XML proposal for automata description

The VAUCANSON group

http://vaucanson.Irde.epita.fr

Abstract. This paper presents an XML description format for the automa
representation. We introduce the proposal through somm@es that enlight
characteristic features of the format, with a progressampmlexity. Finally, we

briefly focus on implementation concerns.

Introduction

Conceiving a universal automaton exchange format aimsoaiging the community a
communication tool that could be used for the connectiomeffarious programs that
deal with automata and transducers. This system is useckivabcanson platform.
Someone can load an automaton in Vaucanson from a XML filetope sin existing
one from Vaucanson into an XML file.

1 Overview

As it will be described further, we use a XSD file (see [5]) fbe description format
of this XML proposition, since it allows context sensitivealarations. This report first
presents a XML representation of a classical Boolean autmmdhen this example
will be fleshed out, so as to deal with transducers and mostrgeautomata with mul-
tiplicity.

The description of automata is structured in two parts. ditabel - t ype> tag pro-
vides some automaton type definitions. This can be a Booleameaton, or a weighted
one with the ability to specify the weight type. It can alsedaome alphabet specifi-
cations, etc. Thecont ent > tag provides the definition of the automaton “structure”.

The visual representation of automata involves a very largeunt of information.
This is why two different types of information are distinghed in this proposition.
They are described in the two following tags. Tdyeonet r y> data correspond to the
embedding of the automaton in a plane. They represent théheautomaton is placed
in it. The tag consequently contains information such astivedinates of the states, or
the directions and types of the transitions. Hdeaw ng> data contain the definition
of attributes that characterize the graphical aspectseddititomaton’s elements. There-
fore, this tag contains information like the color of thetetsor the style of the edges.

The proposed policy supposes these properties to be chbgkbé program, and
that it is not complicated nor more costly than to test whetéimeannounced property is
indeed fulfilled.

2 Simple examples with default types

2.1 A Boolean automaton

As a first example, the automaton of Figure 1 is represent&gure 2. This Boolean
automaton recognizes the set of words over the alpHabb} that contain at least one
b.

b b
Fig. 1. The automatoi,

<aut omat on>
<cont ent >
<stat es>
<state nane="s0"/>
<state name="s1"/>
</ st at es>
<transitions>
<transition src="s0" dst="s0" |abel="a"/>
<transition src="s0" dst="s0" |abel ="b"/>
<transition src="s0" dst="s1" |abel ="b"/>
<transition src="sl1" dst="s1" |abel ="a"/>
<transition src="s1" dst="s1" |abel ="b"/>
<initial state="s0"/>
<final state="s1"/>
</transitions>
</content>
</ aut omat on>

Fig. 2. The XML description of the automatdsy

2.2 A Boolean transducer

The XML proposition can also be used to represent transduthe example of Figure
3 gives the quotient by 3 of a binary number. It is represemté&dgure 4.

0/0 11

1/0 0/0
1)1 0/1

Fig. 3. Transducer T giving the quotient by 3 of a binary number

<transducer >
<cont ent >
<stat es>
<state nane="s0"/>
<state nane="s1"/>
<state name="s2"/>
</ st at es>
<transitions>
<transition src="s0" dst="s0" in="0" out="0"/>
<transition src="s0" dst="s1" in="1" out="0"/>
<transition src="sl1" dst="s0" in="1" out="1"/>
<transition src="s1" dst="s2" in="0" out="0"/>
<transition src="s2" dst="s2" in="1" out="1"/>
<transition src="s2" dst="s1" in="0" out="1"/>
<initial state="s0"/>
<final state="s0"/>
</transitions>
</ content >
</transducer>

Fig. 4. The XML description of T

2.3 Naive description of the<cont ent > tag

The<cont ent > tag aims at describing the structure of the automaton. Itwsaghildren which
are mandatory and supposed to appear in a specific ordele Tdgsenable definitions of states
and transitions.

The first tag is<st at es>, representing start declaration of the set of states ofutenzaton.

A state has three attributesnanme (which is mandatory and has to be unique),ahel and a
nunber . The latter can be used to put an ordering on states, or topsehibs data to the state.

The second tag istransitions>, representing start declaration of the set of transitions.
The initial and finaltransitions are represented as children<ifr ansi ti ons>. Effectively, an
initial states can be seen as a transition which destination Ehis transition can havelabel
or anunber in some cases, so it seems to be logical to have the list délirstates in the
<transitions> tag. In like manner, the final states can be found at the saaoe jah the XML
description.

It is mandatory for &t ransi ti on> to have two attributessr ¢ anddst, representing source
and destination of the transition. In the case of<ani ti al > or <fi nal > transition, the only
mandatory attribute ist at e, referring to the initial or final state the transition bejsrto.

There is no limitation of the format for the content of attries, as it is a non-restricted
string. For example, a user can store a rational expressitireilabel. When omitting thieabel
attribute, the XSD grammar proposes the empty word as tlaitlefilue.

At this point, most of automata can be easily described. @legamples use only a part of
the XML description that we present, but allow the readerridaistand the basis of this format
and to easily deal with a great amount of automata and traessiu

3 Description of the format

This part describes in details some tags of the XML formatsthi the tags<aut omat on>
and <t ransducer > will be introduced. Then, the two main tags, namelyabel -t ype> and
<cont ent >, will be described. Eventually, the ma#isessi on> tag that holds all the other ones
will be presented.

3.1 The<aut omat on>and<t r ansducer >tags

As one can see in the previous examples 2 and 4, these tadfy $hedype(s) of the object(s)
contained in the XML session. The content of an object is specific, and it is linked to the
type of tag that is used. In any case, an attribute “name%gurein these tags, allows to bring an
explicit name to an automaton and to store it in a XML file.

3.2 The<l abel -t ype>tag

In many cases, automata are graphs whose edges are labedgahbgls called letters, taken in
a set called alphabet. In full generality, this label can lpelgnomial, or even a rational series,
over a monoid with coefficients taken in a semiring. Khabel - t ype> tag allows to refer to
this semiring and this monoid.

In the automaton described in Figure 2, no specific inforamais given on the type of the
automaton. The proposal comes with a set of predefined tiypesjer to limit amount of needed
declarations for widely used structures. When the docustants with thecaut omat on> tag and
when the<!| abel - t ype> tag is omitted, the default automaton type is a Boolean aatom on
the standard alphabet (all the letters of the alphabetydireg capitalized ones, and digits). Con-
cerning the<t r ansducer > tag without anyI abel - t ype> tag, the default transducer is Boolean
with two monoids built on the same standard alphabet. Thefaull types will be described
further in the XML format.

The <nmonoi d> tag There are cases for which the default alphabet proposedili the
monoid doesn't fit. For this reason, this tag enables the taséetermine the basic symbols set
that she wants to use as an alphabet in the labels of thetiogssi

For instance, in the current state, the automaton of figused&fined with the default alpha-
bet. It could be better to set an alphabet that only contaimsettersa andb, so as to prevent the

<type>
<nonoi d>
<generator value="a"/>
<generator val ue="b"/>
</ monoi d>
</type>

Fig. 5. Setting{a, b} alphabet

<type>
<nonoi d generators="digits" type="free">
<generator value="0"/>
<generator value="1"/>
</ monoi d>
</type>

Fig. 6. Example of a restriction

user from possible errors subsequent to the first definian.the resticted alphabet would be
defined as shown in figure 5

In like manner, one can also set a restriction on the alpHedeein Figure 6.

In order to avoid some potential problems, the user can setatue of the empty word with
the attributeidentity_symbol of the monoid. This way, the empty word symbol can always be
different from any character of the used alphabet.

To create a transducer based on a free monoid product, itcisseary to declare the two
monoids in order to determine the two needed alphabets.tAldaiexample can be found in the
figure 12. It represents the type of a default transducer.

The XSD description of this tag is a little complicated. Soefements allow the proposi-
tion to be extensive and to fully describe any monoid typeas Thwhy the first elements of the
<nonoi d> tag are a choice. It can be one or more monoid types to allove smmplex definitions
(See figure 12 for an example), or it can be one or more gemdsqies to describe the letters
composing the alphabet of the monoid. But both types candist ia the same monoid type de-
scription. Concerning transducers, only two monoids caddfmed under the maitnonoi d>
tag so as to remain a free monoid product.

The monoid attributes are:

— type
This is used to set the type of the monoid. Choices are uei,dr product.
— generators
This attribute sets a global restriction to the alphabet Tirrent possibilities are letters,
digits, pair or weighted.
— identity_synbol
Used to set an empty word symbol.

The XSD description of thegener at or > tag is:

— val ue
This is used to add one letter in the alphabet. One can putaegener at or > tags in a
monoid description so as to have bigger alphabets.

— range
This allows to set a fixed range without being obliged to atlthalsymbols one by one. For
instance, the range ascii sets the alphabet on the asciiatbes.

The <seni ri ng> tag The XML proposition enables a full description of the autema
ton type. It consequently proposes a way to write weightedraata or transducers seen as a
weighted automaton with its weights iRat (B*).

To describe a weighted automaton, thabel - t ype> tag provides a set of customizable tags
to specify the type of multiplicities. The example of Figutshows how to turn the automaton
B, into a weighted automaton with weightsZn- so it counts the number bfin a word.

<aut omat on>
<l abel -type>
<semring set="2"/>
</l abel -t ype>
<content >

</ content>
</ aut omat on>

Fig. 7. The XML description of theZ-automatorB;

The<seni ri ng> tag can be described with two attributes:

— Set
The set on which the automaton is built. The possible set®ai®, Z, N andratSeries
(which will be discussed later).

— Qperations
The type of operations that can be performed on this set. ©hsilplities arenumerical,
boolean, tropicalMin or tropicalMax.

For instance, describing the tropical semir{f#@y max, +) is achieved with:
<semring set="Z" operations="tropical Max">

All the content definition previously defined in figure 2 islistbtally compatible with a
weighted automaton, and can remain unchanged.

Two different ways are proposed to set the weight of an edge ¢n directly store the
multiplicity in the | abel attribute, or use the dedicatedi ght attribute. These attributes can
indistinctly be used in atransi tion>, an<initial > or a<final >tag. When omitting the
wei ght attribute, the XSD grammar proposes the identity of the 6amas the default value.

The<sen ri ng> tag proposes some solutions for the transducers, like trmgbe of figure
8. It describes the right transducer for binary additiomsaza weighted automaton with weight
in Rat(B*). <nonoi d> and<semi ri ng> tags can recursively be defined, in order to describe a
complex type. Only thel abel -t ype> is shown in the example 8 so as to remain clear.

<transducer>
<t ype>
<nonoi d generators="digits" type="free">
<generat or val ue="0"/>
<generator value="1"/>
<generator value="2"/>
</ monoi d>
<semring set="ratSeries">
<nonoi d generators="digits" type="free">
<generator val ue="0"/>
<generator value="1"/>
</ monoi d>
<semiring operations="nunerical" set="B"/>
</semiring>
</type>
<content>

</ content>
<transducer >

Fig. 8. Right transducer for binary addition

The beginning of the XSD description of tkeeni ri ng> is a sequence that contains two
elements, namely the monoid and the semiring. This allowecarsion in the definition of an
automaton structure.

3.3 The<cont ent >tag

For automata and transducers, #o@nt ent > tag has the same structure. The following is the
description of this tag. Bold elements are mandatory onles.tdgsgeonet r y> and<dr awi ng>
can be placed at any place of the document and are quite sdws are ignored here, but more
information can be found in section 4.

The first tag,<st at es>, gives the possibility to fully describe the states of aroenston
and their content. Thest at es> tag is composed of:

— <state>
This tag represents one state. There must be as many of tiyssad there are states in the
automaton. Such a tag has the following elements and attsbu

e nane
The name to the state.
o | abel
Optional label for a state.
e nunber
Used if one wants to set an order on the states.

With the second tagst r ansi t i ons>, one can describe the transitions. It is composed of:

— <transition>
This tag describes the content of one transition of the aatom It is composed of:
e Src
The state that is the source of the transition.
e dst
The state that is the destination of the transition.
e name
e | abel
e Vei ght
Optional name, label and weight for the transition.
—<initial>
This tag describes the content of an initial state of theraaton:
e state
The state that is initial.
e | abel
e Vei ght
Optional label and weigth for the entering transition.
— <final >
This tag describes the content of a final state of the autam#tostrucure is the same as the
<initial>tag’s one.

Concerning transducers, tkeont ent > tag follows the same structure as for automata de-
scription, although a noticeable difference is the extamdor transition definitions. Two new
attributes are proposed for transducer descriptiarandout , respectively corresponding to the
input and the output of a transition. These two attributespeoposed in addition to the classical
| abel andwei ght attributes, that can still be used for transducer desonptDf course, they can
be used indistinctly irt ransi ti on>, <ini tial > or<final >.

About the labels There is a specificity about the attribute “label” of tkter ansi ti on> tag .

Most of the time, there isn’t any problem since its value isgle character. But one can prefer to

set a rational expression denoting the language that mustbgnized to pass through the given

transition. Its type is a non-restricted string, but thera grammar to follow so as to be correctly

understood by MUCANSON. It is presented in figure 9, The empty word is representediby “

and the absorbent element of the semiring by “0”. These dellealues in VAUCANSON.
Priority for operators is, from the most important to thesksianportant:

* (star), to star a series.

— "’ (space), to weight a series either on the right or on the lef
. (dot), to concatenate two series.

+ (plus), to do the union of two series.

exp ;= "(" exp’)
| exp '+ exp
| exp .’ exp
| exp exp
| exp'®
| wei ght
|
|
|

exp
wei ght

exp '
0
1
wor d

Fig. 9. Grammar of the rational expression

Thei n andout attributes follow the same rules for transducers.
The VAUCANSON group is aware that with some special alphabets and a spaujatly word,
some errors can occur when parsing some complicated ldbelsuld be preferable to design
another XML description to represent a rational expressistead of a non-limited string, and it
could be one of the further works of thes\WCANSON group.

3.4 The<sessi on>tag

A way to manipulate many automata would be to combine themsingle document. The pro-
posal offers this feature through theessi on> tag. An unlimited number of automata or trans-
ducers can be combined in a single XML document. A XML sessiam also be named. An
application can be found in figure 10.

<sessi on nanme="sessionl">
<aut omat on name="al">...</aut omat on>
<transducer nane="t1">...</transducer>
<transducer nanme="t2">...</transducer>
</ sessi on>

Fig. 10. Session of numerous automata

3.5 The cascade of default options

The<l abel -t ype> tag has two children: thenonoi d> tag and the<semi ri ng> tag. None of
these tags is mandatory, and both have different valuesdingdo the root tag. Figure 11 shows
the equivalent XML code if one omits thd abel -t ype> tag when declaring an automaton.
Similarly, Figure 12 shows the default type for transduc&tseoper at i ons attributes is set to
"nurreri cal ", which means that usual laws ouishall be applied.

<type>
<nonoi d type="free" generators="letters">
<generator range="ascii"/>

</ monoi d>
<semring set="B" operations="numerical"/>
</type>
Fig. 11. Default type for an automaton
<t ype>

<nonoi d type="product">
<nonoi d type="free" generators="letters">
<generator range="ascii"/>
</ monoi d>
<nonoi d type="free" generators="letters">
<generator range="ascii"/>
</ monoi d>
</ monoi d>
<semring set="B" operations="numerical"/>
</type>

Fig. 12. Default type for a transducer

4 The visualization tags

The visual representation of automata involves a very largeunt of information. On the one
hand, the<geonet ry> is context sensitive with data such as state coordinatedg® gype for a
transition. It gives some information about the way the maéta are set in the plane only. On the
other hand, thedr awi ng> tag gives some graphical information about the way the aatarof

a session must be drawn.

Let us note that these tags can be used at any level of the éotulm this case, the defined
properties are applied to the tag in which they are defings pibssible to define some properties
in a tag and to locally override them in a child tag. For exaniplFigure 13, the filling color of
the states is globally set tdack, and the color of stats, is locally set to red. As a resubig and
s, will be black, ands; will be red.

4.1 The<geonetry>tag

The<geonet r y> tag is context sensitive. Ifitis a child of tkst at e> tag, the only two properties
that can be set are the positionandy, of the state. These values can only be numeric.

If it is a child of <transi tion>, <initial > or<final >, two attributes can be set. Firstly,
the edgeType attribute, that assign the type of the eddi@e, arcL, arcR, curve). Then, the
di rection attribute, that can be used to assign the direction angldadm for instance. This
attribute is numeric.

The example of Figure 14 sets a global offset for the docunaemnt then places the states in
the plane. It also sets the type of the transition as a left arc

10

<transducer >
<drawi ng stateFill Col or="bl ack"/>
<cont ent >
<states>
<state name="s0"/>
<state name="sl1">
<drawi ng stateFill Col or="red"/>
</state>
<state nane="s2"/>

</transducer >

Fig. 13.Example of overriding drawing properties

<aut omat on>
<geonetry x="-2" y="-2"/>
<content >
<states>
<state name="s0"><geonetry x="0" y="0"/>
</state>
<state name="sl1"><geonetry x="3" y="0"/>
</ st at e>
<transitions>
<transition src="s0 dst="s1" |abel ="a">
<geonetry edgeType="arclL">
</transition>
</transitions>
</ aut omat on>

Fig. 14. Setting geometry properties

4.2 The<dr awi ng>tag

The <dr awi ng> tag contains the definition of attributes that charactettiseactual drawing of
the graph. Most of them are indeed implicit and provided awndng programs; the format only
provides the possibility to make them explicit. A lot of difent properties, that have been taken
from the options proposed by Vaucanson-G, can be used kdtresi ng> tag at many places in
the proposal.

Since it's not possible to exhaustively name all needetbates users may need, the proposal
offers a limited set of properties. For exampdgteFillColor or edgeXtyle usage are shown in
Figure 15. These attributes use a string representatioeseritbe their values.

One of the powerful features of XSD files is theyAttribute modifier. This modifier allows
the user to easily extend the main XSD, and then use its owibwdts and still be compliant
with the grammar. The&dr awi ng> tag contains anyAttribute modifier in the proposal, so the
grammar is not limited to a specific set of drawing properties

11

<transducer>
<geonetry x="-5" y="0"/>
<drawi ng stateFill Col or="bl ack" edgeStyl e="dashed"/>
<content>
<states>
<state name="s0">
<drawi ng stateFill Col or="red"/>
</state>

</transducer>

Fig. 15. Setting drawing properties

5 Discussion

5.1 From DTD to XSD

The most important difference with our previous proposek(E3]) is the change from a DTD
(Document Type Definition) document to an XSD (XML Schemadigsion) Schema.

Itis desirable to keep the description of automata simplerwdescribing widely used struc-
tures while giving the possibility to describe the most céernes. For XML, this simplifica-
tion enables to have default types, in order to orhibel - t ype> tag when describing common
Boolean automata or transducers.

The problem then arises when describing an automaton onsciaer, the default values for
the<l abel - t ype> tag must of course be different. This is not possible with &RQIEscription.
The use of a XSD overcomes this difficulty, since it is pogstbldefine different properties for a
same element, according to the embracing context. It is ssilple to locally change the behavior
of a tag, and make it context-sensitive. With this featuedadit values for thel abel -t ype>
tag are achieved, whether it is a child<f ansducer > or <aut omat on>.

6 Conclusion

For the past year we experimented the proposal made at C#AA' the VAUCANSON platform.
This version 1.1 comes as a result of this experiment, witipkfications where possible. Thus,
the VaucANSON platform deals with numerous automata types, and it is itapoto be able to
define precisely the type of the automaton in addition tootgent.

This proposal comes as a combination of two needs, shortdardéon of widely used struc-
ture and make possible definitions of complex types. We hog®ate proposed a description
format that fulfills, at least partially, both needs.

References

1. GAMMA E., HELM R., JOHNSONR., AND VLISSIDESJ., Design Patterns. Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

2. LOMBARDY S., REGIS-GIANAS Y., AND SAKAROVITCH J., Introducing Vaucansofiheo-
retical Comput. Sci. 328 (2004), 77—96. Journal version Bfoc. of CIAA 2003, Lect. Notes
in Comp. . 2759, (2003), 96-107 (with R. &s9.

12

3. CLAVEIROLE T., Proposal: an XML representation for automata, Techmigort, LRDE

(2004).
4, http://xm.apache. or g/ xerces-c/
5. http://ww. | rde.epita.fr/dl oad/ vaucanson/ vaucanson. xsd

13

