# Frédéric Gava

#### Bulk-Synchronous Parallel ML

Examples of a high-level parallel language and a cost based methodology



## Outline

#### I. The BSML language

- a. The BSP model
- b. Classical primitives and multi-programming
- c. Simple examples
- d. Cost based methodology
- II. More complicated examples
  - a. N-bodies
  - b. Erathosthenes sieve
  - c. Sorting
  - d. Matrix multiplication
  - e. Skeletons : Dh and application to FFT and TDS
- III. Conclusion and future works

The BSML language

#### The BSML « spirite »

Bugs grow faster than Moore's law. (G. Berry)

- → High-level language  $\Rightarrow$  > lines of code  $\Rightarrow$  > number of bugs
- ➤ Certified library ⇒ ➤ number of bugs
- Small is beautiful. (R. H. Bisseling)

>BSML only use 5 primitives...

Who would drive a non-deterministic car ? (G. Berry)

Propriety of confluence of the semantic of BSML

French Proverb : « All the roads go to Roma » But the better way is to choose the shorter

> One can give BSP costs to BSML programs

> Different of concurrent programming : cost and confluence

## The BSP model



#### Characterized by:

- **P** Number of processors
- r Processors speed
- L Global synchronization
- g Phase of communication (1 word at most sent of received by each processor)

## Model of execution

Beginning of the super-step i

Local computing on each processor

Global (collective) communications between processors

Global synchronization : exchanged data available for the next super-step

 $Cost(i) = (max_{0 \le x < p} W^{x}_{i}) + h_{i} \times g + L$ 



# A libertarian model 🥠

#### No master :

- ➢ Homogeneous power of the nodes
- ➢ Global (collective) decision procedure instead

#### No god :

- Confluence (no divine intervention)
- Cost predictable
- Scalable performances
- Practiced but confined



# The BSML language

**Structured parallelism** as an explicit parallel extension of the High level (functional) language **ML** 

- **BSP cost** predictions
- Implemented as a parallel library for the "Objective Caml" language

Using a parallel data structure called **parallel vector** 

Using 5 parallel primitives :

Outside vector : classical O'Caml code with calls to the parallel primitives

Inside vector : classical O'Caml code



# Parallel primitives of BSML

# Asynchronous primitives: ➤ Creation of a vector (creation of local values) mkpar : (int → α) → α par ➤ Parallel point-wize application

- **apply** :  $(\alpha \rightarrow \beta)$  par  $\rightarrow \alpha$  par  $\rightarrow \beta$  par
- Synchronous and communications primitives:
  - Communications
    - **put** : (int $\rightarrow \alpha$ ) par  $\rightarrow$  (int $\rightarrow \alpha$ ) par
  - Projection of local values (to be replicated) **proj**: α par  $\rightarrow$  (int $\rightarrow$ α)



13/102

#### **Example** let v1 = mkpar (fun pid $a \rightarrow a*pid$ ) and v2 = mkpar (fun $\_\rightarrow 5$ ) in apply v1 v2



#### **Usefull Functions**

#### Simple computations :

(\* val replicate :  $\alpha \rightarrow \alpha$  .par \*) let replicate x = mkpar (fun \_  $\rightarrow$ x)

(\* val apply2 : ( $\alpha \rightarrow \beta \rightarrow \gamma$ ) par  $\rightarrow \alpha$  par  $\rightarrow \beta$  par  $\rightarrow \gamma$  par \*) let apply2 f v1 v2 = apply (apply f v1) v2

(\* val parfun :  $(\alpha \rightarrow \beta) \rightarrow \alpha par \rightarrow \beta par *$ ) let parfun f v = apply (replicate f) v

## Execution of BSML programs

Two modes : sequential and parallel ones



16/102

#### Primitives synchrones

**put** : (int $\rightarrow \alpha$ ) par $\rightarrow$ (int $\rightarrow \alpha$ ) par

| 6   |                     | 1                   | 2                   | 3    | _ | 0                   | 1                   | 2                   | 3                   |
|-----|---------------------|---------------------|---------------------|------|---|---------------------|---------------------|---------------------|---------------------|
| put | None                | Some v <sub>2</sub> | None                | None |   | None                | None                | None                | Some v <sub>1</sub> |
|     | None                | None                | Some v <sub>5</sub> | None |   | Some v <sub>2</sub> | None                | Some v <sub>3</sub> | Some v <sub>4</sub> |
|     | None                | Some v <sub>3</sub> | None                | None |   | None                | Some v <sub>5</sub> | None                | None                |
|     | Some v <sub>1</sub> | Some v <sub>4</sub> | None                | None |   | None                | None                | None                | None                |
|     |                     | <b>)</b>            |                     |      |   | -                   |                     |                     |                     |

**proj** :  $\alpha$  par $\rightarrow$ (int $\rightarrow \alpha$ )





#### **Usefull functions**

#### Patterns of communication :

(\* val replicate\_total\_exchange:  $\alpha$  par  $\rightarrow \alpha$  list \*) let replicate\_total\_exchange vec = List.map (proj vec) (list\_procs())

```
(* val bcast_direct : int →α par →α par *)
let bcast_direct root vv =
  let mkmsg = applyat root (fun v dst →Some v) (fun _ dst →None) vv
  in parfun noSome (apply (put mkmsg) (replicate root))
```

## Parallel composition

- Multi-programming
- **Several programs** on the same machine
  - Primitive of parallel composition: Superposition
- **Divide-and-conquer** BSP algorithms

## **Parallel Superposition**

#### **super :** (unit $\rightarrow \alpha$ ) $\rightarrow$ (unit $\rightarrow \beta$ ) $\rightarrow \alpha \times \beta$

#### super $\mathbf{E}_1 \quad \mathbf{E}_2 \rightarrow (\mathbf{E}_1(), \mathbf{E}_2())$

Fusion of communications/synchronisations using super-threads

**Keep** the BSP model

Pure functional semantics

#### **Parallel Superposition**



## Example, prefixes calculus

scan:  $\alpha \rightarrow (\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$  par  $\rightarrow \alpha$  par

**scan** e (+)  $< v_0$ , ...,  $v_{p-1} >$ 

 $= \langle e, v_0 + v_1, ..., v_0 + v_1 + ... + v_{p-1} \rangle$ 

Code in BSML :

let scan\_direct op e vv =
 let mkmsg pid v dst=if dst<pid then None else Some v in
 let procs\_lists= mkpar (fun pid →from\_to 0 pid) in
 let rcv\_msgs= put (apply (mkpar mkmsg) vv) in
 let values= parfun2 List.map (parfun (compose noSome) rcv\_msgs) procs\_lists in
 applyat 0 (fun \_ →e) (List.fold\_left op e) values</pre>



Classical log(p) super-steps method :



 $Cost = log(p) \times (Time(op)+Size(d)\times g+L)$ 

**BSML** code of this method :

```
let scan logp op e vec =
 let rec scan aux n vec =
  if n \ge (bsp p()) then (applyat 0 (fun \rightarrow e) (fun x \rightarrow x) vec) else
   let msg = mkpar (fun pid v dst\rightarrow
     if ((dst=pid+n)or(pid mod (2*n)=0))\&\&(within bounds (dst-n))
      then Some v else None)
   and senders = mkpar (fun pid\rightarrownatmod (pid-n) (bsp p()))
   and op' = fun x y\rightarrowmatch y with Some y'\rightarrowop y' x | None \rightarrowx in
    let vec' = apply (put (apply msg vec)) senders in
    let vec''= parfun2 op' vec vec' in
     scan aux (n*2) vec'' in
 scan aux 1 vec
```

#### Divide-and-conquer method :



#### BSML code of this method :

```
let scan super op e vec =
 let rec scan' fst lst op vec =
  if fst>=lst then vec
   else
    let mid = (fst+lst)/2 in
    let vec' = super mix mid (super (fun()→scan' fst mid op vec)
                                         (fun() \rightarrow scan'(mid+1) | st op vec)) in
    let msg vec = apply (mkpar(fun i v\rightarrow
      if i=mid
        then (fun dst\rightarrowif inbounds (mid+1) lst dst then Some v else None)
      else (fun dst\rightarrow None))) vec
    and parop = parfun2(fun x y\rightarrowmatch x with None\rightarrowy|Some v\rightarrowop v y) in
    parop (apply(put(msg vec'))(mkpar(fun i→mid))) vec' in
  applyat 0 (fun \_ \rightarrow e) (fun x \rightarrow x) (scan' 0 (bsp p()-1) op vec)
```

## A cost based methology

- BSML is a safe high-order parallel language
- BSP model allows cost analysis of programs
  - Methodology :
  - 1) Program your sequential algorithm in ML
  - 2) Program one or more parallel algorithms in ML
  - 3) Choose the best follow your BSP parameters ; depending of
    - 1. Number of processor
    - 2. Architecture of your network, nodes, etc.
    - 3. Library of communication (MPI, TCP/IP in O'CAML, PUB, etc.)
- We need (easy to write using different h-relations) to bench our BSP parameters in BSML 29/102

## Our parallel machine

Cluster of PCs

- ➢ Pentium IV 2.8 Ghz
- ≻ 512 Mb RAM
- A front-end Pentium IV 2.8 Ghz, 512 Mb RAM
- Gigabit Ethernet cards and switch,
- Ubuntu 7.04 as OS



#### Our BSP Parameters 'L'



## How to read bench

- There are many manners to publish benchs :
- > Tables
- Graphics

The goal is to say *« it is a good parallel method, see my benchs »* but it is often easy to arrange the presentation of the graphics to hide the problems

- Using graphics (from the simple to hide to the hardest) :
- 1) Increase size of data and see for some number of processors
- 2) Increase number of processors to a typical size of data
- 3) Acceleration, i.e, Time(seq)/Time(par)
- 4) Efficienty, i.e, Acceleration/Number of processors
- 5) Increase number of processors and size of the data

#### Increase number of processors



34/102

#### Acceleration

**Typical accelerations** Ideal Good parallel program Superlinear acceleration Good parallel program Most parallel programs Acceleration Number of processors


#### Increase data and processors



# More complicated examples

# N-body problem

#### Presentation

- We have a set of body
  - ➤ coordinate in 2D or 3D
  - ➢ point masse
- The classic N-body problem is to calculate the gravitational energy of N point masses that is : N = N

$$E = -\sum_{\substack{i=1\\i\neq j}}^{N} \sum_{j=1}^{N} \frac{m_i \times m_j}{r_i - r_j}$$

- Quadratique complexity...
- In practice, N is very big and sometime, it is impossible to keep the set in the main memory

# Parallel methods

- Each processor has a sub-part of the original set
  - Parallel method one each processsor :
  - 1) compute local interactions
  - 2) compute interactions with other point masses
  - 3) parallel prefixes of the local interactions
    - For 2) simple parallel methods :
  - using a total exchange of the sub-sets
  - using a systolic loop



# Systolic loop in BSML

(\* val systolic:  $(\alpha \rightarrow \alpha \rightarrow \beta) \rightarrow (\gamma \rightarrow \beta par \rightarrow \gamma) \rightarrow \alpha par \rightarrow \gamma \rightarrow \gamma *)$ let systolic f op vec init = let rec calc n v res = if n=0 then res else let newv=Bsmlcomm.shift\_right v in calc (n-1) newv (op res (parfun2 f vec newv)) in calc (bsp p()) vec init

Cost of the systolic method :

$$N \times \mathbf{g} + \mathbf{p} \times \mathbf{l} + 2 \times N + \frac{N}{\mathbf{p}} \times N + \mathbf{l} + \mathbf{p} \times \mathbf{g} + \mathbf{l}$$







#### Sieve of Eratosthenes

#### Presentation

- Classic : find the prime number by enumeration
- Pure functional implementation using list
- Complexity : n×log(n)/log(log(n))
- We used :
  - elim:int list int int list which deletes from a list all the integers multiple of the given parameter
  - ➢ final elim:int list →int list →int list iterates elim
  - Seq\_generate:int →int →int list which returns the list of integers between 2 bounds
  - Select:int →int list →int list which gives the first prime numbers of a list.

| L |     |     |     |     |     |     |     |     |     |     |               |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------------|
|   |     | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | Prime numbers |
|   | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |               |
|   | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  |               |
|   | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 40  |               |
|   | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  |               |
|   | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  |               |
| 5 | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  |               |
| f | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  |               |
|   | 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 90  |               |
|   | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 |               |
| l | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 |               |
|   | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |               |
|   |     |     |     |     |     |     |     |     |     |     |               |

# Parallel methods

- Simple Parallel methods :
  - ➤ using a kind of scan
  - $\succ$  using a direct sieve
  - $\succ$  using a recursive one
- Different partitions of data
  - $\succ$  per block (for scan) :



#### Scan version

#### Method using a scan :

- Each processor computes a local sieve (the processor 0 contains thus the first prime numbers)
- ➤ then our scan is applied and we eliminate on processor i the integers that are multiple of integers of processors i-1, i-2, etc.
- Cost : as a scan (logarithmic)

#### **Direct version**

#### • Method :

- ➤ each processor computes a local sieve
- > then integers that are less to  $\sqrt{n}$  are globally exchanged and a new sieve is applied to this list of integers (thus giving prime numbers)
- each processor eliminates, in its own list, integers that are multiples of this first primes

#### Inductive version

- Recursive method by induction over n :
  - >We suppose that the inductive step gives the  $\sqrt{n}$  th first primes
  - ➤ we perform a total exchange on them to eliminates the non-primes.
  - ➤ End of this induction comes from the BSP cost: we end when n is small enough so that the sequential methods is faster than the parallel one

$$Cost(n) = \frac{\sqrt{m} \times m}{\log(m)} + \sqrt{n} \times \mathbf{g} + \mathbf{l} + Cost(\sqrt{n})$$
  

$$Cost(n) = \frac{\sqrt{n} \times n}{\log(n)}$$
 if BSP cost > complexity

# Induction version in BSML

```
let rec eratosthene n =
```

```
if (fin_recursion n) then apply (mkpar distribution) (replicate (seq_eratosthene n))
else
```

```
let carre_n = int_of_float (sqrt (float_of_int n)) in
let prems_distr = eratosthene carre_n in
let listes = mkpar (fun pid →local_generation2 n carre_n pid) in
let echanges = replicate_total_exchange prems_distr in
let prems = (List.fold_left (List.merge compare) [] echanges) in
parfun (final_elim prems) listes
let eratosthene_rec n =
applyat 0 (fun l→2::3::5::7::l) (fun l→l) (eratosthene n)
```

Parallel Eratosthene's sieve



54/102



Accelerations for Parallel Eratosthene's sieve



Efficienties for parallel Eratosthene's sieve



#### Parallel sample sorting

#### Presentation

- Each processor has listed set of data (array, list, *etc.*)The goal is that :
  - $\succ$  data on each processor are ordored.
  - > data on processor *i* are smaller than data on processor i+1
  - ➤ good balancing
- Parallel sorting is not very efficient due to too many communications
- But usefull and more efficient than gather all the data in one processor and then sort them



Local sort of samples (each processor)

1,3,4,7,8,9,13,14,15,19,20,21

1,7,14,20,4,9,13,21,3,8,15,19

1,3,4,7,8,9,13,14,15,19,20,21

1,7,14,20,4,9,13,21,3,8,15,19

1,7,14,etc.



```
Parallel Sorting in BSML
let bsp sample sort compare seq sort select merge samples to be send
                              get merge block vec =
let p=bsp p() in
 (* merge the sending blocks at the end *)
let final merge f =
 let rec final n tmp =
   if n=p then tmp else final (n+1) (merge block compare tmp (f n))
  in final 1 (f 0)
in
 (* Super-step 1 *)
 let vec sort = parfun (seq sort compare) vec in
 let primary sample = parfun (select p) vec sort in
  let totex prim sample = replicate total exchange primary sample in
  (* Super-step 2 *)
 let scd sample = select p (merge samples compare totex prim sample) in
 let elts to send = parfun (to be send compare p scd sample) vec sort in
  let to send = put (parfun get elts to send) in
  (* Super-step 3 *)
   parfun final merge to send
                                                                      62/102
```

Sequential and parallel sorting of polygons



Parallel sorting of polygons



64/102

# Matrix multiplication

# Naive parallel algorithm

• We have two matrices A and B of size n×n

• We supose 
$$p = \sqrt{p} \times \sqrt{p}$$

Each matrice is distributed by blocs of size  $m = \frac{n}{\sqrt{p}}$ 

That is, element A(i,j) is on processor  $(\frac{j}{m}) \times \sqrt{p} + \frac{i}{m}$ 



# Two gets

#### Read data from another processor :

(\* get\_from : (int  $\rightarrow$  int)  $\rightarrow \alpha$  par  $\rightarrow \alpha$  par \*) let get\_from f parv = let comms = put(apply (mkpar (fun me v pid  $\rightarrow$  if me=(f pid) then Some v else None)) parv) in apply (mkpar (fun me rcv  $\rightarrow$  match (rcv (f me)) with None  $\rightarrow$  failwith "Cas\_impossible\_!" | Some v  $\rightarrow$ v)) comms

Read twice = just a superposition of 2 get\_from

#### Mult in BSML

begin Mult(C,A,B)  
let 
$$m = \frac{n}{\sqrt{p}}$$
 in  
let  $p_i = pid \mod \sqrt{p}$  and  $p_j = \frac{pid}{\sqrt{p}}$  and  $C_q = [0]$  in  
for  $0 \le l < \sqrt{p}$  do  
begin  
let  $a = A_{((p_i+p_j+l) \mod \sqrt{p}) \times \sqrt{p}+p_i}$   
and  $b = B_{((p_i+p_j+l) \mod \sqrt{p})+p_j \times \sqrt{p}}$  in  
 $C_{pid} \leftarrow C_{pid} \oplus a \otimes b$   
end  
end Mult  
 $68/102$ 

Dense matrix multiplication



69/102

Performances for dense matrix multiplication (N=400)





71/102


#### **Data-Parallel Skeletons**

## **Algorithm Skeletons**

- Skeletons encapsulate basic parallel programming patterns in a well understood and structured approach
- Thus, skeletons are a set of functions which have 2 semantics : sequential and parallel ones.
- In general, skeletons work one list of data : a stream in the parallel semantics
- Typical examples : pipeline, farm, *etc*.
- Data-parallel skeletons are design for work on data and not one the stream of data
- Data-parallel skeletons has been design for lists, trees, etc. 74/102

#### **Our Skeletons**

- Work on lists : each processor has a sub-list
  Map : application of a function on list of data : map f [x<sub>1</sub>, x<sub>2</sub>,..., x<sub>n</sub>] = [(f x<sub>1</sub>), (f x<sub>2</sub>),..., (f x<sub>n</sub>)] mapidx f [x<sub>1</sub>, x<sub>2</sub>,..., x<sub>n</sub>] = [(f 1 x<sub>1</sub>), (f 2 x<sub>2</sub>),..., (f n x<sub>n</sub>)]
- Zip : combines elements of two lists of equal length with a binary operation :

 $zip \oplus [x_1, \ldots, x_n] [y_1, \ldots, y_n] = [x_1 \oplus y_1, \ldots, x_n \oplus y_n]$ Reduce and scan

Rpl : creates a new list containing n times element x

Distributable Homomorphism  
Distributable Homomorphism  
Dh : know as butterfly skeleton and used to express  
a special class of divide-and-conquer algorithms  
Récursive définition :  

$$dh \oplus \otimes [x_1, \dots, x_n] = [y_1, \dots, y_n]$$
  
where :  
 $y_i = \begin{cases} u_i \oplus v_i & \text{if } i \le n/2 \\ u_{i-n/2} \otimes v_{i-n/2} & \text{otherwise} \end{cases}$   
and  
 $u = dh \oplus \otimes [x_1, \dots, x_{n/2}] \\ v = dh \oplus \otimes [x_{n/2+1}, \dots, x_n] \end{cases}$ 



• Which is also a parallel point of view...



### **Parallel Implementation**

Currently, naive implementation : suppose 2<sup>1</sup> processors (even, you need to manage bording data)
Recursive implementation using superposition
BSP Cost = logarithmic number of super-step with at most 2<sup>(1-p)</sup> data communicated
Application : Fast Fourier Transformation (FFT) and Tridiagonal System Solver (TDS)

#### Code of Dh

```
let dh oplus omult fl =
let rec tmp n1 n2 n vec =
  if n=1 then vec else
   let n'=n/2 in
   let n1'=n1+n' and n2'=n1+n'-1 in
   let vec' = super mix (n1'-1) (super (fun () \rightarrow tmp n1 n2' n' vec)
                                            (fun () \rightarrow tmp n1' n2 n' vec)) in
   let msg=mkpar (fun pid v \rightarrow
                       if pid<n1'
                        then (fun dst \rightarrow if dst=(pid+n') then Some v else None)
                       else (fun dst \rightarrow if dst=(pid-n') then Some v else None))
in
   let send=put (apply msg vec') in
   let rcv = mkpar (fun pid f a \rightarrow if pid < n1'
                                 then match (f (pid+n')) with
                                          Some b \rightarrow List.map2 oplus a b
                                        | None \rightarrow a
                                  else match (f (pid-n')) with
                                          Some b \rightarrow \text{List.map2} omult b a
                                         None \rightarrow a) in
   apply2 rcv send vec'
  in (tmp 0 (bsp p()-1) (bsp p()) (parfun (local_dh oplus omult) fl
```

Fast Fourier Transformation

#### Presentation

Usefull in many numeric applications
Définition (n=2^l) :

**fft** 
$$[x_1, \ldots, x_n] = [y_1, \ldots, y_n]$$
  
where  $y_i = \sum_{k=0}^{n-1} x_k \omega_n^{ki}$ 

and 
$$\omega_n = e^{2\pi\sqrt{-1/n}}$$

Skeleton implementation
Recursive computation :

 $y_i = (\mathbf{FFT} \ x)_i = \begin{cases} (\mathbf{FFT} \ u)_i \oplus_{i,n} (\mathbf{FFT} \ v)_i & \text{if } i < n/2 \\ (\mathbf{FFT} \ u)_{i-n/2} \otimes_{i-n/2,n} (\mathbf{FFT} \ v)_{i-n/2} & \text{otherwise} \end{cases}$ 

where  $a \oplus_{i,n} b = a + \omega_n^i b$  and  $a \otimes_{i,n} b = a - \omega_n^i b$ 

where 
$$u = [x_0, x_2, \dots, x_{n-2}]$$
 and  $v = [x_1, x_3, \dots, x_{n-1}]$   
Operator:  $\begin{pmatrix} x_1 \\ i_1 \\ n_1 \end{pmatrix} \oplus \begin{pmatrix} x_2 \\ i_2 \\ n_2 \end{pmatrix} = \begin{pmatrix} x_1 \oplus_{i_1, n_1} x_2 \\ i_1 \\ 2n_1 \end{pmatrix}$ 

Skeleton code :

let fft l = map fst  $(dh \oplus \otimes (mapidx \text{ triple } l))$ where : triple  $x_i = (x_i, i, 1)$ 



Fast Fourier Transformation





Fast Fourier Transformation for 2^17 complexes





Fast Fourier Transformation for 2^15 complexes to 2^19 complexes



#### Tridiagonal System Solver

#### Presentation

- Usefull in many applications
- $A \times x = b$  where A is sparce matrix representing coefficients, x a vector of unknowns and b a right-hand-side vector.
- The only values of A unequal to 0 are on the main diagonal, as well as directly above and below it
- Can be implemented using dh as FFT but just other operators...

Tridiagonal System Solver











Tridiagonal System Solver for 2^15 floats to 2^19 floats



## Conclusion and future works

#### Conclusion

#### BSML=BSP+ML

safe high-level parallel language

- **Easy** to write parallel programs
- allow a cost based methodology
- Some typical example, data-parallel skeletons and benchs
- Many work on operational semantics to ease properties

#### What is « off »

As a library for O'Caml, BSML has many lacks of safety :

- $\succ$  nested of parallel vector is allow
- Problem of determinism with some side effects
- some functions of O'Caml standard library can break the model of execution
- ▶ ...
- Need of a full language :
  - new type system (ongoing work)
  - Implementation using continuation (transformation of source's code with the help of a type checker) for the superposition (ongoing work)
  - create our own standard library to delete « dangerous functions » (easy but boring work)

#### Future works

Implementation of parallel skeletons (management of tasks) using the superposition ?

Implementation of bigger algorithms for better benchmarks of BSML

- BSP model-checking of high-level Petri-nets (M-nets). The main difficult : find a non-trivial algorithm as the community of concurrent programming does. Possible but need more theoretical optimisations...
- Libraries for matrices (by Sovanna Tan) and graphs (ongoing work)
- More symbolic computations...(Knuth-Bendix, on going work)

#### **PROPAC ("PROgrammation PAralllèle Certifiée")**

# Thanks for your attention