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Abstract

Most contemporary supervised image segmentation methods do not preserve the ini-
tial topology of the given input (like the closeness of the contours). One can generally
remark that edge points have been inserted or removed when the binary prediction and
the ground truth are compared. This can be critical when accurate localization of multiple
interconnected objects is required. In this paper, we present a new loss function, called,
Boundary-Aware loss (BALoss), based on the Minimum Barrier Distance (MBD) cut al-
gorithm. Itis able to locate what we call the leakage pixels and to encode the boundary in-
formation coming from the given ground truth. Thanks to this adapted loss, we are able to
significantly refine the quality of the predicted boundaries during the learning procedure.
Furthermore, our loss function is differentiable and can be applied to any kind of neural
network used in image processing. We apply this loss function on the standard U-Net and
DC U-Net on Electron Microscopy datasets. They are well-known to be challenging due
to their high noise level and to the close or even connected objects covering the image
space. Our segmentation performance, in terms of Variation of Information (VOI) and
Adapted Rank Index (ARI), are very promising and lead to ~15% better scores of VOI
and ~5% better scores of ARI than the state-of-the-art. The code of boundary-awareness
loss is freely available at https://github.com/onvungocminh/MBD_BAL

1 Introduction

Image segmentation is one of the most fundamental building blocks in the field of computer
vision and pattern recognition [36, 42, 45, 48]. From a graph theory perspective, image
segmentation corresponds to the simultaneous partitioning and labeling of all pixels in the
image [4]. Learning the global structure of the image is in particular mandatory to maintain
the connection between pixels on the boundaries of the regions. Such borders are of superior
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Figure 1: Importance of broken connection restoration for image segmentation and the topo-
logical correction of our method. (a) Neuron image. (b) U-Net boundary prediction [48]. (c)
Resulting segmentation [48]. A leakage position leads to a confusion between regions. (d)
Boundary prediction with our topological correction method. (e) Final segmentation.

importance in the case of dense image segmentation and multiple instances [46]: (i) objects
share the information of contours, and (ii) erroneous or incomplete borders are detrimental
for instance retrieval. In biomedical images, correctly delineated instances (membranes,
vessels) are essential to provide accurate structure qualification in order to count the right
number of instances for the medical usage [5, 12, 17, 60, 62].

Contemporary deep image segmentation methods can efficiently extract and combine
deep features to achieve satisfactory per-pixel level accuracy [39]. However, they are prone
to fail in recovering thin connections, finer details of structures, accurate location of bor-
ders [13], and subsequently the correct topology of images. The issue of broken pixels in the
borders does not significantly influence the correctness of detected pixels but might cause
catastrophic results, according to the number of instances (see Fig. 1(b) and 1(c)). While
a significant amount of literature has focused on boundary refinement [35, 63, 72], often
supported by semantic information [1, 10, 65, 70], few papers are dedicated to broken pixel
restoration. To tackle such an issue, [40] considers the continuity of selected features as a
loss function to connect pixels. However, this approach does not guarantee to get the correct
topology of the detected objects. Topology preservation and broken pixel refinement in the
boundary of the detected instances is alternatively addressed with the persistent homology
framework [21], again in a supervised way. However, their method is sensitive to noise, all
the broken pixels have not been fully located and the training procedure is slow. It requires
prior knowledge on the number of instances, impossible in object counting challenges.

In order to better localize the broken pixels while maintaining the close properties of the
objects, we propose a seeded deep-based segmentation approach where the object boundaries
can be extracted during training and eventually encourage the network to focus on boundary
structures. We do not make any assumption on the class, shape, and number of objects. The
seeded approach alleviates this common limitation. The overview of our method is illus-
trated in Fig. 2. Intuitively speaking, we treat the boundary prediction of the network as a
terrain function from which we extract all landscape ridges. We respectively consider each
seeded pixel inside or outside (deduced automatically from the ground truth) as the fore-
ground or background of its region. One common region-based boundary extraction strategy
consists in relying on graph-cut methods [11, 49]. However, they have a limitation that pro-
duces short-cutting segmentation that cuts across the interior of an object due to the boundary
term’s bias. Lately, a new distance metric, the Minimum Barrier Distance (MBD) [51, 68],
has shown to exhibit a rather limited sensitivity to noise, blur, and seed positions. It has been
successfully applied to salient object detection and object segmentation [14, 41, 55, 68]. In
this paper, we leverage the MBD information for identifying the boundary of the regions.
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To alleviate current limitations, we introduce the Boundary-Aware loss function (BALoss),
computed from the extracted boundaries, that penalizes the topologically-wrong pixels in
the initial boundary prediction image. In our implementation, the BALoss is coupled with
the binary cross-entropy loss to further refine the boundary details. The uniqueness of our
BALoss is that it allows propagating the boundary information for regulating the network be-
havior while keeping a similar network structure. To the best of our knowledge, our method
is the first one that addresses the boundary localization of instances for learning the struc-
ture of the image. We test our loss function on biomedical image (Electron Microscopy)
datasets, which are highly challenging with the high level of noise and the multiplicity of
interconnected objects. Training with the BALoss, the network performance is significantly
improved, especially on the region boundaries (see Fig. 1(d) and 1(e)).

Our contributions in this paper are two-fold: (i) We propose a new Boundary-Aware loss
function that comes along with a new seeded approach to correctly localize the boundaries of
regions. (ii) We prove that our loss function can be adapted in deep segmentation networks
and systematically improve the results of the network, with low sensitivity.

2 Related work

Image segmentation. Recently, various CNN-based segmentation methods have been pro-
posed and achieved high pixel-level accuracy [7, 8, 16, 19, 27, 36, 53]. In the application
of biomedical images, U-Net-based frameworks [37, 48, 73] consist of a contracting path
and an expansive path to integrate multi-level features to improve the accuracy of localiza-
tion yet without guarantee on topology preservation. Moreover, to increase the quality of
detected segmentation, the current research is mainly focusing on processing boundaries as
separated information, E.g., [34, 53, 66, 71] proposed a joint task framework combining
both semantic segmentation and semantic boundary detection. [54] extracted and refined
boundaries of instances by using a series of small boundary patches with higher image res-
olution. In [26, 29, 57], a boundary loss is proposed to measure the difference between the
segmented and the ground truth boundaries. Though additional border pixels can boost the
performance of segmentation results, those methods do not provide any information of the
pixels that are required to refine and maintain the topological properties of objects [21].
Pixel-connectivity-preserving segmentation. Conditional Random Field (CRF) and
Markov Random Field (MRF) are straightforward formalisms that involve neighboring pixel
relationships in the training procedure [43, 44, 58, 67]. Specific functions can be formulated
in order to preserve pixel connections or to include high-order cues (lines, object propos-
als, [38]). In [25, 64], the ConnNet proposed to learn and predict the pixel-pair connectivity
to group or connect pixels. The MALIS and MALA methods [17, 56] focus on the affinity
prediction based on maximin edges (it is a local comparison) so that it will ensure sufficiently
low maximin edges to obtain a good segmentation after threshold whereas our method is
to compute distance based on dynamics (which is global information). Furthermore, the
MALIS is computed on small patches due to the limited speed of the network and noise
level of the image, while our method can be applied to full-size images, which simplifies the
procedure. Moreover, the Mosin [40] and IterNet [33] proposed to use a multiple-iterations
framework to gradually improve the pixel connections in each iteration. Yet, these methods
do not have a strong guarantee to achieve closed contours for images.
Topology-preserving segmentation. However, pixel-wise loss or pixel connectivity
alone is not sufficient to capture the whole topological structure in the image [21]. To main-
tain the topological correctness of objects, [20] proposed to integrate topological signatures
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to deep neural networks and to learn a task-optimal representation during training. [21, 22]
designed topology-preserving losses based on persistent homology, which is differentiable
and can be applied to any end-to-end deep neural networks in segmentation tasks. Still,
training a neural network with these two losses does not solve the issues of border pixel
localization, sensitivity to image noise, and slow training speed.

Seeded image segmentation. Another strategy that maintains the topology properties
while partitioning the image is seeded image segmentation [12, 32, 50, 69]. This method
is first used in the classical version of the watershed algorithm [9]. In [11, 18, 49], several
multi-labeling image segmentation methods have been proposed to partition the image by us-
ing a random walker and graph-cut algorithms. However, these methods penalize segmented
boundary length, thereby leading to a shrinkage bias problem. [47] proposed alternatively
to combine the long-range information from the geodesic distance with edge information in
a graph-cut optimization framework. Still, this method only used low-level features that do
not correctly capture object boundaries. [61] proposed a learned watershed algorithm that
trains the altitude function together with subsequent region assignment decisions in a rein-
forcement learning [59] style. This strategy is however greedy in terms of training data and
computing time. In this paper, we keep the idea of seeded graph-cut based segmentation and
push the work further by using a differentiable loss function that can propagate the proper-
ties through the whole training process. We rely on the Minimum Barrier Distance for that
purpose.

3 Background

This section recalls the definition of the Minimum Barrier Distance (MBD) [51], which is
the cornerstone of our paper. An image is associated with a graph in which vertices represent
pixels on the image. Let @ = (..., ;, T;+1...) denote the path of pixels on the graph. Also,
the set of paths going from the vertex x’ to the vertex x is denoted by I1(x', x). The barrier
strength T of a path 7 in the given gray-level image u is defined as the dynamic distance
between the highest and lowest pixel values along the path:

= ) — mi ). 1
() = maxu(p;) — minu(p;) M

The Minimum Barrier Distance d ™® between two vertices x’ and x in u is then defined as
the minimum of the barrier strengths of all the paths between two given vertices:

MB / — N ” . 2
d,"(x', x) EJSZE,@T(”) 2

It is common to derive a distance map from the MBD. Given a minimum barrier strength
function and a set X of seed points, a distance map S “* from every point x’ of the image u
to the set X of seed points can be computed by:

Sy (X, X) = mind"™ (¥, x). 3)
xeX
In the next section, we propose to use this distance to recover the object boundaries in

the image, as a basis to compute our Boundary-Aware loss (BALoss) function.

4 Proposed method
4.1 Overview of the method

Our method is a seeded two-step approach (Fig. 2), in which the object boundaries can be
extracted during training and eventually encourage the network to focus in boundary struc-
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Ground truth Set of seeds MBD cut

Figure 2: Overview of our approach. A set of seed points (red points) are placed from
the ground truth. A boundary prediction image is the output of the CNN network (step A).
Leakage positions are highlighted inside the red squares. We locate the boundaries of regions
by using the MBD cut algorithm (blue lines), then compute the BALoss function (step B).

tures. To train the neural network, we are using the combination of the binary cross-entropy
(BCE) and the BALoss. First, a convolutional neural network (CNN) predicts a boundary
likelihood map from the original image. Secondly, the BALoss is computed from the ex-
tracted boundaries of regions by using the MBD-cut with a seed node provided inside each
connected component of the label ground truth image. These seeds are the points that have
the maximum Euclidean distance value w.r.t the boundary of each connected component. We
respectively consider the inside/outside seeds of the region as foreground/background seeds,
then compute a foreground/background distance map on the prediction image thanks to the
MBD distance. Through comparing the values on these two distance maps, the boundaries
of the regions are identified and the BALoss is derived by computing the pixel-wise error
between the extracted boundaries and the ground truth image. The advantage of our BALoss
function is that it helps the network to focus on important broken missing pixels on each
region, thus preserving the topological structure of the image, without any class information.

4.2 MBD-cut

The boundaries of the regions are extracted using the MBD-cut. This preserves the topol-
ogy of the image and measures the quality of the segmentation. MBD distance has a low
sensitivity to noise, blur, and seed positions [51, 68]. In our approach, we push the idea of
seeded graph-cut based segmentation further by using the high-level features computed from
a convolutional neural network.

We denote the likelihood prediction map as u, and the ground truth label image as S. We
respectively consider the seed point x; inside the region S; as the foreground seed and all the
seeds x; of the neighbor connected components S; as the background seeds. We respectively
compute the MBD distance map from the background/foreground seeds by using the front
propagation approach [23] (see Eq. 3). The idea behind is that we consider the seed pixels
as sources of water, the water can flow from source pixels to other pixels with a different
priority which is determined by the MBD cost. We use the priority queue to keep track of
the order of pixels to propagate the distance value to every pixel in the image (lower cost
means earlier flow). The algorithm stops when all pixels in the image were scrutinized. The
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Figure 3: (a) Prediction image from CNN network (green/red points are fore-
ground/background seeds). (b) Background MBD distance map from the seed of neighbor
regions. (c) Foreground MBD distance map and the MBD cut (pink contour). (d) The den-
sity map represents the values of the prediction image. Z-axis represents the value of pixels
the prediction image. Leakage position is shown inside the highlight square.

complexity of our front propagation algorithm is O(nlogn), where n is the number of pixels
in the image. Our method is efficiently computed, so that we can get the MBD distance map
immediately from the set of the foreground and background seed points. The background/
foreground MBD distance maps are illustrated in Fig. 3(b) and 3(c). After computing these
maps, we are able to label the pixels as background or foreground based on their distances to
the seed set. We also recover the boundary of the region C; (pink contour in Fig. 3(d)). The
segmented boundary is pivotal in computing the Boundary-Aware loss function.

4.3 Training using the Boundary-Aware loss

Most CNN-based segmentation networks use the binary cross-entropy (BCE) as a loss func-
tion. It is defined as a measure of the difference between two probability distributions for a
given random variable or set of events [24]. BCE is known to be adapted to measure bound-
ary shifts [10, 31]. Here, we present a new BAL function to enhance segmentation results
and detail how to implement it. The BAL function is computed from the values of the binary
extracted contour C; of the region S; using the MBD-cut. The total loss is the sum of the
BALoss for every region:

Lpar(u,GT) =Y BCE(uo0C;,GT 0C;), )
i€N
where u represents the likelihood prediction map, GT is the boundary ground truth image,
and o is the Hadamard product.

Our loss function measures the segmentation quality for each region. We target to check
if there are leakage positions on the boundaries, thereby ensuring the topological structure
in the image. A high value of the Boundary-Aware loss corresponds to many broken con-
nections. When the loss function Lgyy, is zero, the prediction image is exactly the same as
the ground truth image. The pixel-wise binary cross-entropy remains crucial to maintain the
global information of every pixel in the image.

Liotat = Lpce(u,GT) + o Lpar (u, GT), (5)

where « tunes the trade-off between both losses.
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Method [ ARI T [ VoI | | CREMIscore | |
MALIS [56] 0.6136 (£0.0185) | 2.6983 (+0.1474) | 1.0210 (+0.1033)
MALA [17] 0.7663 (£0.0093) | 2.4138 (+£0.0843) | 0.7510 (+0.0684)
Mosin [40] 0.9185 (£0.0125) | 0.6278 (+£0.0434) | 0.2262 (+0.0406)
3 Iternet [33] 0.9240 (£0.0390) | 0.7147 (£0.0208) | 0.2330 (+0.0339)
2 Segfix [66] 0.7416 (£0.0098) | 1.9595 (£0.1122) | 0.7115 (£0.0854)
. U-Net + Dice [52] | 0.8929 (£0.0094) | 0.4904 (£0.0650) | 0.2291 (£0.0582)
Z || U-Net+Lovasz[6] | 0.8935(+0.0065) | 0.4569 (+0.0175) | 0.2205 (+0.0159)
& U-Net + BL [28] 0.8466 (£0.0285) | 0.5279 (£0.0543) | 0.2845 (£0.0484)
© || U-Net + Topoloss [21] | 0.9257 (:0.0012) | 0.8021 (:0.0168) | 0.2441 (:0.0156)
DC U-Net [37] 0.9184 (£0.0212) | 0.7215 (£0.0621) | 0.2426 (+0.0591)
DC U-Net + BAL 0.9321 (£0.0026) | 0.6647 (+£0.0552) | 0.2124 (+0.0515)
U-Net + wBCE [48] | 0.9246 (£0.0023) | 0.7562 (+0.0238) | 0.2388 (+0.0221)
U-Net + BAL 0.9366 (£0.0064) | 0.6893 (+0.0102) | 0.2090 (+0.0105)
MALIS [56] 0.6399 (£0.0178) | 2.385(x£0.119) [ 0.9267 (£0.0872)
MALA [17] 0.6239 (£0.0954) | 3.0663 (+0.3966) | 1.0738 (+0.3850)
Mosin [40] 0.7833 (£0.0128) | 1.1332(£0.0799) | 0.4955 (+0.0643)
- Iternet [33] 0.751 (+£0.0379) | 1.4614 (+0.1332) | 0.6032 (+0.1144)
4 Segfix [66] 0.7461 (£0.0217) | 1.5555 (£0.0747) | 0.6284 (+0.0652)
'ﬁ U-Net + Dice [52] | 0.7804 (£0.0348) [ 1.1325 (£0.0897) | 0.4986 (£0.0804)
= || U-Net+Lovasz[6] | 0.7961 (£0.0088) | 1.3239 (0.0640) | 0.5195 (40.0523)
2 U-Net + BL [28] 0.7621 (£0.0336) | 1.4576 (+£0.2064) | 0.5888 (+0.1649)
™ || U-Net + Topoloss [21] | 0.7944 (:0.0246) | 1.1438 (0.1860) | 0.4849 (&0.1505)
DC U-Net [37] 0.7518 (£0.0404) | 1.3736 (£0.2432) | 0.5839 (£0.1913)
DC U-Net +BAL 0.7983 (+0.0312) | 1.0101 (+0.0567) | 0.4514 (+0.0552)
U-Net+ wBCE [48] | 0.7203 (£0.0417) | 1.5644 (£0.0423) | 0.6615 (40.0720)
U-Net + BAL 0.8138 (+0.0191) | 1.0557 (+0.0257) | 0.4433 (+0.0290)
MALIS [56] 0.5355 (£0.0187) [ 3.5324(£0.0995) | 1.2809 (+0.0848)
MALA [17] 0.7713 (£ 0.046) | 3.4541 (+£0.5073) | 0.8887 (40.4223)
Mosin [40] 0.7504 (£0.0403) | 1.5018 (£0.1379) | 0.6122 (+0.1200)
- Iternet [33] 0.8686 (0.0014) | 1.5856 (+£0.1412) | 0.4564 (+0.1226)
2 Segfix [66] 0.7995 (£0.0356) | 2.4555 (£0.1452) | 0.7016 (+0.1454)
§ U-Net + Dice [52] | 0.8078 (£0.0268) | 1.2030 (+0.1436) | 0.4808 (0.1205)
o U-Net + Lovasz [6] | 0.7993 (+0.0184) | 1.3103 (0.0953) | 0.5128 (£0.0799)
a U-Net + BL [28] 0.6805 (+0.1048) | 1.6832 (+0.4705) | 0.7333 (+0.3688)
™ || _U-Net + Topoloss [21] | 0.8864 (0.0265) | 1.4623 (£0.0493) | 0.4076 (+0.0584)
DC U-Net [37] 0.7336 (£0.0137) | 2.0900 (£0.1748) | 0.7462 (+0.1314)
DC U-Net + BAL 0.8061 (+0.0096) | 1.5523 (+0.2235) | 0.5486 (+0.1808)
U-Net+ wBCE [48] | 0.8919 (+£0.0164) | 1.4270 (+0.1284) | 0.3927 (40.1169)
U-Net + BAL 0.9023 (£0.0237) | 1.3761 (+0.0753) | 0.3666 (+0.0754)

Table 1: Quantitative results for different models on ISBI 13, ISBI 12 and CREMI datasets.
Best scores are underlined while performance improvements brought by BAL are in bold.

S Experiments

Our evaluation of the BAL performance is two-fold: an ablation study to assess its relevance
and a comparison with current state-of-the-art segmentation methods.

Datasets. In our experiments, we use three highly challenging neuron Electron Mi-
croscopy Images: ISBI12 [3], ISBI13 [2], and CREMI [15]. The ISBI12 EM Segmentation
Challenge [3] is a neuron segmentation challenge that contains 30 images which have size
512x512, ISBI13 [2] consists of 100 images with larger size 1024 x1024. For the CREMI
dataset [15], we test on volume A which has 125 slices with size 1250x 1250.

Setting. We use a 3-fold cross-validation. To train the neural network, Adam [30] opti-
mization algorithm is used with a learning rate of 10~#, and an early-stop mechanism to stop
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(a) BCE likelihood map

(b) BCE+BAL map

(c) Improvement

Figure 4: Positive impact of our Bundary-Aware loss function. Reions in the red squares
demonstrate the closing action on the boundaries of the regions. The magnitude of the im-
provement is illustrated as from blue to red color.

the training when the validation loss is no longer decreasing during 15 epochs. « (Eq. 5) is
set to a value of 0.1. We noted a limited sensitivity.

Evaluation metrics. The final goal of the work is to perform (dense) instance segmenta-
tion of cells, enabling to count them accurately for instances. The partition-based measures
for instance segmentation provide a clear insight into the performance of the target appli-
cations. The creators of these three datasets suggest to use of the Variation of Information
(VOI), Adapted Rand Index (ARI), and CREMI-score to facilitate the comparison with exist-
ing and future approaches. In detail, ARI is the maximal F-score of the foreground-restricted
Rand index (a measure of similarity between two clusters). This version of the Rand index
excludes the zero component of the original labels (background pixels of the ground truth).
VOI is a measure of the distance between two clusters, closely related to mutual information.
VOI is used to measure split and merge errors of the segmentation results. CREMI-score is
the geometric mean of Adapted Rand Error (ARAND) and VOI scores, where ARAND =
1-ARL

5.1 Ablation study

We show the impact of our BALoss, based on the improvement of the likelihood map pre-
dicted with a standard U-Net on the CREMI dataset [15]. We respectively predict the like-
lihood maps with and without the BALoss from the same pre-trained weights, then compute
the difference between both. The impacts of the BALoss are illustrated in Fig. 4. We can
see that the improvements concentrate mostly on the boundaries of regions. Since it is clear
that our BALoss function penalizes the broken connection on the boundaries, the quality of
boundaries increases in every training epoch. Further, the positive results are demonstrated
in Tab. 1. It shows that BALoss can encourage to refine the boundary of regions, which leads
to a significant improvement of the evaluation scores (ARI and VOI scores).
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(a) Image (b) U-Net (c) Ours (d) Recall (U-Net) (e) Recall (Ours)

Figure 5: Qualitative results of our proposed method compared to a standard U-Net. (a)
The original image. (b), (c) The segmentation results of U-Net and U-Net + BAL. Regions
in the red squares demonstrate the closing action on the boundaries of the regions. (d), (e)
The recall maps of U-Net and U-Net + BAL. The scale from bad to good segmentation is
illustrated as from red to blue color.

5.2 Comparison with state-of-the-art methods

We compare our method with various open-sources state-of-the-art segmentation models
(MALIS [56], MALA [17], U-Net [48], DC U-Net [37], Mosin [40], Iternet [33] and differ-
ent loss functions ( Dice [52], Lovasz Softmax [6], Boundary Loss [28] and Topoloss [21]).

Tab.1 shows the quantitative results for three different neuron image datasets, ISBI12,
ISBI13, and CREMI. Our first observation is, our BALoss outperforms the current state-
of-the-art models for maintaining the topology-correctness in segmentation tasks (the
first block in the table). Our method (U-Net + BAL) outperforms the best score of these
models, improving +0.0172 (compared to Mosin [40] in CREMI), +0.0522 (compared to
Mosin [40] in ISBI2012) and +0.0898 (compared to Iternet [33] in ISBI2013) in CREMI-
score. According to MALIS and MALA results, it is worth noting that the high noise levels
usually exist in biomedical images, the maximum affinity models for predicting every pair
of pixels required to be highly tuned. Comparatively, our method correctly localizes pixels
of the weak edges and enforces the network to correct pixels in the boundary (due to the
implicit denoting which occurs during the training procedure). Nonetheless, the complexity
of the affinity matrix between pixels is expensive O(n?) where our method is in O(nlog(n)).
We also test the semantic segmentation method Segfix (which achieves state-of-the-art in
natural images application), however, it is not designed to recover thin connections, finer
details of structures such as the location of boundaries (membranes and tiny neurons). Our
second observation is that BALoss has a better performance compared to existing loss
functions for topology-preserving purposes (the second block in the table). The U-Net
+ BAL has the highest performance in CREMI-score, boosting up +0.0115 (compared to
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Figure 6: ARI w.r.t segmentation thresholds. Our method achieves better the results across
all threshold values.

U-Net + Lovasz [6] in CREMI), +0.0416 (compared to U-Net + Topoloss [21] in ISBI2012)
and +0.0410 (compared to U-Net + Topoloss [21] in ISBI2013). BALoss is model-agnostic
for any neural networks (the third block in the table). By applying BALoss into U-Net
and DC U-Net, the CREMI-score increases +0.0298 and +0.0302 in CREMI, +0.2182 and
+0.1325 in ISBI2012, +0.0261 and +0.1987 in ISBI12013, in original U-Net and DC U-Net
respectively. This confirms that the BALoss can potentially be applied in different neural
network architectures. Based on these observations, the common conclusion that can be
drawn for the three datasets is that our BALoss function improves the segmentation results in
the matter of the two topological correctness metrics (~5% in average for ARI and ~15%
in average for VOI). It is noteworthy that, especially for the ISBI12 dataset, our loss function
significantly enhances the segmentation results. To conclude, our BALoss function is able to
detect the leakage positions and refine boundaries, thereby improving segmentation results.

Fig. 5 shows qualitative results with and without the BAL function. We can see that
our method combined with U-Net is able to enhance the broken connections and leads to
more correct regions than with U-Net only. In particular, our BALoss successfully retrieves
more regions all over the images in each iteration. Our method exhibits more consistency in
terms of structure and topology and it is able to close contour regions in the image, hence
improving the segmentation results. More results are shown in the supplementary material.
We also investigate the relationships between ARI index and threshold values for likelihood
images. For each image, we binarize the corresponding likelihood map with nine different
values from 0.1 to 0.9 and compute the ARI index with different thresholds between the
prediction and the ground truth images (Fig. 6). We note that our methods get the better
area under the curve (AUC) compare to other methods. This is an advantage since the “best”
threshold remains unknown and is image-dependent.

6 Conclusions

In this paper, we propose a new Boundary-Aware loss function embedded into a seeded ap-
proach for the purpose of image segmentation. Our loss function, based on the Minimum
Barrier Distance cut algorithm is able to locate the object boundaries in the image and inte-
grate the boundary information into the neural network. Moreover, our loss function focuses
on penalizing the broken connections for each connected component, thereby recovering the
closed contours in the image. Furthermore, the loss can be adapted in deep segmentation
networks and systematically improve the results of the networks. Trained with the new loss
function, our framework outperforms state-of-the-art methods in a matter of Variation of
Information and Adapted Rand Index, with very limited parameter sensitivity.
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