The n-D Proof for gray-level images

From now on, we will call gray-level image on Zn any

mapping from Zn to Z, and gray-level image on Hn
any plain map from Hn to H1 (the definition is given

hereafter). So, in this section, we show how we extend

Theorems 1 and 2 from sets to gray-level images based

on cross-section topology [6–8,27] using span-based im-

mersions [17,28].

7.1 Plain maps

Table 8 summarizes the new notations inserted in this

section.

Let us now recall some mathematical background

coming from set-valued analysis [4,28] to be able to

Fig. 43: Flow diagram of Theorem 2. The red point

refers to an assertion whose diagram has been already

drawn.

|X|, |Y | Two Alexandrov spaces

F : X → Y An application from X to Y

F : X  Y A set-valued map from X to Y

U : X  Y A plain map from X to Y

D(F ) The domain of F

h A face of Hn

ϕ(h)

{
z + 1

2 if h = {z, z + 1},
z if h = {z},

≤ϕ The natural order relation on H1

[U D λ] {x ∈ Hn ; ∃y ∈ U(x), y ≥ λ}
[U B λ] {x ∈ Hn ; ∀y ∈ U(x), y > λ}
[U E λ] {x ∈ Hn ; ∃y ∈ U(x), y ≤ λ}
[U C λ] {x ∈ Hn ; ∀y ∈ U(x), y < λ}

u : Zn → Z A gray-level image

[u ≥ λ] {x ∈ Zn ; u(x) ≥ λ}
[u > λ] {x ∈ Zn ; u(x) > λ}
[u ≤ λ] {x ∈ Zn ; u(x) ≤ λ}
[u < λ] {x ∈ Zn ; u(x) < λ}

Table 8: Notations related to gray-level images.

define the class of gray-level images on Hn we will work

with in this paper.

Let |X| := (X,αX) and |Y | := (Y, αY ) be two

Alexandrov spaces; as usual, the operators βX and βY
will denote the inverse of αX and αY respectively. Since

αX and αY are closures in X and Y , βX and βY denote

the openings in these same spaces.

An application F from X to Y such that for any

x ∈ X, F (x) is a subset of Y is called a set-valued

map, and we denote this fact by F : X  Y . The
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domain of F is the set D(F ) ⊆ X such that ∀x ∈ X,

F (x) 6= ∅ ⇔ x ∈ D(F ).

A set-valued map F : X  R is said to be upper

semi-continuous (USC) at x ∈ D(F ) if ∀x′ ∈ βX(x),

F (x′) ⊆ βY (F (x)). A set-valued map is said to be upper

semi-continuous (USC) if it is USC at each point x ∈
D(F ).

A set X is said degenerate if there exists some p such

that X = {p}. A set-valued USC map F : X  Y is

said to be a quasi-simple map if for any x ∈ D(F ), F (x)

is a connected set and furthermore, for any x ∈ D(F )

such that {x} = β(x), F (x) is degenerate.

An open point p ∈ Hn is a face of Hn satisfying

that β(x) = {x}. A quasi-simple map F : X  Y is

said to be a simple map if for any quasi-simple map

F2 : X  Y such that F and F2 are equal on open

points, then for any x ∈ D(F ), F (x) ⊆ F2(x).

A set-valued map F : X  Y is said closed-valued

if for any x ∈ D(F ), F (x) is a closed subset of Y , and

is said interval-valued if for any x ∈ D(F ), F (x) is

connected. A set-valued map F : X  Y is said to be a

plain map if it is a closed-valued interval-valued simple

map.

7.2 Threshold sets and AWCness of a plain map

Let us define a bijection ϕ : H1 → (Z/2):

∀h ∈ H1, ϕ(h) =


z + 1

2 if h = {z, z + 1},

z if h = {z},

Now, let us define an order relation ≤ϕ on H1: we

will say, for h1, h2 ∈ H1, that h1 ≤ϕ h2 if ϕ(h1) ≤
ϕ(h2). This way, as in [28],

. . . ≤ϕ {0} ≤ϕ {0, 1} ≤ϕ {1} ≤ϕ . . . .

We will abusively omit the symbol ϕ when no confusion

may arise.

Now that we have introduced an order relation on

H1, we can define the threshold sets [28] of a plain map

U : Hn  H1 corresponding to λ ∈ H1 as being the

following sets:

[U D λ] = {x ∈ Hn ; ∃y ∈ U(x), y ≥ λ},
[U B λ] = {x ∈ Hn ; ∀y ∈ U(x), y > λ},
[U E λ] = {x ∈ Hn ; ∃y ∈ U(x), y ≤ λ},
[U C λ] = {x ∈ Hn ; ∀y ∈ U(x), y < λ}.

Definition 7. Assuming that a plain map U : Hn  
H1 is given, we say that U is well-composed in the sense

of Alexandrov [28] (AWC) if the connected components

of the boundary of each of its thresholds sets are discrete

(n− 1)-surfaces.

7.3 Span-based immersions

0 1 2 {0} [0,1] [0,2]

{1} [1,2] {2}

Fig. 44: A span-based immersion U (on the right side)

of a gray-level image u (depicted on the left side).

∂[U B {0}] ∂[U B {1}] ∂[U B {2}]

∂[U C {0}] ∂[U C {1}] ∂[U C {2}]

Fig. 45: All the threshold sets of U of Figure 44 are

AWC since their boundaries are either made of disjoint

1-surfaces in H2 or empty.

We recall that for any finite subset S of Z, assum-

ing that we know the minimum m := min(S) and the

maximum M := max(S) of S, the span of S into H1 is

denoted by Span(S) and is defined as:

{{m}, {m,m+ 1}, {m+ 1}, . . . , {M − 1,M}, {M}},

when m < M and as {{m}} when m = M . Obviously,

Span(S) is then a closed connected subset of H1.
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Then, the span-based immersion of a gray-level im-

age u : Zn → Z is the plain map U : Hn  H1 defined

such that ∀z ∈ Hn:

U(h) = Span {u(Zn(q)); q ∈ β(h) ∩Hnn} .

Assuming that for a given h ∈ Hn, U(h) is closed

and connected, we will identify U(h) and its associated

interval in Z defined as [m,M ] where m := min(U(h))

and M := max(U(h)). For example, we will identify

U(h) := {{0}, {0, 1}, {1}} and the interval [0, 1].

Figure 44 shows an example of immersion of a gray-

level image u; as depicted on Figure 45, the immersion

of u is AWC.

7.4 Extension of DWCness to gray-level images

[u > 0] [u > 1] [u > 2]

[u < 0] [u < 1] [u < 2]

Fig. 46: All the threshold sets (in white) of the image

u of Figure 44 are DWC.

Based on threshold sets [6–8,27], we can extend eas-

ily well-composedness from subsets of Zn to gray-level

images on Zn.

Let u : Zn → Z be a gray-level image, and let λ ∈ Z
be a given threshold. The large upper, strict upper, large

lower, and strict lower threshold sets corresponding to

λ are respectively:

[u ≥ λ] = {x ∈ Zn ; u(x) ≥ λ},
[u > λ] = {x ∈ Zn ; u(x) > λ},
[u ≤ λ] = {x ∈ Zn ; u(x) ≤ λ},
[u < λ] = {x ∈ Zn ; u(x) < λ}.

Definition 8. A gray-level image u : Zn → Z is said

digitally well-composed [10,23] (DWC) if for every thresh-

old λ ∈ Z, all its threshold sets are digitally well-composed.

Figure 46 depicts the threshold sets of the gray-level

image depicted in Figure 44: this image is DWC since its

threshold sets do not contain any critical configuration.

7.5 The proof for gray-level images

For sets, we have proved that a digital subset X of Zn
satisfies that its miss-transform (or equivalently its hit-

transform) is AWC iff X is DWC. Now, we are going

to prove that the span-based immersion U of a given

gray-level image u : Zn → Z is AWC iff u is DWC.

Lemma 28. Let u : Zn → Z be a gray-level image and

let U : Hn  H1 be its span-based immersion. Then,

for any λ ∈ Z, we have the following equalities:

Int(α(Hn([u > λ]))) = [U B {λ}],

Int(α(Hn([u < λ]))) = [U C {λ}],

α(Hn([u ≥ λ]))) = [U D {λ}],

α(Hn([u ≤ λ]))) = [U E {λ}].

Proof. Let λ be an integer and let us begin with the

proof that [U B {λ}] is equal to the miss-transform of

[u > λ]. Let h be a face of Hn. Then,

h ∈ [U B {λ}],
⇔ U(h)B {λ},
⇔ Span {u(Zn(h′)); h′ ∈ β(h) ∩Hnn}B {λ},
⇔ min {u(Zn(h′)); h′ ∈ β(h) ∩Hnn} > λ,

⇔ ∀h′ ∈ β(h) ∩Hnn, u(Zn(h′)) > λ,

⇔ ∀h∗ ∈ β(h),∀hn ∈ β(h∗) ∩Hnn, u(Zn(hn)) > λ,

⇔ ∀h∗ ∈ β(h),∀hn ∈ β(h∗) ∩Hnn,Zn(hn) ∈ [u > λ],

⇔ ∀h∗ ∈ β(h),∀hn ∈ β(h∗) ∩Hnn, hn ∈ Hn([u > λ]),

⇔ ∀h∗ ∈ β(h), β(h∗) ∩Hnn ⊆ Hn([u > λ]),

⇔ ∀h∗ ∈ β(h), β(h∗) ∩Hnn ∩Hn([u > λ]) 6= ∅,
⇔ ∀h∗ ∈ β(h), β(h∗) ∩Hn([u > λ]) 6= ∅,
⇔ ∀h∗ ∈ β(h),∃h′ ∈ Hn([u > λ]) ∩ β(h∗),

⇔ ∀h∗ ∈ β(h),∃h′ ∈ Hn([u > λ]), h′ ∈ β(h∗),

⇔ ∀h∗ ∈ β(h),∃h′ ∈ Hn([u > λ]), h∗ ∈ α(h′),

⇔ ∀h∗ ∈ β(h), h∗ ∈ α(Hn([u > λ])),

⇔ β(h) ⊆ α(Hn([u > λ])),

⇔ h ∈ Int (α (Hn([u > λ]))) ,

which is equivalent to say that h belongs to the miss-

transform of [u > λ]. Then the first equality is proved.

We deduce the second equality by following the same

reasoning.
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The third equality follows from the fact that, by us-

ing Lemma 9 with X = Hn([u ≥ λ]) and Y = Hn([u <

λ]), we obtain:

α(Hn([u ≥ λ])))

= Hn \ Int(α(Hn([u < λ]))),

= Hn \ [U C {λ}],
= [U D {λ}].

The fourth equality follows the dual reasoning.

Let us now announce the main result of this paper

about gray-level images.

Theorem 3. Let u : Zn → Z be a gray-level image. Its

span-based immersion U : Hn  H1 is well-composed in

the sense of Alexandrov iff u is digitally well-composed.

Proof. This result follows from Lemma 28 and Theo-

rems 1 and 2.

8 Applications of well-composedness to image

processing

An important result of the equivalence between AWC-

ness and DWCness for n-D cubical images is that finally

all the interpolations [9,10,26] which provide DWC im-

ages provide at the same time AWC images, which is

surprising because intuitively we could think that it is

harder to make an AWC image than a DWC Image

(see [12] for an AWC interpolation on discrete surfaces).

A second important result is that every application ex-

isting on DWC images can be applied on AWC im-

ages, like the ones described hereafter. A third result,

that we found very important too, is that in some way

we unify the theory behind the paper of Najman and

Géraud [28] and the computing counterpart of Géraud

et al. [17], both about the tree of shapes: the first uses

AWCness to explain that it is a sufficient condition to

the existence of the tree of shapes, when the second

explains that the sufficient condition so that the graph

of shapes computed with a front propagation algorithm

is a tree is DWCness. For these three reasons, we pro-

pose to expose some of the main applications relative

to these flavors of well-composedness.

The first interesting applications concerns the tree-

based shape-space of Xu et al. [30], where we decompose

an image into a tree based on its well-composed inter-

polation [10]. Using a filtering procedure in the shape-

space, we can remove components in the image that

are not relevant, and then make object segmentation in

images (see Figure 47).

Fig. 47: An example of extraction of objects based on

the tree-based shape-space [30].

Fig. 48: Extracted from [25]: we start from a color im-

age in (a), we compute its graph-based shape-space,

and then we group the shapes which correspond to the

same character (w.r.t. some geometrical or alignment

criteria). The results of the filtering are shown in (b),

(c), and (d) for different filterings.

This paradigm of shape-space has been extended to

graph-based shape-spaces [25] which allows us to seg-

ment clusters of objects which are geometrically related

in the image like characters in a document image (see

Figure 48).

A second approach using well-composedness is to

compute interpolations of the Laplacian of an image [19];

the zero-level-lines of the Laplacian are then a good ap-

proximation of the boundaries of the object in an image

(see Figure 49).

A third approach which need well-composedness is

the Dahu pseudo-distance [18] where we compute the

distance between two points in an image based on the

distance in the tree of shapes between the two shapes

containing these two points (see Figure 50). This pseudo-

distance has been shown as being a good approximation

of the well-known minimum-barrier distance (MBD).
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Fig. 49: Starting from a gray-level image (see (a)), we

compute its well-composed gray-level Laplacian, then

we deduce from its sign (see (b)) the labeling of the dif-

ferent characters (we look “inside” the zero-level-lines),

and then we label the characters of the image (see (c)

and (d)). This picture is extracted from [19].

Fig. 50: Computation of the Dahu pseudo-distance [18]:

the distance between the components B and F depends

on the number of level lines that are crossed in the

image when we go from the interior of B to the interior

of F in the domain of the image (see the left side), this

distance is easily computable by computing the length

of the path joining the corresponding nodes B and F

in the tree (see the right side).

Fig. 51: Example of saliency-based detection of identity

documents captured by smartphones [29].

A direct application of this Dahu pseudo-distance

can be found in [29] (see Figure 51) and corresponds to

a saliency-based detection of identity documents cap-

tured by smartphones.

9 Conclusion

In this paper, we proved that DWCness and AWCness

are equivalent in n-D. Thanks to cross-section topology,

we have easily extended this result to gray-level images.

We say that an image is continuous well-composed

(CWC) when the boundary of its continuous analog [24]

is a topological (n−1)-manifold. This property is known

to be equivalent to DWCness in 2D and 3D; their rela-

tion in 4D and beyond is an open question. Our next

step could then be to study the relation between DWC-

ness and CWCness in n-D.

A Proofs of Section 3

Lemma 1. Let c be a value in (Z/2)\Z, and let y be a value
in Z. Then,

y ∈
{
c−

1

2
, c+

1

2

}
⇔ β(H(y)) ⊆ β(H(c)).

In other words, when H(c) is a 0-face of H1, y is a neighbor
of c in (Z/2) iff the opening of H(y) is included in the opening
of H(c).

Proof. When c belongs to (Z/2) \ Z,

H(c) =

{
c+

1

2

}
∈ H1

0,

and then we have:

β(H(c)) = {{c− 1/2, c+ 1/2}, {c+ 1/2}, {c+ 1/2, c+ 3/2}}.

Also, when y ∈ Z, H(y) = {y, y + 1} ∈ H1
1, and then:

β(H(y)) = {{y, y + 1}}.

If y belongs to {c− 1
2
, c+ 1

2
}, we obtain that

β(H(y)) ⊆ β(H(c)).

Conversely, if {{y, y + 1}} is included into

{{c− 1/2, c+ 1/2}, {c+ 1/2}, {c+ 1/2, c+ 3/2}},

it means that y ∈ {c− 1/2, c+ 1/2}.

Proposition 4. Let S be a block in Zn, and let c be its center
in
( Z
2

)n
. Then S and c are related this way:

S = Zn(β(Hn(c)) ∩ Hnn).

Proof. This proof is depicted in Figure 13. Now, we can re-
mark that:

S =

c+
∑

i∈ 1

2
(c)

λie
i ; ∀i ∈

1

2
(c), λi ∈

{
−

1

2
,

1

2

} .

Then, for any y ∈ S,

– if i ∈ J1, nK \ 1
2

(c), then yi = ci,



30 N. Boutry et al.

– if i ∈ 1
2

(c) such that λi = 1/2, then yi = ci + 1/2 with
ci ∈ (Z/2) \ Z,

– and if i ∈ 1
2

(c) such that λi = −1/2, hence yi = ci − 1/2
with ci ∈ (Z/2) \ Z.

Then, for any i ∈ J1, nK, by Lemma 1, H(yi) ∈ β(H(ci)),
and then Hn(y) ∈ β(Hn(c)). Because y ∈ Zn, Hn(y) ∈
Hnn, and then Hn(y) ∈ β(Hn(c)) ∩ Hnn, which leads to y ∈
Zn(β(Hn(c)) ∩ Hnn).

Conversely, let us assume that y ∈ Zn(β(Hn(c)) ∩ Hnn).
Then,Hn(y) ∈ β(Hn(c))∩Hnn, which means that y ∈ Zn, and
Hn(y) ∈ β(Hn(c)). In other words, for any i ∈ J1, nK,H(yi) ∈
β(H(ci)). Two cases are then possible: ci ∈ Z, hence yi = ci,
or ci ∈ (Z/2)\Z and thus by Lemma 1, yi ∈ {ci− 1

2
, ci+ 1

2
}.

This way, y ∈ S.

Lemma 2. Let a, b be two elements of Hn. Then, α(a) ∩
α(b) 6= ∅ iff the a∧b is WD. Furthermore, when a∧b is WD,
we can switch the operators × and ∧ in this way:

a ∧ b = (×i∈J1,nKai) ∧ (×i∈J1,nKbi) = ×i∈J1,nK(ai ∧ bi),

and we obtain α(a ∧ b) = α(a) ∩ α(b).

ba

a b

a,b

a b

a b

a,b

Fig. 52: Study case-by-case showing that, when a, b ∈
H1, a ∧ b exists iff α(a) ∩ α(b) 6= ∅. The closures α(a)

and α(b) are depicted in red, and the face encircled in

blue corresponds to a ∧ b when it exists.

Proof. Let a1, b1 be two elements of H1, then it is easy to
show by a case-by-case study (see Figure 52 for the different
possible cases) that: {α(a1) ∩ α(b1) 6= ∅} ⇔ {a1 ∧ b1 is WD} ,

{a1 ∧ b1 WD} ⇒ {α(a1 ∧ b1) = α(a1) ∩ α(b1)} .

Now let us treat the case where a, b ∈ Hn. For this aim,
let us remark that:

α(a) ∩ α(b) = α(×i∈J1,nKai) ∩ α(×i∈J1,nKbi),

= ⊗i∈J1,nKα(ai) ∩ ⊗i∈J1,nKα(bi),

= ⊗i∈J1,nK (α(ai) ∩ α(bi)) .

Then, when α(a) ∩ α(b) 6= ∅, we obtain that for any i ∈
J1, nK, α(ai) ∩ α(bi) is not empty, which implies that ai ∧ bi
is WD and that we have:

α(ai) ∩ α(bi) = α(ai ∧ bi).

This way, α(a)∩α(b) is equal to ⊗i∈J1,nKα(ai∧bi), and then
is equal to:

α(×i∈J1,nK(ai ∧ bi)),
and then the supremum of α(a) ∩ α(b) is ×i∈J1,nK(ai ∧ bi).
We can then denote by a ∧ b this last term. Furthermore, it
satisfies α(a ∧ b) = α(a) ∩ α(b).

Conversely, when a∧b is WD, the supremum of α(a)∩α(b)
exists and thus α(a) ∩ α(b) 6= ∅.

Lemma 3. Let x, y be two elements of Zn. Then, x and y
are antagonists in a block of Zn of dimension k ∈ J0, nK iff:

Card {m ∈ J1, nK ; xm = ym} = n− k, (1)

and

Card {m ∈ J1, nK ; |xm − ym| = 1} = k. (2)

In other words, x and y are k-antagonists iff they have (n−k)
equal coordinates and that the remaining coordinates differ
from 1.

Proof. Let x, y be two elements of Zn satisfying (1) and (2)
with k ∈ J0, nK. Now, let us take c ∈ Zn such that ∀i ∈ J1, nK,
ci := min(xi, yi), and let us define:

Ix := {i ∈ J1, nK ; ci 6= xi} ,

and
Iy := {i ∈ J1, nK ; ci 6= yi} .

By (1), there are (n−k) coordinates i such that xi = yi = ci,
and then k coordinates i such that xi 6= ci or yi 6= ci. Then,

Card(Ix ∪ Iy) = k.

Since by (2) we have:

x = c+
∑
i∈Ix e

i,

y = c+
∑
i∈Iy e

i,

then x and y belong to S(c,F) where

F :=
{
ei ∈ B ; i ∈ Ix ∪ Iy

}
is of cardinality k. Furthermore, the L1 norm of x−y is equal
to k, and thus x and y maximize the L1-distance between two
points into S(c,F). So, x and y are antagonists in S(c,F).

Conversely, let us assume that x, y ∈ Zn are antagonists
in a block S(c,F) of dimension k ∈ J0, nK. For any i ∈ J1, nK,
ei belongs to F and hence |xi−yi| = 1, or it does not belong
to F and hence xi = yi. Since Card(F) = k by hypothesis,
this concludes the proof.

Lemma 4. ∀p, p′ ∈ Zn, p and p′ are k-antagonists, k ∈
J0, nK, iff Hn(p) ∧Hn(p′) is WD and belongs to Hnn−k.

Proof. The intuition of the proof is depicted in Figure 14
for the 3D case. Let p, p′ be defined in Zn and k ∈ J0, nK
such that p and p′ are antagonists in a block of dimension
k ∈ J0, nK. By Lemma 3, there exists a family I ⊆ J1, nK of
k coordinates s.t. ∀i ∈ I, |pi − p′i| = 1 and ∀i ∈ J1, nK \ I,
pi = p′i. Since for each i ∈ J1, nK, we have pi, p′i ∈ Z, then
H(pi) = {pi, pi+ 1}, and H(p′i) = {p′i, p′i+ 1}. Let us denote
zi = H(pi), and z′i = H(p′i), then zi, z′i ∈ H1

1.
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When i is in I, p′i = pi − 1, and α(zi) ∩ α(z′i) = {{pi}},
and then zi ∧ z′i = {pi} ∈ H1

0, or p′i = pi + 1, and α(zi) ∩
α(z′i) = {{p′i}} and then zi∧z′i = {p′i} ∈ H1

0. When i belongs
to J1, nK \ I, zi = z′i and α(zi) ∩ α(z′i) = α(zi) and then
zi ∧ z′i = zi ∈ H1

1. It follows then that ×i∈J1,nK(zi ∧ z′i)
belongs to Hnn−k.

Also, since α(zi)∩α(z′i) 6= ∅ for any i ∈ J1, nK, α(Hn(p))∩
α(Hn(p′)) is equal to ⊗i∈J1,nK(α(zi) ∩ α(z′i)) which is non-
empty, and then, by Lemma 2, Hn(p) ∧Hn(p′) exists and is
equal to ×i∈J1,nK(zi ∧ z′i), which belongs to Hnn−k.

Let us now prove the converse implication. Let p, p′ be
two points of Zn, and z = Hn(p), z′ = Hn(p′) such that
z ∧ z′ is WD and belongs to Hnn−k. Then, we define I = {i ∈
J1, nK ; zi ∧ z′i ∈ H1

0}, whose cardinality is equal to k thanks
to Lemma 2. Now, let us observe that, for any i ∈ J1, nK,
pi ∈ {p′i−1, p′i+1} iff zi∧z′i ∈ H1

0, then p and p′ have exactly
k different coordinates, and they differ from one. Then, p and
p′ are antagonists in a block of dimension k by Lemma 3.

Lemma 5. Let p, p′ be two elements of Zn such that p and
p′ are (3n − 1)-neighbors in Zn or equal. Then,

Hn
(
p+ p′

2

)
= Hn(p) ∧Hn(p′).

Proof. Since p and p′ are (3n − 1)-neighbors in Zn or equal,
they are antagonists in a block of dimension k ∈ J0, nK, and
then by Lemma 4, Hn(p) ∧Hn(p′) is WD.

Now, let us prove that:

p+ p′

2
= Zn(Hn(p) ∧Hn(p′)).

This is equivalent to say that for any i ∈ J1, nK, we have
pi+p

′
i

2
= Z(H(pi) ∧ H(p′i)) by Lemma 2. Let us rename the

following equality:

H(pi) ∧H(p′i) = {pi, pi + 1} ∧ {p′i, p′i + 1} (P ).

Since p and p′ are (3n − 1)-neighbors in Zn or equal, they
satisfy for any i ∈ J1, nK that pi ∈ {p′i − 1, p′i, p

′
i + 1}. Then

we have 3 possible cases:

– pi = p′i − 1, and then by (P ):

H(pi) ∧H(p′i) = {p′i − 1, p′i} ∧ {p′i, p′i + 1} = {p′i},

and then Z(H(pi) ∧H(p′i)) =
(
p′i −

1
2

)
=
pi+p

′
i

2
,

– or we have p′i = pi−1, and then a symmetrical reasoning
leads to the same result,

– or p′i = pi, and then the result is immediate.

The proof is done.

Proposition 5. Let S be a block and let p, p′ ∈ S be any
two antagonists in S. Then the center of the block S is equal

to p+p′

2
. Furthermore, its image by Hn in Hn is equal to

Hn(p) ∧Hn(p′).

Proof. Starting from the two antagonists p, p′ in S, we can
compute z ∈ Zn and F ⊆ B such that S = S(z,F). In fact, for
all i ∈ J1, nK, zi = min(pi, p′i), and F = {ei ; i ∈ J1, nK, pi 6=
p′i}. Then, it is clear that:

p = (p− z) + z = z +
∑
pi 6=zi

ei,

and in the same manner:

p′ = (p′ − z) + z = z +
∑
p′
i
6=zi

ei.

Then,

p+ p′ = 2z +
∑
f∈F

f,

which shows that p+p′

2
is the center of S in (Z/2)n. The

second part of the proposition follows from Lemma 5.

Lemma 6. Let p be an element of Zn, then we can reformu-
late the squared closure of Hn(p) in the following manner:

α�(Hn(p)) =
⋃

v∈N∗
3n−1

(p)

α(Hn(p) ∧Hn(v)).

Proof. This proof is depicted in Figure 15. Let p be an ele-
ment of Zn. Then, let us compute the value of α(Hn(p)):

α(Hn(p)) = α
(
Hn(×i∈J1,nKpi)

)
,

= α
(
×i∈J1,nKH(pi)

)
,

= ⊗i∈J1,nKα (H(pi)) ,

= ⊗i∈J1,nKα ({pi, pi + 1}) ,

= ⊗i∈J1,nK{{pi}, {pi, pi + 1}, {pi + 1}},

= ⊗i∈J1,nK
{
H
(
pi − 1

2

)
,H(pi),H

(
pi + 1

2

)}
,

= ⊗i∈J1,nKH({pi − 1
2
, pi, pi + 1

2
}),

= Hn
(
⊗i∈J1,nK{pi − 1

2
, pi, pi + 1

2
}
)
,

= Hn
({
q ∈

( Z
2

)n
; ‖q − p‖∞ ≤ 1

2

})
.

We can deduce that:

α�(Hn(p)) =
{
Hn(q) ; q ∈

( Z
2

)n
, ‖q − p‖∞ = 1

2

}
,

=
{
f ∈ Hn ; ‖Zn(f)− p‖∞ = 1

2

}
.

However, ‖Zn(f)− p‖∞ = 1
2

is equivalent to:

‖v − p‖∞ = 1 with v := 2Zn(f)− p.

Then, α�(Hn(p)) is equal to the set of elements f ∈ Hn

satisfying v ∈ N∗3n−1(p) and f = Hn
(
v+p
2

)
. By Lemma 5,

we obtain that:

α�(Hn(p)) =
{
Hn(v) ∧Hn(p) ∈ Hn ; v ∈ N∗3n−1(p)

}
,

which leads to the required formula by applying the α oper-
ator on both sides.

Lemma 7. Let S be a block in Zn of dimension k ≥ 2. Now,
let p, p′ be two antagonists in S, and v be a 2n-neighbor of p
in S. Then, we have the following relation:

Hn(p) ∧Hn(p′) ∈ α(Hn(p) ∧Hn(v)).
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Proof. Since p and v are 2n-neighbors, they are antagonists
in a block of dimension 1. Then, by Lemma 4, Hn(p)∧Hn(v)
is WD. For the same reason, Hn(p) ∧ Hn(p′) is WD. By
Lemma 2, the first term of the relation is equal to:

×i∈J1,nK(H(pi) ∧H(p′i)).

Likewise, the second term is equal to:

⊗i∈J1,nK (α(H(pi)) ∩ α(H(vi))) .

Then it is sufficient to show that for all i ∈ J1, nK:

H(pi) ∧H(p′i) ∈ α(H(pi)) ∩ α(H(vi)). (P )

Let us define I = {i ∈ J1, nK ; pi 6= p′i} . Since v is a 2n-
neighbor of p into S, there exists an index i∗ in I such that
vi∗ 6= pi∗ , i.e., vi∗ = p′i∗ , and ∀i ∈ J1, nK\{i∗}, vi = pi. When
i ∈ J1, nK \ I or when i = i∗, the property (P ) is obviously
true. When i ∈ I \ {i∗}, then vi = pi, which implies:

α(H(pi)) ∩ α(H(vi)) = α(H(pi))

= {{pi}, {pi + 1}, {pi, pi + 1}} .

When p′i = pi−1, we obtain H(pi)∧H(p′i) = {pi}, and when
p′i = pi + 1, we obtain H(pi) ∧ H(p′i) = {pi + 1}. Then, in
both cases,

H(pi) ∧H(p′i) ∈ α(H(pi)) ∩ α(H(vi)).

The proof is done.

Lemma 8. Let S be a block of Zn, and let z∗ ∈ Hn be the
image by Hn of the center of S. For all y ∈ Zn,

{y 6∈ S} ⇒ {α(Hn(y)) ∩ β(z∗) = ∅}.

Proof. This proof can be observed in Figure 16. Let us pro-
ceed by counterposition. Let y be an element of Zn such that:

α(Hn(y)) ∩ β(z∗) 6= ∅.

Then, for all i ∈ J1, nK, α(H(yi)) ∩ β(z∗i ) is not empty. Now,
let us show that y belongs to S. Since there exists pi ∈
α(H(yi)) ∩ β(z∗i ), then H(yi) ∈ β(pi) and pi ∈ β(z∗i ), which
leads to H(yi) ∈ β(z∗i ) by transitivity of the operator β, and
then Hn(y) ∈ β(z∗). Since y ∈ Zn, Hn(y) ∈ Hnn, and then
Hn(y) ∈ β(z∗)∩Hnn, which is equivalent to y ∈ Zn (β(z∗) ∩ Hnn),
which is the reformulation of a block centered at z∗ by Propo-
sition 4.

Proposition 6. Let n ≥ 1 and k ∈ J0, nK be two integers.
Let |X| = (X,αX) and |Y | = (Y, αY ) be two k-surfaces in
Hn. Then, if |X| is a suborder of |Y |, then |X| = |Y |.

Proof. Let us proceed by induction on k.

Initialization (k = 0): when |X| and |Y | are two 0-surfaces,
the inclusion X ⊆ Y implies directly that X = Y since they
have the same finite cardinality, and then

|X| = |Y |.

Heredity (k ≥ 1): we assume that when two (k−1)-surfaces
satisfy an inclusion relationship, that is, when they are nested,
then they are equal. Now, let |X| and |Y | be two k-surfaces,

k ≥ 1, such that |X| is a suborder of |Y |. Then, for all x ∈ X,
x ∈ Y and so we can write:

θ�X(x) = θ�(x) ∩X ⊆ θ�(x) ∩ Y = θ�Y (x)

because X ⊆ Y . However, |θ�X(x)| and |θ�Y (x)| are (k − 1)-

surfaces and |θ�X(x)| is a suborder of |θ�Y (x)|, then we have
thanks to the induction hypothesis:

|θ�X(x)| = |θ�Y (x)|.

Now, let us assume that we have:

X ( Y (P ).

Then let x be a point of X and y a point of Y \ X. Since
|Y | is connected (because it is an k-surface with k ≥ 1), it is
path-connected, and so x, y ∈ Y implies that there exists a
path π joining them into Y . This way, there exist x′ ∈ X and
y′ ∈ Y \X such that:

y′ ∈ θ�(x′).

In other words, y′ ∈ θ�Y (x′), where θ�Y (x′) is equal to θ�X(x′)
since x′ ∈ X. This leads to y′ ∈ X. We obtain a contradiction
on (P ). Thus we have X = Y . Supplying these two posets
with ⊆, we obtain |X| = |Y |.

By applying the induction on k until n, this property is
true for any finite k ∈ J0, nK.

Corollary 1. Let |X1| and |X2| be two k-surfaces, k ≥ 0,
with X1 ∩ X2 = ∅. Then |X1 t X2| is not a k-surface. In
other words, the disjoint union of two k-surfaces, k ≥ 0, is
not a k-surface.

Proof. Let |X1| and |X2| be two disjoint k-surfaces in Hn
with k ∈ J0, nK. If we assume that |X1 t X2| is a k-surface,
then X1 ⊆ X1 t X2 implies by Proposition 6 that X1 =
X1 t X2, which is a contradiction since X2 is non-empty.
Then |X1 tX2| is not a k-surface.

Proposition 7. Let a, b be two elements of Hn with a ∈
β�(b). Then |α�(a) ∩ β�(b)| is a (dim(a) − dim(b) − 2)-
surface.

Proof. Since |Hn| is an n-surface, then |α�(a)| is a (ρ(a, |Hn|)−
1)-surface by Proposition 3, and then is a (dim(a)−1)-surface.

Now, we can remark that because b belongs to α�(a), we can
write:

α�(a) ∩ β�(b) = β�
α�(a)

(b),

and then, again by Proposition 3, |α�(a)∩β�(b)| is a ((dim(a)−
1)− ρ(b, |α�(a)|)− 1)-surface. Since we have:

ρ(b, |α�(a)|) = ρ(b, |Hn|) = dim(b),

the proof is done.

B Proofs of Section 4

Proposition 8. The sets α(X ) and α(Y) are regular closed
sets.
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Proof. Let us prove that α(X ) is a regular closed set, the
same reasoning applies for α(Y). The fact that

Int(α(X ))) ⊆ α(X )

implies:

α(Int(α(X ))) ⊆ α(X )

by monotonicity of α. Conversely, any element x ∈ X sat-
isfies β(x) = {x} ⊆ X , and so Int(α(X )), which is equal to
{h ∈ α(X ) ; β(h) ⊆ α(X )}, contains X . This implies that
α(Int(α(X ))) ⊇ α(X ). Thus α(X ) is a regular closed set.

Lemma 9. Let X ,Y be two subsets of Hnn such that X tY =
Hnn. Then,

α(X ) t Int(α(Y)) = Hn.

Proof. Let us first prove that the union is disjoint. For this
aim, let us remark that h ∈ α(X ) is equivalent to say that
there exists some x ∈ X such that h ∈ α(x). In other words,
there exists some x ∈ X such that x ∈ β(h). Now, let us
remark that h ∈ Int(α(Y)) is equivalent to say that β(h) ⊆
α(Y). If we assume that:

α(X ) ∩ Int(α(Y)) 6= ∅, (P )

we can deduce that there exists some h ∈ Hn such that there
exists x ∈ X satisfying that:

x ∈ β(h) ⊆ α(Y),

leading to x ∈ α(Y). Since x ∈ X ⊂ Hnn, then x ∈ Y, which
is a contradiction. Then (P ) is wrong and the intersection of
α(X ) and Int(α(Y)) is empty.

Let us now prove that their union is equal to Hn. The
fact that α(X )tInt(α(Y)) ⊆ Hn is obvious. Now, let us prove
the converse inclusion. Let h be a face of Hn. Two cases are
possible:

– either β(h) ⊆ α(Y), then h ∈ Int(α(Y)),

– or β(h) 6⊆ α(Y), then the fact that

α(X ) ∪ α(Y) = Hn

implies that we have:

β(h) ∩ α(X ) 6= ∅,

then there exists x ∈ X such that:

β(h) ∩ α(x) 6= ∅.

Then there exists p ∈ β(h) ∩ α(x) which means that h ∈
α(p) and p ∈ α(x), and then by transitivity, h ∈ α(x) ⊆
α(X ).

Then α(X ) t Int(α(Y)) ⊇ Hn. The proof is done.

Proposition 9. The hit-transform and the miss-transform
of X have the same boundary which is equal to:

α(X ) ∩ α(Y).

Proof. The boundary N′ of Ihit(X) is equal to:

α(Ihit(X)) ∩ α(Hn \ Ihit(X)),

also equal by idempotence of α to:

α(X ) ∩ α(Hn \ α(X )),

which is equal by Lemma 9 to:

α(X ) ∩ α(Int(α(Y))),

and by regularity of α(Y) (see Proposition 8), then:

N′ = α(X ) ∩ α(Y).

In the same manner, the boundary N of Imiss(X) is equal to:

α(Imiss(X)) ∩ α(Hn \ Imiss(X)),

which is equal to:

α(Int(α(X ))) ∩ α(Hn \ Int(α(X ))),

which is by Proposition 8 equal to:

α(X ) ∩ α(Hn \ Int(α(X ))),

and by Lemma 9, it is equal to:

α(X ) ∩ α(α(Y)),

equal to:
α(X ) ∩ α(Y),

by idempotence of α. This way, we have:

N = N′ = α(X ) ∩ α(Y).

Proposition 10. For any z ∈ N, we have the property that
|α�

N(z)| is a (dim(z)− 1)-surface.

Proof. Since N is closed, ∀z ∈ N, |α�
N(z)| = |α�(z)|, which

is a (ρ(z, |Hn|)−1)-surface by Proposition 3 since Hn is an n-

surface. Since ρ(z, |Hn|) = dim(z), |α�
N(z)| is a (dim(z)− 1)-

surface.

Lemma 10. The immersion Imiss(X) of X is AWC iff ∀z ∈
N, |β�

N(z)| is a (n− 2− dim(z))-surface.

Proof. Let us recall that two disjoint components C1 and C2

of N are separated: C1 ∩ θ(C2) = ∅.

For this reason, for any z ∈ N,

θ�N(z) = θ�(z) ∩
⋃
C∈CC(N) C,

=
⋃
C∈CC(N)(θ

�(z) ∩ C),

= θ�CC(N,z)(z).

Since n ≥ 2, Imiss(X) is AWC iff ∀C ∈ CC(N), C is a (n −
1)-surface, i.e., ∀C ∈ CC(N), ∀z ∈ C, |θ�C (z)| is a (n − 2)-

surface, which means that ∀C ∈ CC(N), ∀z ∈ C, |θ�N(z)| is
a (n − 2)-surface, or, in other words, by Proposition 2 and

Proposition 10, ∀z ∈ N, |β�
N(z)| is a (n−2−dim(z))-surface.
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Proposition 11. Let S be a block of dimension k ∈ J2, nK s.t.
X ∩S = {p, p′} (or s.t. Y ∩S = {p, p′}) and p′ = antagS(p),

then Hn
(
p+p′

2

)
∈ N. In other words, when X contains a pri-

mary or secondary critical configuration, the image by Hn of
the center of the critical configuration belongs to the bound-
ary N of the immersion of X.

Proof. Let v be a 2n-neighbor of p in S, which is possible
since dim(S) ≥ 1. Then, v and p are 1-antagonists which
implies by Lemma 4 that Hn(p) ∧ Hn(v) is WD. Hence, by
Lemma 2:

α(Hn(p) ∧Hn(v)) = α (Hn(p)) ∩ α (Hn(v)) .

If we assume that v belongs to X, it means that v = p′, or
in other words that k = 1, which is wrong since dim(S) ≥ 2.
Then, v ∈ Y , and so

α(Hn(p)) ∩ α(Hn(v)) ⊆ N

by Proposition 9. Now, using Proposition 5,

Hn
(
p+ p′

2

)
= Hn(p) ∧Hn(p′),

which belongs to α(Hn(p) ∧ Hn(v)) by Lemma 7, and thus
to N.

C Proofs of Section 5

Proposition 12. Let p, c be two elements in Hn. We have
the following equivalence:

{p ∈ β(c)} ⇔



∀i ∈ 1 (Zn(p)) ∩ 1
2

(Zn(c)) ,

Z(pi) ∈
{
Z(ci)− 1

2
,Z(ci) + 1

2

}
,

∀i ∈ 1 (Zn(p)) ∩ 1 (Zn(c)) ,

Z(pi) = Z(ci),

∀i ∈ 1
2

(Zn(p)) ∩ 1
2

(Zn(c)) ,

Z(pi) = Z(ci),

1
2

(Zn(p)) ∩ 1 (Zn(c)) = ∅.

Proof. Let us prove first that p ∈ β(c) implies this set of four
properties. The relation p ∈ β(p) is equivalent to say that for
any i ∈ J1, nK, pi ∈ β(ci). Each term pi belongs to H1

1 or to
H1

0, and so does ci, which leads to four cases. Then, assuming
that for i ∈ J1, nK, we have pi ∈ β(ci), we obtain that:

– pi ∈ H1
1 and ci ∈ H1

0, then pi ∈ β(ci) implies:

Z(pi) ∈
{
Z(ci)−

1

2
,Z(ci) +

1

2

}
,

– or pi ∈ H1
1 and ci ∈ H1

1, then pi ∈ β(ci) implies Z(pi) =
Z(ci),

– or pi ∈ H1
0 and ci ∈ H1

0, then pi ∈ β(ci) implies Z(pi) =
Z(ci),

– or pi ∈ H1
0 and ci ∈ H1

1, then pi ∈ β(ci) leads to a
contradiction.

This leads to the 4 formulas described above, which con-
cludes the direct implication.

Conversely, it we have these four properties, 1
2

(p)∩1 (c) =
∅ shows that:

(
1 (p) ∩

1

2
(c)

)
∪ (1 (p) ∩ 1 (c)) ∪

(
1

2
(p) ∩

1

2
(c)

)
= J1, nK,

and since in these three cases, we obtain that pi ∈ β(ci), it
is clear that p ∈ β(c).

Proposition 13. Let p, c be two elements of Hn. Then, p � c
iff there exists m ∈ J1, nK such that:

1 (Zn(p)) ∩ 1
2

(Zn(c)) = {m}
and

Zn(p) ∈
{
Zn(c)− 1

2
em,Zn(c) + 1

2
em
}
.

Proof. We can reformulate the fact that we have p � c in the
following manner (see Proposition 12):



∀i ∈ 1 (Zn(p)) ∩ 1
2

(Zn(c)) ,

Z(pi) ∈
{
Z(ci)− 1

2
,Z(ci) + 1

2

}
, (1)

∀i ∈ 1 (Zn(p)) ∩ 1 (Zn(c)) ,

Z(pi) = Z(ci), (2)

∀i ∈ 1
2

(Zn(p)) ∩ 1
2

(Zn(c)) ,

Z(pi) = Z(ci), (3)

1
2

(Zn(p)) ∩ 1 (Zn(c)) = ∅, (4)

dim(p) = dim(c) + 1. (5)

By (4), 1 (Zn(c)) ⊆ 1 (Zn(p)), and then (2) can be reformu-
lated:

∀i ∈ 1 (Zn(c)) ,Z(pi) = Z(ci),

which implies that at least the dim(c) integral coordinates
of Zn(c) are integral for Zn(p). Since dim(p) = dim(c) + 1
by (5), p admits one more integral coordinate than c and it
lies into 1 (Zn(p)) \1 (Zn(c)) = 1 (Zn(p))∩ 1

2
(Zn(c)), which

means that:

Card(1 (Zn(p)) ∩
1

2
(Zn(c))) = 1,

and then there exists one index of coordinate m ∈ J1, nK such
that 1 (Zn(p)) ∩ 1

2
(Zn(c)) = {m}. By (1) to (4), we obtain

then that for each coordinate i ∈ J1, nK, Z(pi) = Z(ci) except
for the case i = m where:

Z(pi) ∈
{
Z(ci)−

1

2
,Z(ci) +

1

2

}
,

which concludes the direct sense.

Conversely, if there exists m ∈ J1, nK such that :

1 (Zn(p)) ∩
1

2
(Zn(c)) = {m}

and

Zn(p) ∈
{
Zn(c)−

1

2
em,Zn(c) +

1

2
em
}
,
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it is clear that (1) is satisfied by hypothesis. Also, for each
i ∈ J1, nK \ {m}, we have Z(pi) = Z(ci), which implies (2)
and (3). Now let us assume that (4) is false, it means that
there exists some i ∈ 1

2
(Zn(p))∩1 (Zn(c)) such that Z(ci) is

in half and such that Z(pi) is integral. Then we obtain that
|Z(ci) − Z(pi)| = 1

2
, which means that i = m (Zn(c) and

Zn(p) are different only on the mth coordinate). However, i
belongs to 1

2
(Zn(p))∩1 (Zn(c)) and m belongs to 1 (Zn(p))∩

1
2

(Zn(c)). We obtain a contradiction:

{i} ⊆ 1 (Zn(p)) ∩
1

2
(Zn(c)) ∩

1

2
(Zn(p)) ∩ 1 (Zn(c)) = ∅,

then (4) is true. (5) is true because p has one more integral
coordinate than c by hypothesis.

i* ≠ j*

a

b c

i*

j*

a
i*

b
i*

a
j*

b
j*

Fig. 53: Assuming that a and b cover c, that the index

i∗ is defined such that ai∗ 6= ci∗ and that the index

j∗ defined such that bj∗ 6= cj∗ . When i∗ and j∗ are

different, we obtain that β(a)∩β(b) in light gray is not

empty.

Lemma 11. Let a, b, c be three elements of Hn such that
a = oppc(b), then there exists m ∈ J1, nK such that:

– either Zn(a) = Zn(c)− 1
2
em and Zn(b) = Zn(c) + 1

2
em,

– or Zn(a) = Zn(c) + 1
2
em and Zn(b) = Zn(c)− 1

2
em,

which leads in both cases to:

Zn(a) + Zn(b)

2
= Zn(c).

Furthermore,1 (Zn(a)) = 1 (Zn(c)) t {m} = 1 (Zn(b)) ,

1
2

(Zn(a)) t {m} = 1
2

(Zn(c)) = 1
2

(Zn(b)) t {m}.

Proof. By Propositions 12 and 13, there exist i∗, j∗ ∈ J1, nK
such that:

1 (Zn(a)) ∩ 1
2

(Zn(c)) = {i∗} ,

Zn(a) ∈
{
Zn(c)− 1

2
ei
∗
,Zn(c) + 1

2
ei
∗}
,

1 (Zn(b)) ∩ 1
2

(Zn(c)) = {j∗} ,

Zn(b) ∈
{
Zn(c)− 1

2
ej
∗
,Zn(c) + 1

2
ej
∗}
.

Also, since a and b cover c, we have that a ∈ β(c) and
b ∈ β(c). Applying β on these expressions, we obtain that
β(a) ⊆ β(c) and that β(b) ⊆ β(c) (by transitivity of β). Due
to the fact that for each i ∈ J1, nK, we have ai = ci iff i 6= i∗,
and bj = cj iff j 6= j∗, then we have:

β(ai∗) ⊂ β(ci∗),

∀i ∈ J1, nK \ {i∗}, β(ai) = β(ci),

β(bj∗) ⊂ β(cj∗),

∀i ∈ J1, nK \ {j∗}, β(bi) = β(ci),

If i∗ 6= j∗ (see Figure 53), then when m = i∗, we have
β(am) ⊂ β(cm) = β(bm), when m = j∗, we have β(bm) ⊂
β(cm) = β(am), and when m ∈ J1, nK \ {i∗, j∗}, we have
β(am) = β(cm) = β(bm). We obtain that β(a) ∩ β(b) =
⊗i∈J1,nK (β(ai) ∩ β(bi)) 6= ∅, which contradicts the hypothe-
sis that a and b are opposites. Then we have i∗ = j∗.

Because Zn(a),Zn(b) belong to{
Zn(c)−

1

2
ei
∗
,Zn(c) +

1

2
ei
∗
}

and because they are different, we obtain that:

– either Zn(a) = Zn(c)− 1
2
ei
∗

and Zn(b) = Zn(c) + 1
2
ei
∗
,

– or Zn(a) = Zn(c) + 1
2
ei
∗

and Zn(b) = Zn(c)− 1
2
ei
∗
,

which leads obviously to:

Zn(a) + Zn(b)

2
= Zn(c).

Whenm ∈ J1, nK\{i∗}, we have then dim(am) = dim(cm) =
dim(bm), and when m = i∗, we have dim(am) = dim(cm) +
1 = dim(bm). We can then conclude that:1 (Zn(a)) = 1 (Zn(c)) t {i∗} = 1 (Zn(b)) ,

1
2

(Zn(a)) t {i∗} = 1
2

(Zn(c)) = 1
2

(Zn(b)) t {i∗}.

Proposition 14. Let t, t′, z three elements in Hn such that
t and t′ are opposite relatively to z. Now let define E :=
β(z)\(β(t)∪β(t′)), and let m∗ be the only coordinate in J1, nK
such that m∗ ∈ 1 (Zn(t)) \ 1 (Zn(z)). Then, the application
Iso : E → Hn such that, ∀u ∈ E,

Iso(u) := Hn
(
Zn(u) + (Z(tm∗)−Z(zm∗)) e

m∗
)
.

is an isomorphism from E to β(t). In other words, the order
is preserved from E to β(t).
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Proof. Let t, t′, z be three elements of Hn such that t′ =
oppz(t), then by Proposition 13), we obtain that there exists
some value m ∈ J1, nK such that 1

2
(Zn(z))∩1 (Zn(t)) = {m},

Zn(t) = Zn(z) + 1
2
em, and Zn(t′) = Zn(z) − 1

2
em (or the

converse case Zn(t) = Zn(z) − 1
2
em, and Zn(t′) = Zn(z) +

1
2
em but by symmetry, we do not need to treat this case).

We know by Examples 1 that

β(t) = Hn{t, 1
2
(Zn(t)),{− 1

2
,0, 1

2
}}

and
β(t′) = Hn{t′, 1

2
(Zn(t′)),{− 1

2
,0, 1

2
}}.

Since E is equal to β(z) \ (β(t)∪ β(t′)), we can reformulate it

using Notation 8. Indeed,

β(z)

= Hn{z, 1
2
(Zn(z)),{− 1

2
,0, 1

2
}},

= Hn


z +

∑
i∈ 1

2
(Zn(z))

λie
i ; λi ∈

{
−

1

2
, 0,

1

2

}
 ,

= Hn


z +

∑
i∈ 1

2
(Zn(t)t{m})

λie
i ; λi ∈

{
−

1

2
, 0,

1

2

}
 ,

= Hn

 z + λmem +
∑
i∈ 1

2
(Zn(t)) λie

i ;

λm ∈ {−1
2
, 0, 1

2
}, λi ∈

{
−1

2
, 0, 1

2

}

 ,

= Hn


t+

∑
i∈ 1

2
(Zn(t))

λie
i ; λi ∈

{
−

1

2
, 0,

1

2

}


∪ Hn


z +

∑
i∈ 1

2
(Zn(t))

λie
i ; λi ∈

{
−

1

2
, 0,

1

2

}


∪ Hn


t′ +

∑
i∈ 1

2
(Zn(t))

λie
i ; λi ∈

{
−

1

2
, 0,

1

2

}
 ,

= β(t) ∪ E ∪ β(t′).

Since this is a disjoint union, it is clear that :

E = Hn


z +

∑
i∈ 1

2
(Zn(t))

λie
i ; λi ∈

{
−

1

2
, 0,

1

2

}
 .

Now that we have this equality, we can prove that their
exists an isomorphism between β(t), E and β(t′). By symme-
try, it is sufficient to prove that E and β(t) are isomorphic.
For that, we define the application τ+,m : Hn → Hn such
that for any u ∈ Hn:

τ+,m(u) = Hn
(
Zn(u) +

1

2
em
)
.

Let us show first that this application maps E to β(t). Let
u be an element of E, then there exists for any i ∈ 1

2
(Zn(t))

one value λi ∈ {−1
2
, 0, 1

2
} such that

u = Hn

Zn(z) +
∑

i∈ 1

2
(Zn(t))

λie
i

 .

This way,

τ+,m(u) = Hn

Zn(z) +
1

2
em +

∑
i∈ 1

2
(Zn(t))

λie
i

 .

Since Zn(z) + 1
2
em = Zn(t), we obtain that

τ+,m(u) = Hn

Zn(t) +
∑

i∈ 1

2
(Zn(t))

λie
i

 ,

and then

τ+,m(u) ∈ Hn{t, 1
2
(Zn(t)),{− 1

2
,0, 1

2
}}

which is in fact β(t).

Now we want to prove that τ+,m is injective, which is im-
mediate because it is a translation. To prove that τ+,m is sur-
jective, let us proceed this way: let v be a point in β(t), then
there exists for any i ∈ 1

2
(Zn(t)) one value λi ∈ {−1

2
, 0, 1

2
}

such that v = Hn(Zn(t) +
∑
i∈ 1

2
(Zn(t)) λie

i). Its antecedent

is simply

u = Hn

Zn(z) +
∑

i∈ 1

2
(Zn(t))

λie
i


which obviously belongs to E.

This translation is then a bijection from E to β(t). Now
we need to prove that it preserves the order: let a, b be two
elements of E such that a � b, then, by Proposition 13, there
exists a value i ∈ 1

2
(Zn(t)) such that:

Zn(a) ∈ {Zn(b)− 1
2
ei,Zn(b) + 1

2
ei},

Z(ai) ∈ Z,

Z(bi) ∈ (Z/2) \ Z,

Now let us define a′ = τ+,m(a) and b′ = τ+,m(b). We
want to prove that a′ covers b′. In fact, we can write a′ =
Hn(Zn(a) + 1

2
em) and b′ = Hn(Zn(b) + 1

2
em). We obtain

then that:

Zn(a′) = Zn(a) + 1
2
em,

∈ {Zn(b)− 1
2
ei + 1

2
em,Zn(b) + 1

2
ei + 1

2
em},

∈ {Zn(b′)− 1
2
ei,Zn(b′) + 1

2
ei}.

It remains to show that Z(a′i) belongs to Z and that
Z(b′i) belongs to (Z/2) \ Z. Since we have the three follow-
ing conditions: (1) Z(bi) belongs to (Z/2) \ Z, (2) Zn(b′) =
Zn(b)+ 1

2
em, and (3) m 6∈ 1

2
(Zn(t)) (which contains i), then

m 6= i, which leads to Z(b′i) = Z(bi). Then Z(b′i) belongs to
(Z/2) \ Z. The fact that Z(a′i) belongs to Z comes from the
fact that Z(a′i) ∈ {Z(b′i)−

1
2
ei,Z(b′i) + 1

2
ei}. This concludes

the proof.
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Lemma 12. Assuming n ≥ 2, let z be an element of Hn\Hnn
and t, t′ be in Hndim(z)+1 such that they are opposite relatively

to z. Then
∣∣∣β�(z) \ (β(t) ∪ β(t′))

∣∣∣ is a (n − dim(z) − 2)-

surface.

Proof. Since t and t′ are two opposites,

1 (Zn(t)) = 1 (Zn(t′))

by Lemma 11, and

Card (1 (Zn(t))) = Card (1 (Zn(z))) + 1.

Now let m∗ be the coordinate in J1, nK such that m∗ ∈
1 (Zn(t)) \ 1 (Zn(z)). We can then write:

Zn(t) = Zn(z) + (Z(tm∗)−Z(zm∗)) e
m∗ .

Now let define E := β(z) \ (β(t) ∪ β(t′)), and let define
the application Iso : E → Hn such that ∀u ∈ E,

Iso(u) := Hn
(
Zn(u) + (Z(tm∗)−Z(zm∗)) e

m∗
)
.

Intuitively, this application translates the point u from E
to β(t) directed by the vector em

∗
. More exactly, by Propo-

sition 14, Iso is an isomorphism from |E| to |β(t)|. This way,

|β�(z) \ (β(t) ∪ β(t′))| = |E \ {z}| is isomorphic by Proposi-

tion 14 to |β(t) \ {Iso(z)}| = |β�(t)| which is a (n−dim(t)−
1) = (n− 2− dim(z))-surface.

H(x)

H(y)

H(z)

α(H(z)) ∩ α(H(y))

α(H(x)) ∩ α(H(y))

α(H(z)) ∩ α(H(x))

Fig. 54: When z belongs to the block S where x and

y are antagonist, we have the relation α(Hn(x)) ∩
α(Hn(y)) ⊆ α(Hn(z)) ∩ α(Hn(y)).

Lemma 13. For all z ∈ Hn \ Hnn and for all u ∈ β�(z),

T (u) =

Hn
(
Zn(z) + (Z(ui)−Z(zi)).ei

)
;

i ∈ 1 (Zn(u)) ∩ 1
2

(Zn(z))



Proof. Let us define:

A :=

Hn
(
Zn(z) + (Z(ui)−Z(zi)).ei

)
;

i ∈ 1 (Zn(u)) ∩ 1
2

(Zn(z))



Let us show first that A ⊆ T (u). Since we have u ∈ β�(z),
by Proposition 12, 1 (Zn(u)) ∩ 1

2
(Zn(z)) 6= ∅. Then let t be

a face in A, t can be written:

t = Hn
(
Zn(z) + (Z(ui∗)−Z(zi∗)).e

i∗
)
,

with i∗ ∈ 1 (Zn(u)) ∩ 1
2

(Zn(z)). We recall that

1

2
(Zn(u)) ∩ 1 (Zn(z)) = ∅

because u ∈ β�(z), we then have the different subcases when
i ∈ J1, nK :

1. i belongs to

(1 (Zn(u)) ∩ 1 (Zn(z))) ∪
(

1

2
(Zn(u)) ∩

1

2
(Zn(z))

)
,

then ui = zi and then ti = zi = ui implies that ti ∈
α(ui) ∩ β(zi).

2. or i = i∗ ∈ 1 (Zn(u)) ∩ 1
2

(Zn(z)), then ti = ui with

Z(ui) = Z(zi) ± 1
2

. Since Z(ti) = Z(zi) ± 1
2

, we have
then

ti ∈
{
{Z(zi)− 1/2,Z(zi) + 1/2},
{Z(zi) + 1/2,Z(zi) + 3/2}

}
.

Also,

β(zi) =

 {Z(zi)− 1/2,Z(zi) + 1/2},
{Z(zi) + 1/2},

{Z(zi) + 1/2,Z(zi) + 3/2}

 3 ti.
This way, ti ∈ α(ui) ∩ β(zi).

3. or i ∈ 1 (Zn(u)) ∩ 1
2

(Zn(z)) \ {i∗}, then ti = zi with

Z(zi) = Z(ui)± 1
2

. Also, we have

α(ui) =

{
{Z(ui),Z(ui) + 1},
{Z(ui)}, {Z(ui) + 1}

}
,

which contains
{
Z(zi) + 1

2

}
= {Z(ti) + 1

2
} = ti. This

way, ti ∈ α(ui) ∩ β(zi).

We have finally t ∈ α(u)∩β(z), and since by construction

we have t 6= z, t ∈ α(u)∩ β�(z). Furthermore, Zn(t) has the
same dim(z) integral coordinates as z plus the i∗-th one, and
then t ∈ Hndim(z)+1, then A ⊆ T (u).

Let us show now that T (u) ⊆ A. Let t be in T (u). Since
t ∈ β(z), we know that:

{∀i ∈ J1, nK, i ∈ 1 (Zn(z))⇒ i ∈ 1 (Zn(t))} .

Also, t ∈ Hndim(z)+1, then there exists an unique coordi-

nate i∗ in 1 (Zn(t)) \ 1 (Zn(z)). Since ti ∈ {zi, ui} for each
i ∈ J1, nK, then ti∗ = ui∗ 6= zi∗ and for all i ∈ J1, nK \ {i∗},
ti = zi. Because we have t ∈ α(u), i∗ ∈ 1 (Zn(u))∩ 1

2
(Zn(z)).

Also, we have:

t = Hn
(
Zn(z) + (Z(ui∗)−Z(zi∗)).e

i∗
)
,

then we finally obtain that t ∈ A.
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Lemma 14. Let a, b be two elements of Hn. Then,

{β(a) ∩ β(b) 6= ∅} ⇔ {a ∨ b is WD } .

Furthermore, when a ∨ b is WD, it satisfies the relations: a ∨ b = ×i∈J1,nK(ai ∨ bi),

β(a ∨ b) = β(a) ∩ β(b).

Proof. Let us treat first the case a1, b1 ∈ H1 and let us pro-
ceed case by case.

(1) When a1, b1 are in H1
0, then there exists i, j ∈ Z such that

a1 = {i} et b1 = {j}. Then β(a1) = {{i− 1, i}, {i}, {i, i+
1}}, β(b1) = {{j − 1, j}, {j}, {j, j + 1}}.

(A) Then i = j and β(a1)∩ β(b1) = {{i− 1, i}, {i}, {i, i+
1}} and a1 ∨ b1 = {i} which implies that β(a1) ∩
β(b1) = β(a1 ∨ b1).

(B) Or i = j − 1, and β(a1) ∩ β(b1) = {{i, i + 1}} and
a1 ∨ b1 = {i, i + 1}, which implies β(a1) ∩ β(b1) =
β(a1 ∨ b1).

(C) Or i = j + 1, and β(a1) ∩ β(b1) = {{j, j + 1}} and
a1 ∨ b1 = {j, j + 1}, which implies β(a1) ∩ β(b1) =
β(a1 ∨ b1).

(D) Or i 6∈ {j − 1, j, j + 1}, then β(a1) ∩ β(b1) = ∅ and
a1 ∨ b1 does not exist.

(2) When a1 ∈ H1
1 and b1 ∈ H1

0, then there exist i, j ∈ Z
such that a1 = {i, i + 1} and b1 = {j}. Then β(a1) =
{{i, i+ 1}}, β(b1) = {{j − 1, j}, {j}, {j, j + 1}}.

(A) Then i = j, β(a1) ∩ β(b1) = {{i, i + 1}}, a1 ∨ b1 =
{i, i+ 1} and β(a1) ∩ β(b1) = β(a1 ∨ b1).

(B) Or i = j − 1, β(a1) ∩ β(b1) = {{j − 1, j}}, a1 ∨ b1 =
{j − 1, j}, and β(a1) ∩ β(b1) = β(a1 ∨ b1).

(C) Or i 6∈ {j − 1, j}, then β(a1) ∩ β(b1) = ∅ and a1 ∨ b1
does not exist.

(3) When a1 ∈ H1
0 and b1 ∈ H1

1, then the reasoning is the
same as before.

(4) When a1, b1 ∈ H1
1, then there exist i, j ∈ Z such that

a1 = {i, i+1} and b1 = {j, j+1}. We obtain then β(a1) =
{{i, i+ 1}}, β(b1) = {{j, j + 1}}.

(A) Then i = j, which implies β(a1)∩β(b1) = {{i, i+1}},
a1 ∨ b1 = {i, i+ 1} and β(a1) ∩ β(b1) = β(a1 ∨ b1).

(B) Or i 6= j, β(a1)∩β(b1) = ∅ and a1∨b1 does not exist.

When a, b belong to Hn, n ≥ 1, such that β(a)∩β(b) 6= ∅,
we obtain that:

β(a) ∩ β(b) = β(×i∈J1,nKai) ∩ β(×i∈J1,nKbi),
= ⊗i∈J1,nKβ(ai) ∩ ⊗i∈J1,nKβ(bi),
= ⊗i∈J1,nK (β(ai) ∩ β(bi)) ,
6= ∅,

then for all i ∈ J1, nK, β(ai) ∩ β(bi) 6= ∅, which imples
that ai ∨ bi exists and β(ai) ∩ β(bi) = β(ai ∨ bi). This way:

β(a) ∩ β(b) = β(×i∈J1,nKai) ∩ β(×i∈J1,nKbi)
= ⊗i∈J1,nK (β(ai) ∩ β(bi))
= ⊗i∈J1,nKβ(ai ∨ bi)
= β(×i∈J1,nKai ∨ bi)

whose infimum is×i∈J1,nKai∨bi and then a∨b = ×i∈J1,nKai∨
bi, and β(a ∨ b) = β(a) ∩ β(b).

Lemma 15 (Decomposition lemma). Let z be a face in Hn \
Hnn. Each face u ∈ β�(z) can be decomposed in the following
manner (see Figure 27):

u =
∨

v∈T (u)

v.

Proof. We need first to show that
∨
v∈T (u) v exists. For this

aim, it is sufficient to show that
⋂

t∈T (u)

β(t) 6= ∅. However,

u ∈ β�(z) implies by Lemma 13 that

T (u) =

Hn
(
Zn(z) + (Zn(ui)−Zn(zi)).ei

)
;

i ∈ 1 (Zn(u)) ∩ 1
2

(Zn(z))

 .

For all i∗ ∈ 1 (Zn(u)) ∩ 1
2

(Zn(z)), let us denote:

ti
∗

:= Hn
(
Zn(z) + (Zn(ui∗)−Zn(zi∗)) e

i∗
)
,

then T (u) = {ti∗}i∗∈1(Zn(u))∩ 1

2
(Zn(z)).

This way,

⋂
t∈T (u)

β(t) =
⋂

i∗∈1(Zn(u))∩ 1

2
(Zn(z))

β(ti
∗
)

=
⋂

i∗∈1(Zn(u))∩ 1

2
(Zn(z))

β

 ×
m∈J1,nK

ti
∗

m


=

⋂
i∗∈1(Zn(u))∩ 1

2
(Zn(z))

⊗
m∈J1,nK

β
(
ti
∗

m

)
=

⊗
m∈J1,nK

⋂
i∗∈1(Zn(u))∩ 1

2
(Zn(z))

β
(
ti
∗

m

)

We want to show that for all m ∈ J1, nK,⋂
i∗∈1(Zn(u))∩ 1

2
(Zn(z))

β
(
ti
∗

m

)
6= ∅.

Since u belongs to β(z), then:

– either m ∈ 1 (Zn(z))∪ 1
2

(Zn(u)), then Z(um) = Z(zm).

And because m 6= i∗ for all i∗ ∈ 1 (Zn(u)) ∩ 1
2

(Zn(z)),

ti
∗

m = zm = um, and:⋂
i∗∈1(Zn(u))∩ 1

2
(Zn(z))

β
(
ti
∗

m

)
= β(um) 6= ∅.

– or m ∈ 1 (Zn(u)) ∩ 1
2

(Zn(z)), then

Z(um) ∈
{
Z(zm)−

1

2
,Z(zm) +

1

2

}
.

Then, there exists a value i∗ ∈ 1 (Zn(u))∩ 1
2

(Zn(z)) such

that i∗ = m, for which Z(ti
∗

m) = Z(um) ∈ {Z(zm) −
1
2
,Z(zm) + 1

2
}, and then:
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⋂
i∗∈1(Zn(u))∩ 1

2
(Zn(z))

β
(
ti
∗

m

)
= β(tmm) ∩

⋂
i∗∈1(Zn(u))∩ 1

2
(Zn(z))\{m}

β
(
ti
∗

m

)
,

= β(um) ∩ β(zm).

Two cases are possible. Either Z(um) = Z(zm) − 1
2

,

then:

β(um) ∩ β(zm)

= β(Hn(Z(zm)−
1

2
)) ∩ β(zm)

= {{Z(zm)−
1

2
,Z(zm) +

1

2
}}

∩


{Z(zm)− 1/2,Z(zm) + 1/2},

{Z(zm) + 1/2},

{Z(zm) + 1/2,Z(zm) + 3/2}


= {{Z(zm)−

1

2
,Z(zm) +

1

2
}}

= β(um)

6= ∅

Or Z(um) = Z(zm) + 1
2

, then:

β(um) ∩ β(zm)

= β(Hn(Z(zm) +
1

2
)) ∩ β(zm)

= {{Z(zm) + 1/2,Z(zm) + 3/2}}

∩


{Z(zm)− 1/2,Z(zm) + 1/2},

{Z(zm) + 1/2},

{Z(zm) + 1/2,Z(zm) + 3/2}


= {{Z(zm) + 1/2,Z(zm) + 3/2}}

= β(um)

6= ∅

This way, for all m ∈ J1, nK,

⋂
i∗∈1(Zn(u))∩ 1

2
(Zn(z))

β
(
ti
∗

m

)
6= ∅,

and then
⋂

t∈T (u)

β(t) 6= ∅, which implies that
∨
t∈T (u) t exists

in Hn.

Let us compute now this term, following the calculus
made before:

β
(∨

t∈T (u) t
)

=
⊗

m∈J1,nK

⋂
i∗∈1(Zn(u))∩ 1

2
(Zn(z))

β
(
ti
∗

m

)
=

⊗
m∈J1,nK

β(um)

= β(×m∈J1,nKum)
= β(u)

and then u =
∨
t∈T (u) t.

Lemma 17. Let v, f be two faces of Hn such that f ∈ β(v).
For all k ∈ Jdim(v), dim(f)K:

Card (α(f) ∩ β(v) ∩ Hnk ) = C
k−dim(v)
dim(f)−dim(v).

Proof. This proof is an enumeration problem: we want to find

the total number of k-faces of α(f) ∩ β(v). We recall that by

Proposition 12 for all w ∈ Hn, we have:

w ∈ α(f) ∩ β(v)

⇔
∀m ∈ 1 (Zn(f)) ∩ 1

2
(Zn(v)) , wm ∈ {vm, fm},

and

∀m ∈ 1
2

(Zn(f)) ∪ 1 (Zn(v)) , wm = vm(= fm).

 .

Then, dim(v) coordinates of w in α(f)∩β(v) are fixed and
integral, which means that (k−dim(v)) of its coordinates are
free, that is, in half or integral. These last coordinates can be
chosen among the (n − dim(v)) half coordinates of v minus
the (n − dim(f)) half coordinates of f , which explains the
(dim(f)− dim(v)) term. This concludes the proof.

Lemma 18. Let us assume that n ≥ 2. Let z be in Hn such
that dim(z) ≤ n − 2, and let a, b be in Hnn ∩ β�(z). Then

α�(a)∩α�(b)∩β�(z) = ∅ implies that Zn(a) and Zn(b) are
(n− dim(z))-antagonist into Zn.

Proof. The fact that a, b ∈ β�(z) implies that z ∈ α�(a) ∩
α�(b), and then α(a) ∩ α(b) 6= ∅, which implies that a ∧ b
exists and α(a) ∩ α(b) = α(a ∧ b) by Lemma 2. This way,

z ∈ α�(a) ∩ α�(b) ⊆ α(a ∧ b),

and then a ∧ b ∈ β(z). Let us assume that we have a = b.
Then

α�(a) ∩ α�(b) ∩ β�(z) = α�(a) ∩ β�(z)

is a (n − dim(z) − 2)-surface by Proposition 7, and then is
non empty (because (n− dim(z)) ≥ 2). This is impossible by
hypothesis, and then we have a 6= b. Since a and b are different
and they are both into Hnn, they are not neighbors and this

way α�(a)∩α�(b) = α(a)∩α(b) = α(a∧ b). We obtain that

α(a ∧ b) ∩ β�(z) = ∅. We have seen that z ∈ α(a ∧ b), then(
α(a ∧ b) ∩ β�(z)

)
∪ {z} = α(a ∧ b) ∩ β(z) = {z},

and then z = a ∧ b. By Lemma 4, we deduce that Zn(a) and
Zn(b) are (n− dim(z))-antagonists.
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Lemma 19. Let n ≥ 3 be an integer. Let z be in Hn such
that dim(z) ≤ n − 3, and let p, p′ be in S(z) such that p =
antagS(z)(p

′). Then S(z) \ {p, p′} is 2n-connected into Zn.

Proof. Let x, y be in S(z) \ {a, b} with x 6= y. Then there
exists a value k ∈ J1, n − dim(z)K such that x and y are k-
antagonists (since they belong to the block S(z) of dimension
(n− dim(z))). Let us now proceed by induction on the value
of k.

Initialization (k = 1): when x and y are 1-antagonists in
Zn, they are 2n-neighbors and then there exists a 2n-path π
joining them into S(z) \ {a, b} such that π = (x, y).

Heredity (k ∈ J2, n− dim(z)K): we assume that for all the

elements x, y in S(z) \ {a, b} such that they are (k − 1)-
antagonists into S(z), there exists a 2n-path joining them into
S(z)\{a, b}. Let us show that when x and y are k-antagonists,
x and y are 2n-connected into S(z) \ {a, b}. By hypothesis, x
and y are k-antagonists with k ≥ 2 and belong to S(z), then
they are antagonists in a block S ⊆ S(z) of dimension k. This
way, x admits in S a total number of k 2n-neighbors (which
are different from itself) where at most one is into {a, b}.
Indeed, if a and b were neighbors of x, they would be identi-
cal or 2-antagonists. These two cases are impossible since a
and b are (n − dim(z))-antagonists with (n − dim(z)) ≥ 3.
Then there exists a 2n-neighbor vx of x into S \ {a, b}; vx
is then (k − 1)-antagonist of y and 2n-neighbor of x, then x
and y are connected into S(z)\{a, b} thanks to the induction
hypothesis.

D Proofs of Section 6

Lemma 20. We assume that X is a non-empty finite subset
of Zn, that Y is its complement in Zn, that N is the boundary
of the hit/miss-transform of X. Then each component |Fi| of

|β�
N(z)| is closed in β�(z).

Proof. Since β�
N(z) is equal to the intersection N ∩ β�(z)

and N is closed in Hn as intersection of two closed sets of
Hn, then β�

N(z) is closed in β�(z). Because when a subset
of a topological space is closed, each connected component
is closed too, then the connected components of β�

N(z) are

closed in β�(z), and then for each i ∈ I, Fi is closed in

β�(z).

Lemma 21. We assume that X is a non-empty finite subset
of Zn, that Y is its complement in Zn, that N is the bound-
ary of the hit/miss-transform of X. Then for two different

components Fi and Fj of |β�
N(z)|:

β(Fi) ∩ Fj = ∅, and α(Fi) ∩ Fj = ∅.

Proof. Let i, j be two different values of I. Now, let us assume
that the intersection β(Fi)∩Fj is not empty, then there exists
some z ∈ β(Fi)∩Fj . It means that we have at the same time
z ∈ β(Fi) and z ∈ Fj . It is equivalent to say that there exists
some a ∈ Fi such that z ∈ β(a) and z ∈ Fj . Then, there
exists some a ∈ Fi such that a ∈ α(z) and z ∈ Fj . So, there
exists some a ∈ Fi which satisfies a ∈ α(Fj). Now, we know
that Fj is a connected component of the closed set N, and
then α(Fj) = Fj . Then, there exists a ∈ Fi∩Fj , which would
mean that Fi∩Fj is non-empty. We have a contradiction.

Lemma 22. We assume that X is a non-empty finite subset
of Zn, that Y is its complement in Zn, that N is the bound-
ary of the hit/miss-transform of X. For each u ∈ β�

N(z),
there exists one unique index i∗ ∈ I such that u ∈ Fi∗ and
it satisfies that: 

α�
Fi∗

(u) = α�
β�

N
(z)

(u),

β�
Fi∗

(u) = β�
β�

N
(z)

(u),

θ�Fi∗ (u) = θ�
β�

N
(z)

(u).

Proof. Let u be an element of β�
N(z). Then there exists one,

and only one, value i∗ ∈ I such that u belongs to Fi∗ .

– First, let us remark that:

α�
β�

N
(z)

(u)

= α�(u) ∩

(⋃
i∈I

Fi

)
,

= (α�(u) ∩ Fi∗) ∪

α�(u) ∩

 ⋃
i∈I\{i∗}

Fi

 ,

= (α�(u) ∩ Fi∗) ∪

 ⋃
i∈I\{i∗}

α�(u) ∩ Fi

 ,

However, we can remark that if for any i∗2 ∈ I \ {i∗},
we have α�(u) ∩ Fi∗

2
6= ∅, then there exists some z ∈

α�(u) ∩ Fi∗
2
, and then there exists z ∈ Fi∗

2
such that

u ∈ β�(z), which implies u ∈ β(Fi∗
2
), and then Fi∗ and

Fi∗
2

are neighbors. Contradiction.
– By symmetry, we obtain a same reasoning.
– With the two preceding assertions true, we can remark

that:

θ�
β�

N
(z)

(u)

= θ�(u) ∩ β�
N(z),

= (α�(u) ∪ β�(u)) ∩ β�
N(z),

= (α�(u) ∩ β�
N(z)) ∪ (β�(u) ∩ β�

N(z)),

= α�
β�

N
(z)

(u) ∪ β�
β�

N
(z)

(u),

= (α�
Fi∗

(u) ∪ β�
Fi∗

(u),

= θ�Fi∗ (u).

Property 1. We assume that n ≥ 3 and that there exists

z ∈ N such that dim(z) ≤ (n − 3) and that
∣∣∣β�

N(z)
∣∣∣ is not

connected (Hypothesis 1). We assume also that each compo-

nent of
∣∣∣β�

N(z)
∣∣∣ is a (n−dim(z)− 2)-surface (Hypothesis 2).

Then, ∀i ∈ I, ∀t ∈ Hndim(z)+1,

{t ∈ Fi ⇒ oppz(t) 6∈ Fi} .
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Proof. It is sufficient to show that the hypothesis of non con-
nectivity of |β�

N(z)| and of presence of two opposite faces in a

same connected component of |β�
N(z)| are incompatible. The

reasoning of this proof is depicted on Figure 31. Let i be
in I such that there exists t, t′ ∈ Hndim(z)+1 ∩ Fi satisfying

t′ = oppz(t).

Then for all j ∈ I, j 6= i, we have β(Fi) ∩ Fj = ∅ by
Lemma 21, and then β(t) ∩ Fj = ∅, and β(t′) ∩ Fj = ∅. This

way, Fj ⊆ β�(z) \ (β(t) ∪ β(t′)), which is by Lemma 12 a
(n−dim(z)−2)-surface (like Fj). However, when two discrete
surfaces of same rank satisfy an inclusion relationship, they
are equal (see Proposition 6), then we have :

Fj = β�(z) \ (β(t) ∪ β(t′)).

This implies that Fi is included into β(t)∪β(t′) and then
Fi = Fi∩(β(t)∪β(t′)). Since t and t′ belong to Fi, we obtain
finally that:

Fi = βFi(t) ∪ βFi(t
′),

which is a disjoint union of two open non-empty sets, i.e., Fi
is not connected, which is impossible.

Property 2. We assume that n ≥ 3 and that there exists

z ∈ N such that dim(z) ≤ (n − 3) and that
∣∣∣β�

N(z)
∣∣∣ is not

connected (Hypothesis 1). For each value i in I, Fi contains
at most (n− dim(z)) (dim(z) + 1)-faces.

Proof. β�(z) contains exactly 2(n−dim(z)) pairs of opposite
(dim(z) + 1)-faces, and then by Property 1, for all i in I, Fi
contains at most (n− dim(z)) (dim(z) + 1)-faces.

Lemma 23. Let x, y be two elements of Zn and S be a block
such that x = antagS(y). Then for all z ∈ S:α(Hn(x)) ∩ α(Hn(y)) ⊆ α(Hn(x)) ∩ α(Hn(z)),

α(Hn(x)) ∩ α(Hn(y)) ⊆ α(Hn(z)) ∩ α(Hn(y)).

Proof. By symmetry, it is sufficient to show the first asser-
tion (see Figure 54). Let I = {i ∈ J1, nK ; xi 6= yi}. Let z be
an element of S, then for all i ∈ I, zi ∈ {xi, yi} and for all
i ∈ J1, nK \ I, xi = yi = zi.

When i ∈ J1, nK \ I, xi = yi = zi and then:

α(H(xi)) ∩ α(H(yi))

= α(H(xi)),

= α(H(xi)) ∩ α(H(zi)).

When i ∈ I, either zi = xi, and:

α(H(xi)) ∩ α(H(yi))

⊆ α(H(xi)),

⊆ α(H(xi)) ∩ α(H(zi)),

or zi = yi and we obtain immediately:

α(H(xi)) ∩ α(H(yi)) = α(H(xi)) ∩ α(H(zi)).

A simple application of the Cartesian product is then suffi-
cient to end the proof.

Lemma 24. Let X be a non-empty finite subset of Zn, Y
its complement in Zn, and N be the boundary of the miss-
tranform of X in Hn. For each z ∈ N:

β�
N(z) =

⋃
f∈Hn

n−1
∩β�

N
(z)

α(f) ∩ β�(z),

in other words, β�
N(z) is equal to the union of the closures

(into β�(z)) of its (n− 1)-faces.

x'x

y'
y

S
Π

Fig. 55: Let x be in X and y be in Y such that they

are antagonist in a block S ⊂ Zn. They are joined by a

2n-path π ⊆ S containing a pair (x′, y′) ∈ X × Y such

that x′ ∈ N ∗2n(y′).

Proof. Let us begin with the first inclusion. Since for all f ∈
β�
N(z), f ∈ N, then α(f) ∩ β�(z) ⊆ β�

N(z) because β�
N(z) is

closed in the subspace β�(z).

Now let us prove the second inclusion. Let u be an element
of β�

N(z). Let us recall that S(z) = Zn(β(z)∩Hnn) is the block
centered at z (see Proposition 4). Then by Lemma 8:

β�
N(z) = α(Hn(X)) ∩ α(Hn(Y )) ∩ β�(z),

= α(Hn(X ∩ S(z))) ∩ α(Hn(Y ∩ S(z))) ∩ β�(z).

This way, there exist x ∈ X ∩ S(z) and y ∈ Y ∩ S(z) such
that u ∈ α(Hn(x))∩α(Hn(y)). Also, x and y belonging to the
same block S(z) and being different, they are k-antagonist,
k ≥ 1.

Now let I be the set {i ∈ J1, nK ; xi 6= yi} = {j1, . . . , jk}
where the sequence (ji)i is strictly increasing. We can then
define the 2n-path π, i.e., a sequence in Zn such as two con-
secutive elements in the sequence are 2n-neighbors in Zn,
joining x and y into S(z):

π = (p0 = x, p1, . . . , pk−1, pk = y),

satisfying the recursive relation:{
p0 = x,
pl = pl−1 + (yjl − xjl).ejl , ∀l ∈ J1, kK,

Now, let us define

l∗ := min{l ∈ J1, kK ; pl ∈ Y } − 1,

then we obtain two points x′ := pl
∗ ∈ X and y′ := pl

∗+1 ∈ Y
which are 2n-neighbors in the block S(z) (see Figure 55).
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Since y′ − x =
∑

l∈J1,l∗+1K

(yjl − xjl).ejl , y′ and x are an-

tagonist in a block of dimension (l∗ + 1) that we will call S′.
Moreover: {

x′ = x+
∑
l∈J1,l∗K(yjl − xjl).ejl , (1)

x′ = y′ + (xjl∗+1
− yjl∗+1

).ejl∗+1 , (2)

then ∀i ∈ J1, nK, x′i ∈ {y′i, xi}, which implies x′ ∈ S′.

Then, using Lemma 23:

α(Hn(x)) ∩ α(Hn(y′)) ⊆ α(Hn(x′)) ∩ α(Hn(y′)).

Moreover, y′ ∈ S where x and y are antagonist, so one more
time using Lemma 23,

α(Hn(x)) ∩ α(Hn(y)) ⊆ α(Hn(x)) ∩ α(Hn(y′)),

and then we obtain by transitivity that:

α(Hn(x)) ∩ α(Hn(y)) ⊆ α(Hn(x′)) ∩ α(Hn(y′)).

This way, u ∈ α(Hn(x′)) ∩ α(Hn(y′)). Also, x′ and y′

being 2n-neighbors, they are 1-antagonist and then u belongs
to the closure of the (n − 1)-face f := Hn(x′) ∧ Hn(y′) by
Lemma 2.

Because Hn(x′) and Hn(y′) belong to β�(z), we have
z ∈ α(Hn(x′)) ∩ α(Hn(y′)) = α(f) and then f ∈ β(z). Since
f is of dimension n−1 and z of dimension lower than or equal
to n − 3, f is different from z. Because f is the supremum
of α(Hn(x′)) ∩ α(Hn(y′)) ⊆ N, it belongs to N. Finally, we

have u ∈ α(f) ∩ β�(z) with f ∈ β�
N(z) ∩ Hnn−1.

Lemma 25. Let X be a non-empty finite subset of Zn, Y
its complement in Zn, and N be the boundary of the miss-
tranform of X in Hn. For each z ∈ N, and for any i ∈ I,
the component Fi of |β�

N(z)| is the closure in β�(z) of a set
of (n− 1)-faces, i.e.:

Fi =
⋃

f∈Hn
n−1
∩Fi

α(f) ∩ β�(z).

Proof. Using Lemma 24, we have:

β�
N(z) =

⋃
f∈Hn

n−1
∩β�

N
(z)

α(f) ∩ β�(z),

where for all f ∈ Hnn−1∩β�
N(z), the orders |α(f)∩β�(z)| are

connected; indeed, any two faces a, b in this poset different
from f are connected by the path π = (a, f, b).

Now, let us show by a double inclusion that we can prove
the result we are looking for.

For any i ∈ I, and for each f ∈ Hnn−1∩Fi, |α(f)∩β�(z)|
is connected, and share f with Fi. Since they are both subsets
of β�

N(z), by definition of Fi,

Fi ⊇ α(f) ∩ β�(z).

Hence,

Fi ⊇
⋃

f∈Hn
n−1
∩Fi

α(f) ∩ β�(z).

Conversely, Fi is a connected component of |β�
N(z)| which

is closed in β�(z), and then Fi is also closed in β�(z), which

means that for f ∈ Fi, α(f) ∩ β�(z) ⊆ Fi, then for any

f ∈ Fi ∩ Hnn−1, α(f) ∩ β�(z) ⊆ Fi, and then:

Fi ⊆
⋃

f∈Hn
n−1
∩Fi

α(f) ∩ β�(z).

That concludes the proof.

Lemma 26. Let f, z be two elements of Hn such that f ∈
β(z), and let be I = {i ∈ J1, nK ; fi 6= zi}. Then,

dim(f) = dim(z) + Card (I) .

Proof. Since f ∈ β(z), then for all i ∈ J1, nK, fi ∈ β(zi) and
then three cases are possible:

– dim(zi) = 1, and then fi = zi (because β(zi) = {zi}),
– or dim(zi) = 0 and dim(fi) = 0, then fi = zi (because

the only face of dimension 0 in β(zi) is zi),
– or dim(zi) = 0 and dim(fi) = 1, and then

fi ∈
{
H
(
Z(zi)−

1

2

)
,H
(
Z(zi) +

1

2

)}
.

In other words, the number of coordinates where f and z
are different is equal to the the number of times when the
dimension of fi is strictly greater than the dimension of zi
when i is in J1, nK.

Property 3. We assume that n ≥ 3 and that there exists

z ∈ N such that dim(z) ≤ (n − 3) and that
∣∣∣β�

N(z)
∣∣∣ is not

connected (Hypothesis 1). We assume also that each compo-

nent of
∣∣∣β�

N(z)
∣∣∣ is a (n−dim(z)− 2)-surface (Hypothesis 2).

Then, ∀i ∈ I, ∀m ∈ Jdim(z) + 1, n− 1K:

Fi ∩ Hnm 6= ∅.

Proof. Intuitively, Fi being an union of closures of (n − 1)-

faces in β�(z) by Lemma 25, it contains faces of all dimen-
sions between (n− 1) and (dim(z) + 1).

Formally, since Fi is non empty, there exists one face f ∈
Hnn−1∩Fi ⊆ β�(z) such that α(f)∩β�(z) is included into Fi.

Furthermore, α(f) ∩ β�(z) is not empty because f ∈ β�(z),

then α(f) ∩ β�(z) is equal to:

{Hn(u) ; ui ∈ {Z(fi),Z(zi)}, ∀i ∈ J1, nK} \ {z}.

Let us define I = {i ∈ J1, nK ; zi 6= fi} = {j1, . . . , jk}
where the sequence (ji)i is strictly increasing, and let us de-
fine the sequence (ul)l∈J0,kK included into Zn(α(f) ∩ β(z))
defined such that:{

u0 = Zn(f),
ul+1 = ul + (Z(zjl)−Z(fjl)) e

jl , ∀l ∈ J0, k − 1K.

Since f belongs to β(z) by hypothesis, |Z(fi) − Z(zi)| =
1
2
, ∀i ∈ I. In this way, Hn(ul) is of dimension (dim(f)− l) for

any l ∈ J0, kK. By Lemma 26, k = dim(f)− dim(z), and then
dim(Hn(ul)) ranges Jdim(z)+1, n−1K when l ranges J0, k−1K.
For these values of l, Hn(ul) belongs to α(f) ∩ β�(z). This
concludes the proof.
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Property 4. We assume that n ≥ 3 and that there exists

z ∈ N such that dim(z) ≤ (n − 3) and that
∣∣∣β�

N(z)
∣∣∣ is not

connected (Hypothesis 1). We assume also that each compo-

nent of
∣∣∣β�

N(z)
∣∣∣ is a (n−dim(z)− 2)-surface (Hypothesis 2).

Now, ∀i ∈ I, ∀v ∈ Fi,

ρ(v, |Fi|) = dim(v)− dim(z)− 1.

Proof. Let u be an element of Fi of dimension between dim(z)+
1 and n − 1; this is possible thanks to Property 3. We want
to show by induction that ρ(u, |Fi|) = k is equivalent to
dim(u) = k + dim(z) + 1.

Initialization (k = 0): first, let us assume that u is of di-

mension dim(u) = dim(z) + 1. Since Fi ⊆ β�(z), α�(u) ∩
Fi ⊆ α�(u)∩β�(z) = ∅, then α�

Fi
(u) = ∅, and then ρ(u, |Fi|) =

0. Now, let us assume that ρ(u, |Fi|) = 0, then u belongs to

Fi which is closed in β�(z), and then α(u) ∩ β�(z) ⊆ Fi.
In this way, the only faces whose rank is 0 in Fi are the
(dim(z) + 1)-faces of β�(z). Finally we have for each u ∈ Fi
the equivalence ρ(u, |Fi|) = 0⇔ dim(u) = dim(z) + 1.

Heredity (k ≥ 1): we can assume that for each l ∈ J0, k−
1K, ρ(u, |Fi|) = l ⇔ dim(u) = dim(z) + 1 + l. Let us show
that for all v ∈ Fi and k ≥ 1, we have the equivalence
ρ(v, |Fi|) = k ⇔ dim(v) = k + dim(z) + 1.

Let v be in Fi such that dim(v) = k+ dim(z) + 1. Then,
using the induction hypothesis, we obtain:

ρ(v, |Fi|)
= max

{
ρ(u, |Fi|) ; u ∈ α�(v) ∩ Fi

}
+ 1,

= max
{

dim(u)− dim(z)− 1 ; u ∈ α�
Fi

(v)
}

+ 1,

= max
{

dim(u) ; u ∈ α�
Fi

(v)
}
− dim(z).

Since v ∈ Fi, α(v)∩β�(z) ⊆ Fi and then α�(v)∩β�(z) ⊆
α�
Fi

(v), which leads to:

max
{

dim(u) ; u ∈ α�
Fi

(v)
}
,

≥ max
{

dim(u) ; u ∈ α�(v) ∩ β�(z)
}
,

≥ dim(v)− 1,

and in the same time,

max
{

dim(u) ; u ∈ α�
Fi

(v)
}
≤ dim(v)− 1

because u ∈ α�(v). This way,

max
{

dim(u) ; u ∈ α�
Fi

(v)
}

= dim(v)− 1

and then ρ(v, |Fi|) = dim(v) − dim(z) − 1 = k. The direct
implication is then proved.

Let us assume now that v ∈ Fi satisfies ρ(v, |Fi|) = k. By
the induction hypothesis, we obtain one more time:

ρ(v, |Fi|) = max
{

dim(u) ; u ∈ α�
Fi

(v)
}
− dim(z).

In other words, max
{

dim(u) ; u ∈ α�
Fi

(v)
}

= k+dim(z),

and then:

max
{

dim(u) ; u ∈ α�(v)
}
≥ k + dim(z).

This way, v is of dimension greater than or equal to
(k + dim(z) + 1).

Let us assume now that dim(v) ≥ k+dim(z)+2. Since v ∈
Fi, α(v)∩β�(z) ⊆ Fi, and then v covers one or several faces
in Fi of dimension(s) greater than or equal to (k+dim(z)+1),
and then

max
{

dim(u) ; u ∈ α�
Fi

(v)
}
≥ k + dim(z) + 1,

which implies that ρ(v, |Fi|) ≥ k + 1, which is impossible.
Then dim(v) = k+ dim(z) + 1. The reciprocal implication is
then proved.

Property 5. We assume that n ≥ 3 and that there exists

z ∈ N such that dim(z) ≤ (n−3) and that
∣∣∣β�

N(z)
∣∣∣ is not con-

nected (Hypothesis 1). We assume also that each component

of
∣∣∣β�

N(z)
∣∣∣ is a (n−dim(z)−2)-surface (Hypothesis 2). Then,

for all i ∈ I, Fi contains at least (n− dim(z)) (dim(z) + 1)-
faces.

Proof. Let i be in I, then for all m ∈ Jdim(z)+1, n−1K, Fi∩
Hnm 6= ∅ by Property 3. This way, there exists t ∈ Hnn−2 ∩Fi,
and because Fi is a (n−2−dim(z))-surface,

∣∣∣β�
Fi

(t)
∣∣∣ is a ((n−

dim(z)− 2)− ρ(t, |Fi|)− 1) = 0-surface by Property 4. Then
there exists v, v′ ∈ Hnn−1 ∩ Fi such that v 6∈ θ(v′). However,

α(v)∩β�(z) and α(v′)∩β�(z) contain both (n−dim(z)−1)
(dim(z) + 1)-faces (cf. Lemma 17), and v 6= v′ implies that
T (v) 6= T (v′) (cf. Lemma 16), and then there exists at least
one face into T (v′) which is not among the (n− dim(z)− 1)
faces of T (v). However, T (v) ∪ T (v′) ⊆ Fi (because Fi is

closed into β�(z) by Lemma 20). This way, Fi ∩ Hndim(z)+1

contains at least (n− dim(z)) faces.

Property 7. We assume that n ≥ 3 and that there exists

z ∈ N such that dim(z) ≤ (n − 3) and that
∣∣∣β�

N(z)
∣∣∣ is not

connected (Hypothesis 1). We assume also that each compo-

nent of
∣∣∣β�

N(z)
∣∣∣ is a (n−dim(z)− 2)-surface (Hypothesis 2).

Then,
Card (I) = 2.

Proof. The non-connectivity of |β�
N(z)| implies obviously that

Card (I) ≥ 2. Moreover, for each i ∈ I, Fi contains (n −
dim(z)) (dim(z) + 1)-faces by Property 6, while β�(z) con-
tains 2(n−dim(z)) (dim(z)+1)-faces, the maximum of com-

ponents of |β�
N(z)| s then equal to two.

Property 8. We assume that n ≥ 3 and that there exists

z ∈ N such that dim(z) ≤ (n − 3) and that
∣∣∣β�

N(z)
∣∣∣ is not

connected (Hypothesis 1). We assume also that each compo-

nent of
∣∣∣β�

N(z)
∣∣∣ is a (n−dim(z)− 2)-surface (Hypothesis 2).

For all i ∈ I, T (Fi) is equal to:{
Hn(Zn(z) + λme

m);m ∈
1

2
(Zn(z))

}
,

with each λm being exactly one value in
{
−1

2
, 1
2

}
.
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Proof. For each m ∈ 1
2

(Zn(z)), we have that the two faces

Hn(Zn(z) − 1
2
em) and Hn(Zn(z) + 1

2
em) belong to β�(z).

Then for all m ∈ 1
2

(Zn(z)), we have the possible cases:

– Hn(Zn(z)− 1
2
em) ∈ T (Fi), and thenHn(Zn(z)+ 1

2
em) 6∈

T (Fi) (by Property 1), (P1)

– or Hn(Zn(z) + 1
2
em) ∈ T (Fi), and then Hn(Zn(z) −

1
2
em) 6∈ T (Fi) (for the same reason as before), (P2)

– or {Hn(Zn(z)− 1
2
em),Hn(Zn(z) + 1

2
em)} ∩ T (Fi) = ∅.

(P3)

By (P1) and (P2), we have at most (n−dim(z)) faces into

T (Fi) ⊆ β�(z). If there exists a coordinate m ∈ 1
2

(Zn(z))
such that (P3) is true, we will have less than (n − dim(z))
(dim(z) + 1)-faces into T (Fi), what is impossible by Prop-
erty 5, then (P3) is never true. We have then either (P1)
or (P2) for each m ∈ 1

2
(Zn(z)). This way, there exists for

each m ∈ 1
2

(Zn(z)) exactly one λm ∈ {−1
2
, 1
2
} such that

Hn(Zn(z) + λmem) ∈ T (Fi), then:

{Hn(Zn(z) + λme
m)}m∈ 1

2
(Zn(z)) ⊆ T (Fi).

Since these two sets have (n − dim(z)) faces and since they
satisfy an inclusion relationship, they are equal, and then:

{Hn(Zn(z) + λme
m)}m∈ 1

2
(Zn(z)) = T (Fi).

Property 9. We assume that n ≥ 3 and that there exists

z ∈ N such that dim(z) ≤ (n − 3) and that
∣∣∣β�

N(z)
∣∣∣ is not

connected (Hypothesis 1). We assume also that each compo-

nent of
∣∣∣β�

N(z)
∣∣∣ is a (n−dim(z)− 2)-surface (Hypothesis 2).

For all i ∈ I, ∨
t∈T (Fi)

t

exists in Hnn∩β�(z). We will call this face the characteristical
face of the component Fi.

Proof. Let i be a coordinate in I. It is sufficient to show that:⋂
t∈T (Fi)

β(t) 6= ∅.

By Property 8, there exists a family of faces

{tm}m∈ 1

2
(Zn(z)) = T (Fi)

such that for all m ∈ 1
2

(Zn(z)), Zn(tm) = Zn(z) + λmem

with λm ∈ {12 ,−
1
2
}. This way:⋂

t∈T (Fi)

β(t) =
⋂

m∈ 1

2
(Zn(z))

β(tm),

=
⋂

m∈ 1

2
(Zn(z))

β

 ×
j∈J1,nK

tmj

 ,

=
⋂

m∈ 1

2
(Zn(z))

⊗
j∈J1,nK

β(tmj ),

=
⊗

j∈J1,nK

⋂
m∈ 1

2
(Zn(z))

β(tmj ).

When j belongs to 1 (Zn(z)), we obtain

tmj = zj

because tm belongs to β(z). Then⋂
m∈ 1

2
(Zn(z))

β(tmj ) = β(zj) 6= ∅.

When j belongs to 1
2

(Zn(z)),⋂
m∈ 1

2
(Zn(z))

β(tmj )

=

 ⋂
m∈ 1

2
(Zn(z))\{j}

β(tmj )

 ∩ β(tjj),

= β(zj) ∩ β(H(Z(zj) + λj)),

=


{Z(zj) + 1

2
},

{Z(zj)− 1
2
,Z(zj) + 1

2
},

{Z(zj) + 1
2
,Z(zj) + 3

2
}

 ,

∩ {{Z(zj) + λj ,Z(zj) + λj + 1}},

= {{Z(zj) + λj ,Z(zj) + λj + 1}},

= β(tjj),

6= ∅.

Then each term
⋂

m∈ 1

2
(Zn(z))

β(tmj ) is non empty, and then

⋂
t∈T (Fi)

β(t) 6= ∅.

The fact that
∨

t∈T (Fi)

t belongs to Hnn is due to the fact

that Card (T (Fi)) = (n − dim(z)) by Property 6 and to the
fact that the faces of T (Fi) are different two by two.

Property 10. We assume that n ≥ 3 and that there exists

z ∈ N such that dim(z) ≤ (n − 3) and that
∣∣∣β�

N(z)
∣∣∣ is not

connected (Hypothesis 1). We assume also that each compo-

nent of
∣∣∣β�

N(z)
∣∣∣ is a (n−dim(z)− 2)-surface (Hypothesis 2).

For each i ∈ I:

Fi ⊆ α

 ∨
t∈T (Fi)

t

 .

Proof. Let u be in Fi, u ∈ β�(z), and then by Lemma 15,

u =
∨

t∈T (u)

t. Since Fi is closed into β�(z), α(u)∩β�(z) ⊆ Fi

and then:

T (u) = α(u) ∩ β�(z) ∩ Hndim(z)+1,

⊆ Fi ∩ Hndim(z)+1,

= T (Fi).

Now, by Property 1, no face of Fi is opposite to each other,

and then
∨

t∈T (Fi)

t exists by Property 9. Since we have T (u) ⊆
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T (Fi), we can then write:

∨
t∈T (Fi)

t =

 ∨
t∈T (u)

t

 ∨  ∨
t∈T (Fi)\T (u)

t


= u

∨  ∨
t∈T (Fi)\T (u)

t

 .

By definition of the operator ∨:

∨
t∈T (Fi)

t = inf

β (u) ∩ β

 ∨
t∈T (Fi)\T (u)

t

 ,

which implies that
∨

t∈T (Fi)

t ∈ β(u) and then

u ∈ α

 ∨
t∈T (Fi)

t

 ,

from which we can deduce that

Fi ⊆ α

 ∨
t∈T (Fi)

t

 .

Property 11. We assume that n ≥ 3 and that there exists

z ∈ N such that dim(z) ≤ (n − 3) and that
∣∣∣β�

N(z)
∣∣∣ is not

connected (Hypothesis 1). We assume also that each compo-

nent of
∣∣∣β�

N(z)
∣∣∣ is a (n−dim(z)− 2)-surface (Hypothesis 2).

Then,

Fi = α�

 ∨
t∈T (Fi)

t

 ∩ β�(z).

Proof. Let i be a coordinate in I. Then Fi ⊆ β�(z), which

implies by Property 10 that Fi ⊆ α

 ∨
t∈T (Fi)

t

 ∩ β�(z).

Nevertheless,

 ∨
t∈T (Fi)

t

 belongs to Hnn by Property 9. Also,

Fi∩Hnn = ∅, and then we have Fi ⊆ α�

 ∨
t∈T (Fi)

t

∩β�(z).

Since
∨

t∈T (Fi)

t ∈ β�(z) (by transitivity of β), then

α�

 ∨
t∈T (Fi)

t

 ∩ β�(z)

is a (n − dim(z) − 2)-surface by Proposition 7. This is also
the case concerning Fi by hypothesis. This way,

Fi = α�

 ∨
t∈T (Fi)

t

 ∩ β�(z)

by Proposition 6.

Property 12. We assume that n ≥ 3 and that there exists

z ∈ N such that dim(z) ≤ (n − 3) and that
∣∣∣β�

N(z)
∣∣∣ is not

connected (Hypothesis 1). We assume also that each compo-

nent of
∣∣∣β�

N(z)
∣∣∣ is a (n−dim(z)− 2)-surface (Hypothesis 2).

Then, Zn(a) and Zn(b) are (n− dim(z))-antagonist in Zn.

Proof. Since by Property 11, we have F1 = α�(a) ∩ β�(z)

and F2 = α�(b)∩β�(z), and since they are disjoint, then we
have:

α�(a) ∩ α�(b) ∩ β�(z) = ∅.

By Lemma 18, Zn(a) and Zn(b) are then (n−dim(z))-antago-
nists.

Property 13. We assume that n ≥ 3 and that there exists

z ∈ N such that dim(z) ≤ (n−3) and that
∣∣∣β�

N(z)
∣∣∣ is not con-

nected (Hypothesis 1). We assume also that each component

of
∣∣∣β�

N(z)
∣∣∣ is a (n−dim(z)−2)-surface (Hypothesis 2). Then,

X contains a critical configuration of dimension (n−dim(z)).

Proof. Let assume that Hypothesis 1 is true, that is, |β�
N(z)|

is not connected. At the same time, we assume that the com-

ponents |Fi| of
∣∣∣β�

N(z)
∣∣∣ are (n − dim(z) − 2)-surfaces. Then

the two characteristical faces a and b exist by Property 12.

Now, let u, v be in S(z) \ {Zn(a),Zn(b)}. Since this set
is 2n-connected for (n − dim(z)) ≥ 3 by Lemma 19, there
exists a 2n-path π = (p0 = u, . . . , pl = v) joining u and v
into S(z) \ {Zn(a),Zn(b)} with l ≥ 1. We can deduce from it
a path π′ into Hn such that:

π′ =



Hn(p0),
Hn(p0) ∧Hn(p1),
Hn(p1),
. . . ,
Hn(pl−1),
Hn(pl−1) ∧Hn(pl),
Hn(pl)


.

For all m into J0, l − 1K, we have

Hn(pm−1) ∧Hn(pm) ∈ Hnn−1

since pm−1 and pm are 2n-neighbors into Zn.

Let us assume now that there exists a value m ∈ J0, l −
1K such that Hn(pm−1) ∧ Hn(pm) ∈ N, then Hn(pm−1) ∧
Hn(pm) ∈ β�

N(z) and then:

– either Hn(pm−1) ∧Hn(pm) ∈ α�(a) ∩ β�(z) and then

β�(Hn(pm−1) ∧Hn(pm)) = {Hn(pm−1),Hn(pm)}

contains a, which is impossible by definition of π,

– or Hn(pm−1) ∧Hn(pm) ∈ α�(b) ∩ β�(z) and then

β�(Hn(pm−1) ∧Hn(pm)) = {Hn(pm−1),Hn(pm)}

contains b, which is impossible for the same reason.
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This way, Hn(pm−1) ∧Hn(pm) 6∈ N, and then either all
the points of π belong to X or they all belong to Y .

In other words, either S(z)\{Zn(a),Zn(b)} ⊆ X or S(z)\
{Zn(a),Zn(b)} ⊆ Y .

Now, let va be a 2n-neighbor of Zn(a) in the set S(z) \
{Zn(a),Zn(b)} and let vb be a 2n-neighbor of Zn(b) into
S(z) \ {Zn(a),Zn(b)}. Then

Hn(va) ∧ a

and
Hn(vb) ∧ b

belong to N (because they belong to β�
N(z)) and then we have

the two possible configurations:

– either Zn(a) ∈ X, then va ∈ Y , from which we deduce
that vb ∈ Y , and then Zn(b) ∈ X (and X contains a
primary critical configuration),

– or Zn(a) ∈ Y , then va ∈ X, from which we deduce that
vb ∈ X, and then Zn(b) ∈ Y (andX contains a secondary
critical configuration).

By Property 12, this critical configuration is of dimension
(n− dim(z)).

In brief, either we have X ∩S(z) = {Zn(a),Zn(b)} or we
have X∩S(z) = S(z)\{Zn(a),Zn(b)} where both are critical
configurations of dimension (n− dim(z)).
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dans les ordres. PhD thesis, Université de Marne-la-
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