
Project Report: Efficient dynamic type checking of
heterogeneous sequences

Jim Newton

May 12, 2016

Abstract

This report provides detailed background of our development of the rational type expres-
sion, concrete syntax, regular type expression, and a Common Lisp implementation which
allows the programmer to declarative express the types of heterogeneous sequences in a way
which is natural in the Common Lisp language. We present a brief theoretical background
in rational language theory, which facilitates the development of rational type expressions,
in particular the use of the Brzozowski derivative and deterministic automata to arrive at a
solution which can match a sequence in linear time. We illustrate the concept with several
motivating examples, and finally explain many details of its implementation.

1 Introduction
In Common Lisp a type is a set of (potential) values at a particular point of time during the
execution of a program[23]. Information about types, whether declared in the code (which is an
option available to the programmer) or inferred by the compiler, provides clues for the compiler
to exploit in making certain optimizations such as for performance, space (image size), safety or
debugability.[15] In addition, application programmers may make explicit use of types within the
logic of their programs, such as with typecase, typep, the etc.

One observed weakness of the Common Lisp type system relates to sequences. The Common
Lisp specification indeed allows the programmer great flexibility indicate a homogeneous type
for all the elements of a vector[23]. The following small code example shows the Common Lisp
notation for allocating a one dimensional array of 10 elements, each of which are integer, and a
one dimensional array of 256 elements each of which may be either a string or a number.

(make−array ’ (256) : element−type ’ (or s t r i n g number))

Two notable limitations are that there is no standardized way to specify heterogeneous types
for different elements of the vector, neither is there a standardized way to declare types for all the
elements of a list. See section 9.1 for a vain attempt.

We avoid making claims about the potential effectiveness of such type declarations from
the compiler’s perspective. Opinions differ as to what advantage compilers could make of this
information.[1] There would be numerous and obvious challenges posed by such an attempt. At
run-time, cons cells may be freely altered because Common Lisp does not provide read-only cons
cells. There is a large number of Common Lisp functions which are allowed to modify cons cells,
thus violating the proposed type constraints if left unchecked. Additionally, if declarations were
made about certain lists, and thereafter other lists are created (or modified) to share those tails,
it is not clear which information about the tails should be maintained.

Nevertheless, we do suggest that a declarative system to describe patterns of types within
sequences (vectors and lists) would have great utility for program logic and code readability.

We introduce the rational type expression as an abstract concept for describing such patterns
within sequences. The concept is envisioned to be intuitive to the user in that it is analogous to
patterns described by regular expressions.

1

Just as the characters of a string might be described by a rational expression such as (a ·b∗ ·c),
which intends to match strings such as "ac", "abc", and "abbbbc", the rational type expression
(string ·number∗ ·symbol) is intended to match the vector #("hello" 1 2 3 world) and the list
("hello" world). I.e., while rational expressions are intended to match character constituents of
strings according to character identity, rational type expressions are intended to match elements
of sequences by element type.

To this end we have implemented a lisp friendly syntax for denoting rational type expressions.
We call the lisp implementation a regular type expression. The syntax of the regular type expression
replaces the infix and post-fix operators in the rational type expression with prefix notation based
s-expressions. The regular type expression (:cat string (:0-* number) symbol) corresponds
to the rational type expression (string · number∗ · symbol). In addition, we have implemented
a Common Lisp parameterized type named rte, whose arguments are rational type expressions.
The members of such a type are all sequences (lists or vectors) matching the given regular type
expression. See Section 3.2 for more details about the syntax of regular type expressions.

As the lisp programmer would expect, the rte type may be used anywhere within a lisp
program that a type specifier is expected. For example:
(a s s e r t (typep my− l ist ’ (r t e (: cat mytype number))))

(de f type p l i s t ()
‘ (r t e (:0−∗ symbol t)))

(defun F (obj p l i s t l i s t−o f− i n t)
(d e c l a r e (type p l i s t p l i s t)

(type (and l i s t (r t e (:0−∗ i n t e g e r))) l i s t−o f− i n t))
(typecase obj

((r t e symbol (:0−∗ number))
(destructur ing−bind (name &r e s t numbers) obj

. . .))
((r t e symbol l i s t (:0−∗ s t r i n g))
(destructur ing−bind (name data &r e s t s t r i n g s) obj

. . .))))

See section 7.4 for more details of list destructuring.
In this article we summarize the theory of rational languages, including an algorithm to con-

struct a finite state machine which recognizes words in a given rational language. We extend the
theory to accommodate rational type expressions. We present the Common Lisp implementation
of regular type expressions including some analysis of their performance against other reasonable
approaches.

2 Theory of Rational Languages
An alphabet is defined as any finite set, the elements of which are defined as letters. We generally
denote the letters of an alphabet by Latin letter symbols. E.g., Σ = {a, b, c}.

Given an alphabet, Σ, a word of length n ∈ N is a sequence of n characters from the alphabet.
This can be denoted as a function mapping the set {1, 2, 3...n} to Σ. We denote the sequence in
an intuitive way, simply as a juxtaposed sequence of characters. For example aabc denotes the
following function aabc : {1, 2, 3, 4} → Σ

aabc(n) =

a if n = 1
a if n = 2
b if n = 3
c if n = 4

Note that there is a word of zero length, called the empty word. It is denoted ε. The empty
word is indeed a function ε : ∅ ⊂ N→ Σ.

A language is defined as a set of words; more specifically a language in Σ is a set of words each
of whose letters are in Σ. The set of all words of length one whose letters come from Σ is denoted

2

Σ1. The set of all possible words of finite length made up exclusively of letters from Σ is denoted
Σ∗. Also note that ε ∈ Σ∗ and Σ1 ⊂ Σ∗. Some languages have finite cardinally, while others have
countably infinite cardinally.

Examples of languages of Σ = {a, b} are ∅, Σ, {a, aa, aaa, aaaa}, and {ε, ab, aaba, ababbb, aaaabababbbb}.
If L is a language and u, v ∈ L, then we define the concatenation of u and v as the sequence

of letters comprising u followed immediately by the sequence of characters comprising v. The
concatenation of words is denoted either by a juxtaposition of symbols or using the · operator:
i.e., uv or equivalently u · v.

Precisely, if u : {1, 2, ..., n1} → Σ and v : {1, 2, ..., n2} → Σ, then u ·v : {1, 2, ..., (n1 +n2)} → Σ,
such that:

(u · v)(n) =

{
u(n) if 1 ≤ n ≤ n1

v(n− n1) if n1 + 1 ≤ n ≤ n1 + n2

If A and B are languages, then A ·B = {u · v | u ∈ A and v ∈ B}. As a special case, if A = B,
we denote A · A = A2. Similarly An = A · An−1. When it is unambiguous, we sometimes denote
A ·B simply as AB.

If A is a language, then A∗, the Kleene closure of A[11], denotes the set of words w such that
w ∈ An for some n ∈ N.

A rational language is defined by a recursive definition: The two sets ∅ and {ε} are rational
languages. For each letter of the alphabet, the singleton set containing the corresponding one
letter word is rational language. In addition to these base definitions, any set which is the union
or concatenation of a two rational languages is a rational language. The Kleene closure of a
rational language is a rational language.

Let LΣ denote the set of all rational languages.
Otherwise stated:

1. ∅ ∈ LΣ.

2. {ε} ∈ LΣ.

3. {a} ∈ LΣ ∀ a ∈ Σ1.

4. (A ∪B) ∈ LΣ ∀ A,B ∈ LΣ.

5. (A ·B) ∈ LΣ ∀ A,B ∈ LΣ.

6. A∗ ∈ LΣ ∀ A ∈ LΣ.

While not part of the definition as such, it can be proven that if A,B ∈ LΣ then A ∩B ∈ LΣ

and A \B ∈ LΣ[11].

2.1 Rational expressions
The definition of rational language given in section 2 provides a top-down mechanism for identifying
regular languages. I.e., languages are rational if they can be decomposed into other rational
languages via certain set operations such as union, intersection, and concatenation. Conversely,
new rational languages can be discovered by combining given rational languages in well defined
ways.

Another way to identify rational languages is a bottom-up approach. This approach is based
on the letters, rather than the sets. Rational expressions allow us to specify pattern based rules for
determining which words are in a given language. We will say that a rational expression generates
a language.

A rational expression is an algebraic expression, using the intuitive algebraic operators. A ra-
tional expression generates a language. The notation L = JrK, means that the rational expression,
r generates the language L.

3

We denote the set of all rational expressions as Erat.

J∅K = ∅ JεK = {ε} ∀a ∈ Σ1, JaK = {a}
Jr + sK = JrK ∪ JsK Jr∗K = JrK∗ JrsK = Jr · sK = JrK · JsK Jr ∩ sK = JrK ∩ JsK

This abuse of notation is commonplace in rational language theory. The same symbol a is used
to denote a letter, a ∈ Σ, a word of length one, a ∈ Σ1, and a rational expression, a s.t.JaK =
{a} ⊂ Σ∗. Analogously, the symbol ε is abused to denote both the empty word, ε ∈ Σ∗, and a
rational expression ε s.t. JεK = {ε} ⊂ Σ∗. Further, ∅ ⊂ Σ∗ denotes the empty language, and also
the rational expression, ∅ s.t. J∅K = ∅ ⊂ Σ∗.

It can be proven that the operations + and · are associative[11], which means that without
ambiguity we may write (a + b + c) and (a · b · c) omitting additional parentheses. However, we
must define a precedence order to give an unambiguous meaning to expressions such as a∗b+c ·d∗.
The precedence order from highest precedence to lowest is defined to be (∗, ·,+), so that a∗b+c ·d∗
unambiguously means ((a∗) · b) + (c · (d∗)).

As an example, let Σ ⊃ {a, b, c, d, e, f}; the rational expression a·(b·d∗+c·e∗)·f , or equivalently
a(bd∗+ce∗)f , can be understood to be a rational expression generating the set (language) of words
which start with exactly one a, end with exactly one f , and between the a and f is either exactly
one b followed by zero or more d’s or exactly one c followed by zero or more e’s.

The definition trivially implies that ∀r ∈ Erat ∃R ∈ LΣ | JrK = R ∈ LΣ. Conversely, ∀R ∈
LΣ∃r ∈ Erat | JrK = R.

2.2 Regular expressions
We would like to avoid confusion between the terms regular expression and rational expression.
We use the term regular expression to denote programmatic implementations such as provided
in grep and Perl. We assume the reader is familiar, at least with the usage of, UNIX based
regular expressions.

By contrast, we reserve the term rational expression to denote the algebraic expressions as
described in section 2.1.

There are regular expression libraries available for a wide variety of programming languages.
Each implementation uses different ASCII characters to denote the rational language operations,
often equipped with additional operations which are eventually reducible to the atomic operations
shown above, and whose inclusion in the implementation adds expressivity in terms of syntactic
sugar.

One of the oldest applications of regular expressions was in specifying the component of a
compiler called a “lexical analyzer”. The UNIX command lex allows the specification of tokens in
terms of regular expressions in UNIX style and associates code to be executed when such a token
is recognized[11].

The same style regular expressions are built into several standard UNIX utilities such as grep,
egrep, sed and several other programs. These implementations provide useful notations such as:

+ "ab+c", one or more times, is equivalent to a · b · b∗ · c

? "ab?c", zero or one time, is equivalent to a · (b+ ε) · c

. "a.c", any character, is equivalent to a · Σ1 · c

The PCRE (Perl Compatible Regular Expressions)[] library available in many languages such
as C, SKILL[5] represent the rational expression shown above as "a(bd*|cd*)f".

4

2.3 Finite Automata
Finite automata provide a computational model for implementing recognizers for rational languages[16].

A DFA (Non-Deterministic Finite Automaton) A is a 5-tuple A = (Σ, Q, I, F, δ) where:

Σ is an alphabet, (an alphabet is finite by definition)

Q is a finite set whose elements are called states

I ⊂ Q is a set whose elements are called initial states

F ⊂ Q is a set whose elements are called final states

δ ⊂ Q× Σ×Q is a set whose elements are called transitions.

I0 P1a

P2
b

P3

c

d

F1f

e

F2f

Figure 1: DFA recognizing the regular expression

Each transition can be denoted α
a−→ β for α, β ∈ Q and a ∈ Σ. Figure 1 shows a finite

automaton. It has initial state I = {I0}, final states F = {F1, F2}, and the following transitions:
δ = {I0

a−→ P1, P1
b−→ P2, P2

d−→ P2, P2
f−→ F1, P1

c−→ P3, P3
e−→ P3, P3

f−→ F1}.

2.4 Equivalence of Rational Expressions and Finite Automata
It has been proven[11] that the following statements are equivalent.

1. L ∈ LΣ

2. ∃r ∈ Erat | L = JrK

3. L ⊂ Σ∗ is recognizable by a finite automaton

In fact Figure 1 illustrates a finite automaton which recognizes the regular expression a(bd*+ce*)f.

2.5 The Rational Expression Derivative
There are several algorithms for generating a finite automaton from a given rational expression.
One very commonly used algorithm was inspired by Ken Thompson[26, 25] and involves straight-
forward pattern substitution. While this algorithm is easy to implement it has a serious limitation.
It is not able to easily express automata resulting from the intersection of two rational expressions.

Because of this limitation we have chosen to use the algorithm based on regular expression
derivatives. This algorithm was first presented in 1964 by Janusz Brzozowski[6]. While Brzo-
zowski’s result was applied to digital circuits, Scott Owens et al. [16] extended the principle to
generalize regular pattern recognition for sequences of characters.

Before defining the derivative, it is useful to first define nullability. A rational language is said
to be nullable if it contains the empty word; i.e., a language L ⊂ Σ∗ is nullable if ε ∈ L. Likewise,
a rational expression r is nullable if JrK nullable. As will be seen below, to calculate the derivative

5

of some rational expressions, we must calculate whether the rational expression is nullable. The
function ν (the Greek letter nu) calculates nullability. ν : Erat → {∅, ε} ⊂ Erat as defined according
to the recursive rules in Figure 2. If ν(r) = ε then r is nullable. If ν(r) = ∅ then r is not nullable.

ν(∅) = ∅ (1)
ν(ε) = ε (2)
ν(a) = ∅ ∀ a ∈ Σ (3)

ν(r + s) = ν(r) + ν(s) (4)
ν(r · s) = ν(r) ∩ ν(s) (5)

ν(r ∩ s) = ν(r) ∩ ν(s) (6)
ν(r∗) = ε (7)

Figure 2: Recursive rules defining the nullability function ν

Definition Given a language L ⊂ Σ∗ and a word w ∈ Σ∗, the derivative of L with respect to w
denoted ∂wL is a language ∂wL = {v | w · v ∈ L}.

For example. Suppose L = {this, that, those, fred}, then ∂thL = {is, at, ose}. Basically take
the words which start with the given prefix, and remove the prefix.

It can be proven that if L ∈ LΣ, then ∂wL ∈ LΣ ∀ w ∈ Σ∗[16]. However, it is not implied nor
is it true in general that ∂wL ⊂ L.

If JSK = L, and w ∈ L, then a derivative of S with respect to w is denoted ∂wS. Moreover,
∂wS ∈ Erat and J∂wSK = ∂wL. Otherwise stated, we can speak of either the derivative of the
language L or the derivative of a rational expression.

Given a rational expression, we would like to be able to calculate the rational expression
representing its derivative. To do this the reduction rules shown in Figure 3 can be recursively
applied.

∂a∅ = ∅ (8)
∂aε = ∅ (9)
∂aa = ε (10)
∂ab = ∅ for b 6= a (11)

∂a(r + s) = ∂ar + ∂as (12)
∂ar · s, if ν(r) = ∅ (13)

∂a(r · s) =

∂ar · s+ ∂as, if ν(r) = ε (14)
∂ar · s+ ν(r) · ∂as, in either case (15)

∂a(r ∩ s) = ∂ar ∩ ∂as (16)
∂a(r∗) = ∂ar · r∗ (17)
∂εr = r (18)

∂u·vr = ∂v(∂ur) (19)

Figure 3: Rules for the Brzozowski derivative

Note that (15) is useful for theoretical and hand calculation but is problematic for algorithmic
calculation. In the case that ν(r) is ∅, (15) is equivalent to (13), but warning, the calculation of

6

∂as may result in an infinite recursion. Thus, algorithmically, (13) and (14) should be used instead
of (15).

To compute the automaton corresponding to a rational expression[16]:

1. Start with an initial state labeled by the rational expression itself, S.

2. For each letter a ∈ Σ, we calculate ∂aS.

3. If there is not already a state labeled with the derivative, create one.

4. Create a transition S a−→ ∂aS.

5. Each state labeled with a nullable rational expression is a final state.

There are a couple of useful optimization steps.
If the derivative is ∅, there is really no reason to explicitly add the a null state to the automaton.

Doing so would clutter the graphical representation with arrows leading to this state.
It is not necessary that there be a 1:1 correspondence between the non-trivial derivatives and

the states. The problem is that reducing the rational expressions to a canonical form is a hard
problem, since many rational expressions may generate the same rational language. Even so, one
would expect there there might be one canonical reduced expression which could be arrived at given
a finite set of identities such as ∅+L = L = L+∅, ε ·L = L = L ·ε, (L∗)∗ = L∗, L+K = K+L, etc.
In fact, there is no finite set of identities which permits to deduce all identities between rational
expressions[18].

It suffices to allow the same derivative in two different algebraic forms to be represented by
multiple states as long as it is a reasonable number. There must be some reduction step in the
derivative calculation to limit the number of forms expressed, but the reduction need not actually
reduce every expression to a unique, canonical form.

3 Heterogeneous sequences in Common Lisp
The Common Lisp language supports heterogeneous sequences in the form of sequentially accessi-
ble lists and several arbitrarily accessible vectors. A sequence is an ordered collection of elements,
implemented as either a vector or a list [23]. The lisp reader recognizes syntax supporting several
types of sequence.
"a s t r i n g i s a sequence o f cha ra c t e r s "
(l i s t o f 9 e lements i n c l ud ing " symbols " " s t r i n g s and" a number)
#(vec to r o f 9 e lements i n c l ud ing " symbols " " s t r i n g s and" a number)

The Common Lisp function map iterates a given client function over the successive elements of
a sequence. When given first argument as nil, map ignores the return value of the client function.
Example usages of the map function.
(map n i l #’(lambda (char)

(pr inc (char−upcase char)))
"abcde")

(map n i l #’(lambda (num)
(pr inc (∗ num num)))

#(1 3 2 4 6))

3.1 Types in Common Lisp
As stated earlier, a type is a (possibly infinite) set of objects at a particular point of time during
the execution of a program [23]1. An object can belong to more than one type. Types are never

1In Common Lisp, types and functions may be redefined. Also an object of a particular class may be victim
to the change-class function. Both of these situations as well as several others may cause a type to change its
members while a program is running.

7

explicitly represented as objects by Common Lisp. Instead, they are referred to indirectly by the
use of type specifiers, which are objects that denote types.

New types can be defined using deftype, defstruct, defclass, and define-condition.
But type specifiers indicating compositional types are often used on their own, such as in the
expression (typep x ’(or string (eql 42))), which evaluates to true either if x is a string,
or is the integer 42.

Two important Common Lisp functions pertaining to types are typep and subtypep. The
function typep, a set membership test, is used to determine whether a given object is of a given
type. The function subtypep, a subset test, is used to determine whether a given type is a
recognizable subtype of another given type. The function call (subtypep T1 T2) distinguishes
three cases:

That T1 is a subtype of T2,

That T1 is not a subtype of T2, or

That subtype relationship cannot be determined.

Section 6.2 discusses situations for which the subtype relationship cannot be determined.

3.2 The regular type expression
We have implemented a Common Lisp parameterized type named rte (regular type expression),
via deftype. Some implementation details are explained in Section 8. Having this definition allows
us to use the type rte anywhere Common Lisp expects a type specifier. The arguments to rte
are regular type expressions. A syntactically correct regular type expression is either a Common
Lisp type specifier, such as number, (cons number), (eql 12), or (and integer (satisfies
oddp)), or rather a list whose first element is one of a limited set of keywords shown in Section
3.4, and whose trailing elements are other regular type expressions. Here are some examples.

(rte number number number) matches a sequence of exactly three numbers.

(rte (:or (:cat number number) (:cat number number number))) matches a list of either
two or three numbers.

(rte number number (:0-1 number)) matches a sequence of two mandatory numbers followed
optionally by exactly one more number. This happens to be equivalent to the previous
example: (rte number number (:0-1 number)).

The following example declares a class whose point slot is a list of two numbers. A subtlety
to note is that rte is a subtype of sequence not of list. This means that (rte number number)
will match not only the list (1 2.0) but also the vector #(1 2.0).

(d e f c l a s s F ()
((po int : type (and l i s t (r t e number number)))
#| . . . |#))

The following is the definition of a function whose second argument must be a list of exactly
2 strings or 3 numbers.

(defun F (X Y)
(de c l a r e (type Y (and l i s t

(r t e (: or (: cat number number number)
(: cat s t r i n g s t r i n g))))))

#| . . . |#)

The following declares types named point-2d, point-3d, and point-sequence which can be
used in other declarations:

8

(de f type point−2d ()
"A l i s t o f exac t l y two numbers . "
’ (and l i s t (r t e number number)))

(de f type point−3d ()
"A l i s t o f exac t l y three numbers . "
‘ (and l i s t (r t e number number number)))

(de f type point−sequence ()
"A l i s t or vec to r o f po ints , each po int may be 2d or 3d . "
’ (r t e (: or (:0−∗ point−2d) (:0−∗ point−3d))))

3.3 Clarifying some confusing points about regular type expressions
There are a couple of potentially confusing points to note about the syntax of the regular type
expression.

The arguments of rte are one or more regular type expressions which may be either common
lisp type specifiers or other regular type expressions, and this is not ambiguous. Consider an
example with the cons type specifier. In Common Lisp an object of type cons is a non-nil list.
An object of type (cons number) is a list whose first element is of type number.

(rte (:cat cons number)) —A sequence of length 2 whose respective elements are a non-empty
list and a number.

(rte cons number) — Same as (rte (:cat cons number)) because the outer :cat is implicit.

(rte (:cat (cons number))) — A sequence of length 1 whose element is a list whose first
element is a number.

(rte (cons number)) — Same as (rte (:cat (cons number))).

Another potentially confusing point about the syntax is that and and :and (similarly or and
:or) may both be used but have different meanings in most cases. The Common Lisp type
specifiers, and and or match exactly one object. For example: (or string symbol) matches one
object which must either be a string or a symbol. The arguments of and and or are Common
Lisp type specifiers. For example (and (:1-* string) (:0-* number)) is not valid because
(:1-* string) and (:0-* number) are not valid Common Lisp type specifiers.

Contrast that with the regular type expression keywords :and and :or whose arguments are
regular type expressions. For example (rte (:or (:1-* string) (:0-* number))).

Additionally, regular type expressions may reference Common Lisp type specifiers. For exam-
ple: (rte (:or (:1-* string) (and list (not null)))), which matches either a non-empty
sequence of strings, or a singleton sequence whose element is a non-empty list.

It may be confusing the difference between (:cat number symbol) and (rte (:cat number
symbol)). We refer to an expression such as (:cat number symbol) as a regular type expression,
and the corresponding Common Lisp type is specified by (rte (:cat number symbol)). In fact
(rte (:cat number symbol)) can be used, within Common Lisp code, anywhere a lisp type
specifier is expected. However, (:cat number symbol) is not a Common Lisp type specifier; it
may only be used where a regular type expression is expected. A subtle point is that any Common
Lisp type specifier is a valid regular type expression (but not vice versa). So (rte (:cat number
symbol)) may also be used where a regular type expression is expected, including being used
recursively within another regular type expression. Compare the following:

(rte (:cat number (rte (:cat symbol symbol)))) — matches a sequence of length exactly
two, whose first element is a number, and whose second element is a sequence of exactly two
symbols. E.g., (1.1 (a b))

(rte (:cat number (:cat symbol symbol))) — matches a sequence of length exactly three
whose first element is a number, and whose next two elements are symbols. E.g., (1.1 a b)

9

3.4 Regular type expression keywords
Here is a detailed explanation of the keywords available within the structure of the rte type
specifier.

:0-* match zero or more times. The following example matches a sequence of string, number
and list repeated zero or more times, e.g., (), ("abc" 1.2 (a b c)), or ("abc" 1.2 (a
b c) "xyz" 3 ()), but not ("abc" 1.2 (a b c) 100)

(:0−∗ s t r i n g number l i s t)

:1-* match one or more times. Similar to :0-* but refuses to match zero times.

(:1−∗ s t r i n g number l i s t)

:0-1 match zero or one time. E.g., the following matches () and ("abc" 1.2 (a b c)), but not
("abc" 1.2 (a b c) "xyz" 3 ()).

(:0−1 s t r i n g number l i s t)

:cat match exactly once. The following example matches a list of three numbers. They keywords
:0-*, :1-*, and :0-1 act as they have an implicit :cat so that the following are equivalent.

(:0-* number string list)

(:0-* (:cat number string list)

:or match any of the regular type expressions. The following example matches a sequence which
consists either of all strings or all symbols.

(: or (:0−∗ s t r i n g) (:0−∗ symbol))

:and match all of the regular type expressions. The following example matches a sequence which
starts with two strings, and also ends with two strings.

(: and (: cat s t r i n g s t r i n g (:0−∗ t))
(: cat (:0−∗ t) s t r i n g s t r i n g))

Note that this is different from (rte string string (:0-* t) string string), as the
former matches a list of exactly two strings, and the latter does not.

:permute match all of the descriptors once but in any order. The following example matches (z
x y) and (z y x) but neither (x y) nor (x y x).

(: permute (eq l x) (eq l y) (eq l z))

4 Constructing an automaton
In order to write a function in Common Lisp which verifies whether a given sequence matches a
given regular type expression, we would like to first convert the regular type expression to a DFA.
The Brzozowski algorithm, explained in section 2.5, can be used for this conversion if the set of
sequences is a rational language. The set of sequences of Common Lisp objects is not a rational
language, because for one reason, the perspective alphabet (the set of all possible Common Lisp
objects) is not a finite set.2

Even though the set of sequences of objects is infinite, the set of sequences of type specifiers
is a rational language, if we only consider as the alphabet, the set of type specifiers explicitly

2The computation model of Common Lisp assumes infinite memory. In reality the memory is finite, but as far
as theoretical considerations we assume the memory, and thus the set of all potential objects is infinite.

10

referenced in a regular type expression. With this choice of alphabet, sequences of Common Lisp
type specifiers conform to the definition of words in a rational language.

There is a problem that the mapping of sequence of objects to sequence of type specifiers is
not unique. This problem is discussed in section 5. For the moment, we ignore this complication
as it would obfuscate the derivation of the DFA.

0 1symbol

2number

3

string

symbol

number

symbol

string

Figure 4: Example DFA

Consider the following regular type expression. We wish to construct a finite automaton which
recognizes sequences matching this pattern. Such an automaton is shown in Figure 4.

(:0−∗ symbol (: or (:0−∗ number)
(:0−∗ s t r i n g))))

This corresponds to the rational type expression:

P0 = (symbol · (number∗ + string∗))∗ (20)

First, we create a state P0 corresponding to the initial rational type expression.
Next we proceed, to calculate the derivative with respect to each type specifier mentioned in

P0. Actually, as will be seen, it suffices to differentiate with respect to the type specifiers which are
permissible as the first element of the sequence. For example, the first element of the sequence is
neither allowed to be a string nor a number. This is equivalent to saying that the corresponding
derivatives are ∅.

∂stringP0 = ∅
∂numberP0 = ∅

Thus we need only calculate one derivative: ∂symbolP0.

∂symbolP0 = ∂symbol((symbol · (number∗ + string∗))∗) By (20)
= ∂symbol(symbol · (number∗ + string∗))

· (symbol · (number∗ + string∗))∗ By (17)
= (∂symbolsymbol · (number∗ + string∗)

+ν(symbol) · ∂symbol(number
∗ + string∗))

· (symbol · (number∗ + string∗))∗ By (14)
= (ε · (number∗ + string∗) + ∅ · ∂symbol(number

∗ + string∗))
· (symbol · (number∗ + string∗))∗ By (10) and (3)

P1 = (number∗ + string∗) · (symbol · (number∗ + string∗))∗ (21)

11

The corresponding regular type expression is

P1 = (: cat (: or (:0−∗ number) (:0−∗ s t r i n g))
(:0−∗ symbol (: or (:0−∗ number) (:0−∗ s t r i n g))))

Since there is not yet a state in the automaton labeled with this expression, we create one
named P1. We also create a transition P0

symbol−−−−→ P1. This transition is labeled with symbol
because ∂symbolP0 = P1. The transition corresponds to the arrow on the graph in Figure 4 from
P0 to P1 labeled symbol. We now proceed to calculate the derivatives of P1.

P2 = ∂numberP1 = number∗ · (symbol · (number∗ + string∗))∗

The corresponding regular type expression is

P2 = (: cat (:0−∗ number)
(:0−∗ symbol (: or (:0−∗ number) (:0−∗ s t r i n g))))

We add a state P2 to the state machine with a transition P1
number−−−−−→ P2.

P3 = ∂stringP1 = string∗ · (symbol · (number∗ + string∗))∗

The corresponding regular type expression is

P3 = (: cat (:0−∗ s t r i n g)
(:0−∗ symbol (: or (:0−∗ number) (:0−∗ s t r i n g))))

We add a state P3 to the state machine with a transition P1
string−−−−→ P3.

If we continue calculating the derivatives, we find that we have exhausted all the unique forms.

∂symbolP1 = P1

∂numberP2 = P2

∂stringP3 = P3

∂symbolP2 = P1

∂symbolP3 = P1

From these derivatives we create the following transitions thus completing the transitions in
the state machine (Figure 4): P1

symbol−−−−→ P1, P2
number−−−−−→ P2, P3

string−−−−→ P3, P2
symbol−−−−→ P1, and

P3
symbol−−−−→ P1.
The final step is to determine which of the states are nullable.

ν(P0) = ν((symbol · (number∗ + string∗))∗) By (20)
= ε By (7)

ν(P1) = ν((number∗ + string∗) · (symbol · (number∗ + string∗))∗) By (21)
= ν((number∗ + string∗) · ε) By (7)
= ν(number∗ + string∗)
= ν(number∗) ∩ ν(string∗) By (4)
= ε ∩ ε By (7)
= ε

In similar manner we find that all the expressions are nullable; ν(P0) = ν(P1) = ν(P2) =
ν(P3) = ε. This means that all the states are final state.

12

5 The problem of overlapping types

P0

P3integer

P1
(and number (not integer)) P2

number

integer

Figure 5: Example DFA with subtypes

In the examples shown thus far the types used have been disjoint types. If the same method is
used with types which are intersecting, the automaton which results is not a valid representation
of the rational expression. Consider the following rational expression: P0 = ((number · integer) ∩
(integer · number)) Clearly the only sequence which matches this expression is a sequence of two
integers.

(r t e (: and (: cat number i n t e g e r) (: cat i n t e g e r number)))

Unfortunately, when we calculate ∂numberP0 and ∂integerP0 we don’t arrive at anything useful.

∂numberP0 = ∂number((number · integer) ∩ (integer · number))
= ∂number(number · integer) ∩ ∂number(integer · number)
= ((∂numbernumber) · integer + ν(integer))

∩ ((∂numberinteger) · number + ν(number))

= (ε · integer + ∅) ∩ (∅ · number + ∅)
= integer ∩ ∅
= ∅

Similar,
∂integerP0 = ∅

The problem is that if a rational type expression is treated blindly as an ordinary rational,
then number 6= integer end of story. But if we wish to create a DFA which will allow validation
of Common Lisp sequences of objects, rather than simply sequences of type specifiers, we must
extend the theory slightly to accommodate intersecting types.

The troublesome rule we are introduced in Figure 3 is equation (11), indicating that ∂ab = ∅
for b 6= a. The rules in Figure 6 show derivatives of type expressions with respect to particular
types. Most notably, Figure 6 augments Figure 3 in the case disjoint types.

∂AB = ε if A = B (21)
∂AB = ∅ if A ∩B = ∅ (22)
∂AB is undefined otherwise.

Figure 6: Rules for derivative of regular type expressions

Proof. Arguments justifying (21) and (22).

13

Let Bseq be a non empty set of sequences of length one, each of whose first elements is an
object of type Btype. ∂AB by definition is a particular possibly empty subset of the set of suffixes
of Bseq. Call that subset S. Now, ∂AB = Suff {S}. Since every element of Bseq has length one,
every suffix and consequently every element of S has length zero. The unique zero length sequence
is denoted ε. Thus ∂AB is either ε3 or ∅. In particular if S = ∅ then ∂AB = ∅; if S 6= ∅ then
∂AB = ε. What remains is to determine for which which cases (21) and (22) is S empty.

(21) Since A = Btype, S = Bseq. Since S is not empty, ∂AB = ε.

(22) S ⊂ Bseq is a set of singleton sequences each of whose element is of type A. Bseq is a set of
sequences whose first element is of type Btype. Since no element of type A is an element of
Btype, S must be empty. Thus ∂AB = ∅.

To use these differentiation rules, we note that ∂AB is undefined when A and B are partially
overlapping. Practically this means we must only differentiate a given rational expression with
respect to disjoint types. Figure 5 shows an automaton expressing the rational expression P0 =
((number · integer) ∩ (integer ·number)) but only using types for which the derivative is defined.
P3 = ∂integerP0 and P1 = ∂(and number (not integer))P0. Figure 5 does show transitions from

P3
number−−−−−→ P2 and P1

integer−−−−−→ P2 using intersecting types. This is not, however, a violation of the
rules in Figure 6 because P3 and P1 are different states.

We need an algorithm (in this case implemented in Common Lisp) which takes a list of type
specifiers, and computes a list of disjoint sub types, such that union of the two sets of types is
the same. E.g., given the list (integer number) returns the list (integer (and number (not
integer))). Section 6 explains how this is done.

3Recall the abuse of notation that ε denotes both the empty word and the set containing the empty word.

14

A

1

B
2

C3
4

5
6 7

D

8 E
9

F
10

G
11

H
12

13

Figure 7: Example Venn Diagram

6 Type segmentation/decomposition
Consider the Venn diagram in Figure 7. The figure shows a set of potentially overlapping sets
{A,B, C,D, E ,F ,G,H}. We would like to compute a set of non-empty disjoint subsets of the
designated set whose union is he same as the union of the given sets. We wish to find non-empty

sets X2,X2, ...XN , such that Xi

⋂
i 6=j

Xj = ∅ and
N⋃

k=1

Xk = A ∪ B ∪ C ∪ D ∪ E ∪ F ∪ G ∪ H. Such a

decomposition is shown in Figure 8.

Disjoint Set Derived Expression
{ 1 } A ∩ B ∩ C ∩ D ∩ F ∩H
{ 2 } B ∩ C ∩ D
{ 3 } B ∩ C ∩ D
{ 4 } C ∩ B ∩ D
{ 5 } B ∩ C ∩ D
{ 6 } B ∩ D ∩ C
{ 7 } C ∩ D ∩ B
{ 8 } D ∩ B ∩ C ∩H
{ 9 } E
{ 10 } F
{ 11 } G
{ 12 } H ∩D
{ 13 } D ∩H ∩ E

Figure 8: Disjoint Decomposition of Sets from Figure 7

Section 6.1 summarizes the algorithm we used as part of RTE. Section 6.3 discusses an alternate
solution by viewing this problem as a variant of the SAT problem. Section 6.4 summarizes an
algorithm based on a connectivity graph.

6.1 RTE Algorithm for set disjoint decomposition
The algorithm we use in RTE is shown in Figure 9. This algorithm is straightforward and brute
force,[9] and heavily depends on the Common Lisp subsetp and the Common Lisp functions shown

15

in Figure 10. A great feature of this algorithm is that it easily fits in 40 lines of Common Lisp
code.

1. Let U be the set of sets. Let V be the set of disjoint sets, initially V = ∅.

2. Identify all the sets which are disjoint from each other and from all the other sets;

3. Remove these sets from U and collect them in V .

4. If there are no sets remaining, you are finished. V is the set of disjoint sets.

5. Otherwise, find one pair of sets, X ∈ U and Y ∈ U , for which X ∩ Y 6= ∅.

6. From X and Y derive at most three new sets X ∩ Y, X \ Y, and Y \ X , preforming logic
reductions as necessary. There are three cases to consider:

(a) If X ⊂ Y, then X ∩Y = X and X \Y = ∅. Thus update U by removing Y, and adding
Y \ X .

(b) If Y ⊂ X , then X ∩Y = Y and Y \X = ∅. Thus update U by removing X , and adding
X \ Y.

(c) Otherwise, update U by removing X and Y, and adding X ∩ Y, X \ Y, and Y \ X .

7. Repeat steps 2 through 6 until U = ∅, at which point you have collected all the disjoint sets
in V .

Figure 9: Algorithm for disjoint set decomposition

Implementing this algorithm is easy when you are permitted to look into the sets. This makes
it easy to decide whether two given sets have an intersection. In a programming language, a type
can be thought of as a set of (potential) values. In this case where set decomposition is really type
decomposition, the problem could be trickier. For the algorithm to work, you must have operators
to test for set-equality, disjoint-ness, and subset-ness (subtype-ness). It turns out that if you have
an empty type and subset-ness predicate, it is possible to express equality and disjoint-ness in
terms of them.

The Common Lisp language has flexible type calculus which makes the computation possible.
If T1 and T2 are Common Lisp type specifiers, then the type specifier (and T1 T2) designates the
intersection of the types. Likewise (and T1 (not T2)) and (and (not T1) T2) are the two type
differences. Furthermore, the Common Lisp function subtypep can be used to decide whether
two given types are equivalent or disjoint, and nil designates the empty type.[3] See Figure
10 for definitions of the Common Lisp functions type-intersection, types-disjoint-p, and
types-equivalent-p.

(defun type− i n t e r s e c t i on (T1 T2)
‘ (and ,T1 ,T2))

(defun types−dis jo int−p (T1 T2)
(subtypep (type− i n t e r s e c t i on T1 T2) n i l))

(defun types−equivalent−p (T1 T2)
(multiple−value−bind (T1<=T2 okT1T2) (subtypep T1 T2)

(multiple−value−bind (T2<=T1 okT2T2) (subtypep T2 T1)
(va lue s (and T1<=T2 T2<=T1) (and okT1T2 okT2T2)))))

Figure 10: Definition of type calculus helper functions

16

The function types-disjoint-p works because a type is empty if it is a subtype of nil. The
function types-equivalent-p works because two types (sets) contain the same elements if each
is a subtype (subset) of the other.

See section 6.5 for a description of the performance of this algorithm.

6.2 Sub-type relationship not always recognizable
There is an important caveat. The subtypep function is not always able to determine whether
the named types have a subtype relationship or not.[3] In such a case, subtypep returns nil as its
second argument. This situation occurs most notably in the cases involving the satisfies type
specifier. Consider the following example using the types (satisfies evenp) and (satisfies
oddp).

The first problem we face is that if we attempt to test type membership using such a predicate
we may be met errors, such as when the argument of the oddp function is not an integer.

(typep 1 ’ (s a t i s f i e s oddp))
==> T
(typep 0 ’ (s a t i s f i e s oddp))
==> NIL
(typep " h e l l o " ’ (s a t i s f i e s oddp))

The value " h e l l o " i s not o f type INTEGER.
[Condit ion o f type TYPE−ERROR]

Res ta r t s :
0 : [RETRY] Retry SLIME REPL eva lua t i on reques t .
1 : [∗ABORT] Return to SLIME’ s top l e v e l .
2 : [ABORT] abort thread (#<THREAD " repl−thread " RUNNING {1012F08003}>)

Backtrace :
0 : (ODDP " h e l l o ")
1 : (SB−KERNEL:%%TYPEP " h e l l o " #<SB−KERNEL:HAIRY−TYPE (SATISFIES ODDP)> T)
2 : (SB−INT:SIMPLE−EVAL−IN−LEXENV (TYPEP " h e l l o " (QUOTE (SATISFIES ODDP)))

#<NULL−LEXENV>)
3 : (EVAL (TYPEP " h e l l o " (QUOTE (SATISFIES ODDP))))

For this reason it is a little easier to define two types odd and even using deftype. Figure 11
shows the initial type definitions which will be improved upon later. We see very quickly that the
system has difficulty reasoning about these types.

(de f type odd ()
’ (and i n t e g e r (s a t i s f i e s oddp)))

==> ODD

(de f type even ()
’ (and i n t e g e r (s a t i s f i e s evenp)))

==> EVEN

(subtypep ’ odd ’ even)
==> NIL , NIL

(subtypep ’ odd ’ s t r i n g)
==> NIL , NIL

Figure 11: Initial version of type definitions of odd and even

The subtypep function returns nil as its second value, indicating that SBCL is unable to

17

0

T2

1

T1

2

T3

T4

T2
T1

3

T3T2
T1

T3

T1 — (or string (and odd (not even)))

T2 — (and (not odd) even)

T3 — (and odd even)

T4 — even

Figure 12: DFA in the case of SATISFIES type

determine whether odd is a subtype of even. Similarly, SBCL is not able to determine that odd is
not a subtype of string. This behavior is compliant. According to the Common Lisp specification,
the subtypep function is permitted to return the values false and false (among other reasons)
when at least one argument involves type specifier satisfies.[23].

SBCL cannot know that the functions oddp and evenp never return true for the same argu-
ment. The human can see that the types odd and even are non-empty and disjoint, and thus
neither is a subtype of the other.

Notice also that (subtypep ’odd ’string) returns nil. At a glance it would seem that (and
integer (satisfies oddp)) is not a subset of string, because (and integer (satisfies
oddp)) is a subset of integer which is disjoint from string. But there’s a catch. The sys-
tem does not know that odd and even are non-empty. If a type A is empty, then in fact (and
integer A) is a subtype of string because integer ∩A = ∅ ⊂ string.[12]

Despite the system’s inability to peer into the types specified by satisfies, we may nev-
ertheless use such types in rational type expressions. Doing so we, get correct but sub-optimal
results.

Consider the rational type expression:4 ((string + odd)? · even)∗ which corresponds to the
regular type expression:

(:0−∗ (:0−1 (: or s t r i n g
(s a t i s f i e s oddp)))

(s a t i s f i e s evenp))

The corresponding DFA is shown in figure 12. Although the results are technically correct,
they are more complicated than necessary. In particular, transition label T1, (or string (and
odd (not even))) is equivalent to (or string odd). In addition, consider the transition labels
T2 and T4, (and (not odd) even) and even respectively. These correspond to the same type.

Furthermore, consider state 3. This state is only reachable via transitions 2
T3−→ 3 and 3

T3−→ 3.
The transition label, T4 corresponds to type (and odd even), which we know is an empty type;
no value is both even and odd. Thus state 3 could be eliminated.

4In this case we use the notation of a super-scripted ? to indicate an optional expression. Such notation is
common in literature relating to regular language theory.

18

We can improve the result. Recall the human knows that odd is not a subtype of string, but
that the lisp system does not. The difficulty is that lisp does not know that odd is non-empty. We
can modify the definitions of the odd and even types as in Figure 13.

(de f type odd ()
‘ (and i n t e g e r

(or (eq l 1) (s a t i s f i e s oddp))))
==> ODD

(de f type even ()
‘ (and i n t e g e r

(or (eq l 0) (s a t i s f i e s evenp))))
==> EVEN

(subtypep ’ odd ’ even)
==> NIL , NIL

(subtypep ’ odd ’ s t r i n g)
==> NIL , T

Figure 13: Intermediate version of type definitions of odd and even

0

even

1

(odd odd string)

even

Figure 14: DFA with good deftype

These definitions shown in Figure 13 allow the subtypep function to figure out that odd is not
a subtype of string. However, subtypep still cannot reason about the relationship of odd and
even.5 The SBCL implementation of the subtypep function is not able to look inside the oddp
and evenp functions to figure out that the types (satisfies oddp) and (satisfies evenp) are
disjoint. However, we can give the system some more clues by stating what is already obvious to
the human.

We can further augment the definitions to allow subtypep to reason about the relation of odd
and even.

Given the definitions of the types even and odd in figure 15, the disjoint-types-p function
is able to figure out that types such as string and odd are disjoint.

With the these final type definitions, the state machine representing the expression (:0-*
(:0-1 (:or string odd)) even) is shown in Figure 14.

It is perhaps worth repeating that the state machines in Figures 12 and 14 recognize the same
sequences. The types specifiers marking the transitions of the former are correct, but less efficient
those in the latter. Additionally the number of states has been reduced in the latter to two states.
However, to achieve this minimal state machine, it is necessary to supply redundant information
in the type definitions.

5SBCL version 1.3.0 has a bug in which (subtypep ’odd ’even) returns NIL,T. I.e., it dubiously gets the correct
answer. The reasoning is faulty and bug number 1528837 has been filed reporting the issue.

19

(de f type odd ()
‘ (and i n t e g e r

(not (s a t i s f i e s evenp))
(s a t i s f i e s oddp)))

==> ODD

(de f type even ()
‘ (and i n t e g e r

(not (s a t i s f i e s oddp))
(s a t i s f i e s evenp)))

==> EVEN

(subtypep ’ odd ’ even)
==> NIL , T

(subtypep ’ odd ’ s t r i n g)
==> NIL , T

Figure 15: Final version of type definitions of odd and even

6.3 Set disjoint decomposition as SAT problem
This problem of how to decompose sets, like those shown in Figure 7 into disjoint subsets as shown
in Figure 8 can be views as a variant of the well known Satisfiability Problem, commonly called
SAT.[11] The problem is this: given a Boolean equation in n variables, find a solution. This is to
say: find an assignment (either true or false) for each variable which makes the equation evaluate
to true. This problem is known to be NP-Complete.

The approach is to consider the correspondence between the solutions of the Boolean equation:
A+B+C+D+E+F +G+H, versus the set of subsets of A ∪ B ∪ C ∪ D ∪ E ∪ F ∪ G ∪H. Just
as we can enumerate the 28 − 1 = 255 solutions of A + B + C + D + E + F + G + H as we can
analagously enumerate the subsets of A ∪ B ∪ C ∪ D ∪ E ∪ F ∪ G ∪H.

discard 0000 0000 A ∩ B ∩ C ∩ D ∩ E ∩ F ∩ G ∩H
1 1000 0000 A ∩ B ∩ C ∩ D ∩ E ∩ F ∩ G ∩H
2 0100 0000 A ∩ B ∩ C ∩ D ∩ E ∩ F ∩ G ∩H
3 1100 0000 A ∩ B ∩ C ∩ D ∩ E ∩ F ∩ G ∩H

... ...
254 1111 1110 A ∩ B ∩ C ∩ D ∩ E ∩ F ∩ G ∩H
255 1111 1111 A ∩ B ∩ C ∩ D ∩ E ∩ F ∩ G ∩H

Figure 16: Correspondence of Boolean true/false equation with boolean set equation

The approach here is to consider at every possible solution of the Boolean equation: A+B +
C+D+E+F+G+H. There are 28−1 = 255 such solutions, because every 8-tuple of 0’s and 1’s is
a solution except 0000 0000. If we consider the enumerated set of solutions: 1000 0000, 0100 0000,
1100 0000, ... 1111 1110, 1111 1111. We can analagously enumerate the potential subsets of the
union of the sets shown in Figure 7: A ∪ B ∪ C ∪ D ∪ E ∪ F ∪ G ∪H. Each is a potential solution
represents an intersection of sets in {A,B, C,D, E ,F ,G,H}. Such a correspondence is shown in
Figure 16.

It remains only to eliminate the intersections which can be proven to be empty. For example,
we see in 7 that A and G are disjoint, which implies ∅ = A ∩ G, which further implies line 1 of
Table 16, ∅ = A ∩ B ∩ C ∩ D ∩ E ∩ F ∩ G ∩H.

20

In this as all SAT problems, certain of these 28 possibilities can be eliminated because of known
constraints. The constraints are derived from the known subset and disjoint-ness relations of the
given sets. Looking at the Figure 7 we see that E ⊂ H, which means that E ∩ H = ∅. So we know
that all solutions where H = 0 and E = 1 can be eliminated. This means we can update the
equation by multiplying (Boolean multiply) by EH: (A+B + C +D + E + F +G+H) · EH.

Additionally notice that A and G are disjoint. So no solution may contain A = 1 and G = 1.
This corresponds to a new constraint: AG: (A+B + C +D + E + F +G+H) · EH ·AG.

There are as many as 8·7
2 = 28 possible constraints imposed by pair relations. For each

{X,Y } ⊂ {A,B, C,D, E ,F ,G,H}:

Subset If X ⊂ Y , multiply the by constraint XY = (X + Y)

Super-set If Y ⊂ X, multiply by the constraint XY = (X + Y)

Disjoint If X ∩ Y = ∅, multiply by the constraint XY = (X + Y).

Otherwise no constraint.

A SAT solver will normally find one solution. That’s just how they traditionally work. But
the SAT flow can easily be extended so that once a solution is found, a new constraint can be
generated by logically negating that solution, allowing the SAT solver to find a second solution.
For example, when it is found that 1111 0000 (corresponding to A ∩ B ∩ C ∩ D ∩ E ∩ F ∩ G ∩H),
the equation can be multiplied by the new constraint (A B C D E F G H), allowing the SAT
solver to find another solution.

The process continues until there are no more solutions.
As a more concrete example of how the SAT approach works when applied to Common Lisp

types, consider the case of the three types array, sequence, and vector. Actually, vector is the
intersection of array and sequence.

First the SAT solver constructs (explicitly or implicitly) the set of candidates corresponding
to the lisp types.

(and array sequence vec to r)
(and array sequence (not vec to r))
(and array (not sequence) vec to r)
(and array (not sequence) (not vec to r))
(and (not array) sequence vec to r)
(and (not array) sequence (not vec to r))
(and (not array) (not sequence) vec to r)
(and (not array) (not sequence) (not vec to r))

The void one (and (not array) (not sequence) (not vector)) can be immediately disre-
garded.

Since vector is a subtype of array, all types which include ((not array) vector) can be dis-
regarded: (and (not array) sequence vector) and (and (not array) (not sequence) vector).
Furthermore since vector is a subtype of sequence, all types which include ((not sequence)
vector) can be disregarded. (and array (not sequence) vector) and (and (not array)
(not sequence) vector) (which has already been eliminated by the previous step). The re-
maining ones are:

(and array sequence vec to r) = vec to r
(and array sequence (not vec to r)) = n i l
(and array (not sequence) (not vec to r)) = (and array (not vec to r))
(and (not array) sequence (not vec to r)) = (and sequence (not vec to r))

The algorithm returns a false positive. Unfortunately, this set still contains the nil, empty,
type (and array sequence (not vector)). Figure 17 shows the relation of the Common Lisp
types array, vector, and sequence. We can see that vector is the intersection of array and

21

array

vector

sequence

Figure 17: Relation of vector, sequence, and array

sequence. The algorithm discussed above failed to introduce a constraint corresponding to this
identity which implies that array ∩ sequence ∩ vector = ∅.

It seems the SAT algorithm greatly reduces the search space, but is not able to give the
minimal answer. The resulting types must still be tested for vacuity. This is easy to do, just
use the subtypep function to test whether the type is a subtype of nil. E.g., (subtypep ’(and
array sequence (not vector)) nil) returns t. Again, as mentioned in section 6.2, there are
cases where the subtypep will not be able to determine the vacuity of a set. Consider the example:
(and fixnum (not (satisifies oddp)) (not (satisfies evenp))).

See section 6.5 for a description of the performance of this algorithm.

6.4 Set disjoint decomposition as graph problem
This algorithm is semantically very similar to the algorithm shown in 6.1 but rather than relying
on Common Lisp primitives to make decisions about connectivity of sets/types, it initializes a
graph representing the initial relationships, and thereafter manipulates the graph maintaining
connectivity information. This algorithm is more complicated in terms of lines of code, 250 lines
of Common Lisp code as opposed to 40 lines.

This more complicated algorithm is presented here for two reasons. (1) It has much faster
execution times, especially for larger sets types. (2) We hope that presenting the algorithm in a
way which obviates the need to use Common Lisp primitives makes it evident how the algorithm
might be implemented in a programming language other than Common Lisp.

A

B

C

D

H

E

F

G

Figure 18: Partially directed topology graph, initial state 0

22

Figure 18 shows a graph representing the topology (connectedness) of the diagram shown in
Figure 7. Blue lines are drawn from sub-set to super-set. Green lines are drawn between two sets
which touch but fail to have a sub-set/super-set relationship.

The algorithm proceeds by breaking the green and blue connections in controlled ways until
all the nodes become isolated. There are several cases to consider.

Strict sub-set Blue arrows indicate sub-set/super-set relations, they point from a sub-set to a
super-set. A blue arrow from X to Y may be eliminated if conditions are met:

• X has no blue arrows pointing to it, and
• X has no green lines touching it.

On eliminating the blue arrow, replace the label Y by Y ∩X.

Touching connections Green lines indicate partially overlapping sets. A green line connecting
X and Y may be broken if the following condition is met:

• Neither X nor Y has a blue arrow pointing to it; i.e. neither is a super-set of something
else in the graph.

Eliminating the green line separates X and Y . To do this X and Y must be replaced and a
new node must be added to the graph.

• Introduce new node labeled X ∩ Y .
– Draw blue arrows from this node, X ∩ Y , to all the nodes which either X or Y

points to. I.e., the super-sets of X ∩ Y are the union of the super-sets of X and of
Y .

– Draw green lines from X ∩ Y to all nodes which both X and Y connect to. I.e.
the connections to X ∩ Y are the intersection of the connections of X and of Y .

– (Exception) If there would be a green line between X ∩Y and some node for which
there is already a blue arrow, omit the green line.

• X ← X ∩ Y . I.e. replace X with its relative complement with respect to Y .
• Y ← X ∩ Y . I.e. replace Y with its relative complement with respect to X.

A \ F

B

C

D

H \ E

E

F

G

Figure 19: Partially directed topology graph, state 1

E and H in Figure 18 meet the strict sub-set conditions, thus the arrow connecting them can
be eliminated, and H replace H ← H ∩ E, this is denoted as H\E in Figure 19.

23

A \ F

B \ D

C BD

D \ B

H \ E

E

F

G

Figure 20: Partially directed topology graph, state 2

Nodes such as B and D in Figure 18 (and also Figure 19) meet the touching connections
conditions and can thus be separated by breaking the connection (green line). Figure 20 shows
the result of this operation. The new node B ∩D has been introduced (labeled BD in the figure) ,
with blue arrow pointing to A ∩ F (denoted A\F in the figure). B and E are relabeled as well. B
is relabeled as B ∩D, (denoted B\D in the figure). E is relabeled as B ∩D, (denoted D\B in the
figure).

These graph operations should continue until all the nodes have become isolated.

A \ F

B \ D

CBD

(D \ B) \ (H \ E)

(H \ E) \ (D \ B)

(D \ B)(H \ E)

E

F

G

Figure 21: Partially directed topology graph, state 3

We continue the segmentation algorithm a couple more steps. In Figure 20, consider eliminating
the green connection between nodes D\B and H\E, corresponding to B ∩D and E ∩H, resulting
in the graph shown in Figure 21. In this case we must introduce a new node (B ∩D) ∩ (E ∩H),
corresponding to (D\B)(H\E) in the figure. We must also relabel B ∩D as (B ∩D)∩E ∩H, and
relabel E ∩H as E ∩H ∩ (B ∩D). These relabeled nodes correspond in the figure respectively to
and (D\B)\(H\E) and (H\E)\(D\B).

Next we eliminate the blue arrow from to in Figure 21 resulting in the graph in Figure 22.
In this operation the node A\F is relabeled to (A\F)\((D\B)(H\E)).

24

(A \ F) \ ((D \ B)(H \ E))

B \ D

CBD

(D \ B) \ (H \ E)

(H \ E) \ (D \ B)

(D \ B)(H \ E)

E

F

G

Figure 22: Partially directed topology graph, state 4

From Figure 22 it should be becoming clear that the complexity of the Boolean expressions
in each node is becoming more complex. If we continue this procedure, eliminating all the blue
arrows and green connecting lines, we will end up with 13 isolated nodes (each time a green line
is eliminated one additional node is added).

There are some subtle corner cases which may not be obvious. In particular are some relatively
exotic cases which we won’t illustrate here. It is possible in these situations to end up with some
disjoint subsets which are empty. It is possible also that the same subset is derived by two
different operations in the graph, but whose equations are very different. To identify each of these
cases, each of the resulting sets must be checked for vacuity, and uniqueness. No matter which
programming language the algorithm is implemented, it is necessary to be implement these two
checks.

In Common Lisp there are two possible ways to check for vacuity, i.e. to detect whether a
type is empty. (1) Symbolically reduce the type specifier, e.g. (and fixnum (not fixnum)) to
a canonical form with is nil in case the specifier specifies the nil type. (2) Use the subtypep
function to test whether the type is a subtype of nil. To test whether two specifiers specify
the same type there are two possible approaches in Common Lisp. (1) Symbolically reduce each
expression such as (or integer number string) and (or string fixnum number) to canonical
form, and compare the results with the equal function. (2) Use the subsetp function twice to
test whether each is a subtype of the other.

See section 6.5 for a description of the performance of this algorithm.

6.5 Performance analysis of type decomposition
Sections 6.1, 6.3 and 6.4 explained three different algorithm for calculating type decomposition.
We look here at some performance charactistics of the three algorithms.

Just to give a broad idea of the performance difference of the algorithms we partitioned the
type specifiers which denote types which are a subtype of number. SBCL has 22 types (excluding
nil) whose names are in the CL package which are subtypes of number.

(array−rank array− tota l− s i ze bignum b i t char−code
char− int complex double− f l oat fixnum f l o a t
f l o a t−d i g i t s f l oa t− rad ix i n t e g e r l ong− f l oa t number
r a t i o r a t i o n a l r e a l sho r t− f l o a t
signed−byte s i n g l e− f l o a t unsigned−byte)

To partition these into the 15 disjoint types the SAT function required 30 seconds, and the
RTE algorithm 1.5 seconds.

25

(b i t
complex
double− f l oat
f l oa t− rad ix
r a t i o
s i n g l e− f l o a t
(and array−rank (not f l o a t−d i g i t s))
(and array− tota l− s i ze (not char−code))
(and bignum (not unsigned−byte))
(and bignum unsigned−byte)
(and char−code (not array−rank))
(and f l o a t−d i g i t s (not b i t)
(not f l oa t− rad ix))
(and number (not complex) (not f l o a t)
(and r a t i o n a l (not bignum) (not r a t i o) (not unsigned−byte))
(not r a t i o n a l))
(and unsigned−byte (not ar ray− tota l− s i ze) (not bignum)))

7 Application use cases
The following subsections 7.1, 7.2, 7.3, and 7.4 illustrate applications for regular type expressions.

7.1 RTE based string regular expressions
The rte type can be used to perform simple string regular expression checking.

To filter a given list of strings, retaining only the ones match a particular regular expression
using rte we implemented the following two function find-matches. The function whose code
is shown in Figure 23 exploits the fact that Common Lisp strings are sequences of characters to
filter a given list of strings for those matching the regular expression "(ab)*z*(ab)*").

This attempt to represent a string regular expression as a regular type expression is indeed pos-
sible as shown in Figure 23 but admittedly cumbersome. We provide the function regexp-to-rte
as a solution to convert string regular expressions to regular type expressions. An example of its
use is shown in Figure 24

The regexp-to-rte function does not implement full Perl compatible regular expressions as
provided in CL-PPCRE[24]. Doing so would be a daunting task and would require departure from
rational language theory as some of the operators provided by Perl compatible regular expressions
do not conform to rational language operations.6. Rather, we implemented a small but powerful
subset. The subset we chose is the one whose grammar is provided in publicly available lecture
notes by Robert Cameron[7]. Starting with this published context free grammar, we were able
to use the CL-Yacc[8] package written by Juliusz Chroboczek to parse a regular expression and
convert it to a regular type expression.

Using the regexp-to-rte function we can simplify the function find-matches-rte as shown
in Figure 25.

One potential application of such type of regular expression matching would be when matching
arbitrary sequences rather than strings only.

For a short analysis of performance differences between rte and CL-PPCRE, see section 8.5.

7.2 Test cases based on extensible sequences
Climb[22] is an image processing library implemented in Common Lisp. It represents digital
images in a variety of internal formats, including as a two dimensional array of pixels, or what

6Theoretically speaking a correct regular expression matchers is implementable as a finite state machine, with
no additional memory required. One example where Perl regular expressions depart from theoretical rational
expressions is that they require additional memory to store sub-matches and refer to them later in the expression

26

(de fvar ∗data∗ ’ ("ababababzabab"
"ababababzabababab"
"ababababzabababab"
"ababababzzzzabababab"
"abababababababzzzzzzabababab"
"ababababababababababzzzzzzabababab"
"ababababababababababababababzzzzzzabababab"
"ababababzzzzzzababababababababzzzzzzabababab"
))

(defun find−matches (data)
(remove−if−not (lambda (s t r)

(typep s t r ’ (r t e (:0−∗ (member #\a #\b))
(:0−∗ (eq l #\z))
(:0−∗ (member #\a #\b)))))

data))

(find−matches ∗data ∗)
==>
("ababababzabab"
"ababababzabababab"
"ababababzabababab"
"ababababzzzzabababab"
"abababababababzzzzzzabababab"
"ababababababababababzzzzzzabababab"
"ababababababababababababababzzzzzzabababab")

Figure 23: RTE based Function for string regular expression matching

(regexp−to−rte " (ab)∗ z ∗(ab)∗ ")
==>

(: cat (:0−∗ (member #\a #\b))
(:0−∗ (eq l #\z))
(:0−∗ (member #\a #\b)))

Figure 24: Example usage of regexp-to-rte

conceptually serves the function of a 2-d array. The image potentially is populated with pixel values
such as RGB objects or gray-scale scalars, but may also have boundary elements which may not
be valid pixel values. Certain image calculations are expected to calculate new images. For testing
purposes we would like to make assertions about rows and columns of the two dimensional arrays.
For example, we’d like to be able to assert that the row vectors and column vectors (excluding
the border elements) of a given image are RGB (red-green-blue) values, and the row and column
vectors in the calculated image are gray-scale values. Unfortunately, Common Lisp 2-d arrays are
not sequences. This means that 2-d image arrays are not natively compatible with regular type
expressions.

To solve this problem, we exploit a feature of SBCL called Extensible Sequences[15, 20]. In
Figure 26 we have created Clos classes[23] named row-vector and column-vector which imple-
ment the sequence protocol, but which access a backing 2-d Common Lisp array. To implement
the sequence protocol, an application such as Climb must implement methods on generic functions
such as length, elt, and (setf elt).

The unit tests for Climb are implementing using Lisp-Unit[21]. Figure 27 shows an example
test which loads an RGB image named "lena128.bmp" and makes some assertions about the
format of the internal lisp data structures. In particular it views the image as a sequence of

27

(defun find−matches (data)
(remove−if−not (lambda (s t r)

(typep s t r ‘ (r t e , (regexp−to−rte " (ab)∗ z ∗(ab)∗ "))))
data))

Figure 25: Function find-matches simplified using regexp-to-rte

(d e f c l a s s 2d−array−as−sequence (sequence standard−object)
((2 d−array : i n i t a r g : 2 d−array : reader 2d−array)))

(d e f c l a s s row−vector (2 d−array−as−sequence)
((row : type fixnum : i n i t a r g : row : a c c e s s o r row)))

(d e f c l a s s column−vector (2 d−array−as−sequence)
((column : type fixnum : i n i t a r g : column : a c c e s s o r column)))

(defmethod sequence : l ength ((seq column−vector))
(array−dimension (2 d−array seq) 0))

(defmethod sequence : e l t ((seq column−vector) row)
(a r e f (2 d−array seq) row (column seq)))

(defmethod (s e t f sequence : e l t) (va lue (seq column−vector) row)
(s e t f (a r e f (2 d−array seq) row (column seq))

va lue))

Figure 26: Class and method definitions extending the definition of sequence

row-vectors, the first and last of which may contain any content (rte (:0-* t)), but the rows
in between are of the form (rte t (:0-* rgb) t).

(de f i n e− t e s t i o /2d−array−b
(l e t ∗ ((rgb−image (image−load (pathname (abso lutepath " share / images /"

" lena128 .bmp"))))
(seq (make−instance ’2 d−array : vector−of−rows

: 2 d−array (cl imb : : image−raw−data rgb−image))))

(a s se r t− t rue (cl imb : : image−raw−data rgb−image))

(a s se r t− t rue (typep seq
’ (r t e (r t e (:0−∗ t))

(:0−∗ (r t e t (:0−∗ rgb) t))
(r t e (:0−∗ t)))))))

Figure 27: Climb Unit Test using RTE to check image content

28

7.3 Complex pattern matching, recognizing correct lambda lists
As a complex yet realistic example we look at how to use regular type expressions to check Common
Lisp lambda lists.

Common Lisp specifies several different kinds of lambda lists, used for different purposes. For
example, the ordinary lambda list which is used to define lambda functions, the macro lambda list
for defining macros, and the destructuring lambda list for use with destructuring-bind. Each of
these lambda lists differs in its syntax rules.

lambda− l i st := (var∗
[& opt i ona l {var

| (var [in it− form [supplied−p−parameter]]) } ∗]
[& r e s t var]
[&key {var

| ({ var | (keyword−name var)}
[in it− form [supplied−p−parameter]]) }∗

[&allow−other−keys]]
[&aux {var | (var [in it− form]) } ∗]
)

Figure 28: CLHS Syntax of ordinary lambda list

The simplest kind of lambda list is the ordinary lambda list. Figure 28 shows the syntax rule
for the ordinary lambda list, and Figure 29 shows examples of ordinary lambda lists which obey
the specification, but the latter two may not mean what you think they mean.

(defun F1 (a b &r e s t other−args &key x (y 42) ((: Z U) n i l u−used−p)
. . .)

(defun F2 (a b &key x &r e s t other−args)
. . .)

(defun F3 (a b &key ((Z U) n i l u−used−p))
. . .)

Figure 29: Examples of ordinary lambda lists

The function F2, (from Figure 29) according to the Common Lisp specification, is a function
with three possible keyword arguments, x, &rest, and other-args, which can be referenced at the
call site with a bizarre function call such as (F2 1 2 :x 3 :&rest 4 :other-args 5). However,
what the programmer probably meant was one keyword argument and an &rest argument named
other-args. This issue is quite subtle. In fact, some Common Lisp implementations consider this
such a bizarre situation that they divert from the specification and flag this type of definition as
a compilation error. Figure 30 shows the reaction of SBCL.

The function F3 (from Figure 29) is defined with an unconventional &key which is not a symbol
in the keyword package but rather in the current package. Thus the variable U is referenced from
the call-site as (F3 1 2 ’Z 3) rather than (F3 1 2 :Z 3).

Because of these potentially confusing situations, we define what we call conventional ordinary
lambda list. Figure 32 shows a sample implementation of the type conventional-ordinary-
lambda-list. A Common Lisp programmer might want to use this type as part of a code-walker
based checker. Elements of this type are lists are indeed valid lambda lists for defun, although
Common Lisp allows a more relaxed syntax. Figure 33 showing the corresponding DFA gives a
vague idea of the complexity of the matching algorithm.

The conventional ordinary lambda list differs slightly from the ordinary lambda lists, in several

29

CL−USER>(defun F2 (a b &key x &r e s t other−args) n i l)

misplaced &REST in lambda l i s t : (A B &KEY X &REST OTHER−ARGS)
[Condit ion o f type SB−INT:SIMPLE−PROGRAM−ERROR]

Res ta r t s :
0 : [RETRY] Retry SLIME REPL eva lua t i on reques t .
1 : [∗ABORT] Return to SLIME’ s top l e v e l .
2 : [ABORT] abort thread (#<THREAD " repl−thread " RUNNING {1012F08003}>)

Backtrace :
0 : ((LAMBDA NIL : IN SB−C: :ACTUALLY−COMPILE))
1 : ((FLET SB−C: :WITH−IT : IN SB−C::%WITH−COMPILATION−UNIT))

Figure 30: Attempt to compile F2 in SBCL

(de f type var ()
’ (and symbol

(not (or keyword
(member t n i l)
(member &opt i ona l &key &r e s t &allow−other−keys &aux

&body &whole &env)))))

Figure 31: Definition of the var type

aspects. Figure 28 is an excerpt from the Common Lisp specification. The definition in 32
implements this specification with the exceptions explained in below.

• Careful reading of the Common Lisp specification reveals that a lambda list such as (&aux
&key) declares a variable named &key as an auxiliary variable. The conventional-ordinary-
lambda-list type accepts only variable names of type var whose type definition is shown
in Figure 31. In particular variable names such as &key are excluded.

• Common Lisp implementations are free to implement semantics for additional lambda list
keywords. Figure 32 only implements: &optional, &rest, &key, &allow-other-keys, and
&aux.

• The Common Lisp specification allows an ordinary lambda list to use non-keyword keyword-
name symbols such as (&key ((x y))) to mean that the variable name is y, but the call-site
syntax should use the non-keyword symbol x. This usage is allowed but unconventional.
Figure 32 requires the keyword-name be a keyword recognizing a more conventional lambda
list such as (&key ((:x y))).

30

(de f type conventional−ordinary− lambda− l i s t ()
(l e t ∗ ((opt ional−var ’ (: or var (: and l i s t (r t e (: 1 var

(: ? t
(: ? var)))))))

(op t i ona l ‘ (: cat (eq l &opt i ona l) (: ∗ , opt ional−var)))
(r e s t ’ (: cat (eq l &r e s t) var))
(key−var ’ (: or var

(: and l i s t
(r t e (: or var (cons keyword

(cons var nu l l)))
(: ? t

(:0−1 var))))))
(key ‘ (: cat (eq l &key)

(:0−∗ , key−var)
(:0−1 (eq l &allow−other−keys))))

(aux−var ’ (: or var (: and l i s t (r t e (: 1 var (: ? t))))))
(aux ‘ (: cat (eq l &aux) (: ∗ , aux−var))))

‘ (r t e
(: ∗ var)
(: ? , op t i ona l)
(: ? , r e s t)
(: ? , key)
(: ? , aux))))

Figure 32: Definition of the conventional-ordinary-lambda-list type

31

0

T5

6

T1

4

T2

2T3

1T4

T5,T9

T1

T5,T7 5
T8

3T5

T1

T2

T3

T5,T6

T1

T2

T1

T1 — (eql &aux)

T2 — (eql &key)

T3 — (eql &rest)

T4 — (eql &optional)

T5 — var

T6 — (and list (rte var (:0-1 t (:0-1 var))))

T7 — (and list (rte (:or var (cons keyword (cons var null))) (:0-1 t (:0-1 var))))

T8 — (eql &allow-other-keys)

T9 — (and list (rte var (:0-1 t)))

Figure 33: DFA recognizing conventional ordinary lambda list

32

7.4 List destructuring - destructuring-case
The reader may notice a similarity to XML pattern matching in the XDuce domain specific
language.[10] The XDuce language allows the programmer to define a set of functions with various
lambda lists, each of which serves as a pattern available match target structure within an XML
document. Which function gets executed depends on which lambda list matches the data found
in the XML data structure.

The existence of the rte type makes it possible to use destructuring-bind and type-case
together in a similar way to pattern matching in XDuce. Notice in the code in Figure 34 that each
rte clause of the typecase includes a call to destructuring-bind which is related. The function
F is implemented such that the object being destructured is assured to be of the format expected
by the corresponding destructuring lambda list.

(defun F (obj)
(typecase obj

((r t e symbol (:1−∗ (eq l : count) i n t e g e r))
(destructur ing−bind (name &key count) obj

. . .))
((r t e symbol l i s t (:0−∗ s t r i n g))
(destructur ing−bind (name data &r e s t s t r i n g s) obj

. . .))))

Figure 34: Using rte with destructuring-bind

We provide a macro destructuring-case which combines the capability of Common Lisp
destructuring-bind and type-case. Moreover, destructuring-case, constructs the rte type
specifiers in an intelligent way, taking into account the structure of the destructuring lambda list
and any given type declarations. An example usage of destructuring-case is shown in Figure
35.

(defun F (obj)
(des t ructur ing−case obj

((name &key count)
(d e c l a r e (type symbol name)

(type i n t e g e r count))
. . .)

((name data &r e s t s t r i n g s)
(d e c l a r e (type name symbol)

(type data l i s t)
(type s t r i n g s (r t e (:0−∗ s t r i n g))))

. . .)))

Figure 35: Using rte with destructuring-case

This macro, via the function destructuring-lambda-list-to-rte, provided by the rte pack-
age, is able to parse any valid destructuring lambda list, and convert it to to a regular type ex-
pression. The destructuring lambda lists are allowed to contain any valid syntax, such as &whole,
&optional, &key, &allow-other-keys, &aux, and recursive lambda lists such as: (&whole llist
a (b c) &key x ((:y (c d)) ’(1 2)) &allow-other-keys).

One advantage of destructuring-case is that the regular type expression may get complicated
and tedious to create by hand. Consider the call to destructuring-case with type declarations
shown in Figure 36.

These two destructuring lambda lists correspond to the regular type expressions shown in
Figures 37 and 38. To better understand the control flow of matching these two regular type

33

(des t ructur ing−case DATA

; ; Case−1
((&whole l l i s t

a (b c)
&r e s t keys
&key x y z

&allow−other−keys)
(d e c l a r e (type fixnum a b c)

(type symbol x)
(type s t r i n g y)
(type l i s t z))

. . .)

; ; Case−2
((a (b c)
&r e s t keys
&key x y z)
(d e c l a r e (type fixnum a b c)

(type symbol x)
(type s t r i n g y)
(type l i s t z))

. . .))

Figure 36: Sample destructuring-case use case

expressions, especially the handling of &key with and without &allow-other-keys, Figures 39, 40,
and 41 are provided. These figures show the DFAs which implement the regular type expressions.
Also note that the two DFAs are topologically equivalent, even though the type specifiers on the
corresponding state transitions are different.

34

(: cat (: cat fixnum (: and l i s t (r t e (: cat fixnum fixnum))))
(: and

(:0−∗ keyword t)
(: or

(: cat (:0−1 (eq l : x) symbol (:0−∗ (not (member : y : z)) t))
(:0−1 (eq l : y) s t r i n g (:0−∗ (not (eq l : z)) t))
(:0−1 (eq l : z) l i s t (:0−∗ t t)))

(: cat (:0−1 (eq l : y) s t r i n g (:0−∗ (not (member : x : z)) t))
(:0−1 (eq l : x) symbol (:0−∗ (not (eq l : z)) t))
(:0−1 (eq l : z) l i s t (:0−∗ t t)))

(: cat (:0−1 (eq l : x) symbol (:0−∗ (not (member : y : z)) t))
(:0−1 (eq l : z) l i s t (:0−∗ (not (eq l : y)) t))
(:0−1 (eq l : y) s t r i n g (:0−∗ t t)))

(: cat (:0−1 (eq l : z) l i s t (:0−∗ (not (member : x : y)) t))
(:0−1 (eq l : x) symbol (:0−∗ (not (eq l : y)) t))
(:0−1 (eq l : y) s t r i n g (:0−∗ t t)))

(: cat (:0−1 (eq l : y) s t r i n g (:0−∗ (not (member : x : z)) t))
(:0−1 (eq l : z) l i s t (:0−∗ (not (eq l : x)) t))
(:0−1 (eq l : x) symbol (:0−∗ t t)))

(: cat (:0−1 (eq l : z) l i s t (:0−∗ (not (member : x : y)) t))
(:0−1 (eq l : y) s t r i n g (:0−∗ (not (eq l : x)) t))
(:0−1 (eq l : x) symbol (:0−∗ t t))))))

Figure 37: Regular type expression matching destructuring lambda list Case-1

(: cat (: cat fixnum (: and l i s t (r t e (: cat fixnum fixnum))))
(: and (:0−∗ keyword t)

(: or
(: cat (:0−1 (eq l : x) symbol (:0−∗ (eq l : x) t))

(:0−1 (eq l : y) s t r i n g (:0−∗ (member : y : x) t))
(:0−1 (eq l : z) l i s t (:0−∗ (member : z : y : x) t)))

(: cat (:0−1 (eq l : y) s t r i n g (:0−∗ (eq l : y) t))
(:0−1 (eq l : x) symbol (:0−∗ (member : x : y) t))
(:0−1 (eq l : z) l i s t (:0−∗ (member : z : x : y) t)))

(: cat (:0−1 (eq l : x) symbol (:0−∗ (eq l : x) t))
(:0−1 (eq l : z) l i s t (:0−∗ (member : z : x) t))
(:0−1 (eq l : y) s t r i n g (:0−∗ (member : y : z : x) t)))

(: cat (:0−1 (eq l : z) l i s t (:0−∗ (eq l : z) t))
(:0−1 (eq l : x) symbol (:0−∗ (member : x : z) t))
(:0−1 (eq l : y) s t r i n g (:0−∗ (member : y : x : z) t)))

(: cat (:0−1 (eq l : y) s t r i n g (:0−∗ (eq l : y) t))
(:0−1 (eq l : z) l i s t (:0−∗ (member : z : y) t))
(:0−1 (eq l : x) symbol (:0−∗ (member : x : z : y) t)))

(: cat (:0−1 (eq l : z) l i s t (:0−∗ (eq l : z) t))
(:0−1 (eq l : y) s t r i n g (:0−∗ (member : y : z) t))
(:0−1 (eq l : x) symbol (:0−∗ (member : x : y : z) t))))))

Figure 38: Regular type expression matching destructuring lambda list Case-2

35

T1 – t

T2 – list

T3 – fixnum

T4 – symbol

T5 – keyword

T6 – string

T7 – (and list (rte (:cat fixnum fixnum)))

T8 – (eql :x)

T9 – (eql :y)

T10 – (eql :z)

T11 – (member :x :y)

T12 – (member :x :z)

T13 – (member :y :z)

T14 – (member :x :y :z)

T15 – (and keyword (not (eql :x)))

T16 – (and keyword (not (eql :y)))

T17 – (and keyword (not (eql :z)))

T18 – (and keyword (not (member :x :y)))

T19 – (and keyword (not (member :x :z)))

T20 – (and keyword (not (member :y :z)))

Figure 39: Transition types for Case-1 Figure 40 and Case-2 Figure 41

36

0
1

T3
2

T7

16
T2
1

17
T8

3
T9

25

T1
0

T1

18

T4

4
T6

26

T3

5
T1
9

6
T8

12

T1
0

T1

7
T4

13

T3

8
T1
7

9
T1
0

T1

10

T3

11
T5T1

14
T1
5

15

T8T1

T4

19

T2
0

20
T9

21

T1
0

T1

T6

22

T3

23
T1
6

24

T9T1

T6

27
T1
8

28
T8

29
T9 T1

T4 T6

F
ig
ur
e
40
:
D
FA

re
co
gn

iz
in
g
th
e
de

st
ru
ct
ur
in
g
la
m
bd

a
lis
t
C
as
e-
1

37

0
1

T3
2

T7

3

T8

16
T9

24
T1
0

4

T4

17

T6

25
T2

15

T8

11

T9

5
T1
0

T1

12

T1

6

T1
7

T9

10
T1
2

8

T1
T1

9
T1
4

T1

13
T1
0

14

T1
1

T1

T1

22
T8

23
T9

18
T1
0

T1

T1

19
T1

20

T8

21
T1
3

T1

T1

26
T8

27

T9

28
T1
0

T1 T1

T1

F
ig
ur
e
41
:
D
FA

re
co
gn

iz
in
g
th
e
de

st
ru
ct
ur
in
g
la
m
bd

a
lis
t
C
as
e-
2

38

There is a caveat to be aware of when using destructuring-case. We do not attempt to
solve the problem presented if the actual type of the default value of an optional argument does
not match the declared type. We bleieve this problem to be unsolvable in general, because the
extreme case is equivalent to the halting problem. However, it could be solved for a wide range of
special cases. An attempt at a partial solution might make it more confusing, as the user would
be able to easily know if his case is one of those special cases.

(des t ructur ing−case ’ (42)
((a &key (count (foo))) ; case−1
(d e c l a r e (type number a count))
. . .)

((a) ; case−2
(d e c l a r e (type number a))
. . .))

Figure 42: Example destructuring-case use case

Figure 42 shows the general unsolvable case. Here the default value for the count key variable
is the return value of the function foo. The issue is that we cannot know whether foo will
return a value which is of type number as per the declaration. If foo returns a number the list
(42) matches the first destructuring clause, case-1; otherwise (42) matches the 2nd destructuring
clause, case-2. We cannot know this my examining the given data (42), and we cannot build a
state machine (nor any algorithm) which can make this decision without calling the function foo,
and thus suffering its side effects, even if it turns out to not match.

We could, however implement some very common special cases, but we are not sure doing so
would enhance the general usability.

Take the simplest special case for example, the case where no explicit default is specified for
the &key variables (similar for &optional variables). We know that the default value in this case
is specified as nil, and we know that nil is not of type number. Thus in (42) does not match
case-1.

E.g., Figure 43, if DATA=’(42), then case-2 is satisfied. If DATA=’(42 :count 3) then case-1
is satisfied.

(des t ructur ing−case DATA
((a &key count) ; case−1
(d e c l a r e (type number a count))
. . .)

((a) ; case−2
(d e c l a r e (type number a))
. . .))

Figure 43: Special case of destructuring-case

Similarly if there IS a default given which is a literal (literal string, quoted symbol, number
etc) we can figure out (at compile time) whether that literal matches the declared value, in order
to detrmine whether :count is actually required or optional in the destructured list.

E.g., Figure 44, if DATA=’(42), then case-2 is satisfied. If DATA=’(42 :count 3) then case-1
is satisfied. Case-3 is redundant.

If the default for the &key variable is a symbol which is declared a constant, it reduces to the
special case in Figure 44. However, it is inclear whether it is possible to know at macro expansion
time whether a symbol names a constant.

E.g., Figure 45, if DATA=’(42), then case-1 is satisfied. Case-2 is redundant.
For these reasons we don’t attempt to implement any of these special cases. One addtional

argument is that SBCL doesn’t even like the situation in the first place. The example in Figure

39

(des t ructur ing−case ’ (42)
((a &key (count " h e l l o ")) ; case−1
(d e c l a r e (type number a)

(type s t r i n g count))
. . .)

((a &key (count 0)) ; case−2
(d e c l a r e (type number a count))
. . .)

((a) ; case−3
(d e c l a r e (type number a))
. . .))

Figure 44: Special case of destructuring-case

(de f cons tant +ZERO+ 0)

(des t ructur ing−case ’ (42)
((a &key (count +ZERO+)) ; case−1
(d e c l a r e (type number a count))
. . .)

((a) ; case−2
(d e c l a r e (type number a))
. . .))

Figure 45: Special case of destructuring-case

46 shows warngins issued at compile time that the default value, nil, does not match the declared
type. The same warning appears in the corresponding destructuring-case because it expands
to destructuring-bind.

40

(destructur ing−bind (a &key count) DATA
(de c l a r e (type number count))
. . .)

; in : DESTRUCTURING−BIND (A &KEY COUNT)
; (IF (NOT (EQL #:G685 0))
; (CAR (TRULY−THE CONS #:G685)))
; ==>
; NIL
;
; caught STYLE−WARNING:
; The binding o f COUNT i s not a NUMBER:
; NIL
; See a l s o :
; The SBCL Manual , Node "Handling o f Types"

Figure 46: Warnings from dubious destructuring-bind

41

8 Implementation details
The function match–sequence, can be used to determine whether a given sequence matches a
given pattern.

(defun match−sequence (input−sequence pattern)
(d e c l a r e (type l i s t pattern))
(when (typep input−sequence ’ sequence)

(l e t ((sm (or (f ind−state−machine pattern)
(remember−state−machine (make−state−machine pattern)

pattern))))
(some #’ state− f ina l−p

(per fo rm− t rans i t i ons sm input−sequence)))))

This function takes an input sequence such as a list or vector, and a regular type expression,
and returns true or false depending on whether the sequence matches the regular type expression.
It works as follows:

1. If necessary it builds a finite state machine by calling make-state-machine, and caches it
to avoid having to rebuild the state machine if the same pattern in used again.

2. Next, it executes the machine according to the input sequence.

3. Finally, it asks whether any of the returned states are final states.

The definition of the rte parameterized type is a bit more complicated that we’d like. We’d
actually like to define it as follows as a type using satisfies of a function which closes over, or even
embeds the given pattern, but neither of these is possible. In fact the argument of satisfies
must be a symbol naming a global function; a function object is not accepted as argument of
satisfies.

; ; f i r s t INVALID type d e f i n i t i o n
(de f type r t e (pattern)

‘ (and sequence
(s a t i s f i e s , (lambda (input−sequence)

(match−sequence input−sequence pattern)))))

; ; second INVALID type d e f i n i t i o n
(de f type r t e (pattern)

‘ (and sequence
(s a t i s f i e s ‘ (lambda (input−sequence)

(match−sequence input−sequence , pattern)))))

Because of this limitation, the definition of rte is a bit more tedious. What the rte type
definition actually happens is:

1. creates an intermediate function which closes over the given pattern
(lambda (input-sequence) (match-sequence input-sequence pattern))

2. creates a function name unique for the given pattern.

3. uses (setf symbol-function) to define a function whose function binding is that interme-
diate function

4. the deftype expands to (and sequence (satisfies that-function-name))

An example may make it clearer.

(de f type 3−d−point ()
‘ (r t e number number number))

42

The type 3-d-point evokes the rte parameterized type definition with argument list (number
number number). The deftype of rte assures that a function is defined as follows. The function
name, |(number number number)|7 even if somewhat unusual, is so chosen to improve the error
message and back-trace that occurs in some situations.

(defun r t e : : | (number number number) | (input−sequence)
(match−sequence input−sequence ’ (: cat number number number)))

It is also assured that the finite state machine corresponding to (:cat number number number)
is built and cached, to avoid unnecessary recreation at run-time. Finally the type specifier (rte
number number number) expands to the following.

(and sequence
(s a t i s f i e s | (number number number) |))

The following back-trace occurs when trying to evaluate the following failing assertion.

(the 3−d−point (l i s t 1 2))

The value (1 2)
i s not o f type

(OR
(AND
#1=(SATISFIES FR.EPITA.LRDE.RTE : : | (NUMBER NUMBER NUMBER) |)
CONS)
(AND #1# NULL) (AND #1# VECTOR)
(AND #1# SB−KERNEL:EXTENDED−SEQUENCE)) .
[Condit ion o f type TYPE−ERROR]

Res ta r t s :
0 : [RETRY] Retry SLIME REPL eva lua t i on reques t .
1 : [∗ABORT] Return to SLIME’ s top l e v e l .
2 : [ABORT] abort thread (#<THREAD " repl−thread " RUNNING {1012A80003}>)

Backtrace :
0 : ((LAMBDA ()))
1 : (SB−INT:SIMPLE−EVAL−IN−LEXENV (THE 3−D−POINT (LIST 1 2)) #<NULL−LEXENV>)
2 : (EVAL (THE 3−D−POINT (LIST 1 2)))

−−more−−

8.1 Optimized code generation

P0

P1symbol

number

Figure 47: Example DFA for (:0-* symbol number)

In section 8 we say a general purpose implementation of a NDFA (non-deterministic finite state
machine). There are several techniques which can be used to improve the run-time performance

7The |...| notation is the Common Lisp reader syntax to denote a symbol containing spaces or other delimiters
characters. E.g., |(a b)| is a symbol whose print-name is "(a b)".

43

of this algorithm. First we discuss some of the optimizations we have made, and in section 8.4
there is a discussion of the of the performance results.

One thing to notice is that although the implementation described above is general enough to
support non-deterministic state machines, the development made in sections 5 and 6 obviate the
need for this flexibility. In fact although each state in a state machine recognizing a rational type
expression has multiple transitions to next states, we have assured that maximally one such is ever
valid as each transition is labeled with a type disjoint from the other transitions from the same
state. The result is that to make a state transition in the DFA case, type membership tests must
be made only until one is found which matches, whereas in the NDFA case all type membership
tests must be made from each state, and a list of matching next states must be maintained.

Another thing to notice is that rather than traversing the state machine to match a input
sequence, we may rather traverse the state machine to produce code which can later match an
input sequence. The generated code will be special purpose and will only be able to match a
sequence matching the particular regular type expression. There are three obvious advantages of
the code generation approach. 1) There will be much less code to execute at run time, that code
being specifically generated for the specific pattern we are attempting to match. 2) We can avoid
several function calls in the code by making use of tagbody and go. And 3) the lisp compiler can
be given a chance to optimize the more specific (less generic) code.

The result of these two optimizations are that the code no longer makes use of the potentially
costly call to matchsequence. In its place code is inserted specifically checking the regular type
expression in question. Figure 48 shows a sample body of such a function which recognizes the
regular type expression ((:0-* symbol number)). The corresponding rational type expression
is (symbol · number)∗. The DFA can be seen in Figure 47. The code contains two sections, one
for the case that the given sequence, seq is a list and another if the sequence is a vector. The
purpose of the two sections is so that the generated code may use more specific accessors to iterate
through the sequence, and also so the compiler can have more information about the types of
structure being accessed.

Each section differs in how it iterates through the sequence and how it tests for end of sequence,
but the format of the two sections is otherwise the same. Each section contains one label for each
state in the state machine. Each transition in the DFA is represented as a branch of a typecase
and (go ...) (the Common Lisp GOTO).

8.2 Sticky states
Consider the DFA shown in Figure 49. If the state machine ever reaches state P2 it will remain
their until the input sequence is exhausted, because the only transition is for the type t, and all
objects of of this type. This state is called a sticky state. If the state machine ever reaches a sticky
state which is also a final state, it is no longer necessary to continue examining the input string.
The matching function can simply return true.

This type of pattern is fairly common such as (:cat (:0-* symbol number) (:0-* t)).
We have incorporated this optimization into both the generic DFA version (based on match-

sequence) and also the auto-generated code version. To understand the consequence of this
optimization consider a list of length 1000 which begins with a symbol followed by a number.
With the sticky state optimization, checking the pattern against the sequence would involve:

• one check of (typep obj symbol),

• one check of (typep obj number), and

• 998 checks of (typep obj t), all of which are sure to return true.

When this optimization is in effect, 1000 type checks are reduced to 2 type checks.

44

(lambda (seq)
(d e c l a r e (opt imize (speed 3) (debug 0) (s a f e t y 0)))
(b lock check

(typecase seq
(l i s t
(tagbody

(go P0)
P0
(when (nu l l seq) (return−from check t))
(optimized−typecase

(i f (nu l l seq)
(return−from check n i l)
(pop seq))

(symbol (go P1)))
(return−from check n i l)

P1
(optimized−typecase (i f (nu l l seq)

(return−from check n i l)
(pop seq))

(number (go P0)))
(return−from check n i l)))

(t
(l e t ((i 0))

(tagbody
(go P0)

P0
(when (>= i (l ength seq)) (return−from check t))
(optimized−typecase (i f (>= i (l ength seq))

(return−from check n i l)
(prog1 (a r e f seq i) (i n c f i)))

(symbol (go P1)))
(return−from check n i l)

P1
(optimized−typecase (i f (>= i (l ength seq))

(return−from check n i l)
(prog1 (a r e f seq i) (i n c f i)))

(number (go P0)))
(return−from check n i l)))))))

Figure 48: Machine generated code for recognizing a rational type expression

45

8.3 Redundant disjoint typecase
The code generation phase described in section 8.1 generates invocations to the macro optimized–typecase
which is semantically and syntactically equivalent to the Common Lisp typecase. The difference
between the two macros is that the former implements some optimizations which the latter does
not necessarily implement.

The code generation algorithm within RTE has already assured that the types (in the invocation
of typecase) are disjoint. Although this is critical for the derivative calculations explained in
section 5, it poses a potential performance issue in the generated code, which optimized–typecase
solves. Consider the following case.

(optimized−typecase obj
(fixnum . . .) ; c l au s e 1
((and number (not fixnum)) . . .) ; c l au s e 2
(s t r i n g . . .))

In order to decide whether clause 2 should be taken, the executing code must check twice
whether the object is of type fixnum, once in clause 1, and again in clause 2.

The optimized–typecase macro expands to code which eliminates this redundancy.

(typecase obj
(fixnum . . .) ; c l au s e 1
(number . . .) ; c l au s e 2
(s t r i n g . . .))

In the latter case we know that if clause 2 is ever reached, the object has already been assured
to not be of type fixnum, there is no need to test it again.

The optimized–typecase macro is also available for use independent of the RTE system.

8.4 RTE performance vs hand-written code
A natural question to ask is how does the state-machine approach to pattern matching compare
to hand written code. That is to say: what is the cost of the declarative approach?

To help answer this question consider the function check-hand-written. It is a straightforward
handwritten function to check for a list matching the regular type expression (:0-* symbol
number).

(defun check−hand−written (obj)
(or (nu l l obj)

(and (cdr obj)
(symbolp (car obj))
(numberp (cadr obj))
(check−hand−written (cddr obj)))))

The test we constructed was to attempt to match 200 samples of lists of length 8K. The
handwritten code was able to do this in 0.011351 seconds CPU time. The generic state machine
code to do this was 0.879481 seconds, ignoring the initial cost of building the state machine. Using
the optimization described in Section 8.1, this time dropped to 0.022239 seconds.

P0

P1

symbol

number P2string

t

Figure 49: DFA with sticky state

46

Version CPU time Penalty
Hand written 0.011351 1x
Generic DFA 0.879481 77.5x
Generated Code 0.022239 2x

8.5 RTE performance vs CL-PPCRE
The rte type can be used to perform simple string regular expression checking. A generally
accepted Common Lisp implementation of regular expressions for strings is CL-PPCRE[24].

The following example is similar to the one shown in section 7.1.
We would like to count the number of strings in a given list which match a particular regular ex-

pression. To analyze the performance we used two approaches: using CL-PPCRE and rte. In partic-
ular, we implemented the following two function count-matches-ppcre and count-matches-rte
respectively.

(de fvar ∗data∗ ’ ("ababababzabab"
"ababababzabababab"
"ababababzabababab"
"ababababzzzzabababab"
"abababababababzzzzzzabababab"
"ababababababababababzzzzzzabababab"
"ababababababababababababababzzzzzzabababab"
"ababababzzzzzzababababababababzzzzzzabababab"
))

(de fvar ∗ test−scanner ∗ (cl−ppcre : create−scanner "^(ab)∗ z ∗(ab)∗ $"))

(defun count−matches−ppcre ()
(count− i f (lambda (s t r)

(cl−ppcre : scan ∗ test−scanner ∗ s t r))
∗data ∗))

(defun count−matches−rte ()
(count− i f (lambda (s t r)

(typep s t r ‘ (r t e , (regexp−to−rte " (ab)∗ z ∗(ab)∗ "))))
∗data ∗))

The performance difference is significant. A loop executing each function one million times,
shows that the rte approach runs about 35 % faster.

RTE> (time (dotimes (n 1000000) (r t e : : count−matches−rte)))
Evaluat ion took :

6 .185 seconds o f r e a l time
6.149091 seconds o f t o t a l run time (6 .089164 user , 0 .059927 system)
99.42% CPU
14 ,808 ,087 ,438 p roc e s s o r c y c l e s
32 ,944 bytes consed

NIL
RTE> (time (dotimes (n 1000000) (r t e : : count−matches−ppcre)))
Evaluat ion took :

8 .425 seconds o f r e a l time
8.334411 seconds o f t o t a l run time (7 .750325 user , 0 .584086 system)
98.92% CPU
20 ,172 ,005 ,693 p ro c e s s o r c y c l e s
768 ,016 ,656 bytes consed

NIL

47

8.6 Exceptional situations
In Common Lisp defclass creates a class and a type of the same name. Every valid class name is
simultaneously a type specifier. The type is the set of instances of that named class, which includes
instances of all sub-classes of the class. Classes can be redefined, especially while developing
and debugging an application. The implementation described in this article memoizes certain
calculations for reuse later. For example, given the rational expression; i.e., the argument list of
rte, a finite automaton is generated, and cached with the rational expression. The generation
of this automaton makes some assumptions about subtype relationships. If classes are redefined
later, these relationships may no longer hold; consequently, the memoized automata may no longer
be correct.

The Common Lisp Metaobject Protocol [17, 13] provides a mechanism for handling this situ-
ation in terms of a dependent maintenance protocol. The protocol allows applications to attach
observers called “dependents” to classes. Thereafter whenever one of these classes changes an
application specific method is called.

We exploit this feature of the CLOS MOP to flush the caches state machines associated with
classes as they are redefined redefined.

8.7 Known Open Issue
With the current state of implementation of RTE there is a known serious limitation with respect
to the compilation semantics. During each expansion of the rte deftype, the implementation
notices whether this is the first time the given regular type expression has been encounted, and
if so, creates a named function to check a sequence against the pattern. This flow is explained
earlier in Section 8. After the named function has been created, the deftype expands to something
like (and sequence (satisfies rte::|(:* number)|)), which is what is written to the fasl file
being compiled. So the compiler replaces expression such as (typep obj ‘(rte (:* number)))
with something like (typep obj ’(and sequence (satisfies rte::|(:* number)|))). And
that’s what goes into the fasl file.

The problem occurs the next time you re-start lisp, and load the fasl file. The loader encounters
this expression (typep obj ’(and sequence (satisfies rte::|(:* number)|))) and happily
reads it. But when the call to typep is encountered at run-time, the function rte::|(:* number)|
is undefined. It is undefined because the closure which was setf’ed to the symbol-function existed
in the other lisp, but not in this one.

Apparently, according to [19] is a known limitation in the Common Lisp specification. Certain
files which use rte based types, can be compiled, but cannot be re-loaded from the compiled file.

If only there were a way to indicate which files should be loaded from source, allowing others
to be compiled and loaded from the compiled file. One might think ASDF[4] could be used for
this purpose. Unfortunately it probably cannot be. There is no facility in ASDF to mark some
files as load-from-source and others as load-from-compiled [4, Section 16.6.6].

8.7.1 Declaration based solution

In order to force the definition of the missing function to be compiled into the fasl file, you may use
the declaration macro defrte. To use this approach you must declare any regular type expression
with defrte before it appears within a function definition. Moreover, the text of the regular type
expression must be EQUAL to the text declared by defrte.

(d e f r t e (: ∗ number number))

(defun F (a b)
(d e c l a r e (type (r t e (: ∗ number number)) a b))
. . .)

This usage does indeed seem redundant, but is a pretty easy work-around for this insidious
problem.

48

8.7.2 ASDF based solution

This solution allows the asdf[4] COMPILE-OP operation to create an auxiliary file parallel to the
fasl file in the compile directory. The file will have a .rte extension but the same base file name.
Later when the fasl file is loaded via an asdf LOAD-OP operation, the .rte file will be loaded before
the fasl file.

There are several steps you need to follow to exploit this workaround.

1. Include the :defsystem-depends-on keword in the asdf:defsystem, to register a depen-
dency on :rte. You must use :defsystem-depends-on rather than simply depends-on,
otherwise asdf won’t be able to understand the use of :rte-cl-source-file which follows.

2. In the components section, use :file to declare any file which should be compiled and loaded
normally, but use :rte-cl-source-file to register a file which contains a problematic
regular type expression.

Here is an example of such a defsystem using :rte-cl-source-file.

(a sd f : defsystem : r t e− t e s t
: defsystem−depends−on (: r t e)
: depends−on (: rte−regexp−test

: 2 d−array
(: v e r s i on : l i sp−un i t " 0 . 9 . 0 ")
: 2 d−array−test
: ndfa−test
: l i sp− types− t e s t)

: components
((: module " r t e "

: components
((: f i l e " t e s t− r t e ")
(: f i l e " t e s t− l i s t−o f ")

; ; CREATE and LOAD a . r t e f i l e
(: r t e−c l− source− f i l e " test−re−pattern ")

(: f i l e " test−destructur ing−case−1 ")
(: f i l e " test−destructur ing−case−2 ")
(: f i l e " te s t−dest ructur ing−case ")
(: f i l e " test−ordinary− lambda− l i st ")))))

There are a few subtle points with this implementation. The keyword :rte-cl-source-file
within the :components section of the asdf system definition triggers a custom compilation and
loading procedure, governed by the CLOS class asdf-user:rte-cl-source-file which inherits
directly from asdf:cl-source-file. This class asdf-user:rte-cl-source-file is defined in
the :rte package whose loading is triggered by the :defsystem-depends-on (:rte) option in
the system definition.

There are two methods specializing on the class asdf-user:rte-cl-source-file.

(defmethod asd f : perform : around ((opera t i on asd f : compile−op)
(f i l e asdf−user : : r t e−c l− source− f i l e))

. . .)

(defmethod asd f : perform : be f o r e ((opera t i on asd f : load−op)
(f i l e asdf−user : : r t e−c l− source− f i l e))

. . .)

The asdf:perform :around method intercepts the asdf:compile-op operation to determine
which rte types and which rte patterns get defined by compiling the source file via (call-next-method).
Once this list is calculated, the :around method writes a .rte file along side the fasl file whose

49

text defines pattern definition functions. The :before method simply loads this .rte from source;
i.e. the .rte file is loaded from source before the fasl is loaded. This guarantees that the functions
created as a side effect of compilation are also loaded when the fasl is loaded even if the fasl has
already been compiled in another lisp image.

9 Alternatives

9.1 Use of cons construct to specify homogeneous lists
One simple and straightforward way to define types representing fixed types of homogeneous lists
is illustrated here.

(defun l i st−of− f ixnum (data)
(every #’(lambda (n) (typep n ’ fixnum))

data))

(de f type l i st−of− f ixnum ()
‘ (and l i s t (s a t i s f i e s l i st−of− f ixnum)))

Using this approach the developer could define several types for the various types of lists he
needs to declare in his program.

The cons type construct can be used to declare the types of the car and cdr of a cons cell,
e.g., (cons number (cons integer (cons string null))). The cons construct may be used
any finite number of times explicitly, e.g. to declare a list of exactly three numbers, you may use:
(cons number (cons number (cons number null)))

The syntax of the cons construct can be tedious when attempting to specify a list with length
more than 2 or three. For example, to specify a list of 4 numbers, you would use (cons number
(cons number (cons number (cons number null)))). It is easy to define an intermediate type
to simplify the syntax.

(de f type cons ∗ (& r e s t types)
(cond

((cddr types)
‘ (cons , (car types)

(cons ∗ ,@(cdr types))))
(t
‘ (cons , @types))))

Using the newly defined cons* type we can specify a list of 4 numbers as (cons* number
number number number null).

One might ask whether the RTE implementation might benefit by recognizing lists of fixed
length and simply expanding to a Common Lisp type specifier using cons. We did indeed con-
sider this during the development, but found it caused a performance penalty. Admittedly, we
only investigated this potential optimization with SBCL, but experimentation showed roughly 5%
penalty for lists of length 5. Moreover, the penalty seems to grow for longer lists: 25% with a list
length of 10, 40% with a list length of 20.

Another disadvantage of the approach of using the cons specifier is that it is not possible to
combine the two approaches above to generalize homogeneous list types of arbitrary length. One
might attempt in vain to define a type for homogeneous lists recursively as follows in order to
specify a type such as (list-of number).

(de f type l i s t− o f (type)
‘ (or nu l l (cons , type (l i s t− o f , type))))

But this self-referential type definition is not valid,[14] because of the Common Lisp specifica-
tion of deftype which states: Recursive expansion of the type specifier returned as the expansion
must terminate, including the expansion of type specifiers which are nested within the expansion.

An attempt to use such an invalid type definition will result in something like the following:

50

CL−USER> (typep (l i s t 1 2 3) ’ (l i s t− o f fixnum))
INFO: Control s tack guard page unprotected
Control s tack guard page temporar i ly d i s ab l ed : proceed with caut ion

debugger invoked on a SB−KERNEL: :CONTROL−STACK−EXHAUSTED in thread
#<THREAD "main thread " RUNNING {1002AEC673}>:

Control s tack exhausted (no more space f o r func t i on c a l l frames) .
This i s probably due to heav i l y nested or i n f i n i t e l y r e c u r s i v e func t i on
c a l l s , or a t a i l c a l l that SBCL cannot or has not opt imized away .

PROCEED WITH CAUTION.

Type HELP f o r debugger help , or (SB−EXT:EXIT) to e x i t from SBCL.

r e s t a r t s (invokab le by number or by poss ib ly−abbrev iated name) :
0 : [ABORT] Exit debugger , r e tu rn ing to top l e v e l .

(SB−KERNEL: :CONTROL−STACK−EXHAUSTED−ERROR)
0]

9.2 Alternative implementation of destructuring–case

There is alternative approach to implementing the destructuring–case as discussed in Section
7.4. The approach would be to expand the macro invocation into a cond whose test attempts to
destructure the lambda list to the argument in question, but does so within a ignore–errors,
test the declared types, then execute the clause of the cond which does not trigger any errors
and matches the declared. The second return value of ignore-errors is nil if no condition was
raised.

We don’t present such an alternate implementation, but rather suggest by example, what such
an implementation might do. Figure 50 shows a usage of destructuring–case. Figure 51 shows
how the macro might expand.

(des t ructur ing−case (l i s t 1 2)
((a (b c) & key (d (i n c f ∗X∗)))
(d e c l a r e (type fixnum a)

(type symbol b))
(F3 a b c))

((a b & key (d (i n c f ∗Y∗)))
(d e c l a r e (type fixnum a b))
(F2 a b))

((a)
(F1 a)))

Figure 50: Example usage of destructing–case

There are shown in 51 which must be resolved in such a macro definition.

1. Failed attempt to destructure a list which does not match the destructuring-lambda-list must
catch conditions to be raised.

2. Supress any UNUSED VARIABLE warning issued by the compiler within the test; i.e., generate
(declare (ignorable ...)) where necessary. However, don’t supress warnings which are
a result of the user’s code.

3. Convert the type declarations into an explicit type check.

51

(l e t ((#:G1 (l i s t 1 2)))
(cond ((multiple−value−bind (#:G2 #:G3)

(i gnore−e r ro r s (destructur ing−bind (a (b c) &key d) #:G1
(de c l a r e (i gno re c d))
(and (typep a ’ fixnum)

(typep b ’ symbol))))
(and #:G2

(nu l l #:G3)))
(destructur ing−bind (a (b c) &key (d (i n c f ∗X∗))) #:G1

(de c l a r e (type fixnum a)
(type symbol b))

(F3 a b c)))
((multiple−value−bind (#:G2 #:G3)

(i gnore−e r ro r s (destructur ing−bind (a b &key d) #:G1
(de c l a r e (i gno re d))
(and (typep a ’ fixnum)

(typep b ’ fixnum))))
(and #:G2

(nu l l #:G3)))
(destructur ing−bind (a b &key (d (i n c f ∗Y∗))) #:G1

(de c l a r e (type fixnum a b))
(F2 a b)))))

((multiple−value−bind (#:G2 #:G3)
(i gnore−e r ro r s (destructur ing−bind (a) #:G1

(de c l a r e (i gno re a))
t))

(and #:G2
(nu l l #:G3)))

(destructur ing−bind (a) #:G1
(F2 a b)))))

Figure 51: Example expansion of destructing–case

52

4. Assure that side effects are only executed in the cond clause which is taken, and that the
side effects are executed the correct number of times. I.e., filter side effects out of the
destructuring lambda list used for the branch check.

5. In case no type declarations are found in a clause, assure that ignore-errors still returns
true as first argument.

10 Extension to other languages
It is not at all clear how to extend this concept to other dynamic languages, especially those which
are very different from Common Lisp. We would like to investigate whether the Python language,
for example, has sufficient reflective capability to implement something like a type specifier, a type
calculus, and the subtypep function.

10.1 Implementation in Python

type

combinational

and or not eql member

Figure 52: Proposed Python Class Hierarchy

We have begun a preliminary investigation/discussion about implementing this system in the
Python programming language. It indeed appears Python has the necessary primatives, although
our claim is not conclusive. It appears that the type called “typep” is sub-classable. The idea is
to create a subtype of “type” called “combinational-type”, and subtypes thereof called “or”, “and”,
“not”, “satisfies”, “eql”, and “member”. See Figure 52 Of course we’ll have to choose names which
are valid in the Python language.

There are methods corresponding to the Common Lisp typep and subtypep which we can
implement on the combinational-type class.

11 Discovered limitations
During the work on this project there were several notable issues we discovered.

11.1 Missing type specifier checker
There does not seem to be a way to detect whether an object is a valid type specifier. In fact there
is some doubt as to exactly what it means to be a valid type specifier, whether it is a question of
syntax, or whether it is a question of existance. E.g. does a value returned from gensym return a
valid specifier of a not-yet-defined type?

Here is an attempt used in the rte implementation, but it does not work for all implementations.
There are several discussions of this on comp.lang.lisp.

53

(defun valid−type−p (type−des ignator)
#+sbc l (and (SB−EXT:VALID−TYPE−SPECIFIER−P type−des ignator)

(not (eq type−des ignator ’ c l : ∗)))
#+(or c l i s p a l l e g r o)

(i gnore−e r ro r s (subtypep type−des ignator t))
#−(or s b c l c l i s p a l l e g r o)

(e r r o r "VALID−TYEP−P not implemented f o r ~A"
(l isp− implementation−type))

)

11.2 SBCL subtypep issues with SATISFIES
https://bugs.launchpad.net/sbcl/+bug/1528837

There are several troublesome issues with the subtypep function in SBCL. First, if I define
types using satisfies SBCL thinks it knows subclass information that it cannot know. Here is
an example using two functions, F and G, which are explicitly not yet defined.

CL−USER> (de f type even ()
‘ (and i n t e g e r

(or (eq l 0) (s a t i s f i e s F))))
EVEN
CL−USER> (de f type odd ()

‘ (and i n t e g e r
(or (eq l 1) (s a t i s f i e s G))))

ODD
CL−USER> RTE> (subtypep ’ odd ’ even)
NIL
T
CL−USER> (subtypep ’ even ’ odd)
NIL
T
CL−USER>

The subtypep function returns NIL,T indicating that it is sure neither odd nor even is a subtype
of the other. But it cannot know that without functions F and G being defined. Furthermore, even
in the case the functions are defined, subtypep still returns the wrong value. Consider the case
when F and G are the same. In this case the types are actually both a subtype of the other.

CL−USER> (defun F (x) t)
F
CL−USER> (defun G (x) t)
G
CL−USER> (de f type even ()

‘ (and i n t e g e r
(or (eq l 0) (s a t i s f i e s F))))

EVEN
CL−USER> (de f type odd ()

‘ (and i n t e g e r
(or (eq l 1) (s a t i s f i e s G))))

ODD
CL−USER> RTE> (subtypep ’ odd ’ even)
NIL
T
CL−USER> (subtypep ’ even ’ odd)
NIL
T
CL−USER>

The return value shoudl be NIL,NIL rather than NIL,T in this case.

54

11.3 SBCL subtypep issues with keywords
https://bugs.launchpad.net/sbcl/+bug/1533685

The SBCL implementation of subtypep is confused with regard to keyword symbols and the
eql specializer.

CL−USER> (subtypep ’ (eq l : x) ’ keyword)
NIL
NIL

While this result is indeed conforming. The subtypep function is allowed by the specification
to return NIL, NIL in any case involving eql. However, it is clear that the singleton set containing
the :x keyword symbol is a subset of the set of all keywords. It would seem to be a better choice
for subtypep to return T,T in this case.

A similar problem exists with member types such as (subtypep ’(member :x) keyword) and
(subtypep ’(member :x :y) keyword) which should also return T,T.

11.4 SBCL subtypep issues with compiled-function
https://bugs.launchpad.net/sbcl/+bug/1537003

The SBCL implementation of subtypep does not know that there exists at least one object of
type compiled-function.

CL−USER> (subtypep ’ compi led− funct ion n i l)
NIL
NIL

However it should return NIL,T.
The Common Lisp specification for subtypep states: http://clhs.lisp.se/Body/f_subtpp.htm

subtypep never returns a second value of nil when both type-1 and type-2 involve only the names
in Figure 4-2, or names of types defined by defstruct, define-condition, or defclass, or derived
types that expand into only those names. While type specifiers listed in Figure 4-2 and names of
defclass and defstruct can in some cases be implemented as derived types, subtypep regards them
as primitive.

Please notice that both NIL and COMPILED-FUNCTION both appear in Figure 4-2.

11.5 SBCL performance related issue with subtypep
Apparently it is a known issue in SBCL that subtypep has performance issues [2].

The issue seems to be that the subtypep function allocates lots of memory. In fact, one test
shows that 781,353 calls to the function allocates 2,247,898,784 bytes of consumes 12.864 seconds.

The problem appears to be a bottleneck for the performance of the type segmentation algo-
rithms explained in Section 6.

11.6 Closures and lambda expressions within SATISFIES types
In a type specifier the argument of SATISFIESmust be a symbol naming a functions. The argument
is not allowed to be a function object, nor a lambda expression such as (lambda (x) (foo x)).
This limitation eventually leads to the problem explained in Section 11.7.

In order to implement a type such as greater, we would like to write the following, but is it
not correct.

(de f type grea t e rp (n)
‘ (and r e a l

(s a t i s f i e s (lambda (m) (> m ,n)))))

What one must do instead is something like the following.

55

(defun generate−greater− funct ion (n)
(l e t ((name (gensym)))

(f s e t (symbol− function name)
(compi le n i l ‘ (lambda (m) (> m ,n))))

name))

(de f type grea t e rp (n)
‘ (and r e a l

(s a t i s f i e s , (generate−greater− funct ion n))))

This approach has several issues.

1. If the greater tyep is used in a function declaration, then a function is generated at compile
time but not included in the fasl file. See Section 11.7.

2. If a call such as (typep object ’(greater 42)) occurs at run-time expecially something
like (typep object T1) where T1 has value (greater 42), then the compiler will be called
during run-time.

3. A call such as (the (greater 42) 12) will produce an incomprehensible error message
which is likely to NOT contain the type name (greater 42).

11.7 Side effects during compilation
Section 8.6 explains some workarounds for this problem. The problem basically is that during
compilations it might be the case that certain functions are dynamically created, such as during
type expansion.

11.8 Recursive types

11.9 Extensible subtype mechanism
The Common Lisp programmer is allowed to define new types using deftype and satisfies, but
is not allowed to extend the capability of subtypep. It would seem natural for the programmer
to wish to be able to extend subtypep to declare that (satifies oddp) is a subtype of integer
and in particular a non-empty subtype.

11.10 Type reflection
There is no standard way for an application to perform a type expansion. Neither is there a way
to even ask whether there is a type definition (deftype) for a suspected type name. Furthermore,
when a type definition changes there is no way for an application to be notified. Constrast this
with the dependency mapping protocol described in Section 8.6. The lisp system will notify an
application when the class lattice has changed because a class has been redefined, because the
application may have cached information based on the class hierarchy. Such a protocol is missing
for non-class types as defined by deftype.

12 Conclusions and Future work
In this paper we presented a Common Lisp type definition, rte, which implements a declarative
pattern based approach for declaring types of heterogeneous sequences illustrating it with several
motivating examples. We further discussed the implementation of this type definition and its
inspiration based in rational language theory. While the total computation needed for such type
checking may be large, out approach allows most of the computation to be done at compile time,
leaving only an O(n) complexity calculation remaining for run-time computation.

56

For future extensions to this research we would like to experiment with extending the subtypep
implementation to allow application level extensions, and therewith examine run-time performance
when using rte based declarations within function definitions.

Another topic we’d like to research is whether the core of this algorithm can be implemented in
other dynamic languages, and to understand more precisely which features such a language needs
to have to support such implementation.

Several open questions remain:
Can regular type expressions can be extended to implement more things we’d expect from a

regular expression library. For example, can we have grouping remember what was matched, and
use that for regexp-search-and-replace? Additionally, would such a search and replace capability
be useful?

Can this theory be extended to tackle unification. Can RTE be extended to implement unifi-
cation in a way which adds value?

One problem in general with regular expressions is that if you use them to find whether a string
(sequence in our case) does or does not match a pattern. We would often like to know why it fails
to match. Questions such as “How far did it match?” or “Where did it fail to match?” would
be nice to answer. It is currently unclear whether the RTE implement can at all be extended to
support these features.

References
[1] Declaring the elements of a list, discussion on comp.lang.lisp, 2015.

[2] Performance of subtypep, thread on sbcl-devel mailing list, 2016.

[3] Baker, H. G. A decision procedure for Common Lisp’s SUBTYPEP predicate. Lisp and
Symbolic Computation 5, 3 (1992), 157–190.

[4] Barlow, D. Asdf user manual for version 3.1.6, 2015.

[5] Barnes, T. SKILL: a CAD system extension language. In Design Automation Conference,
1990. Proceedings., 27th ACM/IEEE (Jun 1990), pp. 266–271.

[6] Brzozowski, J. A. Derivatives of regular expressions. J. ACM 11, 4 (1964), 481–494.

[7] Cameron, R. D. Perl style regular expressions in Prolog, CMPT 384 lecture notes, 1999.

[8] Chroboczek, J. CL-Yacc, a LALR(1) parser generator for Common Lisp, 2009.

[9] Duret-Lutz, A. Conversations concerning segmentation of sets, 2015.

[10] Hosoya, H., Vouillon, J., and Pierce, B. C. Regular expression types for XML. ACM
Trans. Program. Lang. Syst. 27, 1 (Jan. 2005), 46–90.

[11] Johh E. Hopcroft, Rajeev Motwani, J. D. U. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, 2001.

[12] Katzman, D. Thread on SBCL Devel-list sbcl-devel@lists.sourceforge.net, 2015.

[13] Kiczales, G. J., des Rivières, J., and Bobrow, D. G. The Art of the Metaobject
Protocol. MIT Press, Cambridge, MA, 1991.

[14] Margolin, B. declaring the elements of a list. Thread on comp.lang.lisp, December 2015.

[15] Newman, W. H. Steel Bank Common Lisp user manual, 2015.

[16] Owens, S., Reppy, J., and Turon, A. Regular-expression derivatives re-examined. J.
Funct. Program. 19, 2 (Mar. 2009), 173–190.

57

[17] Paepcke, A. User-level language crafting – introducing the Clos metaobject protocol.
In Object-Oriented Programming: The CLOS Perspective, A. Paepcke, Ed. MIT Press,
1993, ch. 3, pp. 65–99. Downloadable version at http://infolab.stanford.edu/~paepcke/
shared-documents/mopintro.ps.

[18] Pin, J.-E. Mathematical foundations of automata theory.

[19] Pitman, K. M. Using closures with satisfies, comp.lang.lisp, 2003.

[20] Rhodes, C. User-extensible sequences in Common Lisp. In Proceedings of the 2007 Inter-
national Lisp Conference (New York, NY, USA, 2009), ILC ’07, ACM, pp. 13:1–13:14.

[21] Riesbeck, C. Lisp unit. https://www.cs.northwestern.edu/academics/courses/325/
readings/lisp-unit.html.

[22] Senta, L., Chedeau, C., and Verna, D. Generic image processing with Climb. In
European Lisp Symposium (Zadar, Croatia, May 2012).

[23] Ansi. American National Standard: Programming Language – Common Lisp. ANSI
X3.226:1994 (R1999), 1994.

[24] Weitz, E. Common Lisp Recipes: A Problem-solution Approach. Apress, 2015.

[25] Xing, G. Minimized Thompson NFA. Int. J. Comput. Math. 81, 9 (2004), 1097–1106.

[26] Yvon, F., and Demaille, A. Théorie des Langages Rationnels. 2014.

58

http://infolab.stanford.edu/~paepcke/shared-documents/mopintro.ps
http://infolab.stanford.edu/~paepcke/shared-documents/mopintro.ps
https://www.cs.northwestern.edu/academics/courses/325/readings/lisp-unit.html
https://www.cs.northwestern.edu/academics/courses/325/readings/lisp-unit.html

	Introduction
	Theory of Rational Languages
	Rational expressions
	Regular expressions
	Finite Automata
	Equivalence of Rational Expressions and Finite Automata
	The Rational Expression Derivative

	Heterogeneous sequences in Common Lisp
	Types in Common Lisp
	The regular type expression
	Clarifying some confusing points about regular type expressions
	Regular type expression keywords

	Constructing an automaton
	The problem of overlapping types
	Type segmentation/decomposition
	RTE Algorithm for set disjoint decomposition
	Sub-type relationship not always recognizable
	Set disjoint decomposition as SAT problem
	Set disjoint decomposition as graph problem
	Performance analysis of type decomposition

	Application use cases
	RTE based string regular expressions
	Test cases based on extensible sequences
	Complex pattern matching, recognizing correct lambda lists
	List destructuring - destructuring-case

	Implementation details
	Optimized code generation
	Sticky states
	Redundant disjoint typecase
	RTE performance vs hand-written code
	RTE performance vs CL-PPCRE
	Exceptional situations
	Known Open Issue
	Declaration based solution
	ASDF based solution

	Alternatives
	Use of cons construct to specify homogeneous lists
	Alternative implementation of destructuring–case

	Extension to other languages
	Implementation in Python

	Discovered limitations
	Missing type specifier checker
	SBCL subtypep issues with SATISFIES
	SBCL subtypep issues with keywords
	SBCL subtypep issues with compiled-function
	SBCL performance related issue with subtypep
	Closures and lambda expressions within SATISFIES types
	Side effects during compilation
	Recursive types
	Extensible subtype mechanism
	Type reflection

	Conclusions and Future work

