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Abstract. We introduce Go2Pins, a tool that takes a program written
in Go and links it with two model-checkers: LTSMin [19] and Spot [7].
Go2Pins is an effort to promote the integration of both formal verifica-
tion and testing inside industrial-size projects. With this goal in mind,
we introduce black-box transitions, an efficient and scalable technique
for handling the Go runtime. This approach, inspired by hardware ver-
ification techniques, allows easy, automatic and efficient abstractions.
Go2Pins also handles basic concurrent programs through the use of a
dedicated scheduler.

In this paper we demonstrate the usage of Go2Pins over benchmarks in-
spired by industrial problems and a set of LTL formulae. Even if Go2Pins
is still at the early stages of development, our results are promising and
show the the benefits of using black-box transitions.

1 Introduction & Motivation

The Go programming language was designed at Google in 2009 [16] to im-
prove programming productivity in an era of multicore, networked machines
and large codebases. Inspired by the idea of Communicating Sequential Pro-
cesses (CSP) [17], designers focused on two principles: (1) having lightweight
and easy to create threads (called goroutines) and, (2) promoting communi-
cation across threads by explicit messaging (through channels) rather than by
shared memory. Even if other languages have also been designed to tackle simi-
lar problems (occam and erlang), Go is probably the first large scale, widely
used, industrial language to integrate these distinctive CSP features.

Previously (and except for occam and erlang), mainly academic formal
languages, implementing variations around the notion of CSP, have been devel-
oped: promela, uppaal, dve, gal, cspM, etc. These languages have been built
as a support for developing verification tools and their associated theory but
have seldom been used in the industry.

The main idea defended in this paper is to consider the Go language not
only as a disruptive, efficient, industrial, statically typed, compiled programming
language but also as a good candidate for the specification and verification of
asynchronous systems. Indeed, most of the time formal languages are only used
for modeling and verification while the actual implementation of the system is
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done in another language for efficiency. This switch between languages is error-
prone. Moreover, most formal languages do not have associated compilers or
interpreters: this is annoying since the only way to test the validity of the model
is to express the desired behaviors through a temporal logic 1.

This paper tackles these problems by introducing Go2Pins: a Go-based uni-
fied framework for testing, modeling, verification, and efficient implementation
of systems. This paper also introduces black-box transitions (see Section 4), an
efficient and scalable technique for handling the Go runtime. This approach, in-
spired by hardware verification techniques, allows easy, automatic and efficient
abstractions. Even if this idea is not new (premises of this technique are available
the SPIN model checker), we extend it to be automatic, and then well suited for
verifying large software systems.

2 Go2Pins: Overview

This section describe our journey towards the verification of Go programs. Fig-
ure 1 describes an overview of Go2Pins: the program to verify is processed by
Go2Pins which produces a binary called go2pins-mc. This binary can then be
used to verify any LTL formula (over the input program) using one of the two
supported backends: LTSMin [19] or Spot [7].

Figure 2 provides more details about this approach. At coarse grain, the
input program is processed by the core of our tool and then translated into
the Partitioned Next-State Interface (PINS) [19]. This interface exposes two
functions: one for retrieving the initial state of the system, and one for computing
the successors of a state. Any program that exposes this interface is thereby
compatible with any (explicit or symbolic) model checking solution that supports
it (for instance LTSmin or Spot). Then, Go2Pins produces a set of files that are
compiled together to build the go2pins-mc binary. We opted for this workflow
since (1) it provides more flexibility, (2) it can be easily extended and (3) our
code remains in the Go realm (useful for black-box transitions, see Section 4).

At fine grained level, our approach behaves like a transpiler that translates
the input Go program into an output Go program that respects the PINS inter-
face. This transformation has many advantages. First, it benefits from both the
reflexivity and the standard library of the Go language. The reflexivity lets us
avoid the development of the classic toolchain of a transpiler (scanner, parser,
AST, etc.), while the use of the standard library lets us avoid redeveloping con-
cepts such as Control Flow Graph, Call Graph, etc. The second benefit of our
approach is the ease of building abstractions (see Section 4).

Figure 2 shows that Go2Pins processes the input program in steps. Each one
modifies the Abstract Syntax Tree (AST) in order to desugar a specific feature.
For instance, the Arith&Assign step decomposes complex arithmetic operations
into consecutive elementary ones. For instance v1 := 3 ∗ g(n) ∗ h(n) is trans-
lated into three instructions: v1 := 3, then v1 ∗= g(n) and finally v1 ∗= h(n).

1 Notice that in the particular context of CSP, validity can also be checked using
refinement.
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Fig. 1. Overview of Go2Pins. The input file is processed by Go2Pins which produces a
binary called go2pins-mc. This binary can then be used to verify LTL formula using
one of the two supported backends: Spot or LTSmin.

Go Go

Python C Java Fortran . . . Uppaal

file.go

Spot LTSmin

file.so

uses uses

go2pins.c go2pins.h

Makefile main.go

boilerplate
Pins[19]

go2pins.hgo2pins.c

main.goMakefile

desugar.go

output

Type

Checker

Unroll

Recursion

Channels

Duplicate

Gorout

Black-

box

Arith. &

Assign

Else Full

Alive

Desugar

Array

Norm.

Decl.

Func.

Def.

Routines

Assign.

Local

Var.

Format

Trans-

-form

Routines

Counter

[9, 10][12] [13] [11] [4]

Go2Pins

Fig. 2. Contributions of this paper (all except gray boxes). The dashed boxes represent
the Go2Pins tool while the blue plain box represents the output directory produced
by Go2Pins. The transformation steps are denoted by double shaped red boxes. Files
grouped under the name boilerplate are copied as-is into the output directory. These
files are generic and handle communication between the desugared program and the
mandatory functions to respect the PINS interface.



Thus, this step does not change the semantics of the original program but sim-
plifies it in order to be used by model-checkers.

With this workflow, it is easy to test each step. For almost all steps presented
in Figure 2, we can just apply the step on some input, run the modified program
and check that the behavior stay unchanged.

Among the various steps in Go2Pins, some are of special interest:

1. TypeChecker. Ensures, via type deduction, that the current limitations of
Go2Pins are respected. Currently Go2Pins is limited to unbuffered channels,
Integer variables and static number of goroutines (i.e. no dynamic goroutine
creation is yet supported). Notice that these kind of restrictions are common
to most verification tools. Section 4 details how these restrictions can be by-
passed.

2. Core (Func. Def. to Transform). This is the core of Go2Pins: it trans-
lates the program into a structure that can easily be adapted to match the
PINS interface (more details in Section 3.1).

3. Recursion. Since Go2Pins work only with finite state space (with possibly
infinite behaviours), a specific attention must be paid to recursion. This step
unrolls each function up to a limit fixed by the user. Since the depth of re-
cursion is fixed, only bounded verification can be done on recursive programs.

4. DuplicateGoroutines. This step adds the support for goroutines, i.e. multi-
threaded programs. This is achieved by the implementation of a scheduler
that returns all the possible interleavings from a given state. More details
can be found in Section 3.2.

5. Black-Box. This module reduces the state space explosion problem by fus-
ing consecutive transitions into a single one (more details Section 4).

Fortuitous behaviour of our approach. During the conception of our tool,
we were advised that a lot of transpilers targeting Go exist. Some of these tools
were developed by the Go Team in order to translate some parts of the Go com-
piler (originally written in C) into Go. Thus, our workflow transitively supports
model-checking these mainstream languages (details in Figure 2 and Section 6).

3 Implementation Details

3.1 Core translation: Func. Def. to Transform

The core of Go2Pins (steps Func. Def. to Transform of Figure 2) translates
the input program into a structure that can be easily adapted to match the
PINS interface. This interface exposes two functions: one for retrieving the initial
state of the system (represented by a vector of N integer variables), and one for
computing the successors of a state2. The illustration of this transformation is
given in Listing 1.1 for an original program and Listing 1.2 and 1.3 for the
transformed program.

2 Model checkers represent the model as a Kripke structure. These two functions are
enough to provide a Kripke view of a Go program.



1 func f i b o (n i n t ) i n t {
2 n0 := 0
3 n1 := 1
4 f o r i := 0 ; i < n ; i++ {
5 n2 := n0 + n1
6 n0 = n1
7 n1 = n2
8 }
9 return n1

10 }
11
12 func main ( ) {
13 f i b o (5 )
14 }

Listing 1.1. Fibonacci computation in
Go

1 type s t a t e [ 1 5 ] i n t
2
3 func G2PF fibo ( s s t a t e ) s t a t e {
4 switch s . LabelCounter {
5 case 0 : goto l a b e l 0
6 // ...
7 case 12 : goto l ab e l 1 2
8 }
9 l a b e l 0 : // n0 := 0

10 s . f i b o . n0 = 0
11 s . LabelCounter = 1
12 s . f i b o . i s a l i v e = 1
13 return s
14 // ...
15 l abe l 1 2 : // return n1
16 s . f i b o . r e s0 = s . f i b o . n1
17 s . f i b o . FunctionCounter =
18 s . f i b o . c a l l e r
19 s . f i b o . LabelCounter =
20 s . f i b o . c a l l e r L a b e l
21 re turn s
22 }

Listing 1.2. Fibonacci translation
(1/2)

23 func G2PF main( s s t a t e ) s t a t e {
24 switch s . LabelCounter {
25 case 0 : goto l a b e l 0
26 // ...
27 case 2 : goto l a b e l 2
28 }
29 l a b e l 0 :
30 s . f i b o . n = 5
31 s . f i b o . c a l l e r =
32 s . FunctionCounter
33 s . f i b o . c a l l e r L a b e l = 2
34 s . FunctionCounter = 1
35 s . LabelCounter = 0
36 return s
37 // ...
38 }

Listing 1.3. Fibonacci translation (2/2)

39 func G2PEntry ( s r c s t a t e ) [ ] s t a t e {
40 r := make ( [ ] s ta te , 0)
41 r := append ( res , G2PF main( s r c ) )
42 // From here it ’s the scheduler
43 // detailed Section 3.2
44 // Build all valid successors
45 f o r , g := range go rout ine s {
46 r = append ( r , g . Fun( s r c ) )
47 }
48 // See Listing 1.6
49 return r
50 }

Listing 1.4. Dispatch in Go2Pins

51 func g e t s u c c e s s o r s ( s r c s tate ,
52 cb CB /* Callback */ ) i n t {
53
54 // Compute all successors
55 ds t s := G2PEntry ( s r c )
56
57 // Call the model checker
58 // callback for each succ
59 f o r , dst := range ds t s {
60 CB( cb , dst )
61 }
62 }

Listing 1.5. Successor computation

The first step of this translation is to build a (finite) state vector for the
program given in Listing 1.1. To build this vector, we must compute the to-
tal number of variables that are used. Here, four variables n, n0, n1 and i are
displayed but Go2Pins requires extra-variables:

1. The program counter indicating the line currently executed. This informa-
tion is hidden in Listing 1.1 since it is generally handled directly by the
micro-processor. For the sake of clarity we opted for a two variables rep-
resentation of this counter: a variable FunctionCounter that indicates the



current function, and a variable LabelCounter that indicates the current in-
struction.

2. Another piece of information that is usually tracked at the assembly level
is the return address, i.e., the position where the execution should continue
after a return statement (or the end of the function). As previously two
variables per function are used: 〈fun-name〉.caller that indicates the return
function and 〈fun-name〉.callerLabel that specifies the instruction in this
function.

3. When a function returns one or multiple values, a placeholder for these values
should be available. Indeed, since these values may be used in various con-
texts (assignments, comparisons, etc.), the placeholder will represent them
until their final use is detected. As a consequence, Go2Pins uses X place-
holder variables 〈fun-name〉.resX, where X denotes the Xth return value.

4. Finally, each variable in the original program must be associated to an extra
variable isalive 〈var-name〉. This is required in order to handle complex
initialization such as a := f(). In this assignment the value of a is only known
after the evaluation of f(). Since the PINS interface represents the program
as a vector of integers, a default value must be fixed for all variables (here 0).
As a consequence, a model-checking procedure may fail by considering this
default value. Thus, the extra variable indicates whether or not the variable
a has already been initialized. Due to lack of space, this transformation is
not depicted here but would appear in line 14.

To respect the PINS interface, the previous variables are collapsed into a
vector of integers (line 1, Listing 1.2). Since this vector handles all values of all
variables at a given time, it can be see as a snapshot of the system. Listings 1.2
and 1.3 also detail the other modifications performed during the core transla-
tion (for the sake of clarity names are explicit, while our translation manipulates
indexes: for instance, s.fibo.res0 is then translated into s[2]):
– Each name has been changed to G2PF 〈fun-name〉 and its parameters have

been replaced by a single parameter: the state vector representing the actual
status of the execution (line 3 and 23).

– Each instruction of the original program has been extracted into a dedicated
block of code (see lines 9–12 or 14–20 for an example). This block is accessible
from a switch statement at the beginning of the function (lines 4–8 or 24–
28). This switch uses the LabelCounter to detect the instruction to execute
and then jump to the corresponding block.
This transformation in blocks relies on the computation of Basic Blocks and
Control Flow Graph (CFG). Basic Blocks are sequences of instructions with-
out jumps (conditional or not) while the Control Flow Graph is a graph that
represents all of the execution paths of the function and links each basic block
to its potential successors. For the purpose of our tool we restrict basic blocks
to contain only one instruction of the original program. As a consequence,
the CFG represents the successors of each instruction. With this CFG, each
basic block can now be augmented to update FunctionCounter and Label-
Counter. In particular, moving inside a function modifies the LabelCounter



(line 11) while a call to another function modifies both variables(line 16–19
and 24–35) . For instance, line 9 details the modification of the LabelCounter
while lines 14 to 17 modifies both counters since they represents the original
return statement.

The last step of the translation aggregates all the previous transformations in
order to fit the PINS interface. With this architecture, the PINS get successors
(Listing 1.5) delegates the processing to GP2Entry (Listings 1.4) which transi-
tively3 delegates to the current function G2PF 〈fun-name〉. This strategy pre-
serves (with a minimal overhead) the structure of the original program which is
helpful for debugging or producing traces during the verification procedure.

3.2 Handling Concurrency: Goroutines and Unbuffered Channels

The previous section presents the core translation for sequential programs. Nonethe-
less the main application of model checking is the verification of concurrent pro-
grams where bugs are hard to find and reproduce. The concurrency in Go is pro-
vided through two elements: goroutines and channels. Goroutines are triggered
by the go instruction and spawn lightweight threads. Channels are a communi-
cation features that avoid data races contrarily to shared variables.

In order to support goroutines, Go2Pins implements a scheduler. Indeed, at
any moment, the main thread can progress as well as any active goroutine. An
active goroutine is a goroutine that (1) has been spawned by the go keyword and,
(2) that is not yet finished. Consequently, this status is stored in the state vector
(so that the scheduler can arrange the various goroutines). Additionally, since
each goroutine needs its own recursive stack, a preprocessing phase is required
to reserve slots for each function that could be called by each goroutine. This
processing is similar to the one done for unrolling recursive functions.

Support for channels also requires to have dedicated slots in the state vec-
tor. These slots catch goroutines that are about to perform a synchronization
operation through the channel. As soon as our scheduler detects two of these
goroutines, a synchronization is triggered. In other words the scheduler ensures
a simultaneous progress of the two goroutines. Listing 1.6 details this part of the
scheduler (and finalize the code of Listing 1.4, line 48). It can be observed that
the set of successor is only composed of a set of PINS vectors.

4 Abstraction with Black-Box Transitions

4.1 Overview of black-box transitions

The main problem that arises when verifying large (concurrent) software systems
is the state-space explosion problem since all of the details must be represented

3 This is achieved by building one last extra function: G2PMain (see line 42). This
function takes a state vector as a parameter and returns an initialized state vector
during the first call. Then, this function dispatches the processing of the computation
to the function under execution.



f i n a l := [ ]
f o r , s := range r { // walk all successors and keep only valid ones

i f ∃ one channel with ( at l e a s t ) a pending read and a pending wr i t e {
tmp := generate a l l read / wr i t e synchron i za t i on s on t h i s channel
f i n a l = append ( f i n a l , tmp)

} e l s e i f s has no pending ope ra t i on s on channe ls {
f i n a l = append ( f i n a l , s )

}
}
r = f i n a l

Listing 1.6. Scheduler that synchronize operations on channels

to catch all possible behaviors. One way to tackle this problem is to use approx-
imations that remove some irrelevant details in order to reduce the size of the
state space. Two kind of approximations exist:

– over-approximations contain more behaviors than the full system. Thus,
if there is no error in an over-approximation, then there is no error in the
full system. On the other hand if an error is found in an over-approximation
it can be spurious. Over-approximations cannot prove presence of errors.
detection of errors.

– under-approximations contain less behaviors than the full system. Thus if
there is an error in an under-approximation, then this error is real error in the
full system. On the other hand, absence of errors in an under-approximation
does not imply absence of errors in the full systems. Under-approximations
cannot prove absence of errors.
correctness of properties.

1 package main
2
3 import ” fmt”
4 import ”math”
5
6 func foo (n i n t ) i n t {
7 return n ∗ 2
8 }
9

10 func main ( ) {
11 a := i n t (math . Sqrt ( 42 ) )
12 a = a + foo ( a )
13 fmt . Pr in t ln ( a )
14 }

Listing 1.7. Simple computations

In this paper, we introduce the black-
box transitions technique in order to over-
come limitations of both over and under-
approximations. The underlying idea is to
automatically build a representation of the
program that abstracts away all behaviors ir-
relevant for the verification procedure while
keeping effectiveness for proving correctness
of properties or finding errors.

In order to illustrate the black-box tran-
sition technique, let us consider the example
depicted in Listing 1.7. This example only
performs arithmetical operations: it first calls
math.Sqrt (line 11) which is part of the Go

standard library and then calls foo (line 12) which is a local function. The result
is then printed line 13. Suppose now that we want to check the (correct) LTL
property FG ’a > 1’, which express that a will end to be strictly greater than 1.

Trying to verify this property over this program is hard due to lines 11 and
13. Indeed since both of these lines are calls to functions that belong to the



Go standard library, the source code of these functions is not available4. Con-
sequently the translation depicted in Section 3.1 will not work. More generally
this problem occurs with any Go program that links with an external library.
This problem is annoying since this is a common situation in a large software.

Fortunately, when checking FG ’a > 1’, we are only interested in (1) the value
of the variable a and (2) the value returned by the math.Sqrt function. All the
details of the math.Sqrt functions are irrelevant for the verification procedure.

Black-box transitions technique exploits this particularity by calling directly
math.Sqrt. The returned value is then set in the slot corresponding to a in
the PINS vector. More generally, black-box transitions technique automatically
identifies external function calls, and directly insert these calls during the core
translation described Section 3.1 5. To achieved this some manipulation of the
PINS vector are required to fill the parameters of the function.

Thus black-box helps to reduce significantly the state-space of the program.
For instance, the state-space of the program in Listing 1.7 has only 12 states
which is low considering that the definition of both math.Sqrt and fmt.Println
function are complex and are several hundred lines of code long6.

Discussion. Black-boxes address the state space explosion problem by fusing
multiple transitions (here, external library function calls) into a single one. Thus,
black-boxes assume the correctness of these external functions calls. The verifi-
cation of these functions is then delegated to the writer of the external library
who can opt to use testing or model-checking. Consequently, the developer can
only focus on verifying its own code and on providing a high quality software.
This strategy follows the idea of Godefroid [15] who states that some part of the
software can be checked by model-checking while some part can be checked by
testing. This strategy is interesting since it can progressively be integrated into
all existing project in order to increase the quality of the project.

Remark on Go2Pins limitations. Currently Go2Pins is limited to Integer
variables. Nonetheless black-boxes transitions can check arbitrary complex code
(for instance math.Sqrt or fmt.Prinln. Consequently, Go2Pins restrictions only
applies to user code and not imported code.

Blackbox and LTL verification. One drawback of abstraction methods (such
as Partial Order Reductions) is the compatibility with the LTL Next operator.
Since blackbox transitions collapse successive transitions into one based only on
the observed atomic propositions, the use of the Next operator is possible without
altering the verification results. In other word this technique only removes the
noise from the verification procedure.

4 The runtime of programming language is traditionally provided as a dynamic library.
5 Notice that this technique is only possible since Go2Pins is developed in Go and

produces Go files.
6 The interested reader may look the definition of:
https://golang.org/src/fmt/print.go

https://golang.org/src/math/sqrt.go

https://golang.org/src/fmt/print.go
https://golang.org/src/math/sqrt.go


A word on side effects. Black-box transitions are not limited to pure func-
tions and also work with functions containing side effects. For instance, call to
fmt.Println is fully supported. The only drawback of our method is that we will
observe the result of calling fmt.Println during the verification procedure.

4.2 User-defined black-box transitions

It is legitimate to ask whether the black-box transition technique could also be
applied to user code. A closer look to Listing 1.7 shows that the foo function
could also be black-boxed if we are only interested in the value of the variable a.

Go2Pins can automatically detect such functions. The computation of func-
tions that can be black-boxed is more complex than we can think at first glance.
A function can only be black-boxed if it respect the following rules:

1. None of its variable is referred during the verification process

2. It only calls functions that can be black-boxed

3. It does not manipulate global variables

A more precise definition could be stated but would require to compute all the
possible executions paths. Since this may be costly we opted for this conservative
approximation which is enough in most cases, and can be easily computed.

Once all black-boxed functions are detected, Go2Pins remove them from
the original input and put them into a dedicated package. By achieving this,
Go2Pins is back to the situation described in the previous section. Thus user
defined functions can now be black-boxed. With this approach the state space
of the program in Listing 1.7 can be reduced from 12 states to 9 states (25%
reduction).

Thus, with this approach, an automatic abstraction, restricted to only be-
havior mandatory for the verification, is built.

Supporting depth-1 function using global variables. There are some sit-
uations where the aforementioned rule (3) is too restrictive (more details in
Section 6). Consider for example a simple function f that modifies a global
variable v. Let us now suppose that we want f to be black-boxed. A simple
rewriting system can be used to catch this situation. The function f is moved in
the blackbox package and rewritten to accept one more argument: a reference
to the actual PINS vector. Then every access to global variables is modified to
reference the correct slot in the PINS vector. This technique works well but has
a severe limitation7: we cannot have a black-box function g that will call f . In
other words, g will never be considered as black-box. This is too restrictive and
future work aims to investigate whether a solution to this problem exist.

7 Another restriction concern the use of the LTL Next operator. Indeed, if the black-
boxed function has multiple modification of one variable, only the later one will be
visible.



5 Using Go2Pins on Go programs

This section provides the necessary commands to run and play with Go2Pins8. To
download Go2Pins you can either fetch it and compile it from the git repository
using:

git clone https://gitlab.lrde.epita.fr/spot/go2pins.git && make

or you can use the package manager of Go using the following command. In this
case, the tool will be installed directly in your $GOBIN directory.

go get gitlab.lrde.epita.fr/spot/go2pins

Notice that Go2Pins have two dependencies you have to install by your own:
LTSmin9 and Spot10. Once this have been done, you can run Go2Pins on the
example of Listing 1.7 using go2pins -f listing.1.7.go
The previous command produced an out directory containing the go2pins-mc
binary. This binary can then be used for model-checking the original program.

- ./out/go2pins-mc -list-variables lists all variables you can use for LTL model-

checking. One can observe that each variable is prefixed by the package name
and the function name.

- ./out/go2pins-mc -kripke-size computes the state space of the program.

You should obtain 12 states visited as aforementioned.
- ./out/go2pins-mc -ltl ’FG ”main main a > 1”’ -backend spot -nb-threads 1

runs the command of Section 4 with one thread using the Spot backend.
You should observe an extra display 18, that corresponds to black-boxing
fmt.Println .

Finally, if you want to blackbox the foo function, you have to regenerate the
out directory and rerun the verification process. Go2Pins offers a shortcut to
perform both actions simultaneously

go2pins -f -blackbox-fn=”auto” listing.1.7.go ’FG ”main main a > 1”’

6 Benchmark

In order to test11 Go2Pins we opted to translate industrial-inspired problems
coming from the RERS challenge [28]. These reactive systems are represented
through huge files written in C. To test the whole workflow of our approach, we
first use C4Go [10] to translate them into Go, then apply the Go2Pins workflow.

The RERS challenge comes with a set of LTL formulae. Consequently, our
benchmark is composed of 41 models (1 909 345 LOC) and 5 064 formulae. Among
these 5 064 formulae 35% are verified and 65% are violated. Regarding the hierar-
chy of Manna and Pnueli [24], our benchmark is splitted in 25% pure guarantee,

8 Under GPL (v3), available at https://gitlab.lrde.epita.fr/spot/go2pins
9 https://ltsmin.utwente.nl

10 https://gitlab.lrde.epita.fr/spot/spot
11 Details of our benchmark and how to reproduce it are available at https://www.

lrde.epita.fr/~renault/benchs/SPIN-2021/results.html

https://gitlab.lrde.epita.fr/spot/go2pins
https://ltsmin.utwente.nl
https://gitlab.lrde.epita.fr/spot/spot
https://www.lrde.epita.fr/~renault/benchs/SPIN-2021/results.html
https://www.lrde.epita.fr/~renault/benchs/SPIN-2021/results.html


44% pure safety, 2% pure obligation, 12% pure persistence, 12% pure recurrence,
and 5% pure reactivity. Finally all experiments were run with a 4 minutes time-
out and 200 Go memory limitation on a 24 cores Intel(R) Xeon(R) CPUX7460@
2.66GHz with 256GB of RAM.
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Figure 3 focuses on the scal-
ability of Go2Pins. This fig-
ure details the time required by
Go2Pins to translate and com-
pile the files of the benchmark.
For each pair model-formula a
dot is displayed while lines join
the mean of each series 12. Two
approaches are depicted: with
or without the use of the black-
box technique. Surprisingly, we
can first observe that the use
of black-boxes also reduce the
processing time. Since our ap-
proach decomposes each state-
ment in atomic operations, the
use of black-box will produce
smaller files that are easily pro-
cessed by the go compiler. Thus,
with the black-box technique,

our tool process around 5000 line per second. A closer look to these results
reveal that Go2Pins uses 60% of this time while the Go compiler uses 40% of
it. Consequently, there is a room for improvement in our tool. Finally one can
observe huge variation for some models. These models have low number of line
of code, but each line has complex operation: Go2Pins spends time to reduce
these operations to atomic operations.

Figure 4 display the time required to process the whole benchmark by both
Spot and LTSmin. In (a) and (b) it can be observed that the use of black-boxes
significantly improves both Spot and LTSmin. Figure 4 (c) and (d) display the
comparison between Spot and LTSmin on this benchmark. Without black-boxes,
Spot outperform to find counterexamples while LTSmin seems better to find
empty products (the hardest ones). These difference could come either from the
type of Büchi automaton used (which differ between Spot and LTSmin default
configurations) or from the default emptiness check algorithm used [3, 8]. Further
investigation could broaden the study of [2]. Finally, Figure 4 (d) show that the
use of black-boxes help Spot to resolve empty products.

Figure 5 (a) and (b) displays the number of states and the number of transi-
tions with or without black-boxes when using Spot. Figure 5 (c) and (d) depicts
the same information for LTSmin. In explicit model checking these metrics are

12 In our benchmarks multiples programs have the same number of line of code (LOC).
A serie is defined as all computations, i.e. one per formula, w.r.t. a specific LOC.
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Fig. 4. Time comparison in log10 scale for each backend (Spot and LTSmin), with or
without black-boxes. The dark line corresponds to identity while gray lines show the
10 factor speedup/slowdown. Dashed lines represent the 4 minutes timeout.

important: the runtime proportional to the number of transitions explored while
the memory consumption is proportional to the number of states. For both Spot
and LTSmin, the number of states and transitions is divided by 10 to 100.

On conclusion, the black-box technique helps to reduce both preprocessing
and verification runtime.

Correctness. We also opted to test our approach using the RERS bench-
mark in order to ensure correctness of our implementation. Indeed this bench-
mark fully specifies 10 models through exactly 964 LTL formulae. These pairs
(models, formulae) describe all lines that are (or not) reachable in the input file.
In addition to the tests developed during the conception of our tool, these specific
models confirm the validity of our work-flow. One should note that most of this
files are unprocessable within the 4 minutes timeout restriction. For black-box
transitions, we compare all obtained results to the 5 064 original results. Also
note that we plan to translate the BEEM database, used by Spin and DiVinE2.4
in order to increase the confidence in our tool13.

13 We also plan to translate the Promela database http://www.albertolluch.com/

research/promelamodels n Go in order to compare with other verification tools

http://www.albertolluch.com/research/promelamodels
http://www.albertolluch.com/research/promelamodels
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Fig. 5. States and transitions (with and without black-boxes) comparison for both
Spot and LTSmin. The dark line corresponds to identity while gray lines show the 10
factor speedup/slowdown.

7 Related Work

The development of Go2Pins has been motivated by several empirical studies
performed on the Go language [27, 5, 29]. Ray et al. [27] study the relation
between types of bugs and multiple programming languages. Dilley and Lange
[5] analyzed 865 Go projects in order to detect how channels are used in large
Go projects. Tu et al. [29] study 171 real-world concurrency bugs in Go.

To our knowledge, the LTL-verification of full and unmodified Go programs
has never been studied. Many studies [23, 22, 21, 25, 6] focus on a static analysis
of operations on channels. Liu et al. [23] developed a tool that detect statically
patterns of bugs and fix them according to some strategies. The other approaches
[22, 21, 25, 6] focus on extracting channels operations. This extraction is then
used to to build models that are then verified for correctness. These studies
mainly focuses on concurrency problem by checking data-races, communication
patterns or deadlocks. Focusing only on channels operation helps to build small
models that are processable by verification tools. In this paper we developed
a broader approach since (1) we are able to check all LTL properties, (2) we
are not restricted to channels operations and (3) we developed a the black-box



technique that helps to fight combinatorial explosion without restricting ourself
to only channels communications.

Another approach [4] aims to execute formal models by converting Uppaal
programs into Go. Similarly Giunti [14] proposed to map pi-calculus specifica-
tions of static channels into Go executable programs. Our workflow avoids such
transformations, since programs can be executed and verified as-is.

Handling the standard library is a real problem for software verification tools.
JPF [31] requires providing the source code of the standard library and relies on
a Virtual Machine. The idea of black-box transitions, that naturally handle the
standard library, has never been proposed to our knowledge. The closest idea is
the one of Spin [18] that is able to execute multiple instructions atomically (see
atomics, d steps and c code keywords). Since this approach is not automatic
and relies on a model written in Promela, it is not well suited for verifying
large software systems. One should note that approaches based on the LLVM
bytecode also exist. The first one [32] links with Spin for handling concurrency
while the second one [1] requires a program expressed in C++. In contrast to
our approach, no model can be extracted.

8 Conclusion

This paper introduces Go2Pins, the first tool developed for LTL model-checking
over Go programs. It relies on the idea that the Go language is a good candidate
for specifying, verifying and building asynchronous systems. Go2Pins uses the
PINS interface to link with an ecosystem of model-checkers and model-checking
techniques. This paper also introduces black-box transitions to tackle the com-
binatorial explosion problem. Our benchmark has proven the efficiency of this
technique by reducing by more than a factor the size of the state-spaces. More-
over, this technique provides an easy way to support features that are not yet
supported by Go2Pins.

Future work aims to support more Go features in order to analyze the struc-
ture of the state space of industrial problems (following up the static empirical
study of Dilley and Lange [5]). To handle industrial project we would like to
support Partial Order Reductions (POR) [30, 26, 20]. Currently only LTSmin
supports POR through the use of dependencies matrixes. We plan to compute
these matrixes directly into Go2Pins and to integrate POR into Spot. We also
would to like to study the relation between black-boxes and POR.

Additionally we would like to go deeper in the development of the black-box
technique. For huge functions that cannot be black-boxed we could nonetheless
find sequences of instructions that could be fused. Moreover we would like to
investigate whether the black-box technique could be generalized to handle any-
depth functions with global side-effects.

Finally, our tool only performs verification without fairness since both LTSmin
and Spot require fairness to be expressed in the LTL-formula. Nonetheless, ex-
pressing fairness directly in Go2Pins could help to reduce state-space size.
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