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The BSML 
language
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The BSML « spirite »
Bugs grow faster than Moore’s law. (G. Berry)

�High-level language �� lines of code �� number of bugs

�Certified library �� number of bugs

Small is beautiful. (R. H. Bisseling)

�BSML only use 5 primitives…

Who would drive a non-deterministic car ? (G. Berry)

� Propriety of confluence of the semantic of BSML

French Proverb : « All the roads go to Roma » But the 
better way is to choose the shorter

�One can give BSP costs to BSML programs

�Different of concurrent programming : cost and confluence
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Characterized by:

� p Number of processors

� r Processors speed

� L Global synchronization

� g Phase of communication (1 word at most

sent of received by each processor)

BSP architecture:

The BSP model

P/M P/M P/M P/M P/M

Network

Unit of synchronization
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A libertarian model

No master : 

� Homogeneous power of the nodes

� Global (collective) decision procedure instead

No god : 

� Confluence (no divine intervention)

� Cost predictable

� Scalable performances

Practiced but confined
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Example : broadcast
Direct broadcast (one super-step):

BSP cost = p×n×g +  L

Broadcast with 2 super-steps:

BSP cost = 2×n×g +  2×L

10 2
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Structured parallelism as an explicit parallel extension of the High

level (functional) language ML

BSP cost predictions

Implemented as a parallel library for the "Objective Caml" language

Using a parallel data structure called parallel vector

Using 5 parallel primitives :

� Outside vector : classical O’Caml code with calls to the parallel

primitives

� Inside vector : classical O’Caml code

The BSML language
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fp-1…f1f0

gp-1…g1g0

Parallel

vector

Local

part

Replicated

part

A BSML program
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Parallel primitives of BSML

Asynchronous primitives:

� Creation of a vector (creation of local values)

mkpar : (int → α) → α par

� Parallel point-wize application

apply : (α → β) par → α par → β par

Synchronous and communications primitives:

� Communications

put : (int→α) par → (int→α) par

� Projection of local values (to be replicated)

proj : α par → (int→α)
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mkpar : (int → α) → α par

f (p-1)…(f 1)(f 0)(mkpar f )

apply : (α → β) par → α par → β par

fp-1…f1f0

vp-1…v1v0

fp-1 vp-1…f1 v1f0 v0

apply

Primitives asynchrones
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Example
let v1 = mkpar (fun pid a→a*pid)

and v2 = mkpar (fun _→5)

in apply v1 v2

v1 fun a→a*0 …fun a→a*1 fun a→a*(p-1)

5 …5 5v2

5*0 …5*1 5*(p-1)

apply v1 v2
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Usefull Functions

Simple computations :
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Distributed evaluation

scan op vec =  
let rec scan' fst lst op vec =
if fst>=lst then vec else let 

mid=(fst+lst)/2 in
let vec'= mix mid 

(super (fun()->scan' fst mid op 
vec)

(fun()->scan'(mid+1) lst op 
vec))in
let com = ...(* send wm to 

processes m+1…p+1  *) let op’ = 
...(* applies op to wm and wi, m<i<p 
*) in parfun2 op’ com vec’
in scan' 0 (bsp_p()-1) op vec
scan op vec =  
let rec scan' fst lst op vec =
if fst>=lst then vec else let 

mid=(fst+lst)/2 in
let vec'= mix mid 

(super (fun()->scan' fst mid op 
vec)

(fun()->scan'(mid+1) lst op 
vec))in
let com = ...(* send wm to 

processes m+1…p+1  *) let op’ = 
...(* applies op to wm and wi, m<i<p 
*) in parfun2 op’ com vec’
in scan' 0 (bsp_p()-1) op vec scan 
op vec =  
let rec scan' fst lst op vec =
if fst>=lst then vec else let 

mid=(fst+lst)/2 in
let vec'= mix mid 

(super (fun()->scan' fst mid

Prog scan op vec =  
let rec scan' fst lst op vec =
if fst>=lst then vec else let 

mid=(fst+lst)/2 in
let vec'= mix mid 

(super (fun()->scan' fst mid op 
vec)

(fun()->scan'(mid+1) lst op 
vec))in
let com = ...(* send wm to 

processes m+1…p+1  *) let op’ = 
...(* applies op to wm and wi, m<i<p 
*) in parfun2 op’ com vec’
in scan' 0 (bsp_p()-1) op vec
scan op vec =  
let rec scan' fst lst op vec =
if fst>=lst then vec else let 

mid=(fst+lst)/2 in
let vec'= mix mid 

(super (fun()->scan' fst mid op 
vec)

(fun()->scan'(mid+1) lst op 
vec))in
let com = ...(* send wm to 

processes m+1…p+1  *) let op’ = 
...(* applies op to wm and wi, m<i<p 
*) in parfun2 op’ com vec’
in scan' 0 (bsp_p()-1) op vec scan 
op vec =  
let rec scan' fst lst op vec =
if fst>=lst then vec else let 

mid=(fst+lst)/2 in
let vec'= mix mid 

(super (fun()->scan' fst mid

Prog scan op vec =  
let rec scan' fst lst op vec =
if fst>=lst then vec else let 

mid=(fst+lst)/2 in
let vec'= mix mid 

(super (fun()->scan' fst mid op 
vec)

(fun()->scan'(mid+1) lst op 
vec))in
let com = ...(* send wm to 

processes m+1…p+1  *) let op’ = 
...(* applies op to wm and wi, m<i<p 
*) in parfun2 op’ com vec’
in scan' 0 (bsp_p()-1) op vec
scan op vec =  
let rec scan' fst lst op vec =
if fst>=lst then vec else let 

mid=(fst+lst)/2 in
let vec'= mix mid 

(super (fun()->scan' fst mid op 
vec)

(fun()->scan'(mid+1) lst op 
vec))in
let com = ...(* send wm to 

processes m+1…p+1  *) let op’ = 
...(* applies op to wm and wi, m<i<p 
*) in parfun2 op’ com vec’
in scan' 0 (bsp_p()-1) op vec scan 
op vec =  
let rec scan' fst lst op vec =
if fst>=lst then vec else let 

mid=(fst+lst)/2 in
let vec'= mix mid 

(super (fun()->scan' fst mid

Prog

Execution of BSML programs
Two modes : sequential and parallel ones

SPMD style :

Sequential

scan op vec =  
let rec scan' fst lst op vec =
if fst>=lst then vec else let 

mid=(fst+lst)/2 in
let vec'= mix mid 

(super (fun()->scan' fst mid op 
vec)

(fun()->scan'(mid+1) lst op 
vec))in
let com = ...(* send wm to processes 

m+1…p+1  *) let op’ = ...(* applies op 
to wm and wi, m<i<p *) in parfun2 op’
com vec’
in scan' 0 (bsp_p()-1) op vec
scan op vec =  
let rec scan' fst lst op vec =
if fst>=lst then vec else let 

mid=(fst+lst)/2 in
let vec'= mix mid 

(super (fun()->scan' fst mid op 
vec)

(fun()->scan'(mid+1) lst op 
vec))in
let com = ...(* send wm to processes 

m+1…p+1  *) let op’ = ...(* applies op 
to wm and wi, m<i<p *) in parfun2 op’
com vec’
in scan' 0 (bsp_p()-1) op vec scan op 
vec =  
let rec scan' fst lst op vec =
if fst>=lst then vec else let 

mid=(fst+lst)/2 in
let vec'= mix mid 

(super (fun()->scan' fst mid

Prog

Parallel
vector

Parts of the
parallel vector

Replicate=duplicate

code

Replicate=duplicate

code

Replicate=duplicate

code
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put : (int→α) par→(int→α) par

NoneNoneSome v4Some v1

NoneNoneSome v3None

NoneSome v5NoneNone

NoneNoneSome v2None

3210

NoneNoneNoneNone

NoneNoneSome v5None

Some v4Some v3NoneSome v2

Some v1NoneNoneNone

3210

put

proj : α par→(int→α)

vp-1…v1v0
proj

f
such that (f i)=vi

Primitives synchrones
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Projection

vp-1…v1v0
proj

f such that (f i)=vi

v1v0 v2proj

f f f

Sequential :

Distributed evaluation :
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Usefull functions

Patterns of communication : 
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Multi-programming

Several programs on the same machine

Primitive of parallel composition: Superposition

Divide-and-conquer BSP algorithms

Parallel composition
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super : (unit → α) → (unit → β) → α × β

super E1 E2 � (E1 (), E2())

Fusion of communications/synchronisations 
using super-threads

Keep the BSP model

Pure functional semantics

Parallel Superposition
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Communications

Synchronization

Communications

Synchronization

Communications

Synchronization

Communications

Synchronization

Communications

Synchronization

 E1     E2      super E1 E2

                               

0 1 2

0 . . .

1 . . .

2 . . .

                               

0 1 2

0 . . .

1 . . .

2 . . .

0 1 2

0 . . .
1 . . .

2 . . .
  

Parallel Superposition
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Example, prefixes calculus
scan : α→(α→α→α) → α par → α par

scan e (+) <v0, …, vp-1>

Code in BSML :

= <e, v0+v1, …, v0+v1+…+ vp-1>
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Parallel prefixes
If we suppose associative operator (+) 

� a+(b+c)=(a+b)+c or better

� a+(b+(c+d))=(a+b) + (c+d)

Example : 

On a processor

On another processor
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Parallel Prefixes
Classical log(p) super-steps method :

0 1 2 3

Cost = log(p) × ( Time(op)+Size(d)×g+L)
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Parallel Prefixes
BSML code of this method :
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Parallel Prefixes
Divide-and-conquer method :

0 1 2 3
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Parallel Prefixes
BSML code of this method :
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A cost based methology
BSML is a safe high-order parallel language

BSP model allows cost analysis of programs

Methodology :

1) Program your sequential algorithm in ML

2) Program one or more parallel algorithms in ML

3) Choose the best follow your BSP parameters ; depending of

1. Number of processor

2. Architecture of your network, nodes, etc.

3. Library of communication (MPI, TCP/IP in O’CAML, PUB, etc.)

We need (easy to write using different h-relations) to bench our 
BSP parameters in BSML
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Our parallel machine

Cluster of PCs

� Pentium IV 2.8 Ghz

� 512 Mb RAM

A front-end Pentium IV 2.8 Ghz, 512 Mb RAM

Gigabit Ethernet cards and switch, 

Ubuntu 7.04 as OS 
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Our BSP Parameters ‘g’
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Our BSP Parameters ‘L’
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How to read bench
There are many manners to publish benchs :

� Tables

� Graphics

The goal is to say « it is a good parallel method, see my

benchs » but it is often easy to arrange the presentation of

the graphics to hide the problems

Using graphics (from the simple to hide to the hardest) :

1) Increase size of data and see for some number of processors

2) Increase number of processors to a typical size of data

3) Acceleration, i.e, Time(seq)/Time(par)

4) Efficienty , i.e, Acceleration/Number of processors

5) Increase number of processors and size of the data
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Increase number of processors
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Acceleration
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Efficienty
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Increase data and processors
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More complicated
examples
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N-body problem
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Presentation

We have a set of body

� coordinate in 2D or 3D

� point masse 

The classic N-body problem is to calculate the gravitational

energy of N point masses that is :

Quadratique complexity…

In practice, N is very big and sometime, it is impossible to 

keep the set in the main memory
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Parallel methods

Each processor has a sub-part of the original set 

Parallel method one each processsor :

1) compute local interactions

2) compute interactions with other point masses

3) parallel prefixes of the local interactions

For 2) simple parallel methods : 

� using a total exchange of the sub-sets

� using a systolic loop
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Systolic loop
0 1 2 3
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Systolic loop in BSML

Cost of the systolic method :
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Benchs and BSP predictions
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Benchs and BSP predictions
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Benchs and BSP predictions
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Sieve of Eratosthenes
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Presentation
Classic : find the prime number by 

enumeration

Pure functional implementation

using list

Complexity : n×log(n)/log(log(n))

We used :

� elim:int list�int�int list which deletes

from a list all the integers multiple of

the given parameter

� final elim:int list�int list�int list

iterates elim

� seq_generate:int�int�int list which

returns the list of integers between 2 

bounds

� select:int�int list�int list which gives

the first prime numbers of a list.
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Parallel methods

Simple Parallel methods : 

� using a kind of scan

� using a direct sieve

� using a recursive one

Different partitions of data

� per block (for scan) :

� cyclic distribution :

11,12,13,14,15 16,17,18,19,20 21,22,23,24,25

11,14,17,20,23 12,15,18,21,24 13,16,19,22,25
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Scan version

Method using a scan : 

� Each processor computes a local sieve (the processor 0 

contains thus the first prime numbers)

� then our scan is applied and we eliminate on processor i 

the integers that are multiple of integers of processors

i−1, i−2, etc.

Cost : as a scan (logarithmic)
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Direct version
Method : 

� each processor computes a local sieve

� then integers that are less to       are globally exchanged and a new 

sieve is applied to this list of integers (thus giving prime numbers)

� each processor eliminates, in its own list, integers that are 

multiples of this first primes

BSML Code :
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Inductive version
Recursive method by induction over n : 

�We suppose that the inductive step gives the th first
primes

� we perform a total exchange on them to eliminates the
non-primes.

� End of this induction comes from the BSP cost: we end
when n is small enough so that the sequential methods is
faster than the parallel one

Cost : 
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Induction version in BSML
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Benchs and BSP predictions
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Benchs and BSP predictions
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Benchs and BSP predictions
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Benchs and BSP predictions
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Parallel sample sorting
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Presentation

Each processor has listed set of data (array, list, etc.)

The goal is that :

� data on each processor are ordored.

� data on processor i are smaller than data on processor
i+1

� good balancing

Parallel sorting is not very efficient due to too many
communications

But usefull and more efficient than gather all the
data in one processor and then sort them



Tiskin’s Sampling Sort

1,11,16,7,14,2,20

0

18,9,13,21,6,12,4 15,5,19,3,17,8,10

1 2

Local sort

1,2,7,11,14,16,20 4,6,9,12,13,18,21 3,5,8,10,15,17,19

Select first samples (p+1 elements with at last first and last ones)

1,2,7,11,14,16,20 4,6,9,12,13,18,21 3,5,8,10,15,17,19

Total exchange
of first sample

1,7,14,20,4,9,13,21,3,8,15,19 1,7,14,20,4,9,13,21,3,8,15,19 1,7,14,etc.

Local sort of samples (each processor)

1,3,4,7,8,9,13,14,15,19,20,21 1,3,4,7,8,9,13,14,15,19,20,21 1,3,4,7,etc.



Tiskin’s Sampling Sort
Select second samples (p+1 elements with at last first and last ones)

1,3,4,7,8,9,13,14,15,19,20,21 1,3,4,7,8,9,13,14,15,19,20,21 1,3,4,7,etc.

Interval for 
processor 0

Interval for 
processor 1

Interval for 
processor 2

1,2,7,11,14,16,20 4,6,9,12,13,18,21 3,5,8,10,15,17,19

1,2,7
4,6
3,5

11,14
9,12,13

8,10

16,20
18,21

15,17,19

Fusion of receveid and sorted elements

1,2,3,4,5,6,7 8,9,10,11,12,13,14 15,16,17,18,19,20,21
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Parallel Sorting in BSML
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Benchs and BSP predictions
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Benchs and BSP predictions
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Matrix multiplication
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Naive parallel algorithm
We have two matrices A and B of size n×n

We supose

Each matrice is distributed by blocs of size

That is, element A(i,j) is on processor

Algorithm :

Each processor reads
twice one bloc from
another processor
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Two gets

Read data from another processor :

Read twice = just a superposition of 2 get_from



68/102

Mult in BSML
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Benchs and BSP predictions
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Benchs and BSP predictions
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Benchs and BSP predictions
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Benchs and BSP predictions
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Data-Parallel Skeletons
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Algorithm Skeletons
Skeletons encapsulate basic parallel programming
patterns in a well understood and structured
approach

Thus, skeletons are a set of functions which have 2 
semantics : sequential and parallel ones.

In general, skeletons work one list of data : a stream
in the parallel semantics

Typical examples : pipeline, farm, etc.

Data-parallel skeletons are design for work on data 
and not one the stream of data

Data-parallel skeletons has been design for lists, 
trees, etc.
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Our Skeletons
Work on lists : each processor has a sub-list

Map : application of a function on list of data :

Zip : combines elements of two lists of equal length

with a binary operation :

Reduce and scan

Rpl : creates a new list containing n times element x
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Distributable Homomorphism

Dh : know as butterfly skeleton and used to express 

a special class of divide-and-conquer algorithms

Récursive définition :

where :

and
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Distributable Homomorphism

The butterfly (if x and y lists of data) :

Which is also a parallel point of view…
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Example dh

dh + × [1;2;3;4;5;6;7;8]

[1;2;3;4;5;6;7;8]

[1+2;1*2]
= [3;2]

[3+4;3*4]
= [7;12]

[3+7;2+12;3*7;2*12]
= [10;14;21;24]

[10+26;14+86;21+165;24+1680; 10*26;14*86;21*165;24*1680]
= [36;100;186;1704;260;1204;3465;40320]

[5+6;5*6]
= [11;30]

[7+8;7*8]
= [15;56]

[11+15;30+56;11*15;30*56]

= [26;86;165;1680]

[1;2;3;4] [5;6;7;8]

[1;2] [3;4] [5;6] [7;8]
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Parallel Implementation

Currently, naive implementation : suppose 2^l 

processors (even, you need to manage bording data)

Recursive implementation using superposition

BSP Cost = logarithmic number of super-step with

at most 2^(l-p) data communicated

Application : Fast Fourier Transformation (FFT) and

Tridiagonal System Solver (TDS)
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Code of Dh
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Fast Fourier 
Transformation
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Presentation
Usefull in many numeric applications 

Définition (n=2^l) : 
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Skeleton implementation
Recursive computation : 

where and

Operator : 

Skeleton code : 

where :
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Benchs and BSP predictions
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Benchs and BSP predictions
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Benchs and BSP predictions
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Benchs and BSP predictions
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Benchs and BSP predictions
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Benchs and BSP predictions
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Tridiagonal System Solver
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Presentation

Usefull in many applications 

A×x = b where A is sparce matrix representing

coefficients, x a vector of unknowns and b a right-

hand-side vector.

The only values of A unequal to 0 are on the main 

diagonal, as well as directly above and below it

Can be implemented using dh as FFT but just other

operators…
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Benchs and BSP predictions
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Benchs and BSP predictions
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Benchs and BSP predictions



95/102

Benchs and BSP predictions



96/102

Benchs and BSP predictions
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Benchs and BSP predictions
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Conclusion 
and future works
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Conclusion

BSML=BSP+ML

� safe high-level parallel language 

� Easy to write parallel programs

� allow a cost based methodology

Some typical example, data-parallel skeletons and benchs

Many work on operational semantics to ease properties
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What is « off »
As a library for O’Caml, BSML has many lacks of safety :

� nested of parallel vector is allow

� Problem of determinism with some side effects

� some functions of O’Caml standard library can break the model of
execution

� …

Need of a full language :

� new type system (ongoing work)

� Implementation using continuation (transformation of source’s 
code with the help of a type checker) for the superposition 
(ongoing work)

� create our own standard library to delete « dangerous functions »
(easy but boring work)
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Future works
Implementation of parallel skeletons (management of 
tasks) using the superposition ?

Implementation of bigger algorithms for better 
benchmarks of BSML

� BSP model-checking of high-level Petri-nets (M-nets). The main 
difficult : find a non-trivial algorithm as the community of concurrent 
programming does. Possible but need more theoretical optimisations…

� Libraries for matrices (by Sovanna Tan) and graphs (ongoing work)

� More symbolic computations...(Knuth-Bendix, on going work)

PROPAC (“PROgrammation PAralllèle Certifiée”)
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Thanks for

your attention


