
Aspect-Oriented Programming

Anya Helene Bagge

Department of Informatics
University of Bergen

LRDE Seminar, 26 Mar 2008

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 1 / 20

Intro

Quick Overview of AOP

(you may go back to sleep after these first two slides)

Separation of Concerns: break things down into non-overlapping
encapsulated pieces (methods, classes, modules)

Cross-Cutting Concerns: things that can’t be easily encapsulated by
standard abstractions

Aspects are abstractions for cross-cutting concerns!

Example applications: error checking and handling, synchronisation,
context-sensitive behaviour, performance optimisations, monitoring
and logging, debugging support, and multi-object protocols

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 2 / 20

Intro

Aspects

advice: how a cross-cutting concern should be implemented

e.g., print a message: “foo() was called!”

join-points: potential places where advice can be applied

e.g., when a method is called

pointcuts: identifies at which join points advice should be applied

e.g., all calls to methods with names beginning with set

weaving: putting together aspects and normal code into a complete
program

done by the aspect weaver

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 3 / 20

AOP

Motivation – example

Transferring money between accounts – what about

checking that the user has access?
interrupted transfers?
logging?

void transfer(Account fromAccount, Account toAccount,
int amount){

if (fromAccount.getBalance() < amount) {
throw new InsufficientFundsException();

}
fromAccount.withdraw(amount);
toAccount.deposit(amount);

}

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 4 / 20

AOP

Tangled code:

void transfer(Account fromAccount, Account toAccount, int amount) throws Exception {

if (!getCurrentUser().canPerform(OP_TRANSFER)) {

throw new SecurityException();

}

if (amount < 0) {

throw new NegativeTransferException();

}

Transaction tx = database.newTransaction();

try {

if (fromAccount.getBalance() < amount) {

throw new InsufficientFundsException();

}

fromAccount.withdraw(amount);

toAccount.deposit(amount);

tx.commit();

systemLog.logOperation(OP_TRANSFER, fromAccount, toAccount, amount);

}

catch(Exception e) {

tx.rollback();

throw e;

} }

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 5 / 20

AOP

Why is this bad?

Less than half the code deals with the actual business logic

Logging and access control is most likely needed (and the same) for
most account methods

Transactions are needed for all compound methods

Getting any of it wrong may have security implications or cause subtle
bugs

AOP would separate this into:

Core business logic (transfer() method)
Logging aspect
Transaction aspect
Access-control aspect

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 6 / 20

AOP

Join Point Models

Possible join points (in AspectJ):

method/constructor/advice call or execution
class/object initialization
field access (get/set)
exception handling (handler)

Pointcuts are composed of primitive pointcut designators and
combinators:

at call to setX(): call(void Point.setX(int))
when object is of SomeType: this(SomeType)
anywhere within MyClass: within(MyClass
in control-flow of main(): cflow(call(void Test.main()))
using wildcards: execution(int *())
composition and definition: pointcut ioHandler():
within(MyClass) && handler(IOException);

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 7 / 20

AOP

Advice

Before and after (returning, throwing or both):

before(): move() {
System.out.println("about to move");

}
after() returning: move() {

System.out.println("just successfully moved");
}

More complicated example:

pointcut setter(Point p1, int newval):
target(p1) && args(newval) &&
(call(void setX(int) || call(void setY(int)));
before(Point p1, int newval): setter(p1, newval) {
System.out.println("About to set something in " + p1 +

" to the new value " + newval);
}

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 8 / 20

AOP

More Advice

Around advice replaces the join point – use proceed to run the
original action:

void around(Point p, int x): target(p)
&& args(x)
&& call(void setX(int)) {

if (p.assertX(x))
proceed(p, x);

p.releaseResources();
}

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 9 / 20

AOP

Example

The following aspect counts the number of calls to the rotate()
method on a Line and the number of calls to the set*() methods of
a Point that happen within the control flow of those calls to rotate:

aspect SetsInRotateCounting {
int rotateCount = 0;
int setCount = 0;
before(): call(void Line.rotate(double)) {

rotateCount++;
}
before(): call(void Point.set*(int))

&& cflow(call(void Line.rotate(double))) {
setCount++;

} }

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 10 / 20

AOP

Safe Aspect Use

Aspects will normally preserve binary compatibility – method
signtures may not be changed, but you may add new code (advice)
and new methods and fields

A client of an aspect-weaved class will be able to use it as before

But there’s nothing stopping you from making incompatible behaviour
changes (e.g., start returning 4 instead of 2)

this is difficult to reason about, and is probably a bad idea!
aspects should preserve the ‘essential behaviour’ of the program –
behaviour may change (that’s the point), but the main results should
be the same (preserve invariants / axioms / specification)
changing the error behaviour – signalling an error instead of returning
wrong results, for example – is a different matter
some programs may not work at all without aspects

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 11 / 20

DSAL

Domain-Specific Aspect Languages

A domain-specific language (DSL) is a language specially tailored for
a domain. It may lack general programming capabilities, but problems
within the domain can be solved with less, and probably clearer code.

A domain-specific aspect language (DSAL) is a DSL for cross-cutting
concerns

Some useful cross-cutting concerns can’t be expressed as aspects in
general aspect languages (e.g., AspectJ) – they’re sort of
“cross-cross-cutting concerns”
Sometimes you want your aspects “pre-packaged” in a user-friendly way

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 12 / 20

DSAL

Example: Handling Errors and Partiality in Programs

Errors can be reported in many ways – exceptions, return codes,
global flags, ...

They can also be handled in many ways – ignore, crash the program,
try again, substitute default, ...

Handling errors is closely tied to the reporting mechanism

Aspects can let you specify policies for handling errors (depending on
how they are reported), but this can be cumbersome if you need
fine-grained control

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 13 / 20

DSAL

The Alert DSAL

Declare the error reporting mechanism together with the method:

int f(int x)
pre x < 0 alert ParameterError
post value == -1 alert Aborted

Declare policies, either globally

on ParameterError in * {
System.out.println("Fatal Error!");

exit(1);
}

or locally:

int x = f(5) <:Aborted: 0; // use 0 if Aborted

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 14 / 20

DSAL

The library+notation model for DSAL implementation

Typically, you implement a DSL as a library in an existing language
(e.g., Java or C++).

To get nice domain syntax, you can make a simple preprocessor that
translates your syntax to library calls (tools like SDF2 can help you
with this). Some languages like Dylan or Scheme have macro systems
that can do most of this for you.

Aspects, however, are cross-cutting, so you can’t implement them as
normal Java/C++/etc libraries.

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 15 / 20

DSAL

The library+notation model for DSALs (cont’d)

You can however write them as libraries in an aspect language (if
powerful enough) or a program-transformation language (such as
Stratego). With nice syntax on top and a simple preprocessor, you’ve
got a DSAL.

“Cross-cross-cutting concerns” like Alerts will typically need some
global analyses, and can’t be implemented by simple translation to
existing aspect languages – you need the power of a general-purpose
system

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 16 / 20

Conclusion

Related Techniques

Dynamically scoped functions (e.g., in Lisp)

Subclassing (e.g., in Java)

Program Transformation and Meta-Programming

Open Classes

Clone & Adapt

COME FROM (e.g., in Intercal)

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 17 / 20

Conclusion

Summary

Aspects...

provide separation of cross-cutting concerns through

advice
join points
pointcuts

should be kept “conservative”, without incompatible or unexpected
code changes

may not be right for you...

some programmers find them confusing
may both simplify and complicate code auditing
may be too weak compared to meta-programming systems

are usable for debugging, safety, convenience and maintenance

are available for lots of languages (Java, C++, Python, Lisp,
Stratego, Ruby, Cobol, PHP, ...)

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 18 / 20

Conclusion

Links and references

Bergen:

SAGA: http://www.ii.uib.no/saga/
Multicore: http://www.ii.uib.no/multicore/
Mouldable: http://www.ii.uib.no/mouldable/

AspectJ: http://eclipse.org/aspectj/

Aspect-Orientation Conference: http://aosd.net/

DSAL: http://dsal.dcc.uchile.cl/2008/

Costanza, “Dynamically scoped functions as the essence of AOP”,
SIGPLAN Notices, Aug 2003

Bagge and Kalleberg, “DSAL = library + notation”, DSAL 2006.

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 19 / 20

http://www.ii.uib.no/saga/
http://www.ii.uib.no/multicore/
http://www.ii.uib.no/mouldable/
http://eclipse.org/aspectj/
http://aosd.net/
http://dsal.dcc.uchile.cl/2008/
http://p-cos.net/documents/dynfun.pdf
http://www.ii.uib.no/mouldable/alert/index.html

Conclusion

Abstract

Separation of concerns is the idea of breaking down a program into encapsulated pieces
that overlap in functionality as little as possible. Encapsulated entities, such as classes,
methods or modules, are more manageable, easier to test and maintain, and may be

reused more easily than a large, entangled program. A cross-cutting concern is
something that cannot be encapsulated using normal abstraction mechanisms, thus
defeating separation of concerns. A classical example of this is logging (e.g., logging

calls and returns to a file while the program is running) – the logging code needs to be
added to every applicable method in the program. The logging code for each method
may be almost identical, creating an undesirable overlap in functionality. Aspects let a
programmer implement a cross-cutting concern as a separate entity, through advice

(how a concern should be implemented) and join points (where it should be
implemented). I will give an introduction to aspect-orientation and aspect languages,

and also talk a bit about domain-specific aspect languages.

Anya Helene Bagge (UiB) Aspect-Oriented Programming LRDE Seminar, 26 Mar 2008 20 / 20

	Intro
	AOP
	DSAL
	Conclusion

