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We present ltlsynt, a new tool for reactive synthesis from LTL specifications. It relies on the
efficiency of Spot [8] to translate the input LTL specification to a deterministic parity automaton.
The latter yields a parity game, which we solve with Zielonka’s recursive algorithm [32].

The approach taken in ltlsynt was widely believed to be impractical, due to the double-
exponential size of the parity game, and to the open status of the complexity of parity games resolu-
tion. ltlsynt ranked second of its track in the 2017 edition of the SYNTCOMP competition [17].
This demonstrates the practical applicability of the parity game approach, when backed by efficient
manipulations of ω-automata such as the ones provided by Spot. We present our approach and report
on our experimental evaluation of ltlsynt to better understand its strengths and weaknesses.

1 Introduction

LTL Reactive synthesis is the problem of finding a controller that reacts to the actions of an environment
in order to always enforce a given linear time temporal (LTL) specification. A typical example is a
monitoring system for a power plant: the environment actions model events triggered by the monitored
parameters (such as pressure reaching a critical value) while controller actions represent the possible
responses of the monitor (such as opening a safety valve). An instance of the problem is described by
a set of uncontrollable actions I , a set of controllable actions O and an LTL formula φ over the set of
atomic propositions I ∪O . A solution to an instance is a function describing which controllable actions
to enact, in response to arbitrary uncontrollable actions, so that the infinite sequence of actions always
satisfies the specification φ .

This problem is known to be 2EXPTIME-complete [27], and several approaches have been pro-
posed to solve it (see Section 2). Despite its theoretical complexity, its potential applications motivate
the implementation of tools, and it appears that many practical instances could be solved efficiently.
The SYNTCOMP competition [18], held every year since 2014, aims to stimulate the development of
practical solutions to this problem by confronting tools on a set of benchmarks.

Spot [8] is a C++ library for the manipulation of LTL formulas and ω-automata. It features a col-
lection of algorithms for efficient manipulation of LTL formulas and ω-automata: formula simplication,
translation to ω-automata, determinization of ω-automata, simplification of ω-automata etc. Although
primarily aimed at model-checking, all these features are of great interest to solve the LTL reactive
synthesis problem. Spot has been under active development for over a decade now, and combines high-
quality research results to a masterful implementation.

We describe here how we extended Spot into a reactive synthesis solver called ltlsynt. It uses the
existing features of Spot to translate the input LTL synthesis instance to a deterministic parity automaton,
interpreted as a parity game. This game, which is equivalent to the input problem, is then solved using
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the state-of-the-art recursive algorithm by Zielonka [32]. We hope to demonstrate that the continued
effort behind Spot also has fruitful applications in synthesis.

We first review related work in Section 2. We formally define in Section 3 the reactive synthesis
problem, as well as the notion of ω-automata and of parity games that will be useful in the sequel.
Section 4 describes the approach implemented in ltlsynt, that transforms the input reactive synthesis
problem to an equivalent parity game. A brief overview of the architecture and usage of ltlsynt is
given in Section 5. We conclude by an experimental assessment of ltlsynt in Section 6.

2 Related Work

Synthesis, i.e. the automated generation of a program from its specification, can be seen as the ultimate
stage of declarative programming. LTL reactive synthesis generates a controller, usually as a digital
circuit, from a specification given as a formula of Linear Temporal Logic (LTL).

Two main approaches to solve LTL reactive synthesis can be identified: one by reduction to parity
games, and the other by reduction to a bounded safety game. We shortly review those approaches here.
ltlsynt uses the former one, and it will be described in more details throughout the paper.

Reactive synthesis is naturally described as a turn-based game between two players: the controller
and the environment. A move for a player is a choice of signals to enact. A play is a (finite or infinite)
sequence of alternated moves between both players. A play is won by the controller if it satisfies the
specification, and a controller can be synthesized if the controller has a winning strategy in this game.

LTL (or more generally ω-regular) specifications can be described by finite automata on infinite
words (or ω-automata). Such automata are good candidates to build finite arena for the above game, a
first step towards their resolution. However, determinism is a crucial property for the automaton game
to faithfully mimic the synthesis game (this fact will be detailed in Section 4). The historical approach
to LTL (and ω-regular) reactive synthesis consists in building a deterministic ω-automaton from the
specification and to turn it into a turn-based game with an ω-regular winning condition.

2.1 Parity games

Among all possible ω-regular winning conditions for games, the parity condition has drawn a lot of
attention. Parity games are determined: there is always a winning strategy for one of the two players [25].
Moreover, if a Player has a winning strategy, he/she has a memoryless winning strategy [10]. The latter
property shows that the problem of solving parity games lies in NP. Determinacy expresses the symmetry
between the players, demonstrating that the problem also lies in co-NP. Whether it can be solved in
polynomial time is a long-standing open problem. This is in contrast with other acceptance conditions:
solving Rabin (resp. Streett) games is NP-complete (resp. co-NP-complete) [11], whereas winning
strategies in Muller games require exponential memory [9].

The unknown complexity status of parity game solving, together with the widely accepted belief
that it is solvable in polynomial time, has motivated a lot of research on the subject. As a result, many
algorithms have been proposed [20, 22, 4, 30, 26] together with variants and optimizations, with var-
ious worst-case complexity and different favorable and unfavorable instances. It has also motivated
implementation efforts: PGSolver [14] and Oink [6] are two platforms both featuring a large collection
of algorithms to solve parity games. This activity recently culminated with the publication of the first
quasi-polynomial time algorithm for the problem [3]. Despite its recency, this breakthrough has already
inspired several works which improve its worst-case complexity [21, 15, 13].
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These recent algorithmic progresses convinced us to prioritize this approach in ltlsynt. They also
promise renewed interest and activity in the following years, and thus many leads for future improve-
ments of our tool.

2.2 Avoiding determinization

The main drawback in the approach detailed above is the exponential blowup in size induced by the
determinization of the ω-automaton. Determinization of a Büchi automaton with n states yields a deter-
ministic parity automaton with O((n!)2) states and 2n priorities [31]. This is the best known upper-bound
to date. Solutions avoiding determinization (and this blowup) have thus been proposed.

A first proposal originates in the remark that determinism is actually too strong a condition for the
built parity game to be equivalent to the original reactive synthesis instance. A weaker condition, known
as the arena being good-for-games [16] or history-deterministic [5], is actually sufficient. It is known
that good-for-games ω-automata can be much smaller than deterministic ones [23]. Nevertheless, this
condition remains of little practical interest, as there is no known algorithm to turn an ω-automaton into a
smaller-than-deterministic good-for-games one. Furthermore, the complexity of testing good-for-game-
ness is largely unknown: the lower bound is polynomial (for co-Büchi automata [23]) while the upper
bound is exponential [16].

Another proposal consists in building a safety game to solve the reactive synthesis problem [24].
The reactive synthesis specification is first turned into a universal co-Büchi automaton. A run of a co-
Büchi automaton is accepting if it does not visit the co-Büchi condition infinitely often. In a universal
automaton, a word is accepted if all of its runs are accepting. From the structure of this universal
automaton, one can compute a number K with the following property: the environment wins the game as
soon as it can enforce at least K visits to the co-Büchi condition. This crucial property makes it possible
to turn the game into a K-bounded safety game: the controller’s winning condition is now to avoid K
visits to the co-Büchi condition. Such a K-bounded safety game is then unfolded to a safety game (the
dual of a reachability game), solved in polynomial time.

The bound K and the K-bounded safety game (and a fortiori the unfolded safety game) are exponen-
tial in the size of the universal co-Büchi automaton (more precisely, K = n2n+3 for an automaton with n
states), so the worst-case complexity of this approach matches the worst-case complexity of the parity
game approach. The crucial difference is that the K-bounded safety game can be solved incrementally:
K is an upper bound to the number of visits to avoid, so the controller may win while visiting the co-
Büchi condition a much smaller number of times k. The incremental algorithm solves the k-bounded
safety algorithm, starting from small values of k, and increments it until a winning strategy is found or
k eventually exceeds K. While the worst-case complexity remains the same, the incremental approach
has proved very efficient in practice, and has been adopted by most tools taking part to the SYNTCOMP
competition.

3 Definitions and notations

3.1 Reactive Synthesis

Formally, an instance of the reactive synthesis problem is a triple (I ,O,L) where I and O are two
disjoint sets of input and output events respectively, and L is an ω-regular language of infinite words
over the alphabet 2I∪O . For the sake of generality, we assume in this paper that L is given as an ω-
automaton.
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Figure 1: A non-good-for-games arena for Σω .

A controller is a function C : (2I∪O)∗× 2I 7→ 2O . An infinite word u = u0u1u2 · · · ∈ (2I∪O)ω is
consistent with controller C if, for every n ∈N, un∩O = C(u0 . . .un−1,un∩I ). A controller C is said
to enforce L if every infinite word consistent with C is in L. Given I , O and L, the reactive synthesis
problem asks whether there exists a controller enforcing L, and asks for a witness if the answer is positive.

3.2 ω-Automata

An ω-automaton is a tuple A = (Q,Σ,∆,q0,F,φ) where:

• Q is a finite set of states;

• Σ is an alphabet (i.e. a finite set of letters);

• q0 ∈ Q is the initial state;

• F ⊆N is a finite set of acceptance marks;

• ∆⊆ Q×Σ×2F ×Q is the transition relation;

• φ is the acceptance condition (to be detailed below).

A run of the automaton is an infinite sequence of consecutive transitions, starting from q0. The label of a
run is the word formed by the concatenation of the letters appearing on its constitutive transitions. Given
a run ρ , we define Inf (ρ) = { f ∈ F | f appears on infinitely many transitions of ρ}.

In this paper, we focus on two acceptance conditions: generalized Büchi and parity. In the gener-
alized Büchi setting, a run ρ is accepting if and only if Inf (ρ) = F . In other words, a run is accepting
if it visits all acceptance marks infinitely often. In the parity setting, a run ρ is accepting if and only if
max Inf (ρ) is odd.

Figure 2a shows a generalized Büchi automaton over the alphabet 2{a,b}. Transitions are labelled by
Boolean formulas over the variables {a,b}. The label a|b of the transition going from state 0 to state 2
is a shorthand that actually represents three different letters: {a}, {b} and {a,b}. The acceptance marks
are denoted by colored numbered bullets on the transitions.

3.3 Games

A game is an ω-automaton where the set of states Q is partitioned into two sets QA and QE . Graphically
(see for example Figure 2c), we represent Adam’s nodes (QA) with diamonds, and Eve’s nodes (QE) with
circles. We refer to the underlying automaton (seen as an automaton and not as a game) as its arena.
Runs of the arena are called plays in the game setting. By convention, the acceptance condition of the
arena is the winning condition for Eve in the game: a play is won by Eve if and only if it is accepting in
the arena. Otherwise, the play is won by Adam (in particular, finite plays are won by Adam). It is also
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convenient to partition Σ into ΣA (letters played by Adam) and ΣE (letters played by Eve). This partition
is done without loss of generality. This restricts ∆ so that transitions from QA (resp. QB) are labelled
with letters from ΣA (resp. ΣB) only.

A strategy for Adam (resp. Eve) is a function mapping finite plays ending in QA (resp. QE) to a valid
transition extending the play. Given a strategy σ for Adam (resp. Eve), a σ -play is a (finite or infinite)
play ρ where every transition taken by Adam (resp. Eve), say at position i, is given by σ(ρ0 . . .ρi). A
positional (or memoryless) strategy is a strategy whose value depends only on the state in which the
given run ends. Given one strategy for each player, say σA and σE , there is a unique longest play that is
both a σA-play and a σE-play, which is called the outcome of σA and σE . A winning strategy for a player
is a strategy that makes that player win its outcome against every strategy for the other player. A game
is turn-based if ∆ alternates between QA and QE (i.e. no player plays twice in a row).

4 From Reactive Synthesis to Parity Games

Let I , O be two sets of input and output signals, and A be an ω-automaton on the alphabet 2I∪O .
ltlsynt solves this reactive synthesis instance by turning A into a turn-based deterministic parity
game. We detail the whole process implemented in ltlsynt, and show the correctness and completeness
of our approach. The method is illustrated with an example presented in Section 4.1.

The first step, called splitting (see Section 4.2) separates the input signals from the output signals.
This is a mere technicality, but it greatly simplifies the subsequent implementation of parity games. We
also believe that it helps understanding the correspondence between winning strategies and controllers.

We then show in the proof of Theorem 1 how a winning strategy in a split arena, with light additional
requirements, can be turned into a controller enforcing the corresponding specification.

Unfortunately, the converse construction (from a controller to a winning strategy) is not always pos-
sible, as illustrated by the following counter-example. Let I = {a}, O = {b} and L = (2I∪O)ω . Clearly
there is a controller enforcing L (in fact any controller enforces L). The game shown on Figure 1 satisfies
the hypotheses of Theorem 1, yet it is won by Adam. This comes from the fact that the only way for
Eve to resolve the non-determinism in state 1 would be to know in advance Adam’s next move. The
converse of Theorem 1 only holds if there is some strategy (looking at the past only) for Eve to resolve
such non-determinism. This is the precise definition of good-for-games, or history-deterministic, arenas
(cf. Section 2.2). As we have seen, no practical algorithm is known to produce such arenas, and we resort
to determinizing our arena.

In Section 4.3, we prove Theorem 2 which is the converse of Theorem 1. The proof is done for
deterministic arenas only, but adapting it to good-for-games arenas would only require minor technical
changes.

4.1 Running Example

We illustrate our method with an example, which features a single uncontrollable action a and a single
controllable action b. The specification states that the controller plays b infinitely often if and only if the
environment plays a infinitely often. The corresponding LTL formula is GFa⇔ GFb.

The different steps of the procedure are shown on Figure 2. Figure 2a shows the Transition-based
Generalized Büchi Automaton (TGBA) built by Spot from the LTL formula GFa⇔ GFb. The corre-
sponding split automaton is shown on Figure 2b.
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Figure 2: The automata produced by ltlsynt at different steps of the resolution procedure for I = {a},
O = {b} and L = L (GFa⇔ GFb).
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The determinization of the split automaton as a parity automaton on Figure 2c. The final result of the
procedure, a winning strategy for Eve in the form of an automaton, is displayed on Figure 2d. Note that
this is the strategy computed by Zielonka’s algorithm on the above game. Although it could be further
simplified (to an automaton with a single state for instance), ltlsynt does not have such simplification
capability yet.

4.2 Split Automaton

In order to obtain a turn-based game, we first need to separate input events (played by the environment)
from output events (played by the controller). To that end, we define a split operation, which applies to
words, languages and automata.

Let u = (ui)i∈N ∈ (2I∪O)ω . We define splitI ,O(u) = (vi)i∈N ∈ (2I 2O)ω as follows: for all i ∈
N, v2i = ui ∩I and v2i+1 = ui ∩O . This operation naturally extends to languages: splitI ,O(L) =
{splitI ,O(u) | u ∈ L}.

The split of an automaton A = (Q,2I∪O ,∆,q0,F) is the automaton, noted splitI ,O(A ), (Q∪Q×
2I ,2I∪O ,∆s,q0,F) where each transition (q,a, f ,q′) ∈ ∆ gives, for each i ∈ a∩ 2I , two transitions in
∆s: (q, i, /0,(q, i)) and ((q, i),a∩2O , f ,q′). It is easy to check that L (splitI ,O(A )) = splitI ,O(L (A )).
We also note split instead of splitI ,O if there is no ambiguity.

We say that an arena is complete for some player P if from all states of P, for all letters a ∈ ΣP, there
is at least an outgoing transition labelled by a. To complete an arena for P, it suffices to add the missing
transitions from every state of QP to a new sink state (i.e. with no outgoing transitions). Conversely, we
say that an arena is deterministic for a player P if from all states of P, for all letters a ∈ ΣP, there is at
most one outgoing transition labelled by a. Note that the definition of the split automaton ensures that
splitI ,O(A ) is always deterministic for Adam.

Theorem 1. Let G be a game whose arena A is complete and deterministic for Adam and that recognizes
split(L). If Eve wins G, then there is a controller enforcing L.

Proof. Note that the specification to enforce split(L) imposes that G is turn-based. Let σ be a winning
strategy (possibly with memory) for Eve in G. From σ we inductively build a controller C enforcing L
as follows.

Let u∈ (2I∪O)∗ be a finite history and i∈ 2I . If u does not label a σ -play, then we leave C undefined
on (u, i). Otherwise, the corresponding σ -play ρu is unique: A being deterministic for Adam, his moves
are entirely determined by their labels, while Eve’s moves are entirely determined by σ . Let q be the
state in which ρu ends. Again, A being complete and deterministic for Adam, there is a unique transition
t labelled i from q. And since σ is a winning strategy, it is necessarily defined on ρut. Let o be the label
of the transition σ(ρut). We define C(u, i) = o.

It is clear from this definition that any infinite play u according to C is also the label (up to splitting)
of a σ -play in A. This play is therefore won by Eve, meaning that its label split(ρ) is in split(L), which
in turn entails that ρ ∈ L.

4.3 Determinization

Spot implements a determinization procedure from Büchi automata to parity automata, based on an
optimized version of Piterman’s procedure by Redziejowski [28]. An important feature of this imple-
mentation is that both input and output automata have their acceptance marks on transitions rather than
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on states. This yields fewer states in the determinized automaton. We believe that this is one reason for
the efficiency of Spot, compared to other tools that work with state-based acceptance marks.

We now prove the converse of Theorem 1, with the additional requirement that the arena is determin-
istic for both players (and not only for Adam). As above, we still require that the arena is complete for
Adam.

Theorem 2. Let G be a game whose arena is complete for Adam, deterministic (for both players) and
recognizes the language split(L). If there is a controller enforcing L, then Eve wins the game G.

Proof. Let C be a controller enforcing L. We build a winning strategy (with memory) σ for Eve from C.
Let (u, i) ∈ (2I∪O)∗× 2I . If u is consistent with C, it can be continued by at least one word in L.

A recognizes split(L) and is deterministic, which guarantees that there is a play ρu, necessarily unique,
labelled by split(u) in A. Let q be the ending state of this play. A being complete for Adam, and
deterministic, there is a unique transition t labelled by i from q, going to a state that we call q′. Again,
since C enforces L, u.(i∪C(u, i)) can be continued to a word in L. Since A is deterministic and recognizes
split(L), there is a (unique) transition t ′ from q′ labelled with C(u, i), and we let σ(ρut) = t ′. Otherwise
(i.e. if u is not consistent with C), yet ρu exists, σ(ρut) is left undefined.

It is clear from this definition that any infinite σ -play ρ is labelled by the split of a play consistent
with C. Since C enforces L, the label of ρ is in split(L), which means that ρ is an accepting run in A, i.e.
ρ is won by Eve.

4.4 Solving Parity Game

Among the various algorithms that have been proposed to solve parity games, we chose to implement
the well-known recursive algorithm by Zielonka [32]. This decision was made based on preliminary
experiments with the framework PGSolver [14], that convinced us that Zielonka’s algorithm appears to
be the most efficient in practice. A recent, independent, experimental study [6] confirms that attractor-
based algorithms, and in particular Zielonka’s algorithm, appear to be the most efficient in practice.

As shown in Section 6, the resolution of parity games does not seem to be the bottleneck of our
approach. We therefore did not invest more efforts into implementing other parity game solving algo-
rithms so far. Should we improve the performance of our parity game algorithms, using an optimized,
specialized library such as Oink [6] would probably be easier and more efficient than re-implementing
state-of-the-art algorithms ourselves.

For the sake of completeness, we mention that ltlsyntfeatures an experimental version of the quasi-
polynomial algorithm by Calude et al. [3], but this implementation has not been extensively tested,
optimized, nor evaluated.

5 Using ltlsynt

ltlsynt comes as a binary in the Spot library, starting from version 2.5. ltlsynt expects three input
elements: a set of input propositions I , a set of output propositions O and a specification, as an LTL
or PSL formula [1]. The possible formats are those supported by Spot: we refer the reader to Spot
documentation for details.

In SYNTCOMP, the specification is described as a Moore or Mealy machine, using the TLSF for-
mat [19]. Such specifications are translated to LTL formulas, thanks to the tool syfco 1 before they are

1https://github.com/reactive-systems/syfco/releases

https://github.com/reactive-systems/syfco/releases
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given to ltlsynt.

ltlsynt --ins=a --outs=b -f ’GFa <-> GFb’ [--realizability]

ltlsynt outputs “REALIZABLE”, followed by a winning strategy in HOA format [2], or “UNREAL-
IZABLE”. An option allows to check for realizability only, disabling the computation of the winning
strategy.

6 Experimental assessment

We experimentally evaluate ltlsynt in two steps. We first recall the results obtained at SYNTCOMP’2017,
as it provides an independent evaluation of our tool compared to other state-of-the-art tools. We only
highlight the main facts about the performance of ltlsynt. We also report on more detailed experi-
ments we undertook to better understand the reasons of the performance of ltlsynt, and identify its
weaknesses.

6.1 Report from SYNTCOMP’2017

ltlsynt has participated to SYNTCOMP’2017, and ranked second in the TLSF sequential realizability
track. We reproduce here some results from the competition highlighting the overall performance of
ltlsynt compared to the other competing tools. Detailed results can be found in the report on the
competition [17].

The competition aims two problems: the realizability problem, asking whether the controller is real-
izable, and the synthesis problem, that further requires to compute a satisfying controller if one exists.

Table 1 summarizes the results of the sequential TLSF track of the competition (the track in which
ltlsynt was engaged). The realizability table shows for each participating tool the number of instances
that it is able to solve within the 3600s time limit, as well as the number of instances that no other
tool solve (“Unique” column). The synthesis table additionally reports the number of solutions that
could be model-checked (hence certified as correct), as well as a quality score, based on the size of
the computed controller with respect to reference solutions. The smaller the circuits, the higher the
quality. The benchmark consists of 244 instances. Some tools participate multiple times with different
configurations: for those tools, the name of the configuration is indicated within parentheses.

Note that PARTY-Elli and ltlsynt participated for the first time: they both solve more instances than
the best tools from previous editions. This is already a great confirmation of the efficiency of ltlsynt. A
more attentive look at the results for synthesis reveals that ltlsynt ranks second in number of instances
solved, but its quality score remains quite low: this indicates that the synthesized circuits tend to be larger
than the reference solutions. Despite its good performance at solving the synthesis problem, the circuit
synthesis itself deserves to be optimized. The version submitted in 2017 makes no attempt at reducing
the size of the winning strategy. We hope that the recent implementation of this capability will result in
higher quality scores in the next editions of the competition.

6.2 Evaluation

Spot is widely recognized as one of the best existing tools to translate LTL formulae to ω-automata [29].
Besides this translation, Spot is indeed able to perform syntactical rewritings and simplifications of LTL
formulas (as a pre-processing step), and also to simplify ω-automata, mainly through signature-based
simulation algorithms (as a post-processing step) [7]. Our first impression is that these capabilities allow
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Table 1: Summary of the results of the sequential TLSF track of SYNTCOMP’2017, for realizability and
synthesis.

Realizability
Tool Solved Unique
PARTY-Elli (kid) 218 7
ltlsynt 195 3
BoSy (spot) 181 0
BoSy (ltl3ba) 172 0
PARTY-Elli (int) 169 0
BoWser 165 0
PARTY-Elli (bool) 164 0
Acacia4Aiger 142 4

Synthesis
Tool Solved Checked Unique Quality
PARTY-Elli (kid) 220 200 4 219
ltlsynt 195 182 3 180
BoSy (spot) 181 181 3 298
PARTY-Elli (int) 167 167 0 249
BoSy (ltl3ba) 165 165 0 277
PARTY-Elli (bool) 163 163 1 222
BoWser (c0) 162 162 0 273
BoWser (c1) 155 155 0 260
Acacia4Aiger 127 17 2 91
BoWser (c2) 93 93 0 141

Spot to produce smaller automata, and subsequentially smaller games, than the other competing tools
at SYNTCOMP’2017. But as we can see on Table 1, the version of Bosy that relies on Spot for the
translation of LTL specifications to automata performs worse than ltlsynt.

We thus decided to undertake more detailed experiments, to better understand the strengths and
weaknesses of ltlsynt. First, we have measured the relative time taken by each of the four steps of
the synthesis resolution (namely: translation of the formula, splitting of the resulting automaton, deter-
minization of the split automaton, and resolution of the obtained parity game). Our primary hope is to
identify a critical, bottleneck, step among the four, on which we should concentrate future efforts. Sec-
ond, we measured the same steps, but with many optimizations deactivated: no syntactic simplifications,
no simulation-based reductions, use of state-based acceptance condition . . . The goal is to understand
whether the extra computation effort put in the first steps to obtain small arenas is worth the time saved
in the resolution of the parity game.

Experiments use an instrumented version of the ltlsynt binary, packaged in the development ver-
sion of Spot 2.5.4, which differs from the binary submitted at the competition. Especially, the tested
version features optimizations to the determinization and Zielonka’s algorithms that have been imple-
mented after the submission to SYNTCOMP’2017. Experiments were run on a machine with an Intel
Core i5-6260U CPU (4 cores at 1.80GHz) and 8GB of RAM, running a Debian 9. The tool was com-
piled using g++-6.3.0. We used no memory confinement, and a time confinement of 120 seconds. The
running times were measured using high-resolution timers from the C++11 standard library. The bench-
marks that we use are those used in the SYNTCOMP’2017 competition, which features 244 instances.

Raw data, as well as scripts to run the experiments can be found at https://lrde.epita.fr/
~max/synt2018-ltlsynt.zip. The archive features a Dockerfile to build a container to run the exper-
iments. It also contains the raw data of our own experiments.

We first compare the overall performance of the two versions (with and without the optimizations)
of ltlsynt. Results are summarized in Figure 3. More precisely, Figure 3a presents the number of
instances and the par-2 score of each versions, while Figure 3b plots compares the performance of the two
versions instance by instance. Each point in this scatterplot represents one instance, whose coordinates
correspond to the running times of the two versions; points below the diagonal (the dashed line) are
those for which the unoptimized version runs faster. Note that the scale is logarithmic; the dotted line

https://lrde.epita.fr/~max/synt2018-ltlsynt.zip
https://lrde.epita.fr/~max/synt2018-ltlsynt.zip
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represents the place where the unoptimized version runs 5 times faster than the optimized one.

unoptimized optimized
# instances solved 200 197
par-2 time (s) 44.9 49.9

(a) Comparison of the number of instances solved
and of the par-2 score.

(b) Comparison of the runtimes of the optimized and unopti-
mized versions of ltlsynt.

Figure 3: Comparison of the two versions of ltlsynt.

We observe that the unoptimized version solves 3 more instances within the time limit than the
optimized version. More significantly, the PAR-2 score of the unoptimized version is 10% lower than
the PAR-2 score of the optimized version. The scatterplot gives a stronger trend: a large majority of
instances are solved faster, by a factor between 1 and 10, with the unoptimized version. There does not
seem to be any significant difference between realizable and unrealizable instances.

These results indicate that spending time to reduce the size of the arena does not pay off. This
conclusion is somehow surprising: we expected that smaller automata would yield smaller deterministic
automata, hence smaller arenas. Among the simplifications performed by Spot, one tests for implications
between subformulae of the formula to translate. These implication tests end up, in the worst-case,
translating the formulae to automata and testing language inclusion. This kind of test is computationnally
expensive, and usually yields ludicrous gains on automaton size.

The complete translation process of Spot features several steps, each with several level of optimiza-
tions to be fine-tuned. We have only the three pre-defined settings for the translation process, but there
is a large number of variants that remain to be tested.

We now turn to the time spent in each step of the process. Results are reported graphically in Figure 4.
We observe that the translation is the step taking the largest portion of the time, both in the optimized and
unoptimized versions. More precisely, splitting and Zielonka’s algorithm took in total less than 10% of
the total running time of the optimized version, while the determinization takes between 0.1% and 20%
for the majority of instances. Clearly the bottleneck of the optimized version is the translation step, but
this is not very suprising given the amount of simplifications that take place during it. The picture is a bit
more contrasted for the unoptimized version: splitting may take up to 20% of the time, but Zielonka’s
algorithm is most of the time below 10%. Translation and determinization seem to share almost equally
the rest of the time, except for instances solved instantly (in less than 10ms), where translation dominates.
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(a) Optimized version (b) Unoptimized version

Figure 4: Relative runtime of each step of the resolution.

7 Conclusion and Future Work

We have presented our approach and our tool for reactive synthesis from LTL specifications. Contrary
to most other tools, we solve the synthesis problem by translation to a parity game that we solve with
a recursive algorithm. Due to the double-exponential upper bound for the size of the parity games, this
approach has long been thought to be impractical. Our tool, that ranked second in the SYNTCOMP’2017
competition, demonstrates the practicality of this approach.

The journey towards practical reactive synthesis goes on. The other approach to reactive synthesis,
by reduction to safety games, supports an incremental resolution. We think that such an incremental
approach could be designed in the parity game approach. One idea would be to remove non-determinism
of the arena incrementally, so as to limit the blow-up induced by the determinization.

There also seems that translation of LTL formulae to ω-automata could be improved. Recent work [12]
proposes a translation algorithm that produces deterministic automata by design. The authors demon-
strate that this approach may outperform Spot, so we intend to implement their approach in Spot.
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