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ABSTRACT

Distance transforms and the saliency maps they induce are widely used in image processing, computer
vision, and pattern recognition. The minimum barrier distance (MBD) has proved to provide accurate
results in this context. Recently, Géraudet al. have presented a fast-to-compute alternative de�nition
of this distance, called the Dahu pseudo-distance. This distance is e� cient, powerful, and have many
important applications. However, it is restricted to grayscale images. In this article we revisit this pseu-
do-distance. First, we o� er an extension to multivariate image. We call this extension thevectorial
Dahu pseudo-distance. We provide an e� cient way to compute it. This new version is not only able
to deal with color images but also multi-spectral and multi-modal ones. Besides, through our bench-
marks, we demonstrate how robust and competitive the vectorial Dahu pseudo-distance is, compared
to other MB-based distances. This shows that this distance is promising for salient object detection,
shortest path �nding, and object segmentation. Secondly, we combine the Dahu pseudo-distance with
the geodesic distance to take into account spatial information from the image. This combination of
distances provides e� cient results in many applications such as segmentation of thin elements or path
�nding in images.

c 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decades, distance transforms have been widely
used in computer vision, image processing, and pattern recog-
nition (see Wei et al. (2012); Ciesielski et al. (2014); Zhang
et al. (2015); Tu et al. (2016); Huang and Zhang (2018)). In
general, distances can be classi�ed into two categories: point-
wise and path-wise. Point-wise distances are computed rela-
tively to the domain of an image, while path-wise distances
take into account the topographical view of the image. In this
paper, we focus on path-wise distances, where images can also
be seen as graphs (the vertices are the pixels of the image). The
usual method to �nd the path-wise distance between two pix-
els is to compute the length of the shortest path in the graph
that goes from one of these pixels to the other. The most used
path-wise distance in image processing is the geodesic distance
(see Toivanen (1996)). More recently, a pseudo-distance, called
minimum barrier distance (MBD) has been proposed in Strand
et al. (2013).
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The barrier “strengths” of a path is the di� erence between
thealtitudeof the highest point of the path and thealtitudeof
the lowest point of this path. The minimum barrier distance be-
tween two points is the smallest barrier “strengths” among the
set of all possible paths between these two points. This dis-
tance is studied in Ciesielski et al. (2014) and in Strand et al.
(2017). The MBD has many interesting theoretical properties
and is an e� ective tool in image processing and computer vi-
sion applications, especially to proceed to salient object de-
tection (see Zhang et al. (2015); Tu et al. (2016); Wang and
Wang (2017); Wang et al. (2017); Yang et al. (2017); Huang and
Zhang (2018)), interactive segmentation (see Grand-Brochier
et al. (2014); Malmberg et al. (2017)) and object localization
(see Bharati et al. (2016)). Litterature shows that the minimum
barrier distance outperforms the geodesic one on noisy and
blurred images (see Strand et al. (2013); Zhang et al. (2015)).

The MBD is powerful, but its computation expensive. Sev-
eral approximations of this distance have then been proposed
in Zhang et al. (2015), in Tu et al. (2016) and in Huang and
Zhang (2018).

Recently, the Dahu pseudo-distance has been intro-
duced from the point of view of Mathematical Morphology
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(see Ǵeraud et al. (2017)) in order to approximate the MBD.
This Dahu pseudo-distance is computed by considering an im-
age as a landscape (we also speak about its topographical view).
Unlike the approach of Zhang et al. (2015) and of Huang and
Zhang (2018) which computes the MBD directly in the image
space, the Dahu pseudo-distance can e� ciently be computed
on a tree-based representation of the image; the tree of shapes
of Géraud et al. (2013). Thanks to this approach, the compu-
tation of the Dahu pseudo-distance is very fast. However, this
distance was initially developed for gray-level images and does
not handle color images very well. Therefore, we take here into
account the color information to improve it.

The main contributions of our paper are the following.

� We provide a method to e� ciently compute the Dahu
saliency map while constructing the tree of shapes.

� We o� er an extension of the Dahu pseudo-distance to mul-
tivariate images and we explain how to compute it fast. We
call it vectorial Dahu pseudo-distance.

� We extend the Dahu pseudo-distance to a more “clever”
version which combines the Dahu pseudo-distance com-
puted on the tree and the geodesic distance computed in
the image to re�ne results (especially to �nd the shortest
path between two points in the image space).

To demonstrate the robustness of the Dahu pseudo-distance,
we analyze it in several experiments and applications as fol-
lows.

� We explore the properties of the Dahu pseudo-distance:
we compare our vectorial Dahu pseudo-distance with the
Dahu pseudo-distance computed on separate channels, we
analyze the noise stability and the contrast of the vectorial
Dahu pseudo-distance.

� We demonstrate the robustness of the vectorial Dahu
pseudo-distance in some applications such as salient ob-
ject detection and shortest path �nding by comparing it
with other MB-based distances; especially for color im-
ages.

� We illustrate the usability of our vectorial Dahu pseudo-
distance on multi-spectral images by successfully seg-
menting objects in satellite multi-spectral images.

� We also demonstrate the usability of our vectorial Dahu
pseudo-distance on multi-modal images by segmenting
white matter regions in the brain on multi-modal medical
images.

The paper is organized as follows. Section 2 contains the
state-of-the-art related to the MB-based distance. The Dahu
pseudo-distance and the way to compute the saliency map are
presented in Section 3. In Section 4, we present an e� cient
way to compute it. Then we provide an extension to multi-
variate images. Additionally, the Dahu pseudo-distance is im-
proved and a more “clever” version is provided, using at the
same time the spatial and hierarchical information of the image.

In Section 5, we investigate the properties of the vectorial Dahu
pseudo-distance and we compare it with state-of-the-art results.
Some applications are presented in Section 6 to demonstrate the
e� ciency of our distance. The conclusions and perspectives are
discussed in Section 7.

2. State-of-the-art

The MBD was originally introduced by Strand et al. (2013)
as a minimum value of the barrier strength among the set of
possible paths between two pixels in an image. The MBD has
been used in several applications in image processing and com-
puter vision, for instance, in salient object detection (see Zhang
et al. (2015); Tu et al. (2016); Yang et al. (2017); Wang and
Wang (2017); Wang et al. (2017); Huang and Zhang (2018)),
in object localization (see Bharati et al. (2016)), in superpixel
segmentation (see Hu et al. (2018)), in interactive segmenta-
tion (see Kårsn̈as et al. (2012); Ciesielski et al. (2014); Grand-
Brochier et al. (2014); Malmberg et al. (2017)), refocusing
(see Liu et al. (2016)), object proposals generation (see Huang
et al. (2018)) and in object segmentation (see Zhang and Shen
(2017); Xiao et al. (2018)).

In salient object detection, the goal is to compute a saliency
map that highlights the most important objects in an image. To
proceed, theboundary connectivity prior, which is presented
in Wei et al. (2012), assumes that background regions are usu-
ally large, homogeneous, and that the image boundary is mostly
background. The MBD estimates a distance from every pixel in
the image to the image boundary while considering that image
boundary is regarded as the background seeds (see Zhang et al.
(2015); Tu et al. (2016); Yang et al. (2017); Wang and Wang
(2017); Wang et al. (2017); Huang and Zhang (2018)).

Many applications take advantage of the relevance of the
saliency map computed by the MBD. The classical usage of this
saliency map is object segmentation. For example, in Zhang
and Shen (2017), an object segmentation method is proposed
by using an a� nity model based on the MBD. Object segmen-
tation is also a starting point for multiple other applications. For
example, in Bharati et al. (2016), a tracking method based on
the MBD is presented. Another example, exposed in Liu et al.
(2016), relies on object segmentation to perform a refocusing.
Additionally, the relevance of the saliency map computed by
the MBD has also been used in object proposal generation as
presented in Huang et al. (2018). This method aims to generate
a certain amount of candidate bounding boxes to provide po-
tential object locations for further tasks such as object detection
and segmentation.

Besides, the MBD has also been used for interactive segmen-
tation (see Kårsn̈as et al. (2012); Strand et al. (2013)). In this
application, the user tags a small setF of pixels belonging to the
object to set it as foreground and a small setB of pixels outside
of the object to set it as background. Interactive segmentation
is the binary classi�cation of the object with respect toF and
B. Each pixel in the image is classi�ed as foreground or back-
ground by comparing the MBD between the pixel itself and the
two sets of seedsF andB. In Strand et al. (2013), the MBD is
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computed on grayscale images, and its extended color version
is presented in Kårsnäs et al. (2012). These articles show that
this process is robust to noise, blurring and seed point position.

Another application is the computation of superpixels (see
in Hu et al. (2018)). The authors propose a method for super-
pixel segmentation relying on the MBD. Superpixels are de-
termined around them according to “compact-aware MBD”,
which is a combination of the original MBD and the (spatial)
Euclidean distance.

The MBD is very powerful, but di� cult to compute e� -
ciently on images of reasonable size. Because computing the
exact MBD usually takes too long, approximate but faster meth-
ods have been proposed (see Zhang et al. (2015); Tu et al.
(2016); Huang and Zhang (2018)).

In Zhang et al. (2015), the authors presented an approxima-
tion (Fast-MBD) with a raster scan algorithm to update the
MBD thanks to its neighbors. This salient object detection
method runs at about 80 FPS and achieves competitive perfor-
mance with state-of-the-art saliency detection methods. Despite
the fact that it provides good results, the raster scan method has
di� culties when the exact path between two pixels is in a di-
rection between the bottom left and the top right of the image
(see Huang and Zhang (2018) for details).

Tu et al. (2016) have developed another approximation of the
MBD. In their approximation, the input image is represented by
its minimum spanning tree (MST). Paths between pixels corre-
spond to paths between the nodes of the tree. The MST highly
reduces the size of the space we look for to �nd the shortest path
between two pixels of the image. However, the “simple” struc-
ture property of MST can lead to some approximation errors,
especially when noise appears in the image.

Recently, a new algorithm to approximate the MBD has been
presented in Huang and Zhang (2018), which is inspired from
the natural phenomena of water �ow. The seed pixels which
are usually put on the boundary of the image, are assumed to be
sources of water. Then, the water spreads from the sources to
the neighboring pixels (with di� erent �ow MBD) until all the
pixels are �ooded. The Water�ow-MBD computation achieves
a high-speed performance and shows comparable results with
other methods.

These methods based on the MBD achieve state-of-the-art
results with other bottom-up methods on saliency map compu-
tation. They can also process an image in real-time, which is
relevant for applications with speed requirements. On the other
hand, they also su� er from a number of limitations. In partic-
ular, color images (or more generally multivariate images) are
not handled very well (or not handled at all). A multivariate
version of the MBD needs to keep the advantages of the MBD
and has to be e� cient as well. For this reason, we propose a
new version of the MBD based on the Dahu pseudo-distance.
The proposed method in this paper computes distances taking
into account multivariate data which can be made of di� erent
color images as well as multimodal or multispectral images. We
also demonstrate the robustness of the Dahu pseudo-distance in
several applications such as salient object detection, shortest

path �nding and interactive segmentation. The Dahu pseudo-
distance, which inherits the properties from the Tree of Shapes
(ToS) (see Caselles and Monasse (2009)), has been shown to
be robust to noise and blur e� ects in the image, and it gives
competitive results compared to state-of-the-art methods.

3. The Dahu pseudo-distance

In this section, we give the mathematical background neces-
sary to de�ne the MBD in details and we show how to derive
a distance map using the MBD, before addressing a new dis-
crete version of the minimum barrier distance, called the Dahu
pseudo-distance and an e� cient way to compute it.

3.1. The Minimum Barrier Distance

In image processing applications, an image domain is asso-
ciated with a graph in which vertices represent discrete pixels
on the image and edges represent connections between pixels.
A gray-level image (Fig. 1(a)) is then represented as a vertex-
valued graph (Fig. 1(b)).

A path in a graphX is a sequence� = h:::; pi ; pi+1:::i , with
pi 2 X andpi+1 2 NX(pi), whereNX is the adjacency relations
between pixels. Also, the set of paths going from the vertex
x to the vertexx0 is denoted by� (x; x0). Thebarrier strength
(also calledbarrier distanceor cost) � of a path� in the given
gray-level imageu is de�ned as:

� u(� ) = max
pi2�

u(pi) � min
pi2�

u(pi): (1)

The barrier strengthof a path is the di� erence between the
highest and lowest pixel values along this path. Theminimum
barrier distance dMB between two verticesx andx0 in u is then
de�ned as the minimum of the barrier strengths of all the paths
between two given vertices:

d MB
u (x; x0) = min

� 2� (x; x0)
� u(� ); (2)

In Fig. 1(b), the blue path, which corresponds to a sequence
h1;0;0;0;2i , is considered as the shortest path between these
two red vertices. The corresponding MBD is then equal to 2.

Note that, despite its name, the MBD is not a distance, be-
cause it can exist somex; y such thatx , y andd MB

u (x; y) = 0.

3.2. Distance map based on the MBD

It is common to derive a distance map from the MBD. Given
a minimum barrier strength function and a setX0 of seed points,
a distance mapS MBD can be computed by:

S MBD
u (x; X0) = min

x02X0
d MB

u (x; x0): (3)

A distance map is then the MBD from every point of the image
to the setX0 of seed points. For every point, the MBD looks for
the smallest distance betweenx and any pixelx0 that belongs to
X0.

The next section presents a variant of the MBD, which is also
based on the notion of barrier (Eq. (1)).
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(f) A minimal path in au<� eu.

Fig. 1. Image representations used to compute barrier distances
(see Ǵeraud et al. (2017)).

3.3. The Dahu pseudo-distance

A new discrete version of the MBD, named the Dahu pseudo-
distance, has been de�ned in Géraud et al. (2017). It consid-
ers an image (see Fig. 1(a)) as a continuous surface in the set-
valued sense (see Fig. 1(d)) on a discrete topological domain
called the Khalimsky grid. Details about set-valued continuity
and about Khalimsky grids can be found in Kovalevsky (1986)
and in Aubin and Frankowska (2009) respectively. The optimal
blue path between the two red points is depicted in the image,
and has a distance equal to 1. It is slightly di� erent from the
original MBD. Let us brie�y present this Dahu pseudo-distance.

A gray-level image can be seen as a functionu: Z2 ! N.
When we represent an image using a surface, we cannot use
scalar functions; we have to use set-valued functions. More ex-
actly, in Ǵeraud et al. (2017), the authors proposed to replace
the domainZ2 by the topological discrete spaceH2 of the 2D
Khalimsky grid (also known as2D cubical complex), and the
value domainN is replaced with the setIN of intervals of nat-
ural numbers. The 2D cubical complex, which is illustrated
in Fig. 1(e) is a set of 2D, 1D, and 0D elements. The 2D el-
ements are the original pixels represented by the big squares
in Fig. 1(e). The 1D elements are the rectangles (see Fig. 1(e))
located between the big squares. They are valued by the inter-
val whose minimum and maximum are computed from the two
big squares near to it. For example, if the two nearby squares
are set atf1gandf4g, the in-between 1D element will be set at
[1; 4], and all the level lines between 1 and 4 will cross this 1D
element. The 0D elements are the little squares (see Fig. 1(e))
surrounded by 4 squares; they are set at the span value com-
puted from the values of these 4 squares.

Note that the 1D yellow element in Fig. 1(e) which is
bounded by a purple border corresponds to the vertical purple
part in Fig. 1(c). This 1D element is a way to get a discrete
topology and to represent what lies between the pixels.

Thanks to this topology, from a scalar imageu, we can con-
struct an interval-valued imageeu on the Khalimsky grid, which
really represents the surface corresponding tou.

Let us introduce theinclusion relationship. We say that the
real-valued imageu (a single-valued function) isincludedin the
interval-valued imageeu when for any elementx of the cubical
complexes, we haveu(x) 2 eu(x). This inclusion relationship
between a scalar imageu and an interval-valued imageeu is de-
noted by <� : we write thenu<� eu. The Fig. 1(f) depicts an
example of a scalar imageu which is “included” in the interval-
valued imageeu depicted in Fig. 1(e).

The adaptation of the MBD on the interval-valued image,
called the Dahu pseudo-distance (see Géraud et al. (2017)), is
notedd DAHU. This Dahu pseudo-distance between two pixelsx
andx0 on the original imageu is de�ned as:

d DAHU
u (x; x0) = min

u<� eu
d MB

u (hx; hx0) (4)

= min
u<� eu

min
� 2� (hx; hx0)

� u(� ); (5)

wherehx andhx0 are the 2D elements of the cubical complex
corresponding tox andx0respectively. It means that we look for
a minimal path in the cubical complex, with the classical de�ni-
tion of the MBD, and consider all the possible scalar functions
u that are “included” in the interval-valued mapeu. Returning
to the earlier example (Section 3.1, Fig. 1(b)), the shortest path
between the two red points in Fig. 1(c), depicted as a blue path
in Fig. 1(f) (imageu is included in the interval-valued imageeu
that provides the minimal path), has a length of 1. The Dahu
pseudo-distance can be interpreted as thebest minimum barrier
distance that we can have considering that the input function
is continuous in the set valued sense(see Najman and Ǵeraud
(2013)).

Note that, as the MBD, the Dahu pseudo-distance is not a
distance, because it can exist somex; y such thatx , y and
d DAHU

u (x; y) = 0.

3.4. E� cient Dahu pseudo-distance computation using the tree
of shapes

The Dahu pseudo-distance can be computed easily and ef-
�ciently thanks to the tree-based representation of the given
image. A tree of shapes (see Monasse and Guichard (2000);
Caselles and Monasse (2009)) is a morphological self-dual rep-
resentation of an image. This tree is a decomposition of a gray-
level image into connected components, calledshapes, which
can be arranged into a tree encoding an inclusion relationship.
A shape is a �lled-in connected component without any hole
inside (its boundary is then an iso-level line). Two iso-level
lines cannot cross each other. A very strong consequence is
that shapes are either disjoint or nested, which explains that the
tree of shapes is a tree and not a graph with cycles.

The tree of shapes is used to facilitate the computation of
the Dahu pseudo-distance. On Fig. 2(a), the path between two
points (x; x0) indicated by red bullets inu is depicted by a blue
line, which starts from regionB, then goes throughA andC, and
�nally ends in regionF. Such a path is minimal because every
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Fig. 2. The tree of shapes of an image allows to easily express and compute
the Dahu pseudo-distance and distance maps (see Géraud et al. (2017)).

path in� (x; x0) should at least cross this same set of level lines
to go fromx to x0; thus the Dahu pseudo-distance corresponds
to the level dynamics of this set of lines. Actually, this path
in the image space is exactlythe(shortest in number of nodes)
path in the tree of shapes between the nodestx andtx0:

�
� (tx; tx0) = htx; : : : ;lca(tx; tx0); : : : ;tx0i ;

where lca(tx; tx0) is the lowest common ancestor of the pair
(tx; tx0) (see the blue path on the tree depicted in Fig. 2(c)). Note
that a path in a tree is denoted by

�
� to distinguish it from paths

in the image space.

The Dahu pseudo-distance in the image space between two
pointsx andx0 can be written as the minimum barrier distance
between the two nodestx andtx0 representing the components
in the tree of shape containing respectivelyx andx0:

d DAHU
u (x; x0) = d MB

S(u)(tx; tx0) (6)

= max
t 2

�
� (tx; tx0)

� u(t) � min
t 2

�
� (tx; tx0)

� u(t); (7)

where� u(t) denotes the gray-level associated with the nodet of
the tree of shapesS(u) of the imageu. For instance, in Fig. 2(c),
the blue path gives the sequence of node valuesh0;1;2;1i , so
the Dahu pseudo-distance is 2. There isno needto �nd the best
scalar imageu<� eu, nor to �nd the best path� 2 � (x; x0) in
the image space; it thus means that the seminal de�nition of the
Dahu pseudo-distance (see Eq. (5)) is the best choice to be fast
in time. The new expression of this distance (see Eq. (7)) is just
a barrier strength computation (such as Eq. (1)) on the trivial
path

�
� (tx; tx0) of nodes in the space of the tree of shapes.

3.5. Saliency map based on the Dahu pseudo-distance
A distance map function of an imageu can be derived from

the MBD as we have seen in Eq. (3). Indeed, we can de�ne the
distance map based on the Dahu pseudo-distance as follows:

S DAHU
u (x; X0) = min

x02X0
d DAHU

u (x; x0);

whereX0 is some set of points of the domain of the imageu.

Now, let us de�ne the corresponding set of nodes onS(u) of
X0:

TX0 = f tx0 ; x0 2 X0g: (8)

Then, we obtain using Eq. 6 and then Eq. 3 that:

S DAHU
u (x; X0) = S MBD

S(u)(tx; TX0); (9)

which shows how the distance map induced by the Dahu
pseudo-distance is related to the distance map induced by the
MBD. As a consequence, a Dahu distance map is the Dahu
pseudo-distance from every node in the tree to the setTX0 of
seed nodes.

4. Going further with the Dahu pseudo-distance

The Dahu pseudo-distance, which inherits its properties from
the tree of shapes, is shown to be e� cient for some applica-
tions (see Ǵeraud et al. (2017)). For this reason, we increase its
computation speed and propose an extension to color and mul-
tivariate images. We also propose an improvement of it using a
two-steps procedure taking into account the domains of the tree
of shape and of the initial image. This last measure is related to
the topographical representation of the image.

4.1. Simultaneous computations of the Dahu pseudo-distance
and the tree of shapes

In natural images, the border of the image is mostly back-
ground (see Wei et al. (2012)). Similar to previous works
(see Zhang et al. (2015); Tu et al. (2016); Huang and Zhang
(2018)), we compute the distance map, which is the Dahu
pseudo-distance of every pixel in the image to the border of
the image. In particular, the Dahu pseudo-distance can be com-
puted while constructing the tree of shape. The construction of
the tree of shapes is mentioned in Géraud et al. (2013). Our al-
gorithm (see Algo. 1) is a modi�cation of the sorting procedure
used to compute the tree of shapes: we add some operations
(see the blue lines) to the pixel sorting procedure during the
tree construction.

Our algorithm computes the Dahu pseudo distance from seed
points (the border of the image) to every other point in the do-
main of the image. The process follows two steps. During the
�rst step (lines 2 - 18), it crosses all points in the domain using
a propagation front. Every pixel is crossed only once (thanks to
deja vuvariable). This propagation front is managed by a hier-
archical queue (q). Then, the algorithm computes two struc-
tures min im and max im; min im and max im represent the
lower and higher levels arisen during the propagation respec-
tively. In the second step (lines 19 - 20), the Dahu pseudo dis-
tance is computed from the two structuresmin im andmax im.
All points are crossed (whatever is the order) and the Dahu dis-
tance is simply the di� erence betweenmax im andmin im at
the considered point.

Our algorithm can be explained thoroughly as follows. Ini-
tially, we add an arti�cial border surrounding the image domain
with the unique valuel1 . p1 is one point from the border. Only
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Algorithm 1: Modi�cation of the sorting procedure of
the tree of shapes to compute the Dahu pseudo-distance.

Data: Interval-valued imageU, Image domainD, Seed
Point p1

Result: Dahu pseudo-distance
1 begin

/* q, a priority queue */
/* l, the current level */
/* N(p), the set of neighbors of p */

2 for all h 2 D do
3 de ja vu(h)  � false

4 PUSH(q[l1 ]; p1 );
5 de ja vu(p1 )  � true;
6 l  � l1 ;
7 Image2dmin im, max im, Dahu;
8 min im (p1 )  � l ;
9 max im (p1 )  � l ;

10 Dahu(p1 ; p1 )  � 0 ;
1212 while q is not emptydo
13 p  � PRIORITY POP (q; l);
14 for all n 2 N(p) such asde ja vu(n)== falsedo
15 l0  � PRIORITY PUSH(q;n;U; l) ;
16 de ja vu(n)  � true ;
17 min im (n)  � min(min im (p),l0) ;
18 max im (n)  � max(max im (p),l0) ;

19 for all p 2 D do
20 Dahu(p1 ; p)  � max im (p) - min im (p) ;

21 return (Dahu)

one step remains to be able to proceed to the front propaga-
tion: we must input the set-valued mapU computed thanks to
a span-based interpolation on the imageu. Then, we call the
sorting procedure described in Géraud et al. (2013), which is
employed by using a hierarchical queueq; the current level is
denoted byl. The Dahu pseudo-distance of the starting point is
set at the value 0. Since we use interval-valued maps, we have
to decide at which level to enqueue those elements. The facep
is enqueued at the value of the intervalU(p) which is the clos-
est tol, denotedl0 (see the procedure PRIORITYPUSH). The
valuel0 is compared with the minimum and maximum values
of its neighbors to update the Dahu pseudo-distance. When the
queueq(l) at the current level is empty, the procedure PRIOR-
ITY POP decides whether the next level to be processed is less
or greater thanl. This loop continues until all of the pixels have
been visited. The resulting pseudo-distance is then obtained.
More information about the PRIORITYPUSH and PRIOR-
ITY POP procedures can be found in Géraud et al. (2013). Note
also that to �nally obtain the tree of shapes, three procedures
must be executed (see Algo. 3 in Géraud et al. (2013)), but we
will not go into any further detail since this is not the subject of
our article.

When the seed pixels are not placed in the outer border of
the image (for example, if they are placed at the center of the

(a) A procedure to compute the MBD and their shortest
paths in the color image when processing separately each
channel.

(b) A procedure able to compute the vectorial Dahu pseudo-distance.
Even with color images, our method is able to obtain a coherent shortest
path between two pixels in the image.

Fig. 3. The computation of the MBD and of the vectorial Dahu pseudo-
distance in a color image. Contrary to the MBD computed on color images,
which may �nd a di � erent path in the image for each channel, the Dahu
pseudo-distance �nds a same path in the image minimizing the sum of the
barriers in all channels simultaneously.

image), we need to build the tree of shapes �rst, and then we can
compute the Dahu pseudo-distance. The major di� erence with
a classical saliency map, de�ned in the image space (such as
the one of Eq. (3)), is that the tree structure is one-dimensional.
Since the Dahu pseudo-distance on the tree (given by Eq. (7))
has the form of a barrier “max - min”, the saliency mapS MBD

S(u) at
each nodetx can be easily computed by a propagation method
on the tree using a priority queue. Afterwards, getting the 2D
saliency mapS DAHU

u means reading for eachx the value ofS MBD
S(u)

at tx. Eventually, once we have computed the tree of shapes
S(u), the computation of a saliency mapx 7! S DAHU

u (x; X0) is
immediate (whatever the setX0).

Last, let us mention that the representation of an image into a
tree of connected components is easy to handle (see Carlinet
and Ǵeraud (2014)). Furthermore, the tree of shapes of an
image can be computed in quasi-linear time w.r.t. the num-
ber of pixels (see Ǵeraud et al. (2013)), and can be parallelized
(see Crozet and Ǵeraud (2014)).
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4.2. Extending the Dahu pseudo-distance to multivariate im-
ages

As mentioned before, the previous MBD methods (see Zhang
et al. (2015); Tu et al. (2016)) are only de�ned on grayscale im-
ages or on separate channels of color images. In this last case,
they compute the mean or the maximal value of the distances
obtained on each separate channel (see Tu et al. (2016) for de-
tails). This approach is not satisfying for the purpose of im-
age segmentation: we generally obtain di� erent paths for each
color, and then computing the mean or the max value of the dis-
tances makes no sense and cannot be used for image segmenta-
tion. An example of the computation of the MBD is illustrated
in Fig. 3(a).

In Kårsn̈as et al. (2012), a vectorial minimum barrier dis-
tance (VMBD) is proposed to compute the MBD on a multi-
variate image. However, this VMBD is not easy to compute
directly on the image. Moreover, the VMBD is not e� ective
when computing multiple distances between multiple points in
images. To solve this problem, in this section, we present a
Dahu pseudo-distance extended to multivariate images based
on the tree space. In̂On Vũ Ngo.c et al. (2018), this color Dahu
pseudo-distance is proposed to detect automatically documents
in images.

The tree of shapes, primarily de�ned on gray-level images,
has been recently extended to multivariate data (see Carlinet
and Ǵeraud (2015)); this extension is called theMultivariate
Tree of Shapes(MToS). It yields a tree mapping the inclusion
relationship of shapes in the image. Such a representation is of
prime importance for computer vision (see Cao et al. (2008))
because it satis�es strong invariance properties featured by nat-
ural images, such as self-duality and local contrast changes
(see Caselles et al. (1999)).

However, the de�nition of the Dahu pseudo-distance on the
tree of shapes (see Eq. (7)) cannot be used without modi�ca-
tion/improvement. In the work of Kårsnäs et al. (2012), four
di� erent path costs (linear and non-linear) have been presented:
the diameter, maximum diameter, city-block diameter and vol-
ume of the bounding box. Using their conclusion and also
thanks to our experiments, we chose here to employ the city-
block diameter to compute the distance. The choice of the path
cost function is debatable but in practice it has a very low im-
pact. Changing the underlying distance changes the magnitude
of the result. As long as the underlying choice does not change
the order of pixels, all applications relying on the Dahu pseudo-
distance will mostly not be impacted.

Let us now consider thatu is a multivariate image,t is a
node of the MToS ofu, and� u(t) is the vector value associated
with the nodet. The superscripti indicates which one of the
N components of the vector is taken into account. We can then
extend the Dahu pseudo-distance like this:

d DAHU
u (x; x0) =

P
i2f1::Ng � i � (i)

u (
�
� (tx; tx0) ): (10)

with:

� (i)
u (

�
� ) = max

t2
�
�

� (i)
u (t) � min

t2
�
�

� (i)
u (t); (11)

where� i is the coe� cient weighting each channel, thereby rep-
resenting the importance of the channel.

Algorithm 2: Computation the Dahu pseudo-distance
between two pixels in the image.
Data: ImageU, Image domainD, Pointx; x0

Result: Dahu pseudo-distance
1 Compute(MToS(u));
2 Compute(tx), Compute(tx0);
3 Compute(lca(tx; tx0));
4 Compute(

�
� (tx; tx0));

5 for i 2 [1; N] do
6 Compute(mint2

�
� (tx;tx0) � (i)

u (t));

7 Compute(maxt2
�
� (tx;tx0) � (i)

u (t));

8 Compute(� (i)
u (

�
� (tx; tx0)))(Eq. (11));

9 end
10 Compute(d DAHU

u (x; x0))(Eq. (10));
11 return (d DAHU

u (x; x0))

The vectorial Dahu pseudo-distance between two pointsx
and x0 in the domain of the imageu can be computed using
Algo. 2. After the computation of the tree of shapes, we �nd
the nodestx and tx0 which correspond to two pointsx and x0

respectively. Then the shortest path
�
� (tx; tx0) between these two

nodes is computed. Therefore, we are able to compute the Dahu
pseudo-distance on each channel (see Eq. (11)) and sum up to
get the vectorial Dahu pseudo-distance (see Eq. (10)). Please
be advised that, the MToS is computed from the ToS of each
image channel by merging some marginal shapes. Due to its
tree properties, it is not a complete representation of an image.
The node of the �nal tree is associated with multiple values of
the image. Therefore, a node has to be assigned to a single value
computed from the set of values it contains. In our case, we set
each node in the MToS using the median value of its pixels.
As a result, the vectorial Dahu pseudo-distance computed on
the color image is an approximation of the distance between
two points in the image. The whole process to compute the
vectorial Dahu distance is illustrated in Fig. 3(b). This way,
we obtain a “coherent” shortest path between two pixels in the
image (see Fig. 3(b)). As a consequence, we also solve the
problem of the di� erent paths of the previous MBD methods
that we mentioned at the beginning of this section.

Relying on the presentation of the vectorial Dahu pseudo-
distance on multivariate images in the previous paragraphs, we
apply it here on RGB color images. To be rigorous, the coef-
�cient, which is the gamma correction in this case should be
applied to get linear ranges. Obviously, for many color spaces
(like H.L.S.), these coe� cients are not valid. Instead of looking
for correct coe� cients, it is always possible to convert color in
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(a) Dahu in the grayscale image. (b) Dahu in the color image.

Fig. 4. The Dahu pseudo-distance in the grayscale image and in the color
image.

a color space where each channel iscomparable. Since the im-
portance of each channel is considered equally, we propose to
�x:

� i = 1=N: (12)

Then, for RGB-color images, our equation becomes:

d DAHU
u (x; x0) =

1
3

P
i2fR;G;Bg � (i)

u (
�
� (tx; tx0) ): (13)

Please note that, although Eq. (13) looks simple, we have
here a strong result. The Dahu pseudo-distance is one of the
optimalpaths between two points in the image space; this path
is such that the set of colors on the path has the smallest 3D
bounding box in the color space. This is a highly combina-
torial problem which cannot be solved e� ciently in the im-
age space. Our contribution here is to turn this problem into
an e� cient and straightforward computation in a tree space.
The Dahu pseudo-distance in the gray-scale image is illustrated
in Fig. 4(a), the Dahu pseudo-distance on the color image is
illustrated in Fig. 4(b) as the size of the bounding box or the
length of the red line.

As presented in Eq. (13), the input of the process is a mul-
tivariate image when the output is a (scalar) distance. How-
ever, in Fig. 3(b), the output of the process can also be a mul-
tivariate image (one distance map by channel). In the experi-
mental section, we will show some examples of what we call
abusively “vectorial distance maps”. Note that we do not use
the vectorial distance map for an evaluation purpose but for
visualization only. It is actually a multivariate image, which
is computed from a multivariate input based on the vectorial
Dahu pseudo-distance. To avoid ambiguities, we will refer in
the sequel toviso for vectorial-input-scalar-output, to vivo for
vectorial-input-vectorial-output, and tosiso for scalar-input-
scalar-outputDahu pseudo-distances.

Additionally, our vectorial Dahu pseudo-distance is not re-
stricted to 3 channels and is fully usable on any kind of multi-
channel images because it relies on the MToS. It means that, we

are able, without any additional e� ort, to compute our vectorial
Dahu pseudo-distance on multi-modal images or hyper-spectral
images according to Eq. (10). The coe� cient on each channel
in this equation has to be revisited. A simple idea to re�ne these
weights, is to compute a Principal Component Analysis (abbre-
viated as P.C.A.) and use eigenvalues to weight the sum.

This extension is a major one, as many existing algorithms,
previously restricted to grayscale images, can now be applied
on color, multi-spectral, or even hyper-spectral images at low
cost. Most of the time, these algorithms work as-is by sim-
ply changing the underlying distance (substituting the classical
MBD by our vectorial Dahu pseudo-distance). We will illus-
trate this further, on satellite multi-spectral images, and even on
medical multimodal images.

4.3. Extending the Dahu pseudo-distance with spatial informa-
tion

Our vectorial Dahu pseudo-distance is only de�ned in the
tree space, not in the image space. It is ambiguous for us to
visualize this distance on the image. Additionally, in the pre-
vious section, our distance is proved to solve the problem of
the di� erent paths of the previous MBD methods, but we have
not discussed the way to �nd this coherent path in the image
space. Therefore, in this section, we describe our method for
computing the Dahu shortest path. This proposed improvement
of the Dahu pseudo-distance is used in competition with the
commonly used geodesic distance.

The goal of MBD computation is to �nd optimal path con-
necting seed pixels and every other pixel (Huang and Zhang,
2018). In case of the Water�ow-MBD method (Huang and
Zhang, 2018), the parenthood relation between two neighbor
pixels is recorded during the propagation process. The short-
est path problem is simply tracking back the relation from the
destination pixel until the seed pixel. On the other hand, the
MST-MBD �nds the candidate path from seed pixel to the oth-
ers relying on the Minimum spanning tree. This tree largely
reduces the search space of the shortest path. However, this
simple structure is sensitive to noise and blur, thereby leading
to some important deviation from the shortest path.

We present here an extension of the Dahu pseudo-distance by
taking into account the spatial information between two pixels
in the image. In other words, it is a combination between the
Dahu pseudo-distance computed on the tree and the geodesic
distance computed in the image restricted to all paths minimiz-
ing the Dahu pseudo-distance. This improvement is a “two-
steps” procedure, illustrated in Fig. 5, in which we look for the
minimal path between the two given pixelsx andx0 (the two red
points in Fig. 5 on the left) and we �nd the red path in Fig. 5 on
the right.

In the �rst step, we denotepar(tx) as the parent node of node
tx in the tree, andlca(tx; tx0) as the lowest common ancestor of
the nodestx and tx0. The shortest path

�
� (tx; tx0) between two

nodestx andtx0 is the sequence of nodes that begins at nodetx,
goes through the lowest common ancestorlca(tx; tx0), and ends
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Fig. 5. Extension of the Dahu pseudo-distance: the Dahu pseudo-distance is combined with the geodesic distance.

at nodetx0. When we havetx , tx0, the shortest path
�
� (tx; tx0)

can be formulated as follows:

htx; par(tx); : : : ;lca(tx; tx0); :::;par(tx0); tx0; i (14)

otherwise it is the trivial pathhtxi . This shortest path
�
� (tx; tx0) is

illustrated in red in Fig. 5 in the middle.

The shortest path
�
� (tx; tx0) in the tree corresponds to a re-

gion on the image. We call this region theshortest path region.
In Fig. 5, the shortest path between nodesB andF is illustrated
as the red path. This path goes through regionsB, A, C andF.
It does not traverse regionsO, D andE. Therefore, theshort-
est path regionin this case is the white region in the image (on
the right in Fig. 5). Theshortest path regionis actually the set
of all the possible paths between the two given points in the
image space minimizing the Dahu pseudo-distance. This re-
gion is connected according to the properties of the connected
component trees. Therefore, it ensures to generate a coherent
path between the two given pixels in the multivariate image. As
a consequence, this extended Dahu pseudo-distance solves the
problem that we presented at the beginning of Section 4.2, in
which the MBD is computed separately on each channel (but it
does not provide a unique path in the image domain).

In the second step, we consider here the spatial information
between two points in the image. We want to �nd a path be-
tween the two given pixelsx andx0, which belongs to theshort-
est path region, so that it has the shortest length in the image
space (or more precisely, the geodesic distance in theshortest
path region). The optimal path is depicted in Fig. 5 as the red
line. This path is the shortest path in the sense of the Dahu
pseudo-distance between two given pixelsx andx0. The short-
est path is found in this region by using the heuristicA� algo-
rithm (see Hart et al. (1968)). This algorithm is a popular tech-
nique used in path-�nding and graph traversals, especially in
games and web-based maps. It is based on the movement cost
to move from the seed pixel to a given pixel, and the estimated
movement cost to move from that given pixel on the image to
the destination. This optimal path has di� erent meanings. It
is not only the shortest path in the “color space” but also the
shortest path in the image space.

This computation would not have been possible with the
color MBD. As seen in Fig. 3, the color MBD may provide
di� erent paths on the di� erent channels. On the contrary, the
Dahu pseudo-distance makes this combination possible because

it provides a unique path in the image, regardless of its number
of channels.

This property of the Dahu pseudo-distance has applications
related to the shortest path, as will be illustrated with several
experiments in the next section.

5. Experimental Results

In this section, we explore the properties of the vectorial
Dahu pseudo-distance via some experiments related to visual
saliency detection, to noise stability and to the contrast of the
Dahu pseudo-distance. Finally, we provide a comparison be-
tween the complexities (in time) of the Dahu pseudo-distance
vs. some other MB-based distances.

5.1. Visual saliency detection

To show the robustness of the vectorial Dahu pseudo-
distance, we start with visual saliency detection applications
(see Zhang et al. (2015); Tu et al. (2016); Huang and Zhang
(2018)). We remind that visual saliency detection has been
widely used in computer vision to obtain visual attention areas
in the image.

First, we compare the vectorial Dahu pseudo-distance with
the Dahu pseudo-distance on separate channels. Then, we com-
pare the vectorial Dahu pseudo-distance with state-of-the-art
MB-based distances.

Datasets.To perform this evaluation, we use the following
four large benchmark datasets.

1. MSRA-10K (see Cheng et al. (2015)), which contains
10000 images with pixel accurate salient object labeling
for each image.

2. DUTOMRON (see Zhang et al. (2017)), which consists in
5166 challenging images, each of which has one or more
salient objects and complex background.

3. ECSSD (see Shi et al. (2016)), which contains 1000 im-
ages along with pixel-wise ground truth masks, and in-
cludes more salient objects under complex scenes.

4. PASCAL-S (see Li et al. (2014)), which contains 850 im-
ages and 1296 object instances. This one is designed to
eliminate the center bias and color contrast bias.
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(a) PR (b) F� -measure (c) Percentage

Fig. 6. Comparison between saliency maps obtained using the vectorial Dahu pseudo-distance and using the Dahu pseudo-distance on separate channels.
From top to bottom: the four datasets (MSRA-10K, DUTOMRON, ECSSD, PASCAL-S). From left to right: the three evaluation metrics: (a) Precision-
recall curves, (b)F� -measure, (c) Percentage curves. “Color” is thecolor saliency map computed using our vectorial Dahu pseudo-distance applied directly
on color image, “Gray” is the saliency map obtained using the Dahu pseudo-distance computed on the grayscale image and “Combination” is the saliency
map obtained by averaging saliency maps computed on separate red, green and blue channels. The three di� erent measures show that our vectorial Dahu
pseudo-distance leads to a much better saliency map.

(a) ECSSD

Method MAE F�
max EMD

Color 0.21 0.69 0.29
Gray 0.22 0.6 0.33

R 0.22 0.62 0.34
G 0.22 0.6 0.33
B 0.23 0.62 0.35

Combination 0.22 0.62 0.33

(b) DUTOMRON

Method MAE F�
max EMD

Color 0.17 0.57 0.41
Gray 0.18 0.50 0.43

R 0.18 0.52 0.45
G 0.18 0.50 0.43
B 0.19 0.52 0.45

Combination 0.18 0.52 0.43

(c) PASCAL

Method MAE F�
max EMD

Color 0.22 0.69 0.28
Gray 0.24 0.63 0.3

R 0.23 0.65 0.31
G 0.23 0.64 0.3
B 0.24 0.65 0.31

Combination 0.23 0.65 0.3

(d) MSRA

Method MAE F�
max EMD

Color 0.16 0.79 0.17
Gray 0.19 0.72 0.21

R 0.18 0.75 0.22
G 0.18 0.73 0.21
B 0.18 0.74 0.21

Combination 0.18 0.75 0.23

Table 1. Comparison between saliency maps obtained using the vectorial Dahu pseudo-distance and using the Dahu pseudo-distance on separate channels
using MAE, F�

max measure and EMD score. “Color” is thecolor saliency map computed using our vectorial Dahu pseudo-distance applied directly on
color image, “Gray” is the saliency map deduced from the Dahu pseudo-distance computed on the grayscale image,R, G and B are the saliency maps
deduced from the Dahu pseudo-distance computed on each channel separately and “Combination” is the saliency map obtained by averaging the three
saliency mapsR, G and B. The best result is highlighted in bold and the worst is underlined. The three di� erent measures show that our vectorial Dahu
pseudo-distance leads to a much better saliency map.
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(a) Input (b) GT (c) vivo (d) viso (e) Gray (f) Red (g) Green (h) Blue (i) Combination

Fig. 7. Several saliency maps of the vectorial Dahu pseudo-distance on color images and the Dahu pseudo-distance on separate channels. Note that image
(c) and (d) are respectively thevivoand visoDahu pseudo-distances on the color image. The Dahu pseudo-distance on the color image highlights the object
over the background, whereas, when only one channel is used, the saliency map only spots a part of the object.

Among these datasets, the DUTOMRON dataset is the most
challenging.

Evaluation metrics. We use the following measures.

� The Precision-Recall (PR) curve is used to evaluate the
overall performance of a method concerning its trade-o�
between the precision and recall rates.

� The Mean Absolute Error (MAE), which is the average
di� erence between a saliency mapS (gray-level image)
and a ground-truth imageGT (binary image):

MAE =
P

x2D jGT(x) � S(x)j
jDj

;

(15)

with D the domain of the initial image.

� An F� -measure de�ned by:

F� = (1 + � 2) � P � R=(� 2 � P + R);

(16)

whereP andRare respectively the precision and the recall
which we mentioned above. We set� 2 = 0:3 (because it is
the classical setting in the visual saliency community).

� The percentage curve, which shows the number of images
in the dataset having aF� score over a speci�c value. To
compute it, we threshold the saliency map at each value

between 0 and 255, and we choose the “best” threshold
set, that is, the one that gives the highestF� score (we call
this scoreF�

max). After its computation for each image in
the dataset, we compute the corresponding histogram (we
choose a number of bins equal to 10), and we �nally obtain
the percentage curve.

� A score (brie�y called EMD) inspired from Calarasanu
et al. (2015) relying on the Earth Mover's Distance, which
is the cross-bin distance function. It is used as a measure to
estimate the dissimilarity between two signatures. In our
case, the EMD is computed as the cost between the his-
togram ofF� score and the histogram of the ground truth
image, which is equivalent to one bin at the valueF� = 1.

5.1.1. Comparison of saliency maps obtained by the usual
Dahu pseudo-distance on separate channels and by our
vectorial (“color”) Dahu pseudo-distance

Experimental setting. We compare our (“color” ) Dahu
saliency map (the extension of the Dahu pseudo-distance on
the color images which are mentioned in Section 4.2) with the
Dahu saliency map computed on separate channels (gray, red,
green, blue) and a simple combination of saliency maps com-
puted on each three color channels (pixel-wise average of the
three channels).

Initially, input images are resized proportionally so that the
maximum dimension is 300 pixels. Then to use the Dahu
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pseudo-distance in visual saliency detection, we adopt two pri-
ors about the background in natural images, namelybound-
ary andconnectivity priors, which are proposed in Wei et al.
(2012). A border with the median value of all of the pixels
on the boundary of the image is added to the image. We con-
sider all the pixels in the added border of the image as seed
pixels. For the post-processing step, we used the same method
as presented in Zhang et al. (2015) to “normalize” the resulting
saliency maps.

Evaluation using PR curves. In Fig. 6, we show the PR
curves for the saliency maps: directly computed on color im-
ages, computed on grayscale images, a pixel-wise combination
saliency map of the three channels (as presented in Zhang et al.
(2015)). The vectorial Dahu pseudo-distance outperforms the
Dahu pseudo-distances on grayscale images and the combina-
tion of three channels in all four datasets. On the most chal-
lenging dataset (DUTOMRON), the performance of the dis-
tance maps deduced from Dahu pseudo-distance are lower than
the performance of the one on other datasets. Note that in this
dataset, there are multiple objects in images and the color con-
trasts between the foreground and the background are low.

Evaluation using MAE. The MAE scores of compared meth-
ods are shown in Table 1. Note that the lower the MAE is, the
better the performance of the method is. The comparison of
the saliency maps shows that the Dahu pseudo-distance does
not give a better score on the grayscale images compared to
the separate channels (R/G/B) while the pixel-wise combina-
tion saliency map does improve. This comparison shows also
that the vectorial Dahu pseudo-distance achieves better scores
than all other methods.

Evaluation using F� -measure.We adopt theF� -measure pro-
posed in Margolin et al. (2014) to evaluate saliency maps.
In Fig. 6 and in Table 1, the vectorial Dahu pseudo-distance
achieves signi�cantly better scores than the Dahu pseudo-
distance on grayscale images, and than the combination of the
Dahu pseudo-distance across all datasets. We also notice that
the F� -measure curves of the Dahu pseudo-distance have sta-
ble and �at curves, which is an advantage because the “best”
threshold remains unknown and can vary a lot from an image
to another.

Evaluation using percentage curves and EMD.In Fig. 6,
the vectorial Dahu pseudo-distance provides better percentage
curves than the others. Notably in the MSRA-10K and ECSSD
dataset, the number of good saliency maps (F� -measure> 0.8)
of the vectorial Dahu pseudo-distance is higher by around 7%
than the Dahu pseudo-distance on separate channels. In the case
of the MSRA dataset, the vectorial Dahu pseudo-distance has
more than 60% good saliency maps with the only assumption
that the boundary is mostly background. Additionally, the EMD
results of the vectorial Dahu pseudo-distance is lower than the
Dahu pseudo-distance on the separate channel, which proves
that our proposed distance improves saliency map computation.

We present here some examples of saliency maps induced by
the Dahu pseudo-distance. The saliency map (“viso”) and the
color representation of the saliency map (“vivo”) are respec-
tively shown in Fig. 7(d) and in Fig. 7(c). The “optimal” visual

quality is reached for the vectorial Dahu pseudo-distance (com-
pared to the Dahu pseudo-distances on separate channels or on
the grayscale image). Indeed, the main barrier is clearly vis-
ible around the objects. The robustness of the vectorial Dahu
pseudo-distance is easy to explain: the tree of shapes on the
color image contains more information and is more structured
than the tree of shape computed on separate channels.

(a) Input (b) Gray

(c) sisocenter (d) visocenter

(e) vivocenter

Fig. 8. The saliency map deduced from the Dahu pseudo-distances when
the seed point is placed in the center of the image. (a) the color image; (b)
the corresponding grayscale image; (c) the “siso” saliency map deduced
from Dahu pseudo-distance; (d) the “viso” and (e) vivo saliency map de-
duced from the vectorial Dahu pseudo-distance.

In another example (see Fig. 8), we compare visually the
saliency map deduced from the vectorial Dahu pseudo-distance
and the Dahu pseudo-distance when the seed point is placed in
the center of the image. The �ower zone in the “viso” image
is spotted and is well-contrasted with the background, whereas
“siso” image does not well distinguish between the background
and the �ower. Besides, in the “viso” image, similar intensities
are obtained on most of the background regions in the distance
map. Typically, the more homogeneous the distance map is
in the background, the fewer seed points we need to segment
the image. This is an advantage of the vectorial Dahu pseudo-
distance to reduce the number of seed points for object segmen-
tation.

5.1.2. Comparison of saliency maps of the vectorial Dahu
pseudo-distance with state-of-the-art methods

Experimental setting: In this section, the saliency map com-
puted by the vectorial Dahu pseudo-distance is compared with
some saliency maps deduced from multiple MB-based meth-
ods: Fast-MBD (see Zhang et al. (2015)), MST-MBD (see Tu
et al. (2016)), and Water�ow-MBD (see Huang and Zhang
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(a) Input (b) GT (c) visoDahu (d) Fast-MBD (e) Water�ow-MBD (f) MST-MBD

Fig. 9. Comparison on color images of saliency maps deduced from our vectorial Dahu pseudo-distance on color images with saliency maps deduced from
state-of-the-art methods.

(a) ECSSD

Method MAE F�
max EMD

Dahu 0.21 0.73 0.228
Fast-MBD 0.22 0.74 0.21
MST-MBD 0.22 0.73 0.227
Water�ow 0.22 0.74 0.205

(b) DUTOMRON

Method MAE F�
max EMD

Dahu 0.17 0.634 0.316
Fast-MBD 0.21 0.626 0.324
MST-MBD 0.21 0.606 0.344
Water�ow 0.21 0.634 0.316

(c) PASCAL

Method MAE F�
max EMD

Dahu 0.22 0.72 0.23
Fast-MBD 0.24 0.73 0.22
MST-MBD 0.24 0.72 0.23
Water�ow 0.24 0.73 0.22

(d) MSRA

Method MAE F�
max EMD

Dahu 0.17 0.815 0.14
Fast-MBD 0.18 0.821 0.135
MST-MBD 0.18 0.812 0.143
Water�ow 0.18 0.824 0.132

Table 2. Numerical comparison of saliency maps deduced from the vectorial Dahu pseudo-distance applied on color images and di� erent MB-based
distances adapted to manage color images. The comparison is performed usingF� measure and EMD score. Best scores are in bold. Results of all methods
are comparable and variations among them are negligible.

(2018)). To compare these methods, we modify them, as Huang
and Zhang (2018) do, by adding color and computing a color
MBD by summing MBD on each channel. For the MST-MBD
method, we construct an MST from the color image, then we
compute the MBD in this tree. In order to fairly evaluate the
performance of these methods, we add an outer border to the
image and consider all pixels on the boundary image as the

background. Note that, in this experiment, we just want to com-
pare the Dahu pseudo-distance with the MB-based distance, we
do not try to achieve the best results of the saliency maps. The
same post-processing to normalize the saliency map, as in the
previous section, is applied here.

Evaluation using MAE: Our method gives better MAE scores
than other MB-based methods across all datasets. However, the
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di� erence is very low. It can be explained by the fact that the
vectorial Dahu pseudo-distance tends to give distance values
lower than other MB-based distances, especially in the back-
ground regions, which constitute the largest part of an image.

Evaluations using theF� -measure: The F� -measure is illus-
trated in Table 2. At a glance, the vectorial Dahu pseudo-
distance shows equivalent results to the MST-MBD method and
lower results than the Fast-MBD and Water�ow-MBD meth-
ods. However, the di� erences between these methods are min-
imal. In the DUTOMRON dataset, the Dahu pseudo-distance
achieves betterF� -measures than other methods. Especially, in
the MSRA dataset, the Dahu pseudo-distance and MB-based
methods can achieve a high value of 0:82.

Evaluation Using EM distance.For the EMD, the Fast-MBD
and the Water�ow-MBD methods achieve similar results in all
datasets, whereas the Dahu pseudo-distance gives comparable
results with the MST-MBD method, and slightly lower results
than the Fast-MBD and the Water�ow-MBD methods but here
again, the di� erence is rather low.

Some example images are given in Fig. 9. In these images,
the backgrounds are not homogeneous like in the scene of the
sky, the �eld of grass or even the sofa image. The Dahu pseudo-
distance seems to work better in these cases and achieves bet-
ter performance than the MB-based distances. The tree of
shapes properties and the insertion of the inter-pixels between
the neighbor pixels allow the Dahu pseudo-distance to get the
lower value compared to the MB-based distances. Additionally,
each node on the tree of shapes is set at the median value of all
the pixels in the node, which reduces the impact of noise in the
color images. In the next section, we will explore this problem
in greater detail.

5.2. E� ciency and robustness of the algorithm

In this section, we investigate the ability to distinguish object
and background of the Dahu pseudo-distance. We also analyze
the noise stability of the vectorial Dahu pseudo-distance when
noise in the image increases.

5.2.1. Ability to distinguish object and background
We analyze here the ability to separate the object from the

background. To do so, we measure the di� erence between the
Dahu pseudo-distance and the MB-based distances (MST-MBD
and Water�ow-MBD) between two random markers in the im-
age by using the ratio between the inter-distance (the distance
from a marker outside the object to a marker inside the object)
and the intra-distance (the distance from two markers inside the
object). We cannot include Fast-MBD in this comparison be-
cause the Fast-MBD (see Zhang et al. (2015)) method works
only when all the seed pixels are in the boundary of the image.

We randomly create 100 markers in the image and sequen-
tially compute the distance between two markers. The Dahu
pseudo-distance between two markersX and X0 is computed
this way:

d DAHU
u (X; X0) = min

x02X0
min
x2X

d DAHU
u (x; x0): (17)

Using the binary ground truth, the inter- and intra-distances
are well de�ned. The contrast metric is de�ned by the ratio
between the average of the inter-distances and the average of
the intra-distances:

R =

1
N1

P

N1

dinter

1
N2

P

N2

dintra
(18)

in which N1 andN2 are respectively the numbers of inter- and
intra-distances.

Table 3. A comparison of ratio of inter- and intra-distances between the
Dahu pseudo-distance and other MB-based methods.

Dataset MST-MBD Water�ow-MBD Dahu
ECSSD 1.28 1.36 1.404

PASCALS 1.324 1.398 1.448
DUTOMRON 1.341 1.432 1.483

MRSA 1.784 1.997 1.992

In Table 3, the ratio of the Dahu pseudo-distance is higher
than the one of the MB-based distances in all datasets. It means
that the Dahu pseudo-distance is more contrasted than the MB-
based distances. We can give an intuition of this result. Dur-
ing the front propagation process while constructing the tree of
shapes, the pixel can pass through the inter-pixels. As a con-
sequence, the Dahu pseudo-distance tends to decrease its path
cost between pixels in the same background while retaining the
contrast between objects and background. It leads to an in-
crease of the ratio of the inter- and intra-distances of the Dahu
pseudo-distance.

5.2.2. Robustness to noise
This section shows the impact of noise on the Dahu pseudo-

distance and MB-based distances. An example image is chosen
in Fig. 10 where two markersp1 andp2 (5 � 5 pixels) are set in
the background and another markerp3 is placed inside the ob-
ject. A zero mean Gaussian noise is added to the image with
the respective variance values: 0.0001, 0.001, 0.01, 0.1 and
0.5. One hundred noisy images are generated for each value
of variance. The three markers are �xed for the entire exper-
iment. We observe here the inter-distanced(p1; p3) and intra-
distanced(p1; p2) during the test of the Dahu pseudo-distance
or the MB-based one.

The results of the experiments are presented in Fig. 11 with
the mean values as well as the associated con�dence intervals.
In both Fig. 11(a) and Fig. 11(b), we can see the evolution of
the Dahu pseudo-distance and other MB-based distances. The
MST-MBD and Water�ow-MBD both increase when the vari-
ance of noise increases. Especially when the noise variance is
high, the di� erence between inter- and intra-distances of MST-
MBD and Water�ow-MBD is minimal, whereas the ratio of
inter- and intra-distances of the Dahu pseudo-distance remains
more stable. This experiment shows that the vectorial Dahu
pseudo-distance is robust to noise variations. This property is
important for many real-world applications.
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Fig. 10. An example image to investigate noise stability of the Dahu pseudo-
distance and MB-based distance. The pointsp1 and p2 belong to the back-
ground, when p3 is inside the object (this picture comes from the MSRA
dataset (see Cheng et al. (2015))).

(a) Inter-distance

(b) Intra-distance

Fig. 11. Stability of the inter- and intra-distances using the vectorial Dahu
pseudo-distance or other MB-based methods against Gaussian noise.

5.3. Speed performance

In this section, we measure the time necessary to compute
numerous distances between two points using the Dahu pseudo-
distance and other MB-based distances. The experiment is im-
plemented between 100, 1000, 10000 and 100000 pairs of pix-
els on 20 tested images. The evaluation is conducted using a
2.6 GHz CPU with 8GB of RAM. The size of the test image
is the same as used in the previous experiment (the maximum

dimension is 300 pixels). Our method is implemented in C++.

The execution time is illustrated in Fig. 12 with means and
con�dence intervals. The construction of our tree of shapes is
based on the max-tree algorithm which is designed in Carlinet
et al. (2018). The whole process is linear on average (and quasi-
linear at worst). The computation of the ToS runs at about 20
FPS when used on grayscale images, whereas it takes about 1
second to construct the MToS of the color image. Although the
computation of the MToS is longer than the ToS, the vectorial
Dahu pseudo-distance achieves better performances as we pre-
sented in Section 5.1.1. Depending on the application, we can
choose either the ToS or MToS to compute the Dahu pseudo-
distance. On the other hand, the construction of the MST is fast
(30 FPS) and easy to implement. However, this method is sen-
sitive to the impact of noise and usually does not provide good
results in this case.

Fig. 12. Execution time (in milliseconds) to compute numerous distances
between two points using the (pseudo-)distances presented in this paper.

As we can see in this �gure, there is another convenient point
of the Dahu pseudo-distance. For a small number of distances,
the Water�ow-MBD has an advantage compared to the vecto-
rial Dahu pseudo-distance. However, when the number of dis-
tances increases, the Dahu pseudo-distance and the MST-MBD
are much faster than the Water�ow-MBD. It can be explained
by the fact that the Dahu pseudo-distance and the MST-MBD
take a �xed time to construct the tree, but when the tree is com-
puted, the time to compute the distances is extremely fast thanks
to the fast search of the nodes corresponding to the points in this
tree. This is a huge advantage for some applications.

6. Applications

The main use of the Dahu pseudo-distance is visual saliency
detection, which is considered as an intermediary step for var-
ious applications such as object detection, object segmentation
and tracking. The visual saliency detection is carefully inves-
tigated in the previous section. In this section, we demonstrate
the ability of the Dahu pseudo-distance in other applications.
First, we present the shortest path �nding application, which
is a direct application of the extension of the Dahu pseudo-
distance taking into account the spatial information in the im-
age. Secondly, the Dahu pseudo-distance is applied to segment
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Fig. 13. Shortest path �nding in images. The input images and the end points (depicted in red) of the path we want to �nd are shown on each picture.
Results are given for Dahu pseudo-distance, Water�ow-MBD and MST-MBD. Images are extracted from Holu�sa and Sojka (2017) and from Vincent
(1998).

the white matter region in multi-modal medical images. In the
last application, we exploit the Dahu pseudo-distance to seg-
ment objects in satellite images to validate the ability of the
Dahu pseudo-distance on multi-spectral images.

6.1. Shortest path �nding

In this section, we validate the shortest path �nding applica-
tion which is presented in Section 4.3. To do that, we compare
the shortest paths found by the Dahu pseudo-distance and by the
other MB-based distances. Tested images, which are extracted
from Vincent (1998) and from Holu�sa and Sojka (2017) such
as a noisy synthetic image, a map image, a retinal photography
and a thin glass �ber are illustrated in Fig. 13.

In the synthetic spiral image (see Fig. 13, column 1), there are
two parts: the spiral and the background. We can see that the
shortest path provided by the Dahu pseudo-distance is “shorter”
than the ones provided by the other MB-based distances. The
two chosen markers are in the background, and the shortest path
between them based on our distance, follows the shape of the
spiral as we expected.

Similarly to the map image (Fig. 13, column 2), the goal
is to �nd the shortest path connecting two points located on
the sea near the coast. The shortest path based on the Dahu
pseudo-distance is still better than the ones using other MB-
based pseudo-distances.

In the retinal image (Fig. 13, column 3), the two chosen
markers are placed on a blood vessel. As demonstrated, the

Dahu pseudo-distance and Water�ow-MBD give satisfying re-
sults while the MST-MBD is sensitive to noise and to blurring
(its shortest path is deviated from the blood vessel).

Similarly, in the last example (see Fig. 13, column 4), the
markers are placed on the glass �ber. The image is quite
blurred, and the intensities of pixels along the �ber are vary-
ing, some parts of the �ber are darker than other parts. How-
ever, both the Water�ow-MBD and the Dahu pseudo-distance
still �nd the shortest path that follows the �ber.

To conclude, the Dahu pseudo-distance achieves a better per-
formance than the other MB-based pseudo-distances in this
context.

6.2. Dahu pseudo-distance on multimodal and multispectral
images

Multivariate images are widely used in various applica-
tions, ranging from medical imagery to satellite remote sens-
ing. Multivariate can designate a multi-spectral, multi-modal or
multi-source image which corresponds to a set of image chan-
nels. A color image is just a special case of multivariate im-
age. In this section, we present the application of the vecto-
rial Dahu pseudo-distance in multi-modal medical and multi-
spectral satellite images. We use the same strategy to handle
them, which is illustrated in Fig. 14. The method begins with
the construction of the MToS. Then we put markers in the im-
age and compute a distance map from these markers based on
the Dahu pseudo-distance. Finally, we use simple thresholding
to segment the object in the image.
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Fig. 14. A scheme for object segmentation on multimodal/multispectral images.

(a) T1 (b) T2-FLAIR (c) Distance map (d) Segmentation (e) GT

Fig. 15. White matter segmentation using the vectorial Dahu pseudo-distance. Images are taken from Mendrik et al. (2015). As we can observe on the
segmentations (see Sub�gures(d)) and on the ground truths (see Sub�gures(e)), the white matter has been well segmented thanks to the vectorial Dahu
pseudo-distance.

6.2.1. Multimodal medical images
Multi-modal images are becoming increasingly common in

diagnosis and treatment planning (see Mart�́-Bonmat́� et al.
(2010)). They are de�ned as a combination of imaging modali-
ties, which are acquired using di� erent techniques such as com-
puted tomography (CT), magnetic resonance imaging (MRI),
and positron emission tomography (PET). Multi-modal images
are also used to overcome the limitations induced by speci�c ac-
tivities of each individual technique. In this subsection, we ap-
plied the vectorial Dahu pseudo-distance to segment the white
matter in 3D brain MR images.

We consider two images: the T1 (Fig. 15(a)) and the T2-
FLAIR slice (Fig. 15(b)) as inputs of our experiment. Then,
we construct the MToS on these images to get the mutual in-
formation from di� erent machines. A marker (5 x 5 pixels)
is put on the white matter region to compute a Dahu distance
map (Fig. 15(c)). We �rst remark that the MToS preserves
the geometric information of the two channels and mixes them
in a sensible way. We further observe that the distance map
gives low values to the white matter region. A simple threshold
method is used to segment the white matter region in the im-
age (Fig. 15(d)). As can be seen, our method not only achieves
good segmentation results compared to the ground truth image,
but the vectorial Dahu pseudo-distance proves to be e� cient for

this experiment.

6.2.2. Satellite multi-spectral images
Over the past few years, the use of multi-spectral images

has been increasingly investigated in many applications, es-
pecially in target detection and recognition (see Bioucas-Dias
et al. (2013)). Multi-spectral images collect information from
hundreds of spectrum bands, thus providing a powerful tool to
discriminate di� erent objects. Similarly to the usage of the vec-
torial Dahu pseudo-distance in the previous section, we employ
the vectorial Dahu pseudo-distance to segment object regions
in the image.

We apply our method on the Pavia University dataset
(see Licciardi et al. (2009)). It consists of 103 images which
correspond each to a spectral channel. The dataset has a size
of 610*340 pixels, contains nine classes which represent trees,
meadows, asphalt, etc. The images are pre-processed with a
P.C.Aalgorithm (see Jolli� e (1986)) to reduce the correlation
among the bands. This algorithm also selects the best bands
for object detection. This pre-processing relies on the fact that
neighbor bands of multi-spectral images are highly correlated
and contain mutual information about the object.

In our case, we choose the �rst 5 channel components. As
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(a) C1 (b) C2 (c) C3 (d) C4 (e) C5 (f) GT

(g) Distance map (h) Segmentation (i) Distance map (j) Segmentation (k) Distance map (l) Segmentation

Fig. 16. Object segmentation on multispectral images. Objects are manually selected with a marker (in red in pictures). Images C1-C5 are extracted by
using a principal component analysis (PCA) algorithm.

we can see in Fig. 16, some objects clearly appear in some im-
ages but not in the others. The MToS is then constructed on
these images. We put some markers in the image to compute
the distance map. Then a simple threshold is used to segment
the object in the image. As we can see in Fig. 16, our method
can segment the objects in the image with high accuracy, for in-
stance, the painted metal sheets, the bitumen, and self-blocking
bricks classes. These results demonstrate the robustness of the
vectorial Dahu pseudo-distance in this context.

7. Conclusions and perspectives

In this paper, we have studied the Dahu pseudo-distance
and have presented multiple improvements. First, we have in-
troduced a vectorial extension capable of dealing with multi-
channels images. Obviously, this vectorial Dahu pseudo-
distance processes color images which is already a great im-
provement. However, it is also not restricted to three channels
images. Second, we have improved the Dahu pseudo-distance
by combining the pseudo-distance with information on the spa-
tial domain of the images. Such an improvement opens new
areas of applications, in competition with the commonly used
geodesic distance.

After having compared our new versions with several MB-
based pseudo-distances in many situations and applications, we
have proven that taking into account the color of the images
brings noticeable improvements. We have also proven that our
vectorial Dahu pseudo-distance is less a� ected by noise in the
image than other MB-based pseudo-distances.

We have further demonstrated the improvement induced by
this new vectorial Dahu pseudo-distance, since we have shown
that it can handle multimodal and multispectral images by test-
ing it on multimodal medical images and multi-spectral satellite
images.

Another advantage of our new vectorial version is that it
comes at almost no additional cost. Thanks to a clever represen-
tation of images, the multivariate tree of shapes, the distance is
quasi instantaneous to compute (and the tree can be computed
in a quasi linear time with respect to the number of pixels of the
images). It is then possible to use it in real time.

In the future, we plan to use the vectorial Dahu pseudo-
distance in some applications like automatic object detection
and interactive segmentation. Furthermore, we want to investi-
gate the case of embedded environments.
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