
XML proposal for automata description

The VAUCANSON group

http://vaucanson.lrde.epita.fr

Abstract. This paper presents an XML description format for the automaton
representation. We introduce the proposal through some examples that enlight
characteristic features of the format, with a progressive complexity. Finally, we
briefly focus on implementation concerns.

Introduction

Conceiving a universal automaton exchange format aims at providing the community a
communication tool that could be used for the connection of the various programs that
deal with automata and transducers. This system is used in the Vaucanson platform.
Someone can load an automaton in Vaucanson from a XML file, or store an existing
one from Vaucanson into an XML file.

1 Overview

As it will be described further, we use a XSD file (see [5]) for the description format
of this XML proposition, since it allows context sensitive declarations. This report first
presents a XML representation of a classical Boolean automaton. Then this example
will be fleshed out, so as to deal with transducers and most general automata with mul-
tiplicity.

The description of automata is structured in two parts. The<label-type> tag pro-
vides some automaton type definitions. This can be a Boolean automaton, or a weighted
one with the ability to specify the weight type. It can also have some alphabet specifi-
cations, etc. The<content> tag provides the definition of the automaton “structure”.

The visual representation of automata involves a very largeamount of information.
This is why two different types of information are distinguished in this proposition.
They are described in the two following tags. The<geometry> data correspond to the
embedding of the automaton in a plane. They represent the waythe automaton is placed
in it. The tag consequently contains information such as thecoordinates of the states, or
the directions and types of the transitions. The<drawing> data contain the definition
of attributes that characterize the graphical aspects of the automaton’s elements. There-
fore, this tag contains information like the color of the states or the style of the edges.

The proposed policy supposes these properties to be checkedby the program, and
that it is not complicated nor more costly than to test whether an announced property is
indeed fulfilled.



2 Simple examples with default types

2.1 A Boolean automaton

As a first example, the automaton of Figure 1 is represented inFigure 2. This Boolean
automaton recognizes the set of words over the alphabet{a,b} that contain at least one
b.

b

a a

b b
Fig. 1.The automatonB1

<automaton>
<content>
<states>

<state name="s0"/>
<state name="s1"/>

</states>
<transitions>

<transition src="s0" dst="s0" label="a"/>
<transition src="s0" dst="s0" label="b"/>
<transition src="s0" dst="s1" label="b"/>
<transition src="s1" dst="s1" label="a"/>
<transition src="s1" dst="s1" label="b"/>
<initial state="s0"/>
<final state="s1"/>

</transitions>
</content>

</automaton>

Fig. 2. The XML description of the automatonB1

2.2 A Boolean transducer

The XML proposition can also be used to represent transducers. The example of Figure
3 gives the quotient by 3 of a binary number. It is representedin Figure 4.

2



0|0 1|1
1|0

1|1

0|0

0|1

Fig. 3.Transducer T giving the quotient by 3 of a binary number

<transducer>
<content>
<states>

<state name="s0"/>
<state name="s1"/>
<state name="s2"/>

</states>
<transitions>

<transition src="s0" dst="s0" in="0" out="0"/>
<transition src="s0" dst="s1" in="1" out="0"/>
<transition src="s1" dst="s0" in="1" out="1"/>
<transition src="s1" dst="s2" in="0" out="0"/>
<transition src="s2" dst="s2" in="1" out="1"/>
<transition src="s2" dst="s1" in="0" out="1"/>
<initial state="s0"/>
<final state="s0"/>

</transitions>
</content>

</transducer>

Fig. 4. The XML description of T

2.3 Naive description of the<content> tag

The<content> tag aims at describing the structure of the automaton. It hastwo children which
are mandatory and supposed to appear in a specific order. These tags enable definitions of states
and transitions.

The first tag is<states>, representing start declaration of the set of states of the automaton.
A state has three attributes: aname (which is mandatory and has to be unique), alabel and a
number. The latter can be used to put an ordering on states, or to add special data to the state.

The second tag is<transitions>, representing start declaration of the set of transitions.
The initial and finaltransitions are represented as children of<transitions>. Effectively, an
initial states can be seen as a transition which destination iss. This transition can have alabel
or a number in some cases, so it seems to be logical to have the list of initial states in the
<transitions> tag. In like manner, the final states can be found at the same place in the XML
description.

3



It is mandatory for a<transition> to have two attributes:src anddst, representing source
and destination of the transition. In the case of an<initial> or <final> transition, the only
mandatory attribute isstate, referring to the initial or final state the transition belongs to.

There is no limitation of the format for the content of attributes, as it is a non-restricted
string. For example, a user can store a rational expression in the label. When omitting thelabel
attribute, the XSD grammar proposes the empty word as the default value.

At this point, most of automata can be easily described. These examples use only a part of
the XML description that we present, but allow the reader to understand the basis of this format
and to easily deal with a great amount of automata and transducers.

3 Description of the format

This part describes in details some tags of the XML format. Firstly, the tags<automaton>
and <transducer> will be introduced. Then, the two main tags, namely<label-type> and
<content>, will be described. Eventually, the main<session> tag that holds all the other ones
will be presented.

3.1 The<automaton> and <transducer> tags

As one can see in the previous examples 2 and 4, these tags specify the type(s) of the object(s)
contained in the XML session. The content of an object is thenspecific, and it is linked to the
type of tag that is used. In any case, an attribute “name”, present in these tags, allows to bring an
explicit name to an automaton and to store it in a XML file.

3.2 The<label-type> tag

In many cases, automata are graphs whose edges are labeled bysymbols called letters, taken in
a set called alphabet. In full generality, this label can be apolynomial, or even a rational series,
over a monoid with coefficients taken in a semiring. The<label-type> tag allows to refer to
this semiring and this monoid.

In the automaton described in Figure 2, no specific information is given on the type of the
automaton. The proposal comes with a set of predefined types,in order to limit amount of needed
declarations for widely used structures. When the documentstarts with the<automaton> tag and
when the<label-type> tag is omitted, the default automaton type is a Boolean automaton, on
the standard alphabet (all the letters of the alphabet, including capitalized ones, and digits). Con-
cerning the<transducer> tag without any<label-type> tag, the default transducer is Boolean
with two monoids built on the same standard alphabet. These default types will be described
further in the XML format.

The <monoid> tag There are cases for which the default alphabet proposed to build the
monoid doesn’t fit. For this reason, this tag enables the userto determine the basic symbols set
that she wants to use as an alphabet in the labels of the transitions.

For instance, in the current state, the automaton of figure 1 is defined with the default alpha-
bet. It could be better to set an alphabet that only contains the lettersa andb, so as to prevent the

4



<type>
<monoid>

<generator value="a"/>
<generator value="b"/>

</monoid>
</type>

Fig. 5. Setting{a,b} alphabet

<type>
<monoid generators="digits" type="free">
<generator value="0"/>
<generator value="1"/>

</monoid>
</type>

Fig. 6. Example of a restriction

user from possible errors subsequent to the first definition.So, the resticted alphabet would be
defined as shown in figure 5

In like manner, one can also set a restriction on the alphabetlike in Figure 6.
In order to avoid some potential problems, the user can set the value of the empty word with

the attributeidentity symbol of the monoid. This way, the empty word symbol can always be
different from any character of the used alphabet.

To create a transducer based on a free monoid product, it is necessary to declare the two
monoids in order to determine the two needed alphabets. A suitable example can be found in the
figure 12. It represents the type of a default transducer.

The XSD description of this tag is a little complicated. Someelements allow the proposi-
tion to be extensive and to fully describe any monoid type. This is why the first elements of the
<monoid> tag are a choice. It can be one or more monoid types to allow some complex definitions
(See figure 12 for an example), or it can be one or more generator types to describe the letters
composing the alphabet of the monoid. But both types cannot exist in the same monoid type de-
scription. Concerning transducers, only two monoids can bedefined under the main<monoid>
tag so as to remain a free monoid product.

The monoid attributes are:

– type
This is used to set the type of the monoid. Choices are unit, free or product.

– generators
This attribute sets a global restriction to the alphabet. The current possibilities are letters,
digits, pair or weighted.

– identity symbol
Used to set an empty word symbol.

5



The XSD description of the<generator> tag is:

– value
This is used to add one letter in the alphabet. One can put several <generator> tags in a
monoid description so as to have bigger alphabets.

– range
This allows to set a fixed range without being obliged to add all the symbols one by one. For
instance, the range ascii sets the alphabet on the ascii characters.

The <semiring> tag The XML proposition enables a full description of the automa-
ton type. It consequently proposes a way to write weighted automata or transducers seen as a
weighted automaton with its weights inRat(B∗).

To describe a weighted automaton, the<label-type> tag provides a set of customizable tags
to specify the type of multiplicities. The example of Figure7 shows how to turn the automaton
B1 into a weighted automaton with weights inZ – so it counts the number ofb in a word.

<automaton>
<label-type>

<semiring set="Z"/>
</label-type>
<content>
...
</content>

</automaton>

Fig. 7. The XML description of theZ-automatonB1

The<semiring> tag can be described with two attributes:

– Set
The set on which the automaton is built. The possible sets areB, R, Z, N and ratSeries
(which will be discussed later).

– Operations
The type of operations that can be performed on this set. The possibilities arenumerical,
boolean, tropicalMin or tropicalMax.

For instance, describing the tropical semiring(Z,max,+) is achieved with:

<semiring set="Z" operations="tropicalMax">

All the content definition previously defined in figure 2 is still totally compatible with a
weighted automaton, and can remain unchanged.

Two different ways are proposed to set the weight of an edge. One can directly store the
multiplicity in the label attribute, or use the dedicatedweight attribute. These attributes can
indistinctly be used in a<transition>, an <initial> or a <final> tag. When omitting the
weight attribute, the XSD grammar proposes the identity of the semiring as the default value.

6



The<semiring> tag proposes some solutions for the transducers, like the example of figure
8. It describes the right transducer for binary addition seen as a weighted automaton with weight
in Rat(B∗). <monoid> and<semiring> tags can recursively be defined, in order to describe a
complex type. Only the<label-type> is shown in the example 8 so as to remain clear.

<transducer>
<type>
<monoid generators="digits" type="free">

<generator value="0"/>
<generator value="1"/>
<generator value="2"/>

</monoid>
<semiring set="ratSeries">

<monoid generators="digits" type="free">
<generator value="0"/>
<generator value="1"/>

</monoid>
<semiring operations="numerical" set="B"/>

</semiring>
</type>
<content>
...

</content>
<transducer>

Fig. 8. Right transducer for binary addition

The beginning of the XSD description of the<semiring> is a sequence that contains two
elements, namely the monoid and the semiring. This allows a recursion in the definition of an
automaton structure.

3.3 The<content> tag

For automata and transducers, the<content> tag has the same structure. The following is the
description of this tag. Bold elements are mandatory ones. The tags<geometry> and<drawing>
can be placed at any place of the document and are quite special. They are ignored here, but more
information can be found in section 4.

The first tag,<states>, gives the possibility to fully describe the states of an automaton
and their content. The<states> tag is composed of:

– <state>
This tag represents one state. There must be as many of these tags as there are states in the
automaton. Such a tag has the following elements and attributes:

7



• name
The name to the state.

• label
Optional label for a state.

• number
Used if one wants to set an order on the states.

With the second tag,<transitions>, one can describe the transitions. It is composed of:

– <transition>
This tag describes the content of one transition of the automaton. It is composed of:
• src

The state that is the source of the transition.
• dst

The state that is the destination of the transition.
• name
• label
• weight

Optional name, label and weight for the transition.
– <initial>

This tag describes the content of an initial state of the automaton:
• state

The state that is initial.
• label
• weight

Optional label and weigth for the entering transition.
– <final>

This tag describes the content of a final state of the automaton. Its strucure is the same as the
<initial> tag’s one.

Concerning transducers, the<content> tag follows the same structure as for automata de-
scription, although a noticeable difference is the extension for transition definitions. Two new
attributes are proposed for transducer description:in andout, respectively corresponding to the
input and the output of a transition. These two attributes are proposed in addition to the classical
label andweight attributes, that can still be used for transducer description. Of course, they can
be used indistinctly in<transition>, <initial> or <final>.

About the labels There is a specificity about the attribute “label” of the<transition> tag .
Most of the time, there isn’t any problem since its value is a single character. But one can prefer to
set a rational expression denoting the language that must berecognized to pass through the given
transition. Its type is a non-restricted string, but there is a grammar to follow so as to be correctly
understood by VAUCANSON. It is presented in figure 9, The empty word is represented by “1”,
and the absorbent element of the semiring by “0”. These are default values in VAUCANSON.

Priority for operators is, from the most important to the least important:

– * (star), to star a series.
– ’ ’ (space), to weight a series either on the right or on the left.
– . (dot), to concatenate two series.
– + (plus), to do the union of two series.

8



exp ::= ’(’ exp ’)’
| exp ’+’ exp
| exp ’.’ exp
| exp exp
| exp ’*’
| weight ’ ’ exp
| exp ’ ’ weight
| 0
| 1
| word

Fig. 9. Grammar of the rational expression

Thein andout attributes follow the same rules for transducers.
The VAUCANSON group is aware that with some special alphabets and a specialempty word,
some errors can occur when parsing some complicated labels.It would be preferable to design
another XML description to represent a rational expressioninstead of a non-limited string, and it
could be one of the further works of the VAUCANSON group.

3.4 The<session> tag

A way to manipulate many automata would be to combine them in asingle document. The pro-
posal offers this feature through the<session> tag. An unlimited number of automata or trans-
ducers can be combined in a single XML document. A XML sessioncan also be named. An
application can be found in figure 10.

<session name="session1">
<automaton name="a1">...</automaton>
<transducer name="t1">...</transducer>
<transducer name="t2">...</transducer>

</session>

Fig. 10.Session of numerous automata

3.5 The cascade of default options

The<label-type> tag has two children: the<monoid> tag and the<semiring> tag. None of
these tags is mandatory, and both have different values according to the root tag. Figure 11 shows
the equivalent XML code if one omits the<label-type> tag when declaring an automaton.
Similarly, Figure 12 shows the default type for transducers. Theoperations attributes is set to
"numerical", which means that usual laws overB shall be applied.

9



<type>
<monoid type="free" generators="letters">

<generator range="ascii"/>
</monoid>
<semiring set="B" operations="numerical"/>

</type>

Fig. 11.Default type for an automaton

<type>
<monoid type="product">

<monoid type="free" generators="letters">
<generator range="ascii"/>

</monoid>
<monoid type="free" generators="letters">
<generator range="ascii"/>

</monoid>
</monoid>
<semiring set="B" operations="numerical"/>

</type>

Fig. 12.Default type for a transducer

4 The visualization tags

The visual representation of automata involves a very largeamount of information. On the one
hand, the<geometry> is context sensitive with data such as state coordinates or edge type for a
transition. It gives some information about the way the automata are set in the plane only. On the
other hand, the<drawing> tag gives some graphical information about the way the automata of
a session must be drawn.

Let us note that these tags can be used at any level of the document. In this case, the defined
properties are applied to the tag in which they are defined. Itis possible to define some properties
in a tag and to locally override them in a child tag. For example in Figure 13, the filling color of
the states is globally set toblack, and the color of states1 is locally set to red. As a result,s0 and
s2 will be black, ands1 will be red.

4.1 The<geometry> tag

The<geometry> tag is context sensitive. If it is a child of the<state> tag, the only two properties
that can be set are the position,x andy, of the state. These values can only be numeric.

If it is a child of <transition>, <initial> or <final>, two attributes can be set. Firstly,
the edgeType attribute, that assign the type of the edge (line, arcL, arcR, curve). Then, the
direction attribute, that can be used to assign the direction angle of aloop, for instance. This
attribute is numeric.

The example of Figure 14 sets a global offset for the document, and then places the states in
the plane. It also sets the type of the transition as a left arc.

10



<transducer>
<drawing stateFillColor="black"/>
<content>

<states>
<state name="s0"/>
<state name="s1">

<drawing stateFillColor="red"/>
</state>
<state name="s2"/>

...
</transducer>

Fig. 13.Example of overriding drawing properties

<automaton>
<geometry x="-2" y="-2"/>
<content>

<states>
<state name="s0"><geometry x="0" y="0"/>
</state>
<state name="s1"><geometry x="3" y="0"/>
</state>

<transitions>
<transition src="s0 dst="s1" label="a">
<geometry edgeType="arcL">

</transition>
</transitions>

</automaton>

Fig. 14.Setting geometry properties

4.2 The<drawing> tag

The <drawing> tag contains the definition of attributes that characterizethe actual drawing of
the graph. Most of them are indeed implicit and provided by drawing programs; the format only
provides the possibility to make them explicit. A lot of different properties, that have been taken
from the options proposed by Vaucanson-G, can be used in the<drawing> tag at many places in
the proposal.

Since it’s not possible to exhaustively name all needed attributes users may need, the proposal
offers a limited set of properties. For example,stateFillColor or edgeStyle usage are shown in
Figure 15. These attributes use a string representation to describe their values.

One of the powerful features of XSD files is theanyAttribute modifier. This modifier allows
the user to easily extend the main XSD, and then use its own attributes and still be compliant
with the grammar. The<drawing> tag contains aanyAttribute modifier in the proposal, so the
grammar is not limited to a specific set of drawing properties.

11



<transducer>
<geometry x="-5" y="0"/>
<drawing stateFillColor="black" edgeStyle="dashed"/>
<content>

<states>
<state name="s0">

<drawing stateFillColor="red"/>
</state>

...
</transducer>

Fig. 15.Setting drawing properties

5 Discussion

5.1 From DTD to XSD

The most important difference with our previous proposal (see [3]) is the change from a DTD
(Document Type Definition) document to an XSD (XML Schema Description) Schema.

It is desirable to keep the description of automata simple when describing widely used struc-
tures while giving the possibility to describe the most complex ones. For XML, this simplifica-
tion enables to have default types, in order to omit<label-type> tag when describing common
Boolean automata or transducers.

The problem then arises when describing an automaton or a transducer, the default values for
the<label-type> tag must of course be different. This is not possible with a DTD description.
The use of a XSD overcomes this difficulty, since it is possible to define different properties for a
same element, according to the embracing context. It is so possible to locally change the behavior
of a tag, and make it context-sensitive. With this feature, default values for the<label-type>
tag are achieved, whether it is a child of<transducer> or <automaton>.

6 Conclusion

For the past year we experimented the proposal made at CIAA’04 in the VAUCANSON platform.
This version 1.1 comes as a result of this experiment, with simplifications where possible. Thus,
the VAUCANSON platform deals with numerous automata types, and it is important to be able to
define precisely the type of the automaton in addition to its content.

This proposal comes as a combination of two needs, shorten declaration of widely used struc-
ture and make possible definitions of complex types. We hope to have proposed a description
format that fulfills, at least partially, both needs.

References

1. GAMMA E., HELM R., JOHNSON R., AND VLISSIDES J., Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

2. LOMBARDY S., RÉGIS-GIANAS Y., AND SAKAROVITCH J., Introducing VaucansonTheo-
retical Comput. Sci. 328 (2004), 77–96. Journal version ofProc. of CIAA 2003, Lect. Notes
in Comp. Sc. 2759, (2003), 96–107 (with R. POSS).

12



3. CLAVEIROLE T., Proposal: an XML representation for automata, Technical report, LRDE
(2004).

4. http://xml.apache.org/xerces-c/
5. http://www.lrde.epita.fr/dload/vaucanson/vaucanson.xsd

13


