
Bulk-Synchronous Parallel ML

Examples of

a high-level parallel language

and a cost based methodology

Frédéric Gava

2/102

Background

Parallel programming

Implicit Explicit

Data-parallelism
Parallel

extensions

Concurrent

programming

Automatic

parallelization
skeletons

BSML

3/102

Outline

I. The BSML language
a. The BSP model

b. Classical primitives and multi-programming

c. Simple examples

d. Cost based methodology

II. More complicated examples
a. N-bodies

b. Erathosthenes sieve

c. Sorting

d. Matrix multiplication

e. Skeletons : Dh and application to FFT and TDS

III. Conclusion and future works

4/102

The BSML
language

5/102

The BSML « spirite »
Bugs grow faster than Moore’s law. (G. Berry)

�High-level language �� lines of code �� number of bugs

�Certified library �� number of bugs

Small is beautiful. (R. H. Bisseling)

�BSML only use 5 primitives…

Who would drive a non-deterministic car ? (G. Berry)

� Propriety of confluence of the semantic of BSML

French Proverb : « All the roads go to Roma » But the
better way is to choose the shorter

�One can give BSP costs to BSML programs

�Different of concurrent programming : cost and confluence

6/102

Characterized by:

� p Number of processors

� r Processors speed

� L Global synchronization

� g Phase of communication (1 word at most

sent of received by each processor)

BSP architecture:

The BSP model

P/M P/M P/M P/M P/M

Network

Unit of synchronization

7/102

wi

Model of execution

S
u

p
er

-s
te

p
 i

+
1

g×hi

L

wi+1

g×hi+1

L

S
u

p
er

-s
te

p
 i

Beginning of the super-step i

Local computing on
each processor

Global (collective)
communications between

processors

Global synchronization :
exchanged data available

for the next super-step

Cost(i) =
(max0≤x<p w

x
i)

+ hi×g + L

8/102

A libertarian model

No master :

� Homogeneous power of the nodes

� Global (collective) decision procedure instead

No god :

� Confluence (no divine intervention)

� Cost predictable

� Scalable performances

Practiced but confined

9/102

Example : broadcast
Direct broadcast (one super-step):

BSP cost = p×n×g + L

Broadcast with 2 super-steps:

BSP cost = 2×n×g + 2×L

10 2

10/102

Structured parallelism as an explicit parallel extension of the High

level (functional) language ML

BSP cost predictions

Implemented as a parallel library for the "Objective Caml" language

Using a parallel data structure called parallel vector

Using 5 parallel primitives :

� Outside vector : classical O’Caml code with calls to the parallel

primitives

� Inside vector : classical O’Caml code

The BSML language

11/102

fp-1…f1f0

gp-1…g1g0

Parallel

vector

Local

part

Replicated

part

A BSML program

12/102

Parallel primitives of BSML

Asynchronous primitives:

� Creation of a vector (creation of local values)

mkpar : (int → α) → α par

� Parallel point-wize application

apply : (α → β) par → α par → β par

Synchronous and communications primitives:

� Communications

put : (int→α) par → (int→α) par

� Projection of local values (to be replicated)

proj : α par → (int→α)

13/102

mkpar : (int → α) → α par

f (p-1)…(f 1)(f 0)(mkpar f)

apply : (α → β) par → α par → β par

fp-1…f1f0

vp-1…v1v0

fp-1 vp-1…f1 v1f0 v0

apply

Primitives asynchrones

14/102

Example
let v1 = mkpar (fun pid a→a*pid)

and v2 = mkpar (fun _→5)

in apply v1 v2

v1 fun a→a*0 …fun a→a*1 fun a→a*(p-1)

5 …5 5v2

5*0 …5*1 5*(p-1)

apply v1 v2

15/102

Usefull Functions

Simple computations :

16/102

Distributed evaluation

scan op vec =
let rec scan' fst lst op vec =
if fst>=lst then vec else let

mid=(fst+lst)/2 in
let vec'= mix mid

(super (fun()->scan' fst mid op
vec)

(fun()->scan'(mid+1) lst op
vec))in
let com = ...(* send wm to

processes m+1…p+1 *) let op’ =
...(* applies op to wm and wi, m<i<p
*) in parfun2 op’ com vec’
in scan' 0 (bsp_p()-1) op vec
scan op vec =
let rec scan' fst lst op vec =
if fst>=lst then vec else let

mid=(fst+lst)/2 in
let vec'= mix mid

(super (fun()->scan' fst mid op
vec)

(fun()->scan'(mid+1) lst op
vec))in
let com = ...(* send wm to

processes m+1…p+1 *) let op’ =
...(* applies op to wm and wi, m<i<p
*) in parfun2 op’ com vec’
in scan' 0 (bsp_p()-1) op vec scan
op vec =
let rec scan' fst lst op vec =
if fst>=lst then vec else let

mid=(fst+lst)/2 in
let vec'= mix mid

(super (fun()->scan' fst mid

Prog scan op vec =
let rec scan' fst lst op vec =
if fst>=lst then vec else let

mid=(fst+lst)/2 in
let vec'= mix mid

(super (fun()->scan' fst mid op
vec)

(fun()->scan'(mid+1) lst op
vec))in
let com = ...(* send wm to

processes m+1…p+1 *) let op’ =
...(* applies op to wm and wi, m<i<p
*) in parfun2 op’ com vec’
in scan' 0 (bsp_p()-1) op vec
scan op vec =
let rec scan' fst lst op vec =
if fst>=lst then vec else let

mid=(fst+lst)/2 in
let vec'= mix mid

(super (fun()->scan' fst mid op
vec)

(fun()->scan'(mid+1) lst op
vec))in
let com = ...(* send wm to

processes m+1…p+1 *) let op’ =
...(* applies op to wm and wi, m<i<p
*) in parfun2 op’ com vec’
in scan' 0 (bsp_p()-1) op vec scan
op vec =
let rec scan' fst lst op vec =
if fst>=lst then vec else let

mid=(fst+lst)/2 in
let vec'= mix mid

(super (fun()->scan' fst mid

Prog scan op vec =
let rec scan' fst lst op vec =
if fst>=lst then vec else let

mid=(fst+lst)/2 in
let vec'= mix mid

(super (fun()->scan' fst mid op
vec)

(fun()->scan'(mid+1) lst op
vec))in
let com = ...(* send wm to

processes m+1…p+1 *) let op’ =
...(* applies op to wm and wi, m<i<p
*) in parfun2 op’ com vec’
in scan' 0 (bsp_p()-1) op vec
scan op vec =
let rec scan' fst lst op vec =
if fst>=lst then vec else let

mid=(fst+lst)/2 in
let vec'= mix mid

(super (fun()->scan' fst mid op
vec)

(fun()->scan'(mid+1) lst op
vec))in
let com = ...(* send wm to

processes m+1…p+1 *) let op’ =
...(* applies op to wm and wi, m<i<p
*) in parfun2 op’ com vec’
in scan' 0 (bsp_p()-1) op vec scan
op vec =
let rec scan' fst lst op vec =
if fst>=lst then vec else let

mid=(fst+lst)/2 in
let vec'= mix mid

(super (fun()->scan' fst mid

Prog

Execution of BSML programs
Two modes : sequential and parallel ones

SPMD style :

Sequential

scan op vec =
let rec scan' fst lst op vec =
if fst>=lst then vec else let

mid=(fst+lst)/2 in
let vec'= mix mid

(super (fun()->scan' fst mid op
vec)

(fun()->scan'(mid+1) lst op
vec))in
let com = ...(* send wm to processes

m+1…p+1 *) let op’ = ...(* applies op
to wm and wi, m<i<p *) in parfun2 op’
com vec’
in scan' 0 (bsp_p()-1) op vec
scan op vec =
let rec scan' fst lst op vec =
if fst>=lst then vec else let

mid=(fst+lst)/2 in
let vec'= mix mid

(super (fun()->scan' fst mid op
vec)

(fun()->scan'(mid+1) lst op
vec))in
let com = ...(* send wm to processes

m+1…p+1 *) let op’ = ...(* applies op
to wm and wi, m<i<p *) in parfun2 op’
com vec’
in scan' 0 (bsp_p()-1) op vec scan op
vec =
let rec scan' fst lst op vec =
if fst>=lst then vec else let

mid=(fst+lst)/2 in
let vec'= mix mid

(super (fun()->scan' fst mid

Prog

Parallel
vector

Parts of the
parallel vector

Replicate=duplicate

code

Replicate=duplicate

code

Replicate=duplicate

code

17/102

put : (int→α) par→(int→α) par

NoneNoneSome v4Some v1

NoneNoneSome v3None

NoneSome v5NoneNone

NoneNoneSome v2None

3210

NoneNoneNoneNone

NoneNoneSome v5None

Some v4Some v3NoneSome v2

Some v1NoneNoneNone

3210

put

proj : α par→(int→α)

vp-1…v1v0
proj

f
such that (f i)=vi

Primitives synchrones

18/102

Projection

vp-1…v1v0
proj

f such that (f i)=vi

v1v0 v2proj

f f f

Sequential :

Distributed evaluation :

19/102

Usefull functions

Patterns of communication :

20/102

Multi-programming

Several programs on the same machine

Primitive of parallel composition: Superposition

Divide-and-conquer BSP algorithms

Parallel composition

21/102

super : (unit → α) → (unit → β) → α × β

super E1 E2 � (E1 (), E2())

Fusion of communications/synchronisations
using super-threads

Keep the BSP model

Pure functional semantics

Parallel Superposition

22/102

Communications

Synchronization

Communications

Synchronization

Communications

Synchronization

Communications

Synchronization

Communications

Synchronization

 E1 E2 super E1 E2

0 1 2

0 . . .

1 . . .

2 . . .

0 1 2

0 . . .

1 . . .

2 . . .

0 1 2

0 . . .
1 . . .

2 . . .

Parallel Superposition

23/102

Example, prefixes calculus
scan : α→(α→α→α) → α par → α par

scan e (+) <v0, …, vp-1>

Code in BSML :

= <e, v0+v1, …, v0+v1+…+ vp-1>

24/102

Parallel prefixes
If we suppose associative operator (+)

� a+(b+c)=(a+b)+c or better

� a+(b+(c+d))=(a+b) + (c+d)

Example :

On a processor

On another processor

25/102

Parallel Prefixes
Classical log(p) super-steps method :

0 1 2 3

Cost = log(p) × (Time(op)+Size(d)×g+L)

26/102

Parallel Prefixes
BSML code of this method :

27/102

Parallel Prefixes
Divide-and-conquer method :

0 1 2 3

28/102

Parallel Prefixes
BSML code of this method :

29/102

A cost based methology
BSML is a safe high-order parallel language

BSP model allows cost analysis of programs

Methodology :

1) Program your sequential algorithm in ML

2) Program one or more parallel algorithms in ML

3) Choose the best follow your BSP parameters ; depending of

1. Number of processor

2. Architecture of your network, nodes, etc.

3. Library of communication (MPI, TCP/IP in O’CAML, PUB, etc.)

We need (easy to write using different h-relations) to bench our
BSP parameters in BSML

30/102

Our parallel machine

Cluster of PCs

� Pentium IV 2.8 Ghz

� 512 Mb RAM

A front-end Pentium IV 2.8 Ghz, 512 Mb RAM

Gigabit Ethernet cards and switch,

Ubuntu 7.04 as OS

31/102

Our BSP Parameters ‘g’

32/102

Our BSP Parameters ‘L’

33/102

How to read bench
There are many manners to publish benchs :

� Tables

� Graphics

The goal is to say « it is a good parallel method, see my

benchs » but it is often easy to arrange the presentation of

the graphics to hide the problems

Using graphics (from the simple to hide to the hardest) :

1) Increase size of data and see for some number of processors

2) Increase number of processors to a typical size of data

3) Acceleration, i.e, Time(seq)/Time(par)

4) Efficienty , i.e, Acceleration/Number of processors

5) Increase number of processors and size of the data

34/102

Increase number of processors

35/102

Acceleration

36/102

Efficienty

37/102

Increase data and processors

38/102

More complicated
examples

39/102

N-body problem

40/102

Presentation

We have a set of body

� coordinate in 2D or 3D

� point masse

The classic N-body problem is to calculate the gravitational

energy of N point masses that is :

Quadratique complexity…

In practice, N is very big and sometime, it is impossible to

keep the set in the main memory

41/102

Parallel methods

Each processor has a sub-part of the original set

Parallel method one each processsor :

1) compute local interactions

2) compute interactions with other point masses

3) parallel prefixes of the local interactions

For 2) simple parallel methods :

� using a total exchange of the sub-sets

� using a systolic loop

42/102

Systolic loop
0 1 2 3

43/102

Systolic loop in BSML

Cost of the systolic method :

44/102

Benchs and BSP predictions

45/102

Benchs and BSP predictions

46/102

Benchs and BSP predictions

47/102

Sieve of Eratosthenes

48/102

Presentation
Classic : find the prime number by

enumeration

Pure functional implementation

using list

Complexity : n×log(n)/log(log(n))

We used :

� elim:int list�int�int list which deletes

from a list all the integers multiple of

the given parameter

� final elim:int list�int list�int list

iterates elim

� seq_generate:int�int�int list which

returns the list of integers between 2

bounds

� select:int�int list�int list which gives

the first prime numbers of a list.

49/102

Parallel methods

Simple Parallel methods :

� using a kind of scan

� using a direct sieve

� using a recursive one

Different partitions of data

� per block (for scan) :

� cyclic distribution :

11,12,13,14,15 16,17,18,19,20 21,22,23,24,25

11,14,17,20,23 12,15,18,21,24 13,16,19,22,25

50/102

Scan version

Method using a scan :

� Each processor computes a local sieve (the processor 0

contains thus the first prime numbers)

� then our scan is applied and we eliminate on processor i

the integers that are multiple of integers of processors

i−1, i−2, etc.

Cost : as a scan (logarithmic)

51/102

Direct version
Method :

� each processor computes a local sieve

� then integers that are less to are globally exchanged and a new

sieve is applied to this list of integers (thus giving prime numbers)

� each processor eliminates, in its own list, integers that are

multiples of this first primes

BSML Code :

52/102

Inductive version
Recursive method by induction over n :

�We suppose that the inductive step gives the th first
primes

� we perform a total exchange on them to eliminates the
non-primes.

� End of this induction comes from the BSP cost: we end
when n is small enough so that the sequential methods is
faster than the parallel one

Cost :

53/102

Induction version in BSML

54/102

Benchs and BSP predictions

55/102

Benchs and BSP predictions

56/102

Benchs and BSP predictions

57/102

Benchs and BSP predictions

58/102

Parallel sample sorting

59/102

Presentation

Each processor has listed set of data (array, list, etc.)

The goal is that :

� data on each processor are ordored.

� data on processor i are smaller than data on processor
i+1

� good balancing

Parallel sorting is not very efficient due to too many
communications

But usefull and more efficient than gather all the
data in one processor and then sort them

Tiskin’s Sampling Sort

1,11,16,7,14,2,20

0

18,9,13,21,6,12,4 15,5,19,3,17,8,10

1 2

Local sort

1,2,7,11,14,16,20 4,6,9,12,13,18,21 3,5,8,10,15,17,19

Select first samples (p+1 elements with at last first and last ones)

1,2,7,11,14,16,20 4,6,9,12,13,18,21 3,5,8,10,15,17,19

Total exchange
of first sample

1,7,14,20,4,9,13,21,3,8,15,19 1,7,14,20,4,9,13,21,3,8,15,19 1,7,14,etc.

Local sort of samples (each processor)

1,3,4,7,8,9,13,14,15,19,20,21 1,3,4,7,8,9,13,14,15,19,20,21 1,3,4,7,etc.

Tiskin’s Sampling Sort
Select second samples (p+1 elements with at last first and last ones)

1,3,4,7,8,9,13,14,15,19,20,21 1,3,4,7,8,9,13,14,15,19,20,21 1,3,4,7,etc.

Interval for
processor 0

Interval for
processor 1

Interval for
processor 2

1,2,7,11,14,16,20 4,6,9,12,13,18,21 3,5,8,10,15,17,19

1,2,7
4,6
3,5

11,14
9,12,13

8,10

16,20
18,21

15,17,19

Fusion of receveid and sorted elements

1,2,3,4,5,6,7 8,9,10,11,12,13,14 15,16,17,18,19,20,21

62/102

Parallel Sorting in BSML

63/102

Benchs and BSP predictions

64/102

Benchs and BSP predictions

65/102

Matrix multiplication

66/102

Naive parallel algorithm
We have two matrices A and B of size n×n

We supose

Each matrice is distributed by blocs of size

That is, element A(i,j) is on processor

Algorithm :

Each processor reads
twice one bloc from
another processor

67/102

Two gets

Read data from another processor :

Read twice = just a superposition of 2 get_from

68/102

Mult in BSML

69/102

Benchs and BSP predictions

70/102

Benchs and BSP predictions

71/102

Benchs and BSP predictions

72/102

Benchs and BSP predictions

73/102

Data-Parallel Skeletons

74/102

Algorithm Skeletons
Skeletons encapsulate basic parallel programming
patterns in a well understood and structured
approach

Thus, skeletons are a set of functions which have 2
semantics : sequential and parallel ones.

In general, skeletons work one list of data : a stream
in the parallel semantics

Typical examples : pipeline, farm, etc.

Data-parallel skeletons are design for work on data
and not one the stream of data

Data-parallel skeletons has been design for lists,
trees, etc.

75/102

Our Skeletons
Work on lists : each processor has a sub-list

Map : application of a function on list of data :

Zip : combines elements of two lists of equal length

with a binary operation :

Reduce and scan

Rpl : creates a new list containing n times element x

76/102

Distributable Homomorphism

Dh : know as butterfly skeleton and used to express

a special class of divide-and-conquer algorithms

Récursive définition :

where :

and

77/102

Distributable Homomorphism

The butterfly (if x and y lists of data) :

Which is also a parallel point of view…

78/102

Example dh

dh + × [1;2;3;4;5;6;7;8]

[1;2;3;4;5;6;7;8]

[1+2;1*2]
= [3;2]

[3+4;3*4]
= [7;12]

[3+7;2+12;3*7;2*12]
= [10;14;21;24]

[10+26;14+86;21+165;24+1680; 10*26;14*86;21*165;24*1680]
= [36;100;186;1704;260;1204;3465;40320]

[5+6;5*6]
= [11;30]

[7+8;7*8]
= [15;56]

[11+15;30+56;11*15;30*56]

= [26;86;165;1680]

[1;2;3;4] [5;6;7;8]

[1;2] [3;4] [5;6] [7;8]

79/102

Parallel Implementation

Currently, naive implementation : suppose 2^l

processors (even, you need to manage bording data)

Recursive implementation using superposition

BSP Cost = logarithmic number of super-step with

at most 2^(l-p) data communicated

Application : Fast Fourier Transformation (FFT) and

Tridiagonal System Solver (TDS)

80/102

Code of Dh

81/102

Fast Fourier
Transformation

82/102

Presentation
Usefull in many numeric applications

Définition (n=2^l) :

83/102

Skeleton implementation
Recursive computation :

where and

Operator :

Skeleton code :

where :

84/102

Benchs and BSP predictions

85/102

Benchs and BSP predictions

86/102

Benchs and BSP predictions

87/102

Benchs and BSP predictions

88/102

Benchs and BSP predictions

89/102

Benchs and BSP predictions

90/102

Tridiagonal System Solver

91/102

Presentation

Usefull in many applications

A×x = b where A is sparce matrix representing

coefficients, x a vector of unknowns and b a right-

hand-side vector.

The only values of A unequal to 0 are on the main

diagonal, as well as directly above and below it

Can be implemented using dh as FFT but just other

operators…

92/102

Benchs and BSP predictions

93/102

Benchs and BSP predictions

94/102

Benchs and BSP predictions

95/102

Benchs and BSP predictions

96/102

Benchs and BSP predictions

97/102

Benchs and BSP predictions

98/102

Conclusion
and future works

99/102

Conclusion

BSML=BSP+ML

� safe high-level parallel language

� Easy to write parallel programs

� allow a cost based methodology

Some typical example, data-parallel skeletons and benchs

Many work on operational semantics to ease properties

100/102

What is « off »
As a library for O’Caml, BSML has many lacks of safety :

� nested of parallel vector is allow

� Problem of determinism with some side effects

� some functions of O’Caml standard library can break the model of
execution

� …

Need of a full language :

� new type system (ongoing work)

� Implementation using continuation (transformation of source’s
code with the help of a type checker) for the superposition
(ongoing work)

� create our own standard library to delete « dangerous functions »
(easy but boring work)

101/102

Future works
Implementation of parallel skeletons (management of
tasks) using the superposition ?

Implementation of bigger algorithms for better
benchmarks of BSML

� BSP model-checking of high-level Petri-nets (M-nets). The main
difficult : find a non-trivial algorithm as the community of concurrent
programming does. Possible but need more theoretical optimisations…

� Libraries for matrices (by Sovanna Tan) and graphs (ongoing work)

� More symbolic computations...(Knuth-Bendix, on going work)

PROPAC (“PROgrammation PAralllèle Certifiée”)

102/102

Thanks for

your attention

