Context-oriented Programming

Pascal Costanza (Vrije Universiteit Brussel, Belgium)
Robert Hirschfeld (Hasso-Plattner-Institut, Potsdam, Germany)

Programs are too static!

* Mobile devices
e Software agents
e Business rules

e Security

® Personalization

¢ |nternationalization

Introduction to OOP.

class Rectangle {
int X, y, width, height;
void draw() { ... }

}

class Person {
String name, address, city, zip;
void display() { ... }

}

Context-independent behavior.

class Person {

String name;

void display () {
printin(name);

}

Context-dependent behavior.

class Person {

String name, address, zip, city;

void display (... printAddress, printCity ...) {
printin(name);
if (printAddress) { printin(address); }
if (printCity) { printin(zip); printin(city); }

}

Model-View-Controller.

Model

Views

Increased Complexity.

Person
Attributes
Attributes

Increased Complexity.

Person
Attributes
Attributes
Role
Attributes
Attributes
Employee
Attributes
Attributes

Manager

Attributes
Attributes

Increased Complexity.

Component X Observer
Attributes 1 Attributes
Attributes Attributes
View
Attributes
Attributes
Person PersonView
Attributes Attributes
Attributes Attributes
Role
Attributes
Attributes
Employee EmplView
Attributes 1 Attributes
Attributes \ Attributes

Manager

Attributes
Attributes

ManagerView

Attributes

Attributes

Manual Context Orientation.

e Context-dependent behavior spread over several classes!
e Secondary classes required just for plumbing!

e Basic notion of OOP broken: Objects don’t know how to behave!

Context-oriented

0"

\&)

\\oa(\

Programming.

ThisClass

void doThis (Context ctx) {
if (ctx == foo) {
doThisInFooStyle(...)

} else if (ctx == bar) {
doThisInBarStyle(...)
...
}

ThatClass

void doThat (Context ctx) {
if (ctx == foo) {
doThatinFooStyle(...)
} else if (ctx == bar) {
doThatinBarStyle(...)

..
}

Context-oriented Programming.

(o]
07/7/'8 0 d ThisClass <baz>
[Vvoid doThis () {

‘_

q ThatClass <baz>
| void doThat () {

‘_

do"“\s v

Context-oriented Programming.

e Several language extensions in the works.
(ContextL, ContextS, Contextd, ...)

e Here: ContextL, based on the Common Lisp Object System (CLOS).

root layer

(define-layered-class person
((hame :initarg :name
layered-accessor person-name)))

(define-layered-function display (object))

(define-layered-method display ((object person))
(orint (person-name object)))

root layer
employment layer

r

(deflayer employment)

(define-layered-class employer :in-layer employment ()
((hame :initarg :name
layered-accessor employer-name)))

(define-layered-class person :in-layer employment ()
((employer :initarg :employer
layered-accessor person-employer)))

(define-layered-method display
INn-layer employment :after ((object person))
(display (person-employer object)))

root layer

(defl

l(def
(N

l(def
((e(el(define—layered—method display

(def

1N

(Al

—

employment layer|

-

(deflayer info)

(define-layered-class info-mixin :in-layer info ()

((address :initarg :address
layered-accessor address)))

in-layer info :after ((object info-mixin))
(orint (address object)))

info layer

(define-layered-class person :in-layer info (info-mixin)

0)

(define-layered-class employer :in-layer info (info-mixin)

\§

0)

—xample Classes.

Root Layer

Employment Layer

Person

Name

Employer
—

\

Employer

Name

Info Layer

Info

Address

Layer Activation.

(dp)
| -
()]
>
T
O T
= >
o S
¢ 3
S 5
2

Layer Activation.

I
I
I
I
I
I
I
I
I
I
I
I
>,
I
I
I
I
I
I

(display q)

(0))
| -
O
>
©
O
N
._nlup
¢ B
= E
2

Demo

Overview: Context-oriented Programming.

e Behavioral Variations: new or modified behavior.

e | ayers: group related context-dependent behavioral variations.
e Activation: Layers can be activated and deactivated at runtime.
e Context: any information which is computationally accessible.

e Scoping: explicit control of effect of layer activation and deactivation.

—Xample uses.

e Multiple views.

e Coordination of screen updates.
® Report generation.

e Exception handling.

e Discerning of phone calls.

e Selecting billing schemes in cell phones.

The Figure Editor Example

e Class hierarchy of simple and composite graphical objects.

e Changing positions of graphical objects triggers updates on the screen.

e Typically used to motivate aspect-oriented programming.
(“jlumping aspects”)

e

.

(define-layered-class
((x :initarg :x :layered-accessor point-x)

ooint (figure-element)

(y :initarg :y :layered-accessor point-y)))

(incf (point-x elm) dx)
(incf (point-y elm) dy))

(define-layered-class line (figure-elemen

(o1 :initarg :p1 :layered-accessor line-

)

01)

(02 :initarg :p2 :layered-accessor line-

(move (line-p1 elm) dx dy)
(move (line-p2 elm) dx dy))

02)))

™\
root layer

(define-layered-method move ((elm point) dx dy)

(define-layered-method move ((elm line) dx dy)

f root layer)

(def display layer

(? (deflayer display-layer)
\

(define-layered-method move
(d? in-layer display-layer :after
(!r ((elm figure-element) dx dy)
(N (update display elm))

(de(define—layered—method set-point-x
(In-layer display-layer :after

[((elm point) new-x)

(update display elm))

e

E” ... same for set-point-y, set-line-p1, set-line-p2 ...

Layer Activation.

| (o) I

(with-active-layers (display-layer)
(move q ...))

Layer Activation.

|
I
I
I
I
I
I
I
I
I
I
I
=
I
I
I
I
I
I

(set-point-x g ...)

|
I
I
I
I
|
>
l
!

(p]
| -
)]
>
o=
&”
= Q
)
O O
c >
e
S €
s

When to update”

I (o) l

(with-active-layers (...)
(move p ...))

(set-point-x q ...)

'C'C'C'&""""-"'

E§

a
a
a
a

|

e
e
e
e

When to update?

|
|
|
|
|
|
|
|
|
|
|
|
>,
|
|
|
|
|
|

O
x
R
=
S
L Q
3 p
— S
=
2.
uuuuuuu >::-i::unv
(p)}
-
()
>
8=
& :
= Q
)
()
S >
e
S E
=

When to update”

31

only top-level moves

DisplayUpdating v4

aspect DisplayUpdating {

pointcut move (FigureElement fe):
target (fe) &&
(call (void FigureElement.moveBy (int, int))
call (void Line.setPl (Point))
call (void Line.setP2 (Point))
call (void Point.setX(int))
call (void Point.setY¥Y (int)));

pointcut topLevelMove (FigureElement fe):
move (fe) && !'cflowbelow (move (FigureElement)) ;

after (FigureElement fe) returning: topLevelMove (fe) {

Display.update (fe) ;
}

==

' \
1\7

-

.

‘_“;.

O
\f\

«Q

When to update depends on context!

(with-active-layers (...)
(move p ...)) !

deactivate layer

! (set-point-x q ...)

reactivate [ayer
update

U

f root layer) .
(def display layer

(? (deflayer display-layer)
\

(define-layered-method move
(d? in-layer display-layer :around
(N ((elm figure-element) dx dy)
(ir (with-inactive-layers (display-layer)
(call-next-method))
(Oé(e (update display elm))
[

... sSame for set-point-x, set-point-y, set-line-p1, set-line-p2 ...

g root layer)

(def display layer

(? (deflayer display-layer)
\

(defun call-and-update (change-function object)
(d? (with-inactive-layers (display-layer)

(!r (funcall change-function))))

(N (update display object))

(A8 (define-layered-method move

(In-layer display-layer :around

[{ ((elm figure-element) dx dy)

(call-and-update (function call-next-method) elm))

e

(n (define-layered-method layered-slot-set
(N -in-layer display-layer :around

— ((elm figure-element) writer)
(call-and-update writer elm))

Dynamically scoped layer activation.

¢ with-active-layers
- activates layers for the current thread.
- does not interfere with other threads.
- automatically deactivates on return.

e with-inactive-layers

- deactivates layers for the current thread.

Challenge.

e Such examples require repeated layer activation and deactivation.

e Can this be implemented efficiently?

Implementation: Layers represented as classes.

Implementation: Layers represented as classes.

Layer1+3* Layer1

Implementation: Layers represented as classes.

Layer2*

ﬁ‘

Layer1+2*

Layers passed via another implicit argument.

e object.message(X, y, z) => object.message(object, x, vy, z)
e (move elm x y) => (move layers elm x y)

* Methods are dispatched on layers, and possibly on further arguments.

Implementation: Key ingredients.

¢ | ayer combinations via multiple inheritance.
¢ | ayered dispatch via multiple dispatch.
e Efficient caches for layers (in ContextL).

e Efficient method dispatch (in CLOS).

Demo

SBenchmark results.

Implementation|Platform {'Without LayersWith Layers| Overhead
Allegro CL 7.0 Mac OS X 2.292 secs 2.540 secs|10.82% slower
CMUCL 19b Mac OS X 0.7812 secs| 0.7361 secs| 6.13% faster
LispWorks 4.4 Mac OS X 3.0928 secs 3.1768 secs| 2.72% slower
MCL 5.1 Mac OS X 2.3506 secs| 2.6412 secs|12.36% slower
OpenMCL 0.14.3 [Mac OS X 2.2448 secs 2.5066 secs|11.66% slower
SBCL 0.9.4 Mac OS X 0.8363 secs 0.7795 secs| 7.29% faster
CMUCL 19a Linux x86 0.76 secs 0.836 secs| 10% slower
SBCL 0.9.4 Linux x86 0.5684 secs 0.638 secs|12.24% slower

Layer dependencies.

e start-phone-call and end-phone-call as layered functions.

¢ (deflayer phone-tariff)

(define-layered-method start-phone-call :in-layer phone-tariff :after (number)
... record start time ...)

(define-layered-method end-phone-call :in-layer phone-tariff :after ()
... record end time & determine cost ...)

e \What if there are several alternative phone tariffs?

Layer inheritance.

e (deflayer phone-tariff)

(define-layered-method start-phone-call :in-layer phone-tariff :after (number)
... record start time ...)

¢ (deflayer phone-tariff-a (phone-tariff))
(deflayer phone-tariff-b (phone-tariff))

e _.allows sharing of common behavior.
But this is not enough: Tariff a and b should be mutually exclusive!

Layers as metaobjects.

e Reflection = introspection and intercession.
e Metaobject protocols = OOP-style organization of the reflective API.

e Here: Layers are instances of layer metaobject classes.

Intercession of layer activation.

e (defclass tariff-base-layer-class (standard-layer-class)

0)

(deflayer phone-tariff ()
0

(:metaclass tariff-base-layer-class))

Intercession of layer activation.

(o]
e il

(with-active-layers (phone-tariff)
(start-phone-call ...))

\Z|_Q

e Internally calls (adjoin-layer-using-class <phone-tariff> ...)
and uses the result as the set of new active layers.

Intercession of layer activation.

e (defclass tariff-base-layer-class (standard-layer-class)

0)

(deflayer phone-tariff ()
0

(:metaclass tariff-base-layer-class))

¢ (define-layered-method adjoin-layer-using-class
((layer tariff-base-layer-class) active-layers)
(if (layer-active-p ‘phone-tariff active-layers)
active-layers
(let ((tariff (ask-user “Select tariff ...”)))
(adjoin-layer tariff active-layers))))

Layer dependencies.

e Conditional or unconditional blocking of layer activations.

* |nclusion dependencies:
Activation of a layer requires activation of another.

e Exclusion dependencies:
Activation of a layer requires deactivation of another.

¢ Also: dependencies on layer deactivation.

—fficiency.
e Goal: Only incur a cost when necessary.

¢ (define-layered-method adjoin-layer-using-class
:in-layer block-managed-layers
((layer managed-layer-class) active-layers)
(values active-layers t))

SBenchmark results.

e \Without reflective layer activation (JMLC ‘06).

Implementation|Platform |Without Layers|With Layers| Overhead
Allegro CL 7.0 Mac OS X 2.292 secs 2.540 secs|10.82% slower
CMUCL 19b Mac OS X 0.7812 secs 0.7361 secs| 6.13% faster
LispWorks 4.4 Mac OS X 3.0928 secs 3.1768 secs| 2.72% slower
MCL 5.1 Mac OS X 2.3506 secs| 2.6412 secs|12.36% slower
OpenMCL 0.14.3 |Mac OS X 2.2448 secs 2.5066 secs|11.66% slower
SBCL 0.9.4 Mac OS X 0.8363 secs 0.7795 secs| 7.29% faster
CMUCL 19a Linux x86 0.76 secs 0.836 secs| 10% slower
SBCL 0.9.4 Linux x86 0.5684 secs 0.638 secs|12.24% slower
e With reflective layer activation (SAC PSC ‘07).
Implementation | Without Layers | With Layers Overhead
Allegro CL 8.0 2.544 secs 2.650 secs | 4.17% slower
CMUCL 19c 0.77 secs 0.744 secs | 3.49% faster
LispWorks 4.4.6 3.128 secs 3.2374 secs 3.50% slower
MCL 5.1 2.187 secs 2.4358 secs | 11.38% slower
OpenMCL 1.0 2.3788 secs 2.5938 secs | 9.04% slower
SBCL 0.9.16 0.9138 secs 0.8708 secs | 4.94% faster

Summary.

e Context-oriented Programming provides
- layers with partial classes and methods
- that can be freely selected and combined

- without interfering with other contexts.

Summary.

e COP is independent of the organization of the source code.
- Essential contribution is layer activation / deactivation at runtime.
e [t can be beneficial to activate / deactivate layers anywhere.

e COP is compatible with a higher-order reflective programming style.

Summary.

e Some examples require repeated activation / deactivation of layers.
(For example, the figure editor.)

¢ Efficient implementation
- multiple inheritance & multiple dispatch
- efficient caches

e Should also be doable in Java-style languages

ContextL Summary.

e | ayers
e | ayered classes
- Layered slots, special slots
e | ayered functions, layered accessors

e Dynamically scoped layer activation / deactivation

ContextL.

e Available for 7 major Common Lisp implementations:
Allegro, CLisp, CMUCL, LispWorks, MCL, OpenMCL, SBCL.

- This means: BeOS, FreeBSD, HP-UX, IBM AIX, IRIX, Linux x86, Linux
PowerPC, Mac OS X, NetBSD, NeXTstep, OpenBSD, Solaris SPARC,
Trued, Windows, ...

e Implemented using the CLOS MOP.
e Apparently no serious runtime overhead!

e Source code with MIT/BSD-style license at
http://common-lisp.net/project/closer/

http://common-lisp.net/project/closer/
http://common-lisp.net/project/closer/

Major achievements so far...

e Language Construct for Context-oriented Programming - An Overview of ContextL
Dynamic Languages Symposium 2005 (with Robert Hirschfeld)

e Efficient Layer Activation for Switching Context-dependent Behavior
Joint Modular Languages Conference 2006 (with Robert Hirschfeld & Wolfgang De Meuter)

e Reflective Layer Activation in ContextL
ACM Symposium on Applied Computing 2007 (with Robert Hirschfeld)

¢ The Context-Dependent Role Model
International Conference on Distributed Applications and Interoperable Systems 2007 (Jorge Vallejos et al.)

¢ Context-Oriented Domain Analysis
International and Interdisciplinary Conference on Modeling and Using Context 2007 (Brecht Desmet et al.)

e Context-oriented Programming
Journal of Object Technology, March/April 2008 (with Robert Hirschfeld & Oscar Nierstrasz)

Thank you.

