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1 Introduction

Particle filtering is a widely used method to solve vision tracking problems. How-
ever, to be able to run in real-time on standard architecture, the state vector
used in the particle filter must remain small [1]. We propose a parallel imple-
mentation of a 3D tracking algorithm operating on a stereo video stream and
running in real-time on a cluster architecture. We demonstrate the efficiency of
this implementation with a pedestrian tracking application.

2 Principle of the Method

2.1 Particle Filter

Particle filtering [2] is a sequential importance sampling algorithm for estimating
properties of hidden variables given observations in a hidden Markov model.
Standard particle filter assumes that posterior P (Xt|Zt) can be approximated
by a set of samples (particles). Moreover it also assumes that the observation
likelihood P (Zt|Xt) can be easily evaluated. A particle filter approximates the
posterior using a weighted particle set {(Xn

t , πn
t ) : n = 1, .., N}.

2.2 State Space and Dynamics

We want to track an object in a 3D space defined in a reference frame Rw. Left
and right camera projection matrices between Rw and the image plane are given
by Cl and Cr. At time t, the state vector is defined by Xt

.= (Pt,Vt)t, where Pt is
the 3D position of the center of a bounding box associated with the object to be
tracked and Vt is the associated velocity. For a state Xt, the corresponding 2D
points pl

t and pr
t of the center of an image bounding box for left and right camera

are given by :
(
(p(l,r)

t )t1
)t
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t )t1
)t

. Since height and width of the 3D
bounding box are assumed to be constant, the corresponding height and width of
each image bounding box is computed using projections matrices. The dynamic
model of the system (p(Xt|Xt−1)) is given by Xt+1 = AXt +Bvt , vt ∼ N (0, Σ),
where matrix A can be learnt or can be set using a constant position or constant
velocity model, and matrices B and Σ can be estimated from a set of sequences for
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which the position of the object is known. To initialize the system, we constrain
the initial 3D position of the tracked object to a 3D bounding box and discretize
this space at a fine resolution1. Particle filter is then initialized with the N
particles associated to the N best weights.

2.3 Observation Likelihood

This section describes the tracker likelihood function P (Zt|Xt) which is defined
as the likelihood that the state of the object is Xt according to an observed couple
of images Zt. We propose to use the output of an Adaboost based Classifier
[3] with multiscale Haar wavelets descriptors [4]. A compact description of the
object is selected from the Adaboost offline learning step [5]. This classifier
st(Xt) = (sl

t(Xt), sr
t (Xt))t returns an uncalibrated vector 2 of values for the

input 3D state Xt. We propose to build the likelihood function used to evaluate
weights of the particle filter from st(Xt). Since the likelihood function used by
the particle filter is a probability, P (class|input) must be produced from the
output of the classifier. A sigmoid is used to build calibrated probabilities from
st(Xt) [6] :

P (Zt|Xt)
.=

1
1 + exp(A.sr

t (Xt) + B)
.

1
1 + exp(A.sl

t(Xt) + B)
(1)

3 Parallel Implementation

3.1 Architecture Synopsis

Our cluster architecture [7] includes fourteen compute nodes. Each node is a
dual-processor Apple G5 XServe Cluster Node running at 2 GHz with 1Gb of
memory. Nodes are interconnected with Gigabit Ethernet and provided with
digital video streams, coming from a pair of digital cameras, by a Firewire
IEEE1394a bus. This approach allows simultaneous and synchronized broad-
casting of input images to all nodes, thus removing the classical bottleneck which
occurs when images are acquired on a dedicated node and then explicitly broad-
casted to all other nodes. Programming relies on a hybrid three-level parallel
programming model, involving a fine-grain SIMD-type parallelism within each
processor [8], a coarse grain shared-memory multi-processing model between the
two processors of a node (using pThread) and a coarse grain message passing
based multi-processing between two processors of distinct nodes (using MPI).

3.2 Parallelisation Strategy

We use a pure data-parallel strategy, in which the particles distribution {(Xn
t , πn

t ) :
n = 1, .., N} is scattered among the compute nodes. Each node therefore per-
forms the prediction, measure and weighting steps on a subset of the initial
1 typically around 1cm
2 two values corresponding to classifier score associated to left and right camera
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particule distribution. On each node the left and right projections and measures
are themselves computed in parallel at the SMP level, each by one processor.
Moreover, on each processor, computations are vectorized whenever possible at
the SIMD level. A final merging step is used to update Xt.

4 Results

Table 1 shows results obtained on 640×480×8bits video streams for several size
of particles distribution. Framerate is given for a single processor machine and
compared to a 2,8 and 14 nodes topology.

200 part. 1000 part. 2000 part. 6000 part.

Sequential ref. 26.94 FPS 6.09 FPS 2.44 FPS 0.91 FPS

1 Node 48.5 FPS 10.9 FPS 4.6 FPS 1.6 FPS

2 Nodes 66.01 FPS 14.37 FPS 6.42 FPS 2.22 FPS

8 Nodes 53.19 FPS 21.86 FPS 9.71 FPS 2.99 FPS

14 Nodes 35.33 FPS 23.18 FPS 11.29 FPS 3.15 FPS

These are preliminary results and further experiments will assess the relation
between the number of nodes, the size of the distribution and the execution
time but we may already notice that near real-time performances are achievable
with a low number of nodes : a 17 frames per second rate is achieved by using
approximatively 1500 particles scattered on 14 nodes.
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