
Context-oriented Programming

Pascal Costanza (Vrije Universiteit Brussel, Belgium)
Robert Hirschfeld (Hasso-Plattner-Institut, Potsdam, Germany)

Programs are too static!

• Mobile devices

• Software agents

• Business rules

• Security

• Personalization

• Internationalization

Introduction to OOP.

class Rectangle {
 int x, y, width, height;
 void draw() { ... }
}

class Person {
 String name, address, city, zip;
 void display() { ... }
}

Context-independent behavior.

class Person {

 String name;

 void display () {
 println(name);
 }

}

Context-dependent behavior.

class Person {

 String name, address, zip, city;

 void display (... printAddress, printCity ...) {
 println(name);
 if (printAddress) { println(address); }
 if (printCity) { println(zip); println(city); }
 }

}

Model-View-Controller.

Increased Complexity.

Person

Attributes

Attributes

Increased Complexity.

Person
Attributes

Attributes

Role
Attributes

Attributes

Employee
Attributes

Attributes

Manager
Attributes

Attributes

Increased Complexity.

Person
Attributes

Attributes

Role
Attributes

Attributes

Employee
Attributes

Attributes

Manager
Attributes

Attributes

Observer
Attributes

Attributes

1 *

View
Attributes

Attributes

PersonView
Attributes

Attributes

Component
Attributes

Attributes

EmplView
Attributes

Attributes

ManagerView
Attributes

Attributes

1 *

1 *

1 *

Manual Context Orientation.

• Context-dependent behavior spread over several classes!

• Secondary classes required just for plumbing!

• Basic notion of OOP broken: Objects don’t know how to behave!

Context-oriented Programming.

void doThis (Context ctx) {
 if (ctx == foo) {
 doThisInFooStyle(...)
 } else if (ctx == bar) {
 doThisInBarStyle(...)
 } ...
}

ThisClass

void doThat (Context ctx) {
 if (ctx == foo) {
 doThatInFooStyle(...)
 } else if (ctx == bar) {
 doThatInBarStyle(...)
 } ...
}

ThatClass

bar

foo

doThis (foo)

doThis (bar)

Context-oriented Programming.

void doThis () {
 ...
}

ThisClass <foo>

void doThat () {
 ...
}

ThatClass <foo>

void doThis () {
 ...
}

ThisClass <bar>

void doThat () {
 ...
}

ThatClass <bar>

void doThis () {
 ...
}

ThisClass <baz>

void doThat () {
 ...
}

ThatClass <baz>

bar

foo

doThis ()

doThis ()

• Several language extensions in the works.
(ContextL, ContextS, ContextJ, ...)

• Here: ContextL, based on the Common Lisp Object System (CLOS).

Context-oriented Programming.

(define-layered-class person
 ((name :initarg :name
 :layered-accessor person-name)))

(define-layered-function display (object))

(define-layered-method display ((object person))
 (print (person-name object)))

root layer

(define-layered-class person
 ((name :initarg :name
 :layered-accessor person-name)))

(define-layered-function display (object))

(define-layered-method display ((object person))
 (print (person-name object)))

(deflayer employment)

(define-layered-class employer :in-layer employment ()
 ((name :initarg :name
 :layered-accessor employer-name)))

(define-layered-class person :in-layer employment ()
 ((employer :initarg :employer
 :layered-accessor person-employer)))

(define-layered-method display
 :in-layer employment :after ((object person))
 (display (person-employer object)))

root layer
employment layer

(define-layered-class person
 ((name :initarg :name
 :layered-accessor person-name)))

(define-layered-function display (object))

(define-layered-method display ((object person))
 (print (person-name object)))

(deflayer employment)

(define-layered-class employer :in-layer employement ()
 ((name :initarg :name
 :layered-accessor employer-name)))

(define-layered-class person :in-layer employment ()
 ((employer :initarg :employer
 :layered-accessor person-employer)))

(define-layered-method display
 :in-layer employment :after ((object person))
 (display (person-employer object)))

(deflayer info)

(define-layered-class info-mixin :in-layer info ()
 ((address :initarg :address
 :layered-accessor address)))

(define-layered-method display
 :in-layer info :after ((object info-mixin))
 (print (address object)))

(define-layered-class person :in-layer info (info-mixin)
 ())
(define-layered-class employer :in-layer info (info-mixin)
 ())

root layer
employment layer

info layer

Example Classes.

Person
Name

Employer

Info
Address

Employer
Name

Employment Layer Info LayerRoot Layer

Layer Activation.

o q

(with-active-layers (...)
 (display q))

Layer Activation.

o p q

(with-active-layers (...)
 (msg p))

(display q)

Demo

Overview: Context-oriented Programming.

• Behavioral Variations: new or modified behavior.

• Layers: group related context-dependent behavioral variations.

• Activation: Layers can be activated and deactivated at runtime.

• Context: any information which is computationally accessible.

• Scoping: explicit control of effect of layer activation and deactivation.

Example uses.

• Multiple views.

• Coordination of screen updates.

• Report generation.

• Exception handling.

• Discerning of phone calls.

• Selecting billing schemes in cell phones.

The Figure Editor Example

• Class hierarchy of simple and composite graphical objects.

• Changing positions of graphical objects triggers updates on the screen.

• Typically used to motivate aspect-oriented programming.
(“jumping aspects”)

(define-layered-class point (figure-element)
 ((x :initarg :x :layered-accessor point-x)
 (y :initarg :y :layered-accessor point-y)))

(define-layered-method move ((elm point) dx dy)
 (incf (point-x elm) dx)
 (incf (point-y elm) dy))

(define-layered-class line (figure-element)
 ((p1 :initarg :p1 :layered-accessor line-p1)
 (p2 :initarg :p2 :layered-accessor line-p2)))

(define-layered-method move ((elm line) dx dy)
 (move (line-p1 elm) dx dy)
 (move (line-p2 elm) dx dy))

root layer

(define-layered-class point (figure-element)
 ((x :initarg :x :layered-accessor point-x)
 (y :initarg :y :layered-accessor point-y)))

(define-layered-method move ((elm point) dx dy)
 (incf (point-x elm) dx)
 (incf (point-y elm) dy))

(define-layered-class line (figure-element)
 ((p1 :initarg :p1 :layered-accessor line-p1)
 (p2 :initarg :p2 :layered-accessor line-p2)))

(define-layered-method move ((elm line) dx dy)
 (move (line-p1 elm) dx dy)
 (move (line-p2 elm) dx dy))

root layer

(deflayer display-layer)

(define-layered-method move
 :in-layer display-layer :after
 ((elm figure-element) dx dy)
 (update display elm))

(define-layered-method set-point-x
 :in-layer display-layer :after
 ((elm point) new-x)
 (update display elm))

... same for set-point-y, set-line-p1, set-line-p2 ...

display layer

Layer Activation.

o q

(with-active-layers (display-layer)
 (move q ...))

Layer Activation.

o p q

(with-active-layers (...)
 (move p ...))

(set-point-x q ...)

When to update?

o p q

(with-active-layers (...)
 (move p ...))

(set-point-x q ...) update
update
update
updateupdate

When to update?

o p q

(with-active-layers (...)
 (move p ...))

(set-point-x q ...)

update

When to update?

update

p q

(set-point-x q ...)

(c) Copyright 1998-2002 Palo Alto Research Center Incorporated. All Rights Reserved.31

only top-level moves
DisplayUpdating v4

aspect DisplayUpdating {

 pointcut move(FigureElement fe):
 target(fe) &&
 (call(void FigureElement.moveBy(int, int)) ||
 call(void Line.setP1(Point)) ||
 call(void Line.setP2(Point)) ||
 call(void Point.setX(int)) ||
 call(void Point.setY(int)));

 pointcut topLevelMove(FigureElement fe):
 move(fe) && !cflowbelow(move(FigureElement));

 after(FigureElement fe) returning: topLevelMove(fe) {
 Display.update(fe);
 }
}

When to update depends on context!

o p q

(with-active-layers (...)
 (move p ...))

(set-point-x q ...)
deactivate layer

update
reactivate layer

(define-layered-class point (figure-element)
 ((x :initarg :x :layered-accessor point-x)
 (y :initarg :y :layered-accessor point-y)))

(define-layered-method move ((elm point) dx dy)
 (incf (point-x elm) dx)
 (incf (point-y elm) dy))

(define-layered-class line (figure-element)
 ((p1 :initarg :p1 :layered-accessor line-p1)
 (p2 :initarg :p2 :layered-accessor line-p2)))

(define-layered-method move ((elm line) dx dy)
 (move (line-p1 elm) dx dy)
 (move (line-p2 elm) dx dy))

root layer

(deflayer display-layer)

(define-layered-method move
 :in-layer display-layer :around
 ((elm figure-element) dx dy)
 (with-inactive-layers (display-layer)
 (call-next-method))
 (update display elm))

... same for set-point-x, set-point-y, set-line-p1, set-line-p2 ...

display layer

(define-layered-class point (figure-element)
 ((x :initarg :x :layered-accessor point-x)
 (y :initarg :y :layered-accessor point-y)))

(define-layered-method move ((elm point) dx dy)
 (incf (point-x elm) dx)
 (incf (point-y elm) dy))

(define-layered-class line (figure-element)
 ((p1 :initarg :p1 :layered-accessor line-p1)
 (p2 :initarg :p2 :layered-accessor line-p2)))

(define-layered-method move ((elm line) dx dy)
 (move (line-p1 elm) dx dy)
 (move (line-p2 elm) dx dy))

root layer

(deflayer display-layer)

(defun call-and-update (change-function object)
 (with-inactive-layers (display-layer)
 (funcall change-function))))
 (update display object))

(define-layered-method move
 :in-layer display-layer :around
 ((elm figure-element) dx dy)
 (call-and-update (function call-next-method) elm))

(define-layered-method layered-slot-set
 :in-layer display-layer :around
 ((elm figure-element) writer)
 (call-and-update writer elm))

display layer

Dynamically scoped layer activation.

• with-active-layers

- activates layers for the current thread.

- does not interfere with other threads.

- automatically deactivates on return.

• with-inactive-layers

- deactivates layers for the current thread.

- ...

Challenge.

• Such examples require repeated layer activation and deactivation.

• Can this be implemented efficiently?

Implementation: Layers represented as classes.

Layer1

Layer2

Layer3

RootLayer

primary

layers

Implementation: Layers represented as classes.

Layer1

Layer2

Layer3

RootLayer

primary

layers

Layer3*

Layer1+3*

active layers
thread A

Implementation: Layers represented as classes.

Layer1

Layer2

Layer3

RootLayer

primary

layers

Layer3*

Layer1+3*

active layers
thread A

Layer1+2*

Layer2*

active layers
thread B

Layers passed via another implicit argument.

• object.message(x, y, z) => object.message(object, x, y, z)

• (move elm x y) => (move layers elm x y)

• Methods are dispatched on layers, and possibly on further arguments.

Implementation: Key ingredients.

• Layer combinations via multiple inheritance.

• Layered dispatch via multiple dispatch.

• Efficient caches for layers (in ContextL).

• Efficient method dispatch (in CLOS).

Demo

Benchmark results.

Implementation Platform Without Layers With Layers Overhead
Allegro CL 7.0 Mac OS X 2.292 secs 2.540 secs 10.82% slower
CMUCL 19b Mac OS X 0.7812 secs 0.7361 secs 6.13% faster
LispWorks 4.4 Mac OS X 3.0928 secs 3.1768 secs 2.72% slower
MCL 5.1 Mac OS X 2.3506 secs 2.6412 secs 12.36% slower
OpenMCL 0.14.3 Mac OS X 2.2448 secs 2.5066 secs 11.66% slower
SBCL 0.9.4 Mac OS X 0.8363 secs 0.7795 secs 7.29% faster

CMUCL 19a Linux x86 0.76 secs 0.836 secs 10% slower
SBCL 0.9.4 Linux x86 0.5684 secs 0.638 secs 12.24% slower

Fig. 9. The results of running the figure editor example in various Common Lisp im-
plementations.

DisplayLayer on and off: on to enable display updates and off to disable dis-
play updates for calls to proceed in the around methods of the DisplayLayer.
The main loop of the latter version looks as follows:

for (int i=0; i<1000; i++) {
for (Line line: lines) {

with (DisplayLayer) {
line.move(5, -5);

}
}
for (Line line: lines) {

with (DisplayLayer) {
line.move(-5, 5);

}
}

}

The main loop of the version without layer activations/deactivations just omits
the with blocks around the line.move() calls. It is important to note that the
version without layer activations/deactivations is essentially just a plain CLOS
program.

The results of the various runs on different Common Lisp implementations is
presented in Fig. 9. Each run creates a collection of 100 lines, with each line being
moved 1000 times. Time required for creating the collection of lines and filling it
is not taken into account. The entries in Fig. 9 are average measurements of five
runs. The respective platforms are an Apple PowerBook 1.67 GHz PowerPC G4
running Mac OS X 10.4.2 and a Dell PowerEdge 1600SC dual Xeon 2.8 Ghz run-
ning Linux 2.6.12. The overheads in runtime range from very moderate 2.72% in
LispWorks for Macintosh to still reasonable 12.36% in Macintosh Common Lisp
(MCL), especially when taking into account that we have an additional update
of a global counter for each call of line.move(). Two implementations show
the anomaly that the runs that repeatedly switch layers on and off are actually
faster than the runs without layers: On CMUCL 19b, the runs without layers are

Layer dependencies.

• start-phone-call and end-phone-call as layered functions.

• (deflayer phone-tariff)

(define-layered-method start-phone-call :in-layer phone-tariff :after (number)
 ... record start time ...)

(define-layered-method end-phone-call :in-layer phone-tariff :after ()
 ... record end time & determine cost ...)

• What if there are several alternative phone tariffs?

Layer inheritance.

• (deflayer phone-tariff)

(define-layered-method start-phone-call :in-layer phone-tariff :after (number)
 ... record start time ...)

• (deflayer phone-tariff-a (phone-tariff))
(deflayer phone-tariff-b (phone-tariff))

• ...allows sharing of common behavior.
But this is not enough: Tariff a and b should be mutually exclusive!

Layers as metaobjects.

• Reflection = introspection and intercession.

• Metaobject protocols = OOP-style organization of the reflective API.

• Here: Layers are instances of layer metaobject classes.

Intercession of layer activation.

• (defclass tariff-base-layer-class (standard-layer-class)
 ())

(deflayer phone-tariff ()
 ()
 (:metaclass tariff-base-layer-class))

Intercession of layer activation.

• Internally calls (adjoin-layer-using-class <phone-tariff> ...)
and uses the result as the set of new active layers.

o q

(with-active-layers (phone-tariff)
 (start-phone-call ...))

Intercession of layer activation.

• (defclass tariff-base-layer-class (standard-layer-class)
 ())

(deflayer phone-tariff ()
 ()
 (:metaclass tariff-base-layer-class))

• (define-layered-method adjoin-layer-using-class
 ((layer tariff-base-layer-class) active-layers)
 (if (layer-active-p ‘phone-tariff active-layers)
 active-layers
 (let ((tariff (ask-user “Select tariff ...”)))
 (adjoin-layer tariff active-layers))))

Layer dependencies.

• Conditional or unconditional blocking of layer activations.

• Inclusion dependencies:
Activation of a layer requires activation of another.

• Exclusion dependencies:
Activation of a layer requires deactivation of another.

• Also: dependencies on layer deactivation.

Efficiency.

• Goal: Only incur a cost when necessary.

• (define-layered-method adjoin-layer-using-class
 :in-layer block-managed-layers
 ((layer managed-layer-class) active-layers)
 (values active-layers t))

Benchmark results.

• Without reflective layer activation (JMLC ‘06).

• With reflective layer activation (SAC PSC ‘07).
Implementation Without Layers With Layers Overhead
Allegro CL 8.0 2.544 secs 2.650 secs 4.17% slower
CMUCL 19c 0.77 secs 0.744 secs 3.49% faster
LispWorks 4.4.6 3.128 secs 3.2374 secs 3.50% slower
MCL 5.1 2.187 secs 2.4358 secs 11.38% slower
OpenMCL 1.0 2.3788 secs 2.5938 secs 9.04% slower
SBCL 0.9.16 0.9138 secs 0.8708 secs 4.94% faster

Figure 1: The results of running the example from [5] in the new version of ContextL.

the unconditional blocking of such managed layers could still
be cached as before. This illustrates why the results of
activate-layer-using-class and deactivate-layer-us-
ing-class can only be cached according to domain-specific
criteria.

To resolve these conflicting requirements, we slightly change
the interface of these two reflective functions and require
them to return two values: The first value represents the
ordered set of all new active layers and the second return
value is either true, indicating that this new combination
of layers can be cached and reused for the same set of ac-
tive layers, or otherwise it is false, indicating that the result
must not be cached but that activate-layer-using-class
or deactivate-layer-using-class must be called again for
the same set of active layers. The default implementations of
these two functions always return true as the second return
value because the default semantics always allow caching,
but application-defined methods may freely choose to return
either true or false.

This means that, for example, the two variations of layer
blocking can be implemented as follows.3

(define-layered-method
activate-layer-using-class
:in-layer block-managed-layers
((layer managed-layer-class) active-layers)
;; Just return the already active layers
;; and ensure that this result is cached.
(values active-layers t))

(define-layered-method
activate-layer-using-class
:in-layer interactive-managed-layers
((layer managed-layer-class) active-layers)
(values
(if (ask-user "Activate layer ... ?")

(call-next-layered-method layer active-layers)
active-layers)

;; In both cases, the result may not be cached.
nil))

As a confirmation that this implementation strategy is in-
deed successful at maintaining efficiency comparable to that
already reported before, we have extended the implemen-
tation of ContextL with reflective layer activation based on
3Common Lisp provides the values construct to return
more than one value from a function that can be received
from a function call via multiple-value-bind. An approx-
imation of the semantics of multiple values is that they are
boxed in a compound data structure when returned and un-
boxed again at the call site, except that a more efficient
implementation is possible by internally making use of mul-
tiple return slots on the call stack.

the interface described in this section. We have then run
the benchmark from [5] again, and the results of the various
runs on different Common Lisp implementations are pre-
sented in Fig. 1. As in [5], the entries in Fig. 1 are average
measurements of five runs. The platform on which we have
executed the benchmark is an Apple Powerbook 1.67 GHz
PowerPC G4 running Mac OS X 10.4.7. The overheads are
in the same range as the ones reported in [5] based on the
previous non-reflective implementation of ContextL, rang-
ing from 3.5% in LispWorks for Macintosh to 11.38% in
Macintosh Common Lisp (MCL). The same two implemen-
tations as in [5] show the anomaly again that the runs that
repeatedly switch layers on and off are actually faster than
the runs without layers: On CMUCL 19c, the runs with-
out layers are on average 3.49% slower, and on SBCL 0.9.16
they are 4.94% slower. See [5] for more details about this
benchmark.

To summarize, reflective layer activation can indeed be
implemented without inhibiting performance. Only when
methods on activate-layer-using-class and deactivate-
layer-using-class request not to cache their results, an
overhead will be repeatedly incurred that depends on the
actual computation performed by these methods.

5. DISCUSSION AND FUTURE WORK
Aspect-oriented technologies approaching the context-ori-

ented notion of dynamically scoped activation of partial
program definitions are AspectS [7, 8], LasagneJ [21], Cae-
sarJ [12], and Steamloom [3]. They all add constructs for
thread-local activation of partial program definitions at the
application level. However, CaesarJ does not provide a cor-
responding thread-local deactivation construct, and Lasag-
neJ restricts the use of thread-local activation to the main
method of a Java program [13]. Their lack of thread-local
deactivation constructs makes cflow-style constructs neces-
sary, for example to implement the figure editor example
[5]. Here, Context-oriented Programming allows a modular
implementation without using AOP-style pointcuts. Global
activation/deactivation constructs, like in CaesarJ and Ob-
jectTeams [22] are not sufficient in this regard. Steamloom
provides undeployment of thread-local aspects, but cannot
thread-locally undeploy a globally active aspect.

Delegation layers, as in the prototype-based languages
Slate [15] and Us [18] and also combined into a class-based
programming language in [14], are very similar to Context-
oriented Programming. As layers in ContextL, delegation
layers group behavior for sets of objects [15, 18] or sets of
classes [14]. However, the hierarchy of layers is globally fixed
in [14]. One can select a layer in which to send a specific
message, but all subsequent layers are predetermined by the
original configuration of layers. In [15] and [18], the selec-

Implementation Platform Without Layers With Layers Overhead
Allegro CL 7.0 Mac OS X 2.292 secs 2.540 secs 10.82% slower
CMUCL 19b Mac OS X 0.7812 secs 0.7361 secs 6.13% faster
LispWorks 4.4 Mac OS X 3.0928 secs 3.1768 secs 2.72% slower
MCL 5.1 Mac OS X 2.3506 secs 2.6412 secs 12.36% slower
OpenMCL 0.14.3 Mac OS X 2.2448 secs 2.5066 secs 11.66% slower
SBCL 0.9.4 Mac OS X 0.8363 secs 0.7795 secs 7.29% faster

CMUCL 19a Linux x86 0.76 secs 0.836 secs 10% slower
SBCL 0.9.4 Linux x86 0.5684 secs 0.638 secs 12.24% slower

Fig. 9. The results of running the figure editor example in various Common Lisp im-
plementations.

DisplayLayer on and off: on to enable display updates and off to disable dis-
play updates for calls to proceed in the around methods of the DisplayLayer.
The main loop of the latter version looks as follows:

for (int i=0; i<1000; i++) {
for (Line line: lines) {

with (DisplayLayer) {
line.move(5, -5);

}
}
for (Line line: lines) {

with (DisplayLayer) {
line.move(-5, 5);

}
}

}

The main loop of the version without layer activations/deactivations just omits
the with blocks around the line.move() calls. It is important to note that the
version without layer activations/deactivations is essentially just a plain CLOS
program.

The results of the various runs on different Common Lisp implementations is
presented in Fig. 9. Each run creates a collection of 100 lines, with each line being
moved 1000 times. Time required for creating the collection of lines and filling it
is not taken into account. The entries in Fig. 9 are average measurements of five
runs. The respective platforms are an Apple PowerBook 1.67 GHz PowerPC G4
running Mac OS X 10.4.2 and a Dell PowerEdge 1600SC dual Xeon 2.8 Ghz run-
ning Linux 2.6.12. The overheads in runtime range from very moderate 2.72% in
LispWorks for Macintosh to still reasonable 12.36% in Macintosh Common Lisp
(MCL), especially when taking into account that we have an additional update
of a global counter for each call of line.move(). Two implementations show
the anomaly that the runs that repeatedly switch layers on and off are actually
faster than the runs without layers: On CMUCL 19b, the runs without layers are

Summary.

• Context-oriented Programming provides

- layers with partial classes and methods

- that can be freely selected and combined

- without interfering with other contexts.

Summary.

• COP is independent of the organization of the source code.

- Essential contribution is layer activation / deactivation at runtime.

• It can be beneficial to activate / deactivate layers anywhere.

• COP is compatible with a higher-order reflective programming style.

Summary.

• Some examples require repeated activation / deactivation of layers.
(For example, the figure editor.)

• Efficient implementation

- multiple inheritance & multiple dispatch

- efficient caches

• Should also be doable in Java-style languages

ContextL Summary.

• Layers

• Layered classes

- Layered slots, special slots

• Layered functions, layered accessors

• Dynamically scoped layer activation / deactivation

ContextL.

• Available for 7 major Common Lisp implementations:
Allegro, CLisp, CMUCL, LispWorks, MCL, OpenMCL, SBCL.

- This means: BeOS, FreeBSD, HP-UX, IBM AIX, IRIX, Linux x86, Linux
PowerPC, Mac OS X, NetBSD, NeXTstep, OpenBSD, Solaris SPARC,
Tru64, Windows, ...

• Implemented using the CLOS MOP.

• Apparently no serious runtime overhead!

• Source code with MIT/BSD-style license at
http://common-lisp.net/project/closer/

http://common-lisp.net/project/closer/
http://common-lisp.net/project/closer/

Major achievements so far...

• Language Construct for Context-oriented Programming - An Overview of ContextL
Dynamic Languages Symposium 2005 (with Robert Hirschfeld)

• Efficient Layer Activation for Switching Context-dependent Behavior
Joint Modular Languages Conference 2006 (with Robert Hirschfeld & Wolfgang De Meuter)

• Reflective Layer Activation in ContextL
ACM Symposium on Applied Computing 2007 (with Robert Hirschfeld)

• The Context-Dependent Role Model
International Conference on Distributed Applications and Interoperable Systems 2007 (Jorge Vallejos et al.)

• Context-Oriented Domain Analysis
International and Interdisciplinary Conference on Modeling and Using Context 2007 (Brecht Desmet et al.)

• Context-oriented Programming
Journal of Object Technology, March/April 2008 (with Robert Hirschfeld & Oscar Nierstrasz)

Thank you.

