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ABSTRACT

Distance transforms and the saliency maps they induce are widely used in image processing, computer
vision, and pattern recognition. The minimum barrier distance (MBD) has proved to provide accurate
results in this context. Recently,&Gudet al. have presented a fast-to-compute alternative de nition
of this distance, called the Dahu pseudo-distance. This distanceciem, powerful, and have many
important applications. However, it is restricted to grayscale images. In this article we revisit this pseu-
do-distance. First, we @r an extension to multivariate image. We call this extensiorvéntorial
Dahu pseudo-distancéVe provide an e cient way to compute it. This new version is not only able
to deal with color images but also multi-spectral and multi-modal ones. Besides, through our bench-
marks, we demonstrate how robust and competitive the vectorial Dahu pseudo-distance is, compared
to other MB-based distances. This shows that this distance is promising for salient object detection,
shortest path nding, and object segmentation. Secondly, we combine the Dahu pseudo-distance with
the geodesic distance to take into account spatial information from the image. This combination of
distances provides ecient results in many applications such as segmentation of thin elements or path
nding in images.

¢ 2020 Elsevier Ltd. All rights reserved.

1. Introduction The barrier “strengths” of a path is the dirence between
the altitude of the highest point of the path and thkitude of
Over the past decades, distance transforms have been widehe lowest point of this path. The minimum barrier distance be-
used in computer vision, image processing, and pattern recogween two points is the smallest barrier “strengths” among the
nition (see Wei et al. (2012); Ciesielski et al. (2014); Zhangset of all possible paths between these two points. This dis-
et al. (2015); Tu et al. (2016); Huang and Zhang (2018)). Intance is studied in Ciesielski et al. (2014) and in Strand et al.
general, distances can be classi ed into two categories: poin{2017). The MBD has many interesting theoretical properties
wise and path-wise. Point-wise distances are computed reland is an eective tool in image processing and computer vi-
tively to the domain of an image, while path-wise distancession applications, especially to proceed to salient object de-
take into account the topographical view of the image. In thigection (see Zhang et al. (2015); Tu et al. (2016); Wang and
paper, we focus on path-wise distances, where images can alg¢ang (2017); Wang et al. (2017); Yang et al. (2017); Huang and
be seen as graphs (the vertices are the pixels of the image). TEdang (2018)), interactive segmentation (see Grand-Brochier
usual method to nd the path-wise distance between two pixet al. (2014); Malmberg et al. (2017)) and object localization
els is to compute the length of the shortest path in the graptsee Bharati et al. (2016)). Litterature shows that the minimum
that goes from one of these pixels to the other. The most useshrrier distance outperforms the geodesic one on noisy and
path-wise distance in image processing is the geodesic distanb&irred images (see Strand et al. (2013); Zhang et al. (2015)).
(see Toivanen (1996)). More recently, a pseudo-distance, called

minimum barrier distance (MBD) has been proposed in Stran%rThe MBD is powerful, but its computation expensive. Sev-

al approximations of this distance have then been proposed

etal. (2013). in Zhang et al. (2015), in Tu et al. (2016) and in Huang and
Zhang (2018).
Corresponding author: Teh:33-153145940 Recently, the Dahu pseudo-distance has been intro-

e-mail: jonathan.fabrizio@Irde.epita.fr (Jonathan Fabrizio) duced from the point of view of Mathematical Morphology



2

(see &raud et al. (2017)) in order to approximate the MBD. In Section 5, we investigate the properties of the vectorial Dahu
This Dahu pseudo-distance is computed by considering an inpseudo-distance and we compare it with state-of-the-art results.
age as a landscape (we also speak about its topographical viev®ome applications are presented in Section 6 to demonstrate the
Unlike the approach of Zhang et al. (2015) and of Huang an@ ciency of our distance. The conclusions and perspectives are
Zhang (2018) which computes the MBD directly in the imagediscussed in Section 7.

space, the Dahu pseudo-distance cartiently be computed

on a tree-based representation of the image; the tree of shapfs
of Géraud et al. (2013). Thanks to this approach, the compu-"
tation of the Dahu pseudo-distance is very fast. However, this The MBD was originally introduced by Strand et al. (2013)
distance was initially developed for gray-level images and doeas a minimum value of the barrier strength among the set of
not handle color images very well. Therefore, we take here intgossible paths between two pixels in an image. The MBD has
account the color information to improve it. been used in several applications in image processing and com-
puter vision, for instance, in salient object detection (see Zhang
et al. (2015); Tu et al. (2016); Yang et al. (2017); Wang and

We provide a method to eciently compute the Dahu Wang (2017); Wang et al. (2017); Huang and Zhang (2018)),

saliency map while constructing the tree of shapes. in object localization (see Bharati et al. (2016)), in superpixel
segmentation (see Hu et al. (2018)), in interactive segmenta-

We o er an extension of the Dahu pseudo-distance to multion (see Karsas et al. (2012); Ciesielski et al. (2014); Grand-
tivariate images and we explain how to compute it fast. Wegrochier et al. (2014); Malmberg et al. (2017)), refocusing
call it vectorial Dahu pseudo-distance (see Liu et al. (2016)), object proposals generation (see Huang

i “ gt al. (2018)) and in object segmentation (see Zhang and Shen
We extend the Dahu pseudo-distance to a more clever(2017); Xiao et al. (2018)).

version which combines the Dahu pseudo-distance com*
puted on the tree and the geodesic distance computed in In salient object detection, the goal is to compute a saliency
the image to re ne results (especially to nd the shortestmap that highlights the most important objects in an image. To
path between two points in the image space). proceed, thdboundary connectivity prigrwhich is presented
in Wei et al. (2012), assumes that background regions are usu-
To demonstrate the robustness of the Dahu pseudo-distancgly large, homogeneous, and that the image boundary is mostly
we analyze it in several experiments and applications as folhackground. The MBD estimates a distance from every pixel in
lows. the image to the image boundary while considering that image
boundary is regarded as the background seeds (see Zhang et al.

We explore the properties of the Dahu pseudo—distanc§'/2015); Tu et al. (2016); Yang et al. (2017); Wang and Wang

we compare our vectorial Dahu pseudo-distance with th 2017); Wang et al. (2017); Huang and Zhang (2018))
Dahu pseudo-distance computed on separate channels, we = ”’ ' ’ '

analyze the noise stability and the contrast of the vectorial Many applications take advantage of the relevance of the
Dahu pseudo-distance. saliency map computed by the MBD. The classical usage of this
saliency map is object segmentation. For example, in Zhang
We demonstrate the robustness of the vectorial Dahﬁnd Shen (2017), an Object Segmentation method is proposed
pseUdO'diStance in some applications such as salient Oib'y using an a n|ty model based on the MBD. Object segmen-
ject detection and shortest path nding by comparing ittation is also a starting point for multiple other applications. For
with other MB-based distances; especially for color im-example, in Bharati et al. (2016), a tracking method based on
ages. the MBD is presented. Another example, exposed in Liu et al.
We illustrate the usability of our vectorial Dahu pseudo—fg dligc)ayn;elllestr?g ?e?éigniiggi?‘?t;“;ﬁcpeggmcirffﬁfgj'gg'
distance on mu!ti-spect.ral images by sgccessfully Segt_he MBD hgs also been used in object pyoposgl genzration )éls
menting objects in satellite multi-spectral images. presented in Huang et al. (2018). This method aims to generate
We also demonstrate the usability of our vectorial Dahua certain amount of candidate bounding boxes to provide po-
pseudo-distance on multi-modal images by segmentingential object locations for further tasks such as object detection
white matter regions in the brain on multi-modal medicaland segmentation.
images.

State-of-the-art

The main contributions of our paper are the following.

Besides, the MBD has also been used for interactive segmen-

The paper is organized as follows. Section 2 contains théation (see Karsis et al. (2012); Strand et al. (2013)). In this
state-of-the-art related to the MB-based distance. The Dahapplication, the user tags a small Batf pixels belonging to the
pseudo-distance and the way to compute the saliency map aobject to set it as foreground and a smallBeif pixels outside
presented in Section 3. In Section 4, we present anient  of the object to set it as background. Interactive segmentation
way to compute it. Then we provide an extension to multi-is the binary classi cation of the object with respectRoand
variate images. Additionally, the Dahu pseudo-distance is imB. Each pixel in the image is classi ed as foreground or back-
proved and a more “clever” version is provided, using at theground by comparing the MBD between the pixel itself and the
same time the spatial and hierarchical information of the imagewo sets of seeds andB. In Strand et al. (2013), the MBD is
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computed on grayscale images, and its extended color versiggath nding and interactive segmentation. The Dahu pseudo-
is presented in Karsis et al. (2012). These articles show thatdistance, which inherits the properties from the Tree of Shapes
this process is robust to noise, blurring and seed point positior{ToS) (see Caselles and Monasse (2009)), has been shown to
o . . be robust to noise and blur ects in the image, and it gives
Another application is the computation of superpixels (Seecom etitive results compared to state-of-the-art methods
in Hu et al. (2018)). The authors propose a method for super- P P '
pixel segmentation relying on the MBD. Superpixels are de-

termined around them according to “compact-aware MBD”,3. The Dahu pseudo-distance

which is a combination of the original MBD and the (spatial)

Euclidean distance. In this section, we giv_e the mathematical background neces-
_ _ sary to de ne the MBD in details and we show how to derive
The MBD is very powerful, but dicult to compute e- 3 distance map using the MBD, before addressing a new dis-

ciently on images of reasonable size. Because computing thgete version of the minimum barrier distance, called the Dahu
exact MBD usually takes too long, approximate but faster methpseudo-distance and an eient way to compute it.

ods have been proposed (see Zhang et al. (2015); Tu et al.
(2016); Huang and Zhang (2018)). 3.1. The Minimum Barrier Distance

In Zhang et al. (2015), the authors presented an approxima- In image processing applications, an image domain is asso-
tion (Fast-MBD) with a raster scan algorithm to update theciated with a graph in which vertices represent discrete pixels
MBD thanks to its neighbors. This salient object detectionon the image and edges represent connections between pixels.
method runs at about 80 FPS and achieves competitive perfof gray-level image (Fig. 1(a)) is then represented as a vertex-
mance with state-of-the-art saliency detection methods. Despitalued graph (Fig. 1(b)).
the fact that it provides good results, the raster scan method has
di culties when the exact path between two pixels is in a di-
rection between the bottom left and the top right of the imag
(see Huang and Zhang (2018) for details).

A path in a graphX is a sequence = h::;p;; pi+1::i , with

i 2 Xandpi+1 2 Nx(pi), whereNy is the adjacency relations

etween pixels. Also, the set of paths going from the vertex

x to the vertex< is denoted by (x; x°). Thebarrier strength
Tu et al. (2016) have developed another approximation of théalso calledbarrier distanceor cos) of a path in the given

MBD. In their approximation, the input image is represented bygray-level imageu is de ned as:

its minimum spanning tree (MST). Paths between pixels corre- ]

spond to paths between the nodes of the tree. The MST highly u( ) = rggxu(pi) min u(pi): 1)

reduces the size of the space we look for to nd the shortest path

between two pixels of the image. However, the “simple” struc-  The barrier strengthof a path is the dierence between the

ture property of MST can lead to some approximation errorshighest and lowest pixel values along this path. Tigimum

especially when noise appears in the image. barrier distance d”® between two verticez andx’in u is then

) ) de ned as the minimum of the barrier strengths of all the paths
Recently, a new algorithm to approximate the MBD has beerﬂ)etween two given vertices:

presented in Huang and Zhang (2018), which is inspired from

the natural phenomena of water ow. The seed pixels which d(x X = min_ (); )

are usually put on the boundary of the image, are assumed to be 2 (xx)

sources of water. Then, the water spreads from the sources to|, Fig. 1(b), the blue path, which corresponds to a sequence
the neighboring pixels (with dierent ow MBD) until all the 1y . 0: 0; 2i, is considered as the shortest path between these
pixels are ooded. The Water ow-MBD computation achieves 1 red vertices. The corresponding MBD is then equal to 2.

a high-speed performance and shows comparable results with o _ _
other methods. Note that, despite its name, the MBD is not a distance, be-

) cause it can exist somey such thaix , yandd;"®(x; y) = 0.
These methods based on the MBD achieve state-of-the-art

results with other bottom-up methods on saliency map compus 2 - pistance map based on the MBD
tation. They can also process an image in real-time, which is

- ) . It is common to derive a distance map from the MBD. Given
relevant for applications with speed requirements. On the other .~ : : .
L .~ "aminimum barrier strength function and a ¥€of seed points,
hand, they also ster from a number of limitations. In partic-

. S a distance maf "*® can be computed by:
ular, color images (or more generally multivariate images) are

not handled very well (or not handled at all). A multivariate SM™(x X9 = min d*®(x; x9): 3)
version of the MBD needs to keep the advantages of the MBD ! x2x0 !

and has to be ecient as well. For this reason, we propose aa gistance map is then the MBD from every point of the image
new version of the MBD based on the Dahu pseudo-distancg, he setx? of seed points. For every point, the MBD looks for

The proposed method in this paper computes distances takifge smallest distance betwerand any pixeb®that belongs to
into account multivariate data which can be made oledént  yo

color images as well as multimodal or multispectral images. We _ _ o
also demonstrate the robustness of the Dahu pseudo-distance inl he next section presents a variant of the MBD, which is also
several applications such as salient object detection, shorted@sed on the notion of barrier (Eg. (1)).
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114|2 D2 Thanks to this topology, from a scalar imagienve can con-
.. struct an interval-valued imageon the Khalimsky grid, which
0jofo OFOZC -
really represents the surface corresponding.to
(&) Animageu. (b) uas a graph.

Let us introduce thénclusion relationship We say that the
"’\ 4 AT real-valued imaga (a single-valued function) iscludedin the

interval-valued image when for any element of the cubical
complexes, we hava(x) 2 e(x). This inclusion relationship
I ’ ! ) between a scalar ima@eand an interval-valued imaggeis de-
i noted by < : we write thentu< @. The Fig. 1(f) depicts an

== =

—— 0 example of a scalar ima@ewhich is “included” in the interval-
(c) 3D version ofa given in (e). (d) uas a surface. valued imag® depicted in Fig. 1(e).
@ The adaptation of the MBD on the interval-valued image,

[

e ey e 2]} otetd™e. This bau pecudo disance ewesn wo el

[Coar Ipfod <[ 20 ] [0 0] M T HIH 1] andx®on the original image is de ned as:

A A
}
(O} bi{0} | o [o]l4[o]l4[ o]l 4P X0 = min A (e he) @
(o] Co]fo[0][0[0o]([] “<_"“ )
(e) Interval-valued image. () A minimal path in ali< e. = 91”;' ) %Inh 9 a( ); (%)
Fig. CJé Image representations used to compute barrier distances whereh, andh, are the 2D elements of the cubical complex
(see Geraud et al. (2017)). . .
corresponding ta andx’respectively. It means that we look for
3.3. The Dahu pseudo-distance a minimal path in the cubical complex, with the classical de ni-

A new discrete version of the MBD, named the Dahu pseudoﬂon of the MBD, and consider all the possible scalar functions
distance, has been de ned iné@ud et al. (2017). It consid- U that are “included” in the interval-valued ma&p Returning
ers an image (see Fig. 1(a)) as a continuous surface in the s&@-the earlier example (Section 3.1, Fig. 1(b)), the shortest path
valued sense (see Fig. 1(d)) on a discrete topological domafetween the two red points in Fig. 1(c), depicted as a blue path
called the Khalimsky grid. Details about set-valued continuityl? Fig- 1() (imageu is included in the interval-valued image
and about Khalimsky grids can be found in Kovalevsky (1986)that provides the minimal path), has a length of 1. The Dahu
and in Aubin and Frankowska (2009) respectively. The optimaPSeudo-distance can be interpreted atst minimum barrier
blue path between the two red points is depicted in the imagéi,lstanc.e that we can have considering tha_tt the input function
and has a distance equal to 1. It is slightly elient from the IS continuous in the set valued ser{see Najman and &aud

original MBD. Let us brie y present this Dahu pseudo—distance.(2013))-
A gray-level image can be seen as a functiorz? ! N. Note that, as the MBD, the Dahu pseudo-distance is not a

When we represent an image using a surface, we cannot ugéstance, because it can exist somg such thatx , y and
scalar functions; we have to use set-valued functions. More ex™™" (X ¥) = 0.

actly, in Géraud et al. (2017), the authors proposed to replace ) . . .

the domairz? by the topological discrete spa& of the 2D 3.4. E cient Dahu pseudo-distance computation using the tree
Khalimsky grid (also known a&D cubical complek and the of shapes

value domainN is replaced with the sé{; of intervals of nat- The Dahu pseudo-distance can be computed easily and ef-
ural numbers. The 2D cubical complex, which is illustrated ciently thanks to the tree-based representation of the given
in Fig. 1(e) is a set of 2D, 1D, and 0D elements. The 2D elimage. A tree of shapes (see Monasse and Guichard (2000);
ements are the original pixels represented by the big squaré&saselles and Monasse (2009)) is a morphological self-dual rep-
in Fig. 1(e). The 1D elements are the rectangles (see Fig. 1(e)¢sentation of an image. This tree is a decomposition of a gray-
located between the big squares. They are valued by the intdevel image into connected components, cabdpeswhich

val whose minimum and maximum are computed from the twacan be arranged into a tree encoding an inclusion relationship.
big squares near to it. For example, if the two nearby square& shape is a lled-in connected component without any hole
are set aflgandf4g the in-between 1D element will be set at inside (its boundary is then an iso-level line). Two iso-level
[1;4], and all the level lines between 1 and 4 will cross this 1Dlines cannot cross each other. A very strong consequence is
element. The OD elements are the little squares (see Fig. 1(d))at shapes are either disjoint or nested, which explains that the
surrounded by 4 squares; they are set at the span value comnee of shapes is a tree and not a graph with cycles.

puted from the values of these 4 squares. The tree of shapes is used to facilitate the computation of

Note that the 1D yellow element in Fig. 1(e) which is the Dahu pseudo-distance. On Fig. 2(a), the path between two
bounded by a purple border corresponds to the vertical purplpoints ; x9 indicated by red bullets in is depicted by a blue
part in Fig. 1(c). This 1D element is a way to get a discretdine, which starts from regioB, then goes through andc, and
topology and to represent what lies between the pixels. nally ends in regionF. Such a path is minimal because every
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Now, let us de ne the corresponding set of nodessqn) of
X0

Txo = ftw; X°2 X% (8)

OFrR,r NW

Then, we obtain using Eq. 6 and then Eq. 3 that:

(a) Imageu. (b) Gray scale.

SEM(x X9 = S (ty: To); ©)

which shows how the distance map induced by the Dahu

pseudo-distance is related to the distance map induced by the
MBD. As a consequence, a Dahu distance map is the Dahu
pseudo-distance from every node in the tree to thelgedf

seed nodes.

(c) TreeS(u). (d) ROL.

_ _ . 4. Going further with the Dahu pseudo-distance
Fig. 2. The tree of shapes of an image allows to easily express and compute

the Dahu pseudo-distance and distance maps (se@faud et al. (2017)). The Dahu pseudo-distance, which inherits its properties from

the tree of shapes, is shown to beaent for some applica-

pathin (x; X9 should at least cross this same set of level linedions (see @raud et al. (2017)). For this reason, we increase its
to go fromx to x%; thus the Dahu pseudo-distance correspond§omputation speed and propose an extension to color and mul-
to the level dynamics of this set of lines. Actually, this pathtivariate images. We also propose an improvement of it using a

in the image space is exactlye (shortest in number of nodes) two-steps procedure taking into account the domains of the tree
path in the tree of shapes between the nddesdt,o: of shape and of the initial image. This last measure is related to
the topographical representation of the image.

. . 4.1. Simultaneous computations of the Dahu pseudo-distance
where Icaly;tyw) is the lowest common ancestor of the pair

and the tree of shapes
(tx; o) (see the blue path on the tree depicted in Fig. 2(c)). Note P

that a path in a tree is denoted byo distinguish it from paths " natural images, the border of the image is mostly back-
in the image space. ground (see Wei et al. (2012)). Similar to previous works

(see Zhang et al. (2015); Tu et al. (2016); Huang and Zhang
The Dahu pseudo-distance in the image space between twp018)), we compute the distance map, which is the Dahu
pOintSX a.ndXO can be written as the minimum barrier distancepseudo-distance of every pixe| in the image to the border of
between the two nodeg andt. representing the components the image. In particular, the Dahu pseudo-distance can be com-
in the tree of shape containing respectiveigndx’. puted while constructing the tree of shape. The construction of
) ] the tree of shapes is mentioned iBr@ud et al. (2013). Our al-
A (% x) dsiy (b te) ©) gorithm (see Algo. 1) is a modi cation of the sorting procedure
max  y(t) min y(t); (7)  used to compute the tree of shapes: we add some operations
12 (tito) 12 (tato) (see the blue lines) to the pixel sorting procedure during the
where (t) denotes the gray-level associated with the nioofe ~ tree construction.
the tree of shapeS(u) of the imageu. For instance, in Fig. 2(c),
the blue path gives the sequence of node valOgk, 2; 1i, so
the Dahu pseudo-distance is 2. Theradsneedo nd the best
scalar imagei< @, nor to nd the best path 2 (x; X% in

Our algorithm computes the Dahu pseudo distance from seed
points (the border of the image) to every other point in the do-
main of the image. The process follows two steps. During the

rst step (lines 2 - 18), it crosses all points in the domain using

the image space, it thus means that t_he seminal de nition of thg ropagation front. Every pixel is crossed only once (thanks to
Dahu pseudo-distance (see Eq. (5)) is the best choice to be fagliy \, variable). This propagation front is managed by a hier-

in time. The new expression of this distance (see Eq. (7)) isj”%rchical queued). Then, the algorithm computes two struc-
a barrier strength computation (such as Eg. (1)) on the trivia{ures min.im and maxim; minim and maxim represent the
path (i te) of nodes in the space of the tree of shapes. lower and higher levels arisen during the propagation respec-
tively. In the second step (lines 19 - 20), the Dahu pseudo dis-
tance is computed from the two structurasLim andmaxim.

A distance map function of an imagecan be derived from | points are crossed (whatever is the order) and the Dahu dis-

the MBD as we have seen in Eq. (3). Indeed, we can de ne theance is simply the dierence betweemaxim and min.im at
distance map based on the Dahu pseudo-distance as follows:the considered point.

3.5. Saliency map based on the Dahu pseudo-distance

SO (%, X9 = mind ™ (x; x9); Our algorithm can be explained thoroughly as follows. Ini-
X2XO . L . ; .
tially, we add an arti cial border surrounding the image domain
whereX?is some set of points of the domain of the image with the unique valug, . p; is one point from the border. Only



Algorithm 1: Modi cation of the sorting procedure of

the tree of shapes to compute the Dahu pseudo-distance. G _ £ |vmBDG
B ,’I ! MBD-B
Data: Interval-valued imagé), Image domaiD, Seed E ,
Pointp; P
Result: Dahu pseudo-distance o
1 begin o MBDRE |
[* g, a priority queue */ W
/* 1, the current level * B
I* N(p), the set of neighbors of p */

2 for allh 2 D do

w

| dejavu(h) false

(a) A procedure to compute the MBD and their shortest
paths in the color image when processing separately each
channel.

10 | Dahu(pi;pi) O;
12 | while qis not emptylo

4 | PUSH(@([l1];p1);
5 dejavu(p:1) true;
6 | 1 Iy | |
7 Image2dmin.im, maxim, Dahu : ' .
8 min.im (pl ) | ; G \_’ s _’: Dahu-G i
9 maxim (p1 ) l; B Dahu-B] 1
/ !
1
1

13 p  PRIORITY.POP ¢;l);
14 for all n 2 N(p) such asde javu(n)== falsedo ,
15 ° PRIORITY_PUSH@; n; U; 1) ; /\'/
. Dahu shortest path
16 dejavu(n) true ;
17 minim(n)  min(minim (p),|% ;
18 maxim (n) max(maxim (p),1° ; (b) A procedure able to compute the vectorial Dahu pseudo-distance.

Even with color images, our method is able to obtain a coherent shortest

19 forall p2 Ddo path between two pixels in the image.

20 | Dahu(ps; p)
21 return (Dahu) Fig. 3. The computation of the MBD and of the vectorial Dahu pseudo-

L distance in a colorimage. Contrary to the MBD computed on color images,
which may nd a di erent path in the image for each channel, the Dahu
pseudo-distance nds a same path in the image minimizing the sum of the
barriers in all channels simultaneously.

one step remains to be able to proceed to the front propaga-
tion: we must input the set-valued mipcomputed thanks to
a span-based interpolation on the imageThen, we call the

sorting procedure described inefaud et al. (2013), which is image), we need to build the tree of shapes rst, and then we can

employed by using a hierarchicql queyethe current' level !S . compute the Dahu pseudo-distance. The majoeince with
denoted by. The Dahu pseudo-distance of the starting point IS, classical saliency map, de ned in the image space (such as
set at the value 0. Since we use interval-valued maps, we ha '

o decide at which level t th | is. Th Yfie one of Eqg. (3)), is that the tree structure is one-dimensional.
to decide at which Jevel to enqueue those elements. epcaceSince the Dahu pseudo-distance on the tree (given by Eq. (7))
is enqueued at the value of the interi]p) which is the clos- has the form of a barrier “max - min”, the saliency n&gf” at

0 ! u)
est tol, denoted® (see the procedure PRIORITRUSH). The each node, can be easily computed by a propagation method

0 . L .
vaI_ueI IS compared with the minimum and maximum valueson the tree using a priority queue. Afterwards, getting the 2D
of its neighbors to update the Dahu pseudo-distance. When t@%liency mags," means reading for eactthe value ofS M(BD

u S(u

queueq(l) at the current level is empty, the procedure PRIOR'at ty. Eventually, once we have computed the tree of shapes
ITY _POP decides whether the next level to be processed is Iegs(u) the comput,ation of a saliency map7! S (x; X9) is
1 - u i}

or greater thah This loop continues until all of the pixels have . .

been visited. The resulting pseudo-distance is then obtaineg.n mediate (whatever the skf).
More information about the PRIORITYUSH and PRIOR-
ITY _POP procedures can be found idr@ud et al. (2013). Note
also that to nally obtain the tree of shapes, three procedures
must be executed (see Algo. 3 irefaud et al. (2013)), but we
will not go into any further detail since this is not the subject of
our article.

maxim (p) - min.im (p) ;

Last, let us mention that the representation of an image into a
tree of connected components is easy to handle (see Carlinet
and Geraud (2014)). Furthermore, the tree of shapes of an
image can be computed in quasi-linear time w.r.t. the num-

When the seed pixels are not placed in the outer border der of pixels (see €raud et al. (2013)), and can be parallelized
the image (for example, if they are placed at the center of thésee Crozet and &aud (2014)).



4.2. Extending the Dahu pseudo-distance to multivariate im-
ages

As mentioned before, the previous MBD methods (see Zhang
et al. (2015); Tu et al. (2016)) are only de ned on grayscale im-
ages or on separate channels of color images. In this last casghere ; is the coe cient weighting each channel, thereby rep-
they compute the mean or the maximal value of the distance®senting the importance of the channel.
obtained on each separate channel (see Tu et al. (2016) for de-
tails). This approach is not satisfying for the purpose of im-
age segmentation: we generally obtainetient paths for each  Algorithm 2: Computation the Dahu pseudo-distance
color, and then computing the mean or the max value of the dis-between two pixels in the image.
tances makes no sense and cannot be used for image segmenigata: ImageU, Image domair, Pointx; X°
tion. An example of the computation of the MBD is illustrated  Result: Dahu pseudo-distance

in Fig. 3(a). 1 Compute(MTof));

In Karsras et al. (2012), a vectorial minimum barrier dis- 2 Compute(), Cpmpyte(,b);
tance (VMBD) is proposed to compute the MBD on a multi- s ComputelCaty; te));
variate image. However, this VMBD is not easy to compute Compute((ty; t));
directly on the image. Moreover, the VMBD is notective 5 fori 2[1;N] do _
when computing multiple distances between multiple points iné | Computémin,, . . Q);
images. To solve this problem, in this section, we present & | Computéma I O)

. A P X2 (teto)
Dahu pseudo-distance extended to multivariate images based compute(P( (b te))(Eq. (11):
on the tree space. I@n Vi Ngac et al. (2018), this color Dahu ! end putelu X B 9 '
nts

ip;]si(-?:g;])edslistance is proposed to detect automatically docume S Computéds™ (x; x9)(Eq. (10));
11 return (d2 (x; x9)

The tree of shapes, primarily de ned on gray-level images,

has been recently extended to multivariate data (see Carlinet

and Geraud (2015)); this gxtension s Ca”e‘?' tlmlltiv'ariate' The vectorial Dahu pseudo-distance between two points
Tree of Shape@MToS). It yields a tree mapping the inclusion _ 410 i the domain of the image can be computed using

relationship of shapes in the image. Such a representation is ﬂflgo 2. After the computation of the tree of shapes, we nd
prime importance for computer vision (see Cao et al. (2008)),o nodes, andt, which correspond to two points and x°

because it satis es strong invariance properties featured by na{'espectively. Then the shortest pafl; t,c) between these two

ural images, such as self-duality and local contrast Ch"’mger'?odes is computed. Therefore, we are able to compute the Dahu
(see Caselles et al. (1999)). pseudo-distance on each channel (see Eq. (11)) and sum up to
However, the de nition of the Dahu pseudo-distance on thed€t the vectorial Dahu pseudo-distance (see Eq. (10)). Please
tree of shapes (see Eq. (7)) cannot be used without modi cabe advised that, the MToS is computed from the ToS of each
tion/improvement. In the work of K&rés et al. (2012), four image channel by merging some marginal shapes. Due to its
di erent path costs (linear and non-linear) have been presente§€e properties, it is not a complete representation of an image.
the diameter, maximum diameter, city-block diameter and vol-The node of the nal tree is associated with multiple values of
ume of the bounding box. Using their conclusion and alsdheimage. Therefore, anode has_to be agsigned to a single value
thanks to our experiments, we chose here to employ the citycomputed fr.om the set of va_lues it contains. In our case, we set
block diameter to compute the distance. The choice of the pat§ch node in the MToS using the median value of its pixels.
cost function is debatable but in practice it has a very low imAS @ result, the vectorial Dahu pseudo-distance computed on
pact. Changing the underlying distance changes the magnitud@e color image is an approximation of the distance between
of the result. As long as the underlying choice does not chang&Vo points in the image. The whole process to compute the

the order of pixels, all applications relying on the Dahu pseudoVectorial Dahu distance is illustrated in Fig. 3(b). This way,
distance will mostly not be impacted. we obtain a “coherent” shortest path between two pixels in the

image (see Fig. 3(b)). As a consequence, we also solve the
Let us now consider that is a multivariate imaget is a  problem of the dierent paths of the previous MBD methods
node of the MToS ofi, and ,(t) is the vector value associated that we mentioned at the beginning of this section.
with the nodet. The superscript indicates which one of the
N components of the vector is taken into account. We can then Relying on the presentation of the vectorial Dahu pseudo-
extend the Dahu pseudo-distance like this: distance on multivariate images in the previous paragraphs, we
apply it here on RGB color images. To be rigorous, the coef-
p _ cient, which is the gamma correction in this case should be
a2 ) = g O (e to)): (10)  applied to get linear ranges. Obviously, for many color spaces
(like H.L.S.), these coecients are not valid. Instead of looking
with: for correct coe cients, it is always possible to convert color in

OC) = max Q@ min Q) (11)
t2 t2
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are able, without any additional ert, to compute our vectorial
/ B f\\// B Dahu pseudo-distance on multi-modal images or hyper-spectral
[\ / ; images according to Eq. (10). The cogent on each channel
Al \| | in this equation has to be revisited. A simple idea to re ne these
i weights, is to compute a Principal Component Analysis (abbre-

A
| |

riylove) imagey e e viated as P.C.A.) and use eigenvalues to weight the sum.
i "\ / This extension is a major one, as many existing algorithms,
‘ |\ Scalaraxis : ® b Green previously restricted to grayscale images, can now be applied
Black | 4 B | White Ay on color, multi-spectral, or even hyper-spectral images at low
e T cost. Most of the time, these algorithms work as-is by sim-

ply changing the underlying distance (substituting the classical
MBD by our vectorial Dahu pseudo-distance). We will illus-
Fig. 4. The Dahu pseudo-distance in the grayscale image and in the color trate_thls further’ on _Satelllte multi-spectral images, and even on
image. medical multimodal images.

(a) Dahu in the grayscale image. (b) Dahu in the color image.

4.3. Extending the Dahu pseudo-distance with spatial informa-

a color space where each channalasnparable Since the im- i
ion

portance of each channel is considered equally, we propose to

X Our vectorial Dahu pseudo-distance is only de ned in the

tree space, not in the image space. It is ambiguous for us to

1N (12) visualize this distance on the image. Additionally, in the pre-
vious section, our distance is proved to solve the problem of

the di erent paths of the previous MBD methods, but we have
not discussed the way to nd this coherent path in the image
space. Therefore, in this section, we describe our method for
BAHU /o _ 1P o _ _ computing the Dahu shortest path. This proposed improvement

A6 x) = 3 2fRGBg u( (b ba)): (13) of the Dahu pseudo-distance is used in competition with the

commonly used geodesic distance.

Please note that, although Eq. (13) looks simple, we have

here a strong result. The Dahu pseudo-distance is one of the-rthe goal gf MBlD cor(ijputatlont;]s 0 .ndl o||c_)|t|mal pat(rj] ;(;n-
optimal paths between two points in the image space; this patgec ing seed pixels and every other pixel (Huang an ang,

Then, for RGB-color images, our equation becomes:

is such that the set of colors on the path has the smallest 3 P18). In case of the Water OW'MBD method (Huang_and

bounding box in the color space. This is a highly combina- _hang,_ 2018), the pafe”tho"d relat|on_ between two neighbor
torial problem which cannot be solved eiently in the im- pixels is recorded_ du_nng the propagation process, The short-
age space. Our contribution here is to turn this problem int&St path_ prob_lem 'S §|mply trackmg back the relation from the
an e cient and straightforward computation in a tree Sloacedestlnatlon pixel until the seed pixel. On the other hand, the

The Dahu pseudo-distance in the gray-scale image is iIIustrate“AST'M.BD nds the cgr]d|date path from seed p|>_<el to the oth-
in Fig. 4(a), the Dahu pseudo-distance on the color image i§"s relying on the Minimum spanning tree. This tree Iargely'
illustrated in Fig. 4(b) as the size of the bounding box or th rgduces the SeaFCh space of the_shortest path. However,_thls
length of the red line. simple S'Fructure is ser?smve to noise and blur, thereby leading
to some important deviation from the shortest path.

As presented in Eq. (13), the input of the process is a mul-
tivariate image when the output is a (scalar) distance. How- We present here an extension of the Dahu pseudo-distance by
ever, in F|g 3(b), the Output of the process can also be a mu':ak|ng into account the Spatial information between two piXeIS
tivariate image (one distance map by Channe|)_ In the experin the image. In other WOI’dS, it is a combination between the
mental section, we will show some examples of what we calPahu pseudo-distance computed on the tree and the geodesic
abusively “vectorial distance maps”. Note that we do not usélistance computed in the image restricted to all paths minimiz-
the vectorial distance map for an evaluation purpose but folnd the Dahu pseudo-distance. This improvement is a “two-
visualization only. It is actually a multivariate image, which Steps” procedure, illustrated in Fig. 5, in which we look for the
is computed from a multivariate input based on the vectoriaminimal path between the two given pixalandx’ (the two red
Dahu pseudo-distance. To avoid ambiguities, we will refer inPoints in Fig. 5 on the left) and we nd the red pathin Fig. 5 on
the sequel tavisofor vectorial-input-scalar-outpytto vivo for ~ the right.
vectorial-input-vectorial-outpytand tosiso for scalar-input-

scalar-outputDahu pseudo-distances. Inthe rst step, we denotear(ty) as the parent node of node

ty in the tree, andica(ty; tw) as the lowest common ancestor of
Additionally, our vectorial Dahu pseudo-distance is not re-the nodeg, andte. The shortest path(ty;tw) between two

stricted to 3 channels and is fully usable on any kind of multi-nodest, andt is the sequence of nodes that begins at rigde

channel images because it relies on the MToS. It means that, vgmes through the lowest common ance$tafty; tx), and ends



Image with the The shortest path The shortest path
source/destination pixels in the tree in the image

Fig. 5. Extension of the Dahu pseudo-distance: the Dahu pseudo-distance is combined with the geodesic distance.

at nodety. When we havey , ty, the shortest path(ty; ty) it provides a unique path in the image, regardless of its number
can be formulated as follows: of channels.

My par(ty); : : :lcalty; te): i par(to); te; i (14) This property of the Dahu pseudo-distance has applications
related to the shortest path, as will be illustrated with several

otherwise it is the trivial patht,i. This shortest path(ty; te) is ~ €XPeriments in the next section.
illustrated in red in Fig. 5 in the middle.

The shortest path(ty; tw) in the tree corresponds to a re- 5. Experimental Results
gion on the image. We call this region thkortest path region
In Fig. 5, the shortest path between no8andF is illustrated
as the red path. This path goes through regi®ng, C andF.
It does not traverse regior3, D andE. Therefore, theshort-
est path regiorin this case is the white region in the image (on
the right in Fig. 5). Theshortest path regiois actually the set
of all the possible paths between the two given points in th
image space minimizing the Dahu pseudo-distance. This re- ) )
gion is connected according to the properties of the connectegtl- Visual saliency detection
component trees. Therefore, it ensures to generate a coherentTo show the robustness of the vectorial Dahu pseudo-
path between the two given pixels in the multivariate image. Aslistance, we start with visual saliency detection applications
a consequence, this extended Dahu pseudo-distance solves {ee Zhang et al. (2015); Tu et al. (2016); Huang and Zhang
problem that we presented at the beginning of Section 4.2, i(018)). We remind that visual saliency detection has been
which the MBD is computed separately on each channel (but ividely used in computer vision to obtain visual attention areas
does not provide a unigue path in the image domain). in the image.

In this section, we explore the properties of the vectorial
Dahu pseudo-distance via some experiments related to visual
saliency detection, to noise stability and to the contrast of the
Dahu pseudo-distance. Finally, we provide a comparison be-
tween the complexities (in time) of the Dahu pseudo-distance
&s. some other MB-based distances.

In the second step, we consider here the spatial information First, we compare the vectorial Dahu pseudo-distance with
between two points in the image. We want to nd a path be-the Dahu pseudo-distance on separate channels. Then, we com-
tween the two given pixelsandx’ which belongs to thehort-  pare the vectorial Dahu pseudo-distance with state-of-the-art
est path regionso that it has the shortest length in the imagemB-based distances.
space (or more precisely, the geodesic distance irshioetest , ) .
path region. The optimal path is depicted in Fig. 5 as the red Datasets. To perform this evaluation, we use the following
line. This path is the shortest path in the sense of the Dah{Pur large benchmark datasets.

pseudo-distance between two given pixelndx’. The short- 1. MSRA-10K (see Cheng et al. (2015)), which contains

est path is found in this region by using the heurigticalgo- 10000 images with pixel accurate salient object labeling
rithm (see Hart et al. (1968)). This algorithm is a popular tech- for each image.

nigue used in path- nding and graph traversals, especially in

games and web-based maps. It is based on the movement cos2. DUTOMRON (see Zhang et al. (2017)), which consists in
to move from the seed pixel to a given pixel, and the estimated 5166 challenging images, each of which has one or more
movement cost to move from that given pixel on the image to  salient objects and complex background.

the destination. This optimal path has dient meanings. It

is not only the shortest path in the “color space” but also the 3. ECSSD (see Shi et al. (2016)), which contains 1000 im-
shortest path in the image space. ages along with pixel-wise ground truth masks, and in-

) ] ] ) cludes more salient objects under complex scenes.
This computation would not have been possible with the

color MBD. As seen in Fig. 3, the color MBD may provide 4. PASCAL-S (see Li et al. (2014)), which contains 850 im-
di erent paths on the derent channels. On the contrary, the ages and 1296 object instances. This one is designed to
Dahu pseudo-distance makes this combination possible because eliminate the center bias and color contrast bias.
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Fig. 6. Comparison between saliency maps obtained using the vectorial Dahu pseudo-distance and using the Dahu pseudo-distance on separate channels.
From top to bottom: the four datasets (MSRA-10K, DUTOMRON, ECSSD, PASCAL-S). From left to right: the three evaluation metrics: (a) Precision-
recall curves, (b)F -measure, (c) Percentage curves. “Color” is theolor saliency map computed using our vectorial Dahu pseudo-distance applied directly

on color image, “Gray” is the saliency map obtained using the Dahu pseudo-distance computed on the grayscale image and “Combination” is the saliency
map obtained by averaging saliency maps computed on separate red, green and blue channels. The threeedént measures show that our vectorial Dahu
pseudo-distance leads to a much better saliency map.

(a) ECSSD (b) DUTOMRON (c) PASCAL (d) MSRA

Method [[MAE[F ™*[EMD| [ Method [[MAE[F ™[EMD| [ Method [[MAE[F ™X[EMD| [ Method [[MAE[F ™>*EMD]
Color 0.21| 0.69 | 0.29 Color 0.17| 0.57 | 0.41 Color 0.22] 0.69 | 0.28 Color 0.16| 0.79 | 0.17
Gray 0.22| 0.6 | 0.33 Gray 0.18| 0.50| 0.43 Gray 0.24] 0.63| 0.3 Gray 0.19] 0.72]0.21

R 0.22| 0.62 | 0.34 R 0.18| 0.52| 0.45 R 0.23] 0.65|0.31 R 0.18| 0.75| 0.22

G 0.22| 0.6 [ 0.33 G 0.18| 0.50 | 0.43 G 0.23| 0.64 | 0.3 G 0.18] 0.73 | 0.21

B 0.23] 0.62 | 0.35 B 0.19| 0.52| 0.45 B 0.24] 0.65 | 0.31 B 0.18| 0.74| 0.21
Combination| 0.22| 0.62 | 0.33| |Combination| 0.18| 0.52 | 0.43| |Combination)| 0.23| 0.65| 0.3 | |Combinatior)| 0.18| 0.75 | 0.23

Table 1. Comparison between saliency maps obtained using the vectorial Dahu pseudo-distance and using the Dahu pseudo-distance on separate channels
using MAE, F M measure and EMD score. “Color” is the color saliency map computed using our vectorial Dahu pseudo-distance applied directly on
color image, “Gray” is the saliency map deduced from the Dahu pseudo-distance computed on the grayscale imageG and B are the saliency maps
deduced from the Dahu pseudo-distance computed on each channel separately and “Combination” is the saliency map obtained by averaging the three
saliency mapsR, G and B. The best result is highlighted in bold and the worst is underlined. The three dierent measures show that our vectorial Dahu
pseudo-distance leads to a much better saliency map.
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(a) Input (b) GT (c) vivo (d) viso (e) Gray (f) Red (g) Green (h) Blue (i) Combination

Fig. 7. Several saliency maps of the vectorial Dahu pseudo-distance on color images and the Dahu pseudo-distance on separate channels. Note that image
(c) and (d) are respectively thevivo and visoDahu pseudo-distances on the color image. The Dahu pseudo-distance on the color image highlights the object
over the background, whereas, when only one channel is used, the saliency map only spots a part of the object.

Among these datasets, the DUTOMRON dataset is the most between 0 and 255, and we choose the “best” threshold
challenging. set, that is, the one that gives the higheésscore (we call

this scoreF M%), After its computation for each image in
the dataset, we compute the corresponding histogram (we
choose a number of bins equal to 10), and we nally obtain
the percentage curve.

Evaluation metrics. We use the following measures.

The Precision-Recall (PR) curve is used to evaluate the
overall performance of a method concerning its trade-o

between the precision and recall rates. A score (briey called EMD) inspired from Calarasanu

The Mean Absolute Error (MAE), which is the average etal. (2015) relying on the Earth Mover's Distance, which

di erence between a saliency map(gray-level image) is the cross-bin distance function. Itis used as a measure to
and a ground-truth imag®T (binary image): estimate the dissimilarity between two signatures. In our
P _ case, the EMD is computed as the cost between the his-
MAE = % JIGT(X)  S(X). togram ofF score and the histogram of the ground truth
iDj ' image, which is equivalent to one bin at the vakue= 1.
(15)

with D the domain of the initial image. 5.1.1. Comparison of saliency maps obtained by the usual

An F -measure de ned by: Dahu pseudo-distance on separate channels and by our
vectorial (“color”) Dahu pseudo-distance
F=@1+?% P R=(? P+R) Experimental setting. We compare our olor’) Dahu

(16)  saliency map (the extension of the Dahu pseudo-distance on
the color images which are mentioned in Section 4.2) with the
whereP andR are respectively the precision and the recallDahu saliency map computed on separate channels (gray, red,
which we mentioned above. We sét= 0:3 (because itis green, blue) and a simple combination of saliency maps com-
the classical setting in the visual saliency community). puted on each three color channels (pixel-wise average of the

. ) three channels).
The percentage curve, which shows the number of images

in the dataset having & score over a speci ¢ value. To Initially, input images are resized proportionally so that the
compute it, we threshold the saliency map at each valuemaximum dimension is 300 pixels. Then to use the Dahu
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pseudo-distance in visual saliency detection, we adopt two priguality is reached for the vectorial Dahu pseudo-distance (com-
ors about the background in natural images, nanbelynd- pared to the Dahu pseudo-distances on separate channels or on
ary and connectivity priors which are proposed in Wei et al. the grayscale image). Indeed, the main barrier is clearly vis-
(2012). A border with the median value of all of the pixels ible around the objects. The robustness of the vectorial Dahu
on the boundary of the image is added to the image. We corpseudo-distance is easy to explain: the tree of shapes on the
sider all the pixels in the added border of the image as seecblor image contains more information and is more structured
pixels. For the post-processing step, we used the same methtthn the tree of shape computed on separate channels.

as presented in Zhang et al. (2015) to “normalize” the resulting

saliency maps.

Evaluation using PR curves. In Fig. 6, we show the PR
curves for the saliency maps: directly computed on color im-
ages, computed on grayscale images, a pixel-wise combination
saliency map of the three channels (as presented in Zhang et al.
(2015)). The vectorial Dahu pseudo-distance outperforms the
Dahu pseudo-distances on grayscale images and the combina- (@) Input (b) Gray
tion of three channels in all four datasets. On the most chal-
lenging dataset (DUTOMRON), the performance of the dis-
tance maps deduced from Dahu pseudo-distance are lower than
the performance of the one on other datasets. Note that in this
dataset, there are multiple objects in images and the color con-
trasts between the foreground and the background are low.

Evaluation using MAE. The MAE scores of compared meth- (c) sisocenter (d) visocenter
ods are shown in Table 1. Note that the lower the MAE is, the

better the performance of the method is. The comparison of

the saliency maps shows that the Dahu pseudo-distance does

not give a better score on the grayscale images compared to

the separate channels/(B) while the pixel-wise combina-

tion saliency map does improve. This comparison shows also

that the vectorial Dahu pseudo-distance achieves better scores

than all other methods. (e) vivocenter

Evaluation using F -measure.We adopt thé= -measure pro-  Fig. 8. The saliency map deduced from the Dahu pseudo-distances when
posed in Margolin et al. (2014) to evaluate saliency mapsthe seed point s placed in the center of the image. (a) the color image; (b)
In Fig. 6 and in Table 1. the vectorial Dahu pseudo-distanc%he corresponding grayscale image; (c) thesisd' saliency map deduced

. L ’ rom Dahu pseudo-distance; (d) the Visd’ and (e) vivo saliency map de-
achieves signi cantly better scores than the Dahu pseudog,
distance on grayscale images, and than the combination of the

Dahu pseudo-distance across all datasets. We also notice thali, another example (see Fig. 8), we compare visually the

the F -measure curves of the Dahu pseudo-distance have stgy|iency map deduced from the vectorial Dahu pseudo-distance
ble and at curves, which is an advantage because the *besng the Dahu pseudo-distance when the seed point is placed in
threshold remains unknown and can vary a lot from an imag¢ne center of the image. The ower zone in thésd image

to another. is spotted and is well-contrasted with the background, whereas
Evaluation using percentage curves and EMDIn Fig. 6,  “sisd image does not well distinguish between the background
the vectorial Dahu pseudo-distance provides better percentag@d the ower. Besides, in the/fsd’ image, similar intensities
curves than the others. Notably in the MSRA-10K and ECSSare obtained on most of the background regions in the distance
dataset, the number of good saliency mapstheasure> 0.8)  map. Typically, the more homogeneous the distance map is
of the vectorial Dahu pseudo-distance is higher by around 7% the background, the fewer seed points we need to segment
than the Dahu pseudo-distance on separate channels. In the c#@image. This is an advantage of the vectorial Dahu pseudo-
of the MSRA dataset, the vectorial Dahu pseudo-distance hadistance to reduce the number of seed points for object segmen-
more than 60% good saliency maps with the only assumptiotation.

that the boundary is mostly background. Additionally, the EMD

results of the vectorial Dahu pseudo-distance is lower than thg.1.2. Comparison of saliency maps of the vectorial Dahu
Dahu pseudo-distance on the separate channel, which proves  pseudo-distance with state-of-the-art methods

that our proposed distance improves saliency map computatiog, e rimental setting: In this section, the saliency map com-

We present here some examples of saliency maps induced Ipyted by the vectorial Dahu pseudo-distance is compared with
the Dahu pseudo-distance. The saliency majs@') and the  some saliency maps deduced from multiple MB-based meth-
color representation of the saliency mapi(t’) are respec- ods: Fast-MBD (see Zhang et al. (2015)), MST-MBD (see Tu
tively shown in Fig. 7(d) and in Fig. 7(c). The “optimal” visual et al. (2016)), and Water ow-MBD (see Huang and Zhang

ced from the vectorial Dahu pseudo-distance.
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(a) Input (b) GT (c) visoDahu (d) Fast-MBD (e) Water ow-MBD (f) MST-MBD

Fig. 9. Comparison on color images of saliency maps deduced from our vectorial Dahu pseudo-distance on color images with saliency maps deduced from
state-of-the-art methods.

(a) ECSSD (b) DUTOMRON (c) PASCAL (d) MSRA

Method [[MAE[F ™*[EMD| [ Method [[MAE[F ™ EMD| [ Method [[MAE[F ™*EMD| [ Method [[MAE[F ™ EMD]
Dahu [[0.21] 0.73]0.228 [ Dahu |[0.17[0.634[0.31§ [ Dahu | 0.22[ 0.72]0.23 Dahu [[0.17]0.815] 0.14
Fast-MBD|| 0.22| 0.74 | 0.21| | Fast-MBD|| 0.21|0.626/0.324 |Fast-MBD|| 0.24| 0.73| 0.22| | Fast-MBD|| 0.18|0.821/0.135
MST-MBD|| 0.22| 0.73 |0.227 [MST-MBD|| 0.21|0.606|0.344 |MST-MBD|| 0.24| 0.72 | 0.23| |[MST-MBD || 0.18|0.812|0.143
Water ow || 0.22| 0.74 |0.205 | Water ow || 0.21|0.634|0.316/ | Water ow || 0.24| 0.73 | 0.22| | Water ow || 0.18| 0.824/0.132

Table 2. Numerical comparison of saliency maps deduced from the vectorial Dahu pseudo-distance applied on color images andedént MB-based
distances adapted to manage color images. The comparison is performed usiRgmeasure and EMD score. Best scores are in bold. Results of all methods
are comparable and variations among them are negligible.

(2018)). To compare these methods, we modify them, as Huangackground. Note that, in this experiment, we just want to com-
and Zhang (2018) do, by adding color and computing a colopare the Dahu pseudo-distance with the MB-based distance, we
MBD by summing MBD on each channel. For the MST-MBD do not try to achieve the best results of the saliency maps. The
method, we construct an MST from the color image, then wesame post-processing to normalize the saliency map, as in the
compute the MBD in this tree. In order to fairly evaluate the previous section, is applied here.

performance of these methods, we add an outer border to the ) ] _ )
image and consider all pixels on the boundary image as thEVvaluation using MAE: Our method gives better MAE scores
than other MB-based methods across all datasets. However, the
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di erence is very low. It can be explained by the fact that the Using the binary ground truth, the inter- and intra-distances
vectorial Dahu pseudo-distance tends to give distance valuese well de ned. The contrast metric is de ned by the ratio
lower than other MB-based distances, especially in the backeetween the average of the inter-distances and the average of
ground regions, which constitute the largest part of an image. the intra-distances:

Evaluations using theF -measure: The F -measure is illus- Nil P dinter

trated in Table 2. At a glance, the vectorial Dahu pseudo- R= Nﬁ (18)
distance shows equivalent results to the MST-MBD method and Niz dintra

lower results than the Fast-MBD and Water ow-MBD meth- Ne

ods. However, the dierences between these methods are miny which N, andN, are respectively the numbers of inter- and
imal. In the DUTOMRON dataset, the Dahu pseudo-distancgntra-distances.
achieves bettef -measures than other methods. Especially, in

the MSRA dataset, the Dahu pseudo-distance and MB-based , o . .
. . Table 3. A comparison of ratio of inter- and intra-distances between the
methods can achieve a high value @32

Dahu pseudo-distance and other MB-based methods.

Evaluation Using EM distance. For the EMD, the Fast-MBD ’ Dataset ‘ MST-MBD | Water ow-MBD ‘ Dahu ‘
and the Water ow-MBD methods achieve similar results in all ECSSD 178 136 1404
datasets, whereas the Dahu pseudo-distance gives comparable pagca| s 1.324 1.398 1.448
results with the MST-MBD method, and slightly lower results DUTOMRON 1.341 1.432 1.483
than the Fast-MBD and the Water ow-MBD methods but here MRSA 1.784 1.997 1.992

again, the dierence is rather low.

Some example images are given in Fig. 9. In these images, ) , o

the backgrounds are not homogeneous like in the scene of the " Table 3, the ratio of the Dahu pseudo-distance is higher
sky, the eld of grass or even the sofa image. The Dahu pseud&han the one of the MB-based distances in all datasets. It means
distance seems to work better in these cases and achieves HB@t the Dahu pseudo-distance is more contrasted than the MB-
ter performance than the MB-based distances. The tree sed distances. We can give an intuition of this result. Dur-
shapes properties and the insertion of the inter-pixels betwedR9 the front propagation process while constructing the tree of
the neighbor pixels allow the Dahu pseudo-distance to get the"aPes, the pixel can pass through the inter-pixels. As a con-
lower value compared to the MB-based distances. Additionally>€duence, the Dahu pseudo-distance tends to decrease its path
each node on the tree of shapes is set at the median value of §fSt Petween pixels in the same background while retaining the

the pixels in the node, which reduces the impact of noise in th§ontrast between objects and background. It leads to an in-
color images. In the next section, we will explore this problemcrease of the ratio of the inter- and intra-distances of the Dahu

in greater detail. pseudo-distance.

5.2. E ciency and robustness of the algorithm 5'2'2_' Robl_Jstness to nois_e )
This section shows the impact of noise on the Dahu pseudo-

In this section, we investigate the abiI_ity to distinguish objectdistance and MB-based distances. An example image is chosen
and background of the Dahu pseudo-distance. We also analyﬁgFig. 10 where two markens, andp, (5 5 pixels) are set in

the_ nqise S“"?‘b”“y O.f the vectorial Dahu pseudo-distance Wheﬂw background and another markgris placed inside the ob-

noise in the image increases. ject. A zero mean Gaussian noise is added to the image with
. o ) the respective variance values: 0.0001, 0.001, 0.01, 0.1 and

5.2.1. Ability to distinguish object and background 0.5. One hundred noisy images are generated for each value

We analyze here the ability to separate the object from thes yariance. The three markers are xed for the entire exper-
background. To do so, we measure theesience between the jment. We observe here the inter-distaniéps ; ps) and intra-

Dahu pseudo-distance and the MB-based d'Stances_(MST'_MBQistanced(pl; p2) during the test of the Dahu pseudo-distance
and Water ow-MBD) between two random markers in the im- 5 the MB-based one.

age by using the ratio between the inter-distance (the distance

from a marker outside the object to a marker inside the object) The results of the experiments are presented in Fig. 11 with
and the intra-distance (the distance from two markers inside th&€ mean values as well as the associated con dence intervals.
object). We cannot include Fast-MBD in this comparison beJn both Fig. 11(a) and Fig. 11(b), we can see the evolution of

cause the Fast-MBD (see Zhang et al. (2015)) method worke Dahu pseudo-distance and other MB-based distances.' The
only when all the seed pixels are in the boundary of the imageMST-MBD and Water ow-MBD both increase when the vari-

] ) ance of noise increases. Especially when the noise variance is
We randomly create 100 markers in the image and sequetkigh, the di erence between inter- and intra-distances of MST-

tially compute the distance between two markers. The Dahwgp and Water ow-MBD is minimal, whereas the ratio of
pseudo-distance between two markirend X° is computed  jnter- and intra-distances of the Dahu pseudo-distance remains
this way: more stable. This experiment shows that the vectorial Dahu
DAHU /. e oAUre. O\ pseudo-distance is robust to noise variations. This property is
o6 XY = erz%r;r;g(’] Ay 0 X: (17) important for many real-world applications.



Fig. 10. An example image to investigate noise stability of the Dahu pseudo-

distance and MB-based distance. The pointp; and p, belong to the back-
ground, when ps is inside the object (this picture comes from the MSRA
dataset (see Cheng et al. (2015))).

(a) Inter-distance

(b) Intra-distance

Fig. 11. Stability of the inter- and intra-distances using the vectorial Dahu
pseudo-distance or other MB-based methods against Gaussian noise.

5.3. Speed performance

15

dimension is 300 pixels). Our method is implemented #+C

The execution time is illustrated in Fig. 12 with means and
con dence intervals. The construction of our tree of shapes is
based on the max-tree algorithm which is designed in Carlinet
et al. (2018). The whole process is linear on average (and quasi-
linear at worst). The computation of the ToS runs at about 20
FPS when used on grayscale images, whereas it takes about 1
second to construct the MToS of the color image. Although the
computation of the MToS is longer than the ToS, the vectorial
Dahu pseudo-distance achieves better performances as we pre-
sented in Section 5.1.1. Depending on the application, we can
choose either the ToS or MToS to compute the Dahu pseudo-
distance. On the other hand, the construction of the MST is fast
(30 FPS) and easy to implement. However, this method is sen-
sitive to the impact of noise and usually does not provide good
results in this case.

Fig. 12. Execution time (in milliseconds) to compute numerous distances
between two points using the (pseudo-)distances presented in this paper.

As we can see in this gure, there is another convenient point
of the Dahu pseudo-distance. For a small number of distances,
the Water ow-MBD has an advantage compared to the vecto-
rial Dahu pseudo-distance. However, when the number of dis-
tances increases, the Dahu pseudo-distance and the MST-MBD
are much faster than the Water ow-MBD. It can be explained
by the fact that the Dahu pseudo-distance and the MST-MBD
take a xed time to construct the tree, but when the tree is com-
puted, the time to compute the distances is extremely fast thanks
to the fast search of the nodes corresponding to the points in this
tree. This is a huge advantage for some applications.

6. Applications

The main use of the Dahu pseudo-distance is visual saliency
detection, which is considered as an intermediary step for var-
ious applications such as object detection, object segmentation

In this section, we measure the time necessary to computnd tracking. The visual saliency detection is carefully inves-
numerous distances between two points using the Dahu pseudigated in the previous section. In this section, we demonstrate
distance and other MB-based distances. The experiment is inthe ability of the Dahu pseudo-distance in other applications.
plemented between 100, 1000, 10000 and 100000 pairs of piXirst, we present the shortest path nding application, which
els on 20 tested images. The evaluation is conducted usingis a direct application of the extension of the Dahu pseudo-
2.6 GHz CPU with 8GB of RAM. The size of the test image distance taking into account the spatial information in the im-
is the same as used in the previous experiment (the maximuage. Secondly, the Dahu pseudo-distance is applied to segment



16

Fig. 13. Shortest path nding in images. The input images and the end points (depicted in red) of the path we want to nd are shown on each picture.
Results are given for Dahu pseudo-distance, Water ow-MBD and MST-MBD. Images are extracted from Holsa and Sojka (2017) and from Vincent
(1998).

the white matter region in multi-modal medical images. In theDahu pseudo-distance and Water ow-MBD give satisfying re-
last application, we exploit the Dahu pseudo-distance to segsults while the MST-MBD is sensitive to noise and to blurring
ment objects in satellite images to validate the ability of the(its shortest path is deviated from the blood vessel).

Dah -di Iti- i . - . :
ahu pseudo-distance on multi-spectral images Similarly, in the last example (see Fig. 13, column 4), the

. markers are placed on the glass ber. The image is quite
6.1. Shortest path nding blurred, and the intensities of pixels along the ber are vary-

In this section, we validate the shortest path nding applica-N9: Some parts of the ber are darker than other parts. How-
tion which is presented in Section 4.3. To do that, we compar&Ve": both the Water ow-MBD and the Dahu pseudo-distance

the shortest paths found by the Dahu pseudo-distance and by thlll nd the shortest path that follows the ber.

other MB-based distances. Tested images, which are extractedo conclude, the Dahu pseudo-distance achieves a better per-

from Vincent (1998) and from Hoka and Sojka (2017) such formance than the other MB-based pseudo-distances in this
as a noisy synthetic image, a map image, a retinal photograpsgntext.

and a thin glass ber are illustrated in Fig. 13.

In the synthetic spiral image (see Fig. 13, column 1), there ar@-2- _Dahu pseudo-distance on multimodal and multispectral
two parts: the spiral and the background. We can see that the ~'Mages
shortest path provided by the Dahu pseudo-distance is “shorter” Multivariate images are widely used in various applica-
than the ones provided by the other MB-based distances. Thins, ranging from medical imagery to satellite remote sens-
two chosen markers are in the background, and the shortest paty. Multivariate can designate a multi-spectral, multi-modal or
between them based on our distance, follows the shape of thaulti-source image which corresponds to a set of image chan-
spiral as we expected. nels. A color image is just a special case of multivariate im-
- . . age. In this section, we present the application of the vecto-
Similarly to the map image (Fig. 13, column 2), the goal riagll Dahu pseudo-distancg in muIti-moggl medical and multi-

Is to nd the shortest path connecting two points located on ectral satellite images. We use the same strategy to handle
the sea near the .coa.st. The shortest path bas<_—:~d on the D%f%m, which is illustrated in Fig. 14. The method begins with
pseudo-distance is still better than the ones using other MB;

based pseudo-distances the construction of the MToS. Then we put markers in the im-
P ' age and compute a distance map from these markers based on
In the retinal image (Fig. 13, column 3), the two chosenthe Dahu pseudo-distance. Finally, we use simple thresholding
markers are placed on a blood vessel. As demonstrated, tf@ segment the object in the image.
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Fig. 14. A scheme for object segmentation on multimodahultispectral images.

(@) T1 (b) T2-FLAIR (c) Distance map (d) Segmentation (e) GT

Fig. 15. White matter segmentation using the vectorial Dahu pseudo-distance. Images are taken from Mendrik et al. (2015). As we can observe on the
segmentations (see Sub gureéd)) and on the ground truths (see Sub gures(e)), the white matter has been well segmented thanks to the vectorial Dahu
pseudo-distance.

6.2.1. Multimodal medical images this experiment.
Multi-modal images are becoming increasingly common in
diagnosis and treatment planning (see MBdnmat et al.  6.2.2. Satellite multi-spectral images

(2010)). They are de ned as a combination of imaging modali- - gver the past few years, the use of multi-spectral images
ties, which are acquired using dirent techniques such as com- a5 peen increasingly investigated in many applications, es-
puted tomography (CT), magnetic resonance imaging (MRI)pecially in target detection and recognition (see Bioucas-Dias
and positron emission tomography (PET). Multi-modal imagest 4|, (2013)). Multi-spectral images collect information from
are also used to overcome the limitations induced by speci ¢ acpndreds of spectrum bands, thus providing a powerful tool to
tivities of each individual technique. In this subsection, we apyjiscriminate di erent objects. Similarly to the usage of the vec-
plied the vectorial Dahu pseudo-distance to segment the whigyja| pahu pseudo-distance in the previous section, we employ
maitter in 3D brain MR images. the vectorial Dahu pseudo-distance to segment object regions

We consider two images: the T1 (Fig. 15(a)) and the T2Jn the image.
FLAIR slice (Fig. 15(b)) as inputs of our experiment. Then, We apply our method on the Pavia University dataset

we construct the.MToS on the_se images to get the mt!t“a' 'n(see Licciardi et al. (2009)). It consists of 103 images which
format|on from Q' erent mach!nes. A marker (5 X 5 p|?<els) correspond each to a spectral channel. The dataset has a size
IS put 0_” the white matter region to compute a Dahu d'StanC‘af 610*340 pixels, contains nine classes which represent trees,
map (Fig. 1.5(?’))' We_ rst remark that the MToS PreseIves eadows, asphalt, etc. The images are pre-processed with a
Fhe geom_etrlc information of the two channels and mixes thenﬁ.C.AaIgorithm (see Jollie (1986)) to reduce the correlation
Ina sensible way. We fu_rther observg that the distance ma, mong the bands. This algorithm also selects the best bands
gives low values to the white matter region. A simple thresholg, object detection. This pre-processing relies on the fact that

memo‘?‘ is used to segment the white matter region in thg 'mﬁeighbor bands of multi-spectral images are highly correlated
age (Fig. 15(d)). As can be seen, our method not only achieveg 1 tain mutual information about the object.
good segmentation results compared to the ground truth image,

but the vectorial Dahu pseudo-distance proves to beent for In our case, we choose the rst 5 channel components. As
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(a) C1 (b) C2 () C3 (d) ca (e) C5 ) GT

(g) Distance map  (h) Segmentation (i) Distance map () Segmentation (k) Distance map  (I) Segmentation

Fig. 16. Object segmentation on multispectral images. Objects are manually selected with a marker (in red in pictures). Images C1-C5 are extracted by
using a principal component analysis (PCA) algorithm.

we can see in Fig. 16, some objects clearly appear in some im- We have further demonstrated the improvement induced by
ages but not in the others. The MToS is then constructed othis new vectorial Dahu pseudo-distance, since we have shown
these images. We put some markers in the image to computkat it can handle multimodal and multispectral images by test-
the distance map. Then a simple threshold is used to segmeing it on multimodal medical images and multi-spectral satellite
the object in the image. As we can see in Fig. 16, our methoé@mages.

can segment the objects in the image with high accuracy, for in-
stance, the painted metal sheets, the bitumen, and self-blockin
bricks classes. These results demonstrate the robustness of
vectorial Dahu pseudo-distance in this context.

Another advantage of our new vectorial version is that it
%mes at almost no additional cost. Thanks to a clever represen-
aﬁon of images, the multivariate tree of shapes, the distance is
guasi instantaneous to compute (and the tree can be computed
in a quasi linear time with respect to the number of pixels of the
7. Conclusions and perspectives images). It is then possible to use it in real time.

In this paper, we have studied the Dahu pseudo-distance In the future, we plan to use the vectorial Dahu pseudo-
and have presented multiple improvements. First, we have irdistance in some applications like automatic object detection
troduced a vectorial extension capable of dealing with multi-and interactive segmentation. Furthermore, we want to investi-
channels images. Obviously, this vectorial Dahu pseudogate the case of embedded environments.
distance processes color images which is already a great im-
provement. However, it is also not restricted to three channel
images. Second, we have improved the Dahu pseudo-distanc
by combining the pseudo-distance with information on the spa-
tial domain of the images. Such an improvement opens ne
areas of applications, in competition with the commonly use
geodesic distance
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