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Abstract. This paper describes the eve (Expressive Velocity Engine) library, an object oriented
C++ library designed to ease the process of writting efficient numerical applications using AltiVec,
the SIMD extension designed by Apple, Motorola and IBM. AltiVec-powered applications typically
show off a relative speed up of 4 to 16 but need a complex and awkward programmation style.
By using various template metaprogramming techniques, E.V.E. provides an easy to use, STL-like,
interface that allows developer to quickly write efficient and easy to read code. Typical applications
written with E.V.E. can benefit from a large fraction of theorical maximum speed up while being
written as simple C++ arithmetic code.

1. Introduction.

1.1. The AltiVec Extension. Recently, SIMD enhanced instructions have been
proposed as a solution for delivering higher microprocessor hardware utilisation. SIMD
(Single Instruction, Multiple Data) extensions started appearing in 1994 in HP’s
MAX2 and Sun’s VS extensions and can now be found in most of microprocessors,
including Intel’s Pentiums (MMX/SSE/SSE2) and Motorola/IBM’s PowerPCs (Al-
tivec). They have been proved particularly useful for accelerating applications based
upon data-intensive, regular computations, such as signal or image processing.

AltiVec [4] is an extension designed to enhance PowerPC1 processor performance
on applications handling large amounts of data. The AltiVec architecture is based on a
SIMD processing unit integrated with the PowerPC architecture. It introduces a new
set of 128 bit wide registers distinct from the existing general purpose or floating-point
registers. These registers are accessible through 160 new “vector” instructions that
can be freely mixed with other instructions (there are no restriction on how vector
instructions can be intermixed with branch, integer or floating-point instructions with
no context switching nor overhead for doing so). Altivec handles data as 128 bit
vectors that can contain sixteen 8 bit integers, eight 16 bit integers, four 32 bit
integers or four 32 bit floating points values. For example, any vector operation
performed on a vector char is in fact performed on sixteen char simultaneously and
is theoretically running sixteen times faster as the scalar equivalent operation. AltiVec
vector functions cover a large spectrum, extending from simple arithmetic functions
(additions, subtractions) to boolean evaluation or lookup table solving.

Altivec is natively programmed by means of a C API [2]. Programming at this
level can offer significant speedups (from 4 to 12 for typical signal processing algo-
rithms) but is a rather tedious and error-prone task, because this C API is really
“assembly in disguise”. The application-level vectors (arrays, in variable number and
with variable sizes) must be explicitly mapped onto the Altivec vectors (fixed number,
fixed size) and the programmer must deal with several low-level details such as vector
padding and alignment. To correctly turn a scalar function into a vector-accelerated
one, a large part of code has to be rewritten.
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1PPC 74xx (G4) and PPC 970 (G5).
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Consider for example a simple 3x1 smoothing filter (Fig. 1.1):

void C_filter( char* d, short* r)
{
for(int i=1; i<SIZE-1; i++ )
r[i] = (d[i-1]+2*d[i]+d[i+1])/4;

}

Figure 1.1. A simple 3x1 gaussian filter written in standard C.

This code can be rewritten (”vectorized”) using Altivec vector functions. How-
ever, this rewriting is not trivial. We first have to look at the original algorithm
in a parrallel way. The C filter function is based on an iterative algorithm that
runs trough each item of the input data, applies the corresponding operations and
writes the result into the output array. By contrast, AltiVec functions operate on
a bunch of data simulteaneously. We have to recraft the algorithm so that it works
on vectors instead of single scalar values. This is done by loading data into AltiVec
vectors, shifting these vectors left and right, and performing vector multiplication and
addition. The resulting code - which is indeed significantly longer than the original
one - is given in Appendix A. We have benchmarked both the scalar and vectorized
implementation on a 2 GHz PowerPC G5 and obtained the results shown in Table
1.1. Both code were compiled using gcc 3.3 using -O3. On this example, a ten fold
acceleration can be observed with the AltiVec extension. However, the time spent to
rewrite the algorithm in a ”vectorized” way and the somehow awkward Altivec API
can hinder the developement of larger scale applications.

SIZE value C filter AV filter Speed Up
16 K 0.209 ms 0.020 ms 10.5
64 K 0.854 ms 0.075 ms 11.4

256 K 3.737 ms 0.322 ms 11.6
1024 K 16.253 ms 1.440 ms 11.3

Table 1.1
Execution time and relative speed-up for 3x1 filters.

2. AltiVec in high level API. As evidenced in the previous section, writting
AltiVec-based applications can be a tedious task. A possible approach to circumvent
this problem is to encapsulate Altivec vectors and the associated operations within
a C++ class. Instanciating this class and using classic infix notations will produce
the AltiVec code. We actually built such a class (AVector) and used it to encode the
filtering example introduced in section 1.1. The resulting code is shown below.

AVector<char> img(SIZE);
AVector<short> res(SIZE);
res = (img.sr(1)+2*img+img.sl(1))/4;

In this formulation, explicit iterations have been replaced by application of over-
loaded operators on AVector objects. The sr and sl methods implements the shifting
operations. The performance of this code, however, is very disapointing. With the
array sizes shown in Table 1.1, the measured speed-ups never exceed 1. The reasons
for such behavior are given below.
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Consider a simple code fragment using overloaded operators as shown below:

AVector<char> r(SIZE),x(SIZE),y(SIZE),z(SIZE);
r = x + y + z;

When a C++ compiler analyzes this code, it reduces the successive operator calls
iteratively, resolving first y+z then x+(y+z) where y+z is in fact stored in a temporary
object. Moreover, to actually compute x+y+z, the involved operations are carried out
within a loop that applies the vec add function to every single vector element of the
array. An equivalent code, after operator reduction and loop expansion is:

AVector<char> r(SIZE),x(SIZE),y(SIZE),z(SIZE);
AVector<char> tmp1(SIZE),tmp2(SIZE);
for(i=0;i<SIZE/16);i++) tmp1[i] = vec_add(y[i],z[i]);
for(i=0;i<SIZE/16);i++) tmp2[i] = vec_add(x[i],tmp1[i]);
for(i=0;i<SIZE/16);i++) r[i] = tmp2[i];

Figure 2.1. Expanded code for overloaded operator compilation

This code can be compared to an ”optimal”, hand-written Altivec code like the
one shown on figure 2.2. The code generated by the ”naive” AltiVec class clearly
exhibits unnecessary loops and copies. When expressions get more complex, the
situation gets worse. The time spent in loop index calculation and temporary object
copies quickly overcomes the benefits of the SIMD parallelisation, resulting in poor
performances. Almost all standard C++ compiler do the same thing. Such expression
can’t be optimized due to the dyadic reduction scheme used here. If some brute force
optimisations can reduce theis overload, the compiler quickly lose all his ways of
optimisation when the expression grow larger and larger.

AVector<char> r(SIZE),x(SIZE),y(SIZE),z(SIZE);
for(i=0;i<SIZE/16);i++) r[i] = vec_add(x[i],vec_add(y[i],z[i]));

Figure 2.2. Optimal, hand written AltiVec code for x+y+z computation

This can be explained by the fact that all C++ compilers use a dyadic reduction
scheme to evaluate operators composition. Some compilers2 can output a slightly
better code when certain optimisations are turned on. However, large expressions or
complex functions call can’t be totally optimised. Another factor is the impact of the
order of AltiVec instructions. When writing AltiVec code, one have to take in account
the fact that cache lines have to be filled up to their maximum. The typical way for
doing so is to pack the loading instructions together, then the operations and finally
the storing instructions. When loading, computing and storing instructions are mixed
in an unordered way, AltiVec performances generally drop.

The aforementionned problem has already been identified – in [7] for example –
and is the major inconvenient of the C++ language when it is used for high-level
scientific computations. In the domain of C++ scientific computing, it has led to
the development of the so-called Active Libraries [13, 12, 8, 9], which both provide
domain-specific abstractions and dedicated code optimization mechanisms. This pa-
per describes how this approach can be applied to the specific problem of generating
efficient Altivec code from a high-level C++ API.

2Like Code Warrior or gcc.
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It is organized as follows. Sect. 3 explains why generating efficient code for vec-
tor expressions is not trivial and introduces the concept of template-based meta-
programming. Sect. 4 explains how this concept can used to generate optimized
Altivec code. Sect. 5 rapidly presents the API of the library we built upon these
principles. Performance results are presented in Sect. 6. Sect. 7 is a brief survey of
related work and Sect. 8 concludes.

3. Template based Meta Programming. The evaluation of any arithmetic
expression can be viewed as a two stages process:

• A first step, performed at compile time, where the structure of the expression
is analyzed to produce a chain of function calls.

• A second step, performed at run time, where the actual operands are provided
to the sequence of function calls and the afferent computations are carried
out.

When the expression structure matches certain pattern or when certain operands are
known at compile time, it is often possible to perform a given set of computations at
compile time in order to produce an optimized chain of function calls. For example,
if we consider the following code:

for( int i=0;i<SIZE;i++)
{
table[i] = cos(2*i);

}

If the size of the table is known at compile time, the code could be optimized by
removing the loop entirely and writing a linear sequence of operations:

table[0] = cos(0);
table[1] = cos(2);

// later ...

table[98] = cos(196);
table[99] = cos(198);

Furthermore, the value cos(0), ..., cos(198) can be computed once and for all
at compile-time, so that the runtime cost of such initialisation boils down to 100 store
operations.

Technically speaking, such a “lifting” of computations from runtime to compile-
time can be implemented using a mechanism known as template-based metaprogram-
ming. The sequel of this section gives a brief account of this technique and of its
central concept, expressions templates. More details can be found, for example, in
Veldhuizen’s papers [5, 6, 7]. We focus here on how this technique can be used to
remove unnecessary loops and object copies from the code produced for the evaluation
of vector based expressions.

The basic idea behing expressions templates is to encode the abstract syntax
tree (AST) of an expression as a C++ recursive template class and use overloaded
operators to build this tree. Combined with an array-like container class, it provides
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a way to build a static representation of an array-based expression. For example, if
we consider an float Array class and an addition functor add, the expression D=A+B+C
could be represented by the following C++ type:

Xpr<Array,add,Xpr<Array,add,Array>>

Where Xpr is defined by the following type:

template<class LEFT,class OP,class RIGHT>
class Xpr
{

public:
Xpr( float* lhs, float* rhs ) : mLHS(lhs), mRHS(rhs) {}

private:
LEFT mLHS;
RIGHT mRHS;

};

The Array class is defined as below :

class Array
{

public:
Array( size_t s ) { mData = new float[s]; mSize = s;}
~Array() {if(mData) delete[] mData; }
float* begin() { return mData; }

private:
float *mData;
size_t mSize;

};

This type can be automatically built from the concrete syntax of the expression
using an overloaded version of the ’+’ operator that takes an Array and an Xpr object
and returns a new Xpr object:

Xpr< Array,add,Array> operator+(Array a, Array b)
{
return Xpr<T,add,Array>(a.begin(),b.begin());

}

Using this kind of operators, we can simulate the parsing of the above code
(”A+B+C”) and see how the classes get combined to build the expression tree:

Array A,B,C,D;
D = A+B+C;
D = Xpr<Array,add,Array> + C
D = Xpr<Xpr<Array,add,Array>,add,Array>

Following the classic C++ operator resolution, the A+B+C expression is parsed
as (A+B)+C. The A+B part gets encoded into a first template type. Then, the com-
piler reduce the X+C part, producing the final type, encoding the whole expression.
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Handling the assignation of A+B+C to D can then be done using an overloaded
version of the assignment operator:

template<class XPR> Array& Array::operator=(const XPR& xpr)
{
for(int i=0;i<mSize;i++) mData[i] = xpr[i];
return *this;

}

The Array and Xpr classes have to provide a operator[] method to be able to
evaluate xpr[i] :

int Array::operator[](size_t index)
{

return mData[index];
}

template<class L,class OP,class R>
int Xpr<L,OP,R>::operator[](size_t index)
{
return OP::eval(mLHS[i],mRHS[i]);

}

We still have to define the add class code. Simply enough, add is a functor that
exposes a static method called eval performing the actual computation. Such functors
can be freely extended to include any other arithmetic or mathematical functions.

class add
{
static int eval(int x,int y) { return x+y; }

}

With these methods, each reference to xpr[i] can be evaluated. For the above
example, this gives:

data[i] = xpr[i];
data[i] = add::eval(Xpr<Array,add,Array>,C[i]);
data[i] = add::eval(add::apply(A[i],B[i]),C[i]);
data[i] = add::eval(A[i]+B[i],C[i]);
data[i] = A[i]+B[i]+C[i];

4. Application to efficient AltiVec code generation. At this stage, we
can add AltiVec support to this meta-programming engine. If we replace the scalar
computations and the indexed accesses by vector operations and loads, we can write
an AltiVec template code generator. These changes affect all the classes and functions
shown in the previous sections.
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The Array class now provides a load method that return a vector instead of a
scalar:

int Array::load(size_t index) { return vec_ld(data_,index*16); }

The add functor now use vec_add functions instead of the standard + operator:

class add
{
static vector int eval(vector int x,vector int y)
{ return vec_add(x,y); }

}

Finally, we use vec_st to store results:

template<class XPR> Array& Array::operator=(const XPR& xpr)
{

for(size_t i=0;i<mSize/4;i++) vec_st(xpr.load(i),0,mData);
return *this;

}

The final result of this code generation can be observed on figure 4.1.b for the
A+B+C example. Figure 4.1.a gives the code produced by gcc when using the
std::valarray class.

(a) std::valarray code (b) optimized code

L253: L117:
lwz r9,0(r3) slwi r2,r9,4
slwi r2,r12,2 addi r9,r9,1
lwz r4,4(r3) lvx v1,r5,r2
addi r12,r12,1 lvx v0,r4,r2
lwz r11,4(r9) lvx v13,r6,r2
lwz r10,0(r9) vaddfp v0,v0,v1
lwz r7,4(r11) vaddfp v1,v0,v13
lwz r6,4(r10) stvx v1,r2,r8
lfsx f0,r7,r2 bdnz L117
lfsx f1,r6,r2
lwz r0,4(r4)
fadds f2,f1,f0
lfsx f3,r2,r0
fadds f1,f2,f3
stfs f1,0(r5)
addi r5,r5,4
bdnz L253

Figure 4.1. Assembly code for a simple vector operation

For this simple task, one can easily see that the minimum number of loads oper-
ation is three and the minimum number of store operations is one. For the standard
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code, we have seven extraneous lwz instructions to load pointers, three lsfx to load
the actual data and one stfs to store the result. For the optimized code, we have re-
placed the scalar lsfx with the AltiVec equivalent lvx, the scalar fadds with vaddfp
and stfsx with the vector stvx. Only three load instructions and one store instruc-
tions, reducing opcode count from 17 to 9.

One can ask for a code proof of this expansion, but the best we can make is
having the compiler outputs a trace of the template tree recursion. But a trace is
not a proof. The fact that C++ code proof is highly problematic due to a lack of
C++ strict semantic and the differences between compiler implementation makes any
further approach on this part very fuzzy.

5. The EVE library. Using the code generation technique described in the
previous section, we have produced a high-level array manipulation library aimed at
scientific computing and taking advantage of the SIMD acceleration offered by the
Altivec extension on PowerPC processors. This library, called eve (for Expressive
Velocity Engine) basically provides two classes, vector and matrix – for 1D and 2D
arrays –, a way to approximate its speedup at compile time, and a rich set of operators
and functions to manipulate them. This set can be roughly divided in four families:

1. Arithmetic and boolean operators, which are the direct vector extension
of their C++ counterparts. For example:

vector<char> a(64),b(64),c(64),d(64);
d = (a+b)/c;

2. Boolean predicates. These functions can be used to manipulate boolean
vectors and use them as selection masks. For example:

vector <char> a(64),b(64),c(64);

// c[i] = a[i] if a[i]<b[i], b[i] otherwise
c = where(a < b, a, b);

3. Mathematical and STL functions. These functions work like their STL
or math.h counterparts. The only difference is that they take an array (or
matrix) as a whole argument instead of a couple of iterators. Apart from
this difference, eve functions and operators are very similar to their STL
counterparts (the interface to the eve array class is actually very similar to
the one offered by the STL valarray class. This allows algorithms developed
with the STL to be ported (and accelerated) with a minimum effort on a
PowerPC platform with eve. For example:

vector <float> a(64),b(64);
b = tan(a);
float r = inner_product(a, b);
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4. Signal processing functions. These functions allow the direct expression
(without explicit decomposition into sums and products) of 1D and 2D FIR
filters. For example:

matrix<float> image(320,240),res(320,240);
filter<3,horizontal> gauss_x = 0.25, 0.5, 0.25;
res = gauss_x(image);

E.V.E can easily support any algorithm that can be expressed as a serie of global
operations on vectors.

6. Performance. Two kinds of performance tests have been performed: basic
tests, involving only one vector operation and more complex tests, in which several
vector operations are composed into more complex expressions. All tests involved vec-
tors of different types (8 bit integers, 16 bit integers, 32 bit integers and 32 bit floats)
but of the same total length (16 Kbytes) in order to reduce the impact of cache effects
on the observed performances3. They have been conducted on a 2GHz PowerPC G5
with gcc 3.3.1 and the following compilation switches: -faltivec -O3. A selection
of performance results is given in Table 6.1. For each test, four numbers are given:
the maximum theoretical speedup4 (TM), the measured speedup for a hand-coded
version of the test using the native C Altivec API (N.C), the measured speedup with
a “naive” vector library – which does not use the expression template mechanism
described in Sect. 3 (N.V), and the measured speedup with the eve library.

Table 6.1
Selected performance results

Test Vector type TM N.C N.V EVE
1. v3=v1+v2 8 bit integer 16 15.7 8.0 15.4
2. v2=tan(v1) 32 bit float 4 3.6 2.0 3.5
3. v3=v1/v2 32 bit float 4 4.8 2.1 4.6
4. v3=v1/v2 16 bit integer 8(4) 3.0 1.0 3.0
5. v3=inner_prod(v1,v2) 8 bit integer 8 7.8 4.5 7.2
6. v3=inner_prod(v1,v2) 32 bit float 4 14.1 4.8 13.8
7. 3x1 Filter 8 bit integer 8 7.9 0.1 7.8
8. 3x1 Filter 32 bit float 4 4.12 0.1 4.08
9. v5=sqrt(tan(v1+v2)/cos(v3*v4)) 32 bit float 4 3.9 0.04 3.9

It can be observed that, for most of the tests, the speedup obtained with eve
is close to the one obtained with a hand-coded version of the algorithm using the
native C API. By contrast, the performances of the “naive” class library are very
disappointing (especially for tests 7-10). This clearly demonstrates the effectiveness
of the metaprogramming-based optimization.

Tests 1-3 correspond to basic operations, which are mapped directly to a single
AltiVec instruction. In this case, the measured speedup is very close to the theoretical

3I.e. the vector size (in elements) was 16K for 8 bit integers, 8K for 16 bit integers and 4K for
32 bits integers or floats.

4This depends on the type of the vector elements: 16 for 8 bit integers, 8 for 16 bit integers and
4 for 32 bit integers and floats.
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maximum. For test 3, it is even greater. This effect can be explained by the fact that
on G5 processors, and even for non-SIMD operations, the Altivec FPU is already faster
than the scalar FPU5. When added to the speedup offered by the SIMD parallelism,
this leads to super-linear speedups. The same effect explains the result obtained for
test 6. By contrast, test 4 exhibits a situation in which the observed performances are
significantly lower than expected. In this case, this is due to the asymmetry of the
Altivec instruction set, which does not provide the basic operations for all types of
vectors. In particular, it does not include division on 16 bit integers. This operation
must therefore be emulated using vector float division. This involves several type
casting operations and practically reduces the maximum theoretical speedup from 8
to 4.

Tests 5-9 correspond to more complex operations, involving several AltiVec in-
structions. Note that for tests 5 and 7, despite the fact that the operands are vectors
of 8 bit integers, the computations are actually carried out on vectors of 16 bit inte-
gers, in order to keep a reasonable precision. The theoretical maximum speedup is
therefore 8 instead of 16.

6.1. Realistic Case Study. In order to show that eve can be used to solve re-
alistic problems, while still delivering significant speedups, we have used it to vectorize
several complete image processing algorithms. This section describes the implementa-
tion of an algorithm performing the detection of points of interest in grey scale images
using the Harris filter [1].

Starting from an input image I(x, y), horizontal and vertical gaussian filters are
applied to remove noise and the following matrix is computed:

M(x, y) =

(
( ∂I

∂x )2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y ( ∂I

∂y )2

)

Where ( ∂I
∂x ) and ( ∂I

∂y ) are respectively the horizontal and vertical gradient of
I(x, y). M(x, y) is filtered again with a gaussian filter and the following quantity is
computed:

H(x, y) = Det(M)− k.trace(M)2, k ∈ [0.04; 0.06]

H is viewed as a measure of pixel interest. Local maxima of H are then searched
in 3x3 windows and the nth first maxima are finally selected. Figure 6.1 shows the
result of the detection algorithm on a video frame picturing an outdoor scene.

5It has more pipeline stages and a shortest cycle time.
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In this implementation, only the filtering and the pixel detection are vectorized.
Sorting an array cannot be easily vectorized with the AltiVec instruction set. It’s not
worth it anyway, since the time spent in the final sorting and selection process only
accounts for a small fraction (around 3%) of the total execution time of the algorithm.
The code for computing M coefficients and H values is shown in Fig. 6.1. It can be
split into three sections:

1. A declarative section where the needed matrix and filter objects are
instantiated. matrix objects are declared as float containers to prevent overflow
when filtering is applied on the input image and to speed up final computation by
removing the need for type casting.

2. A filtering section where the coefficients of the M matrix are computed.
We use eve filter objects, instantiated for gaussian and gradient filters. Filter support
an overloaded * operator that is semantically used as the composition operator.

3. A computing section where the final value of H(x, y) is computed using
the overloaded versions of arithmetics operators.

// Declarations
#define W 320
#define H 240
matrix<short> I(W,H),a(W,H),b(W,H);
matrix<short> c(W,H),t1(W,H),t2(W,H);
matrix<float> h(W,H);
float k = 0.05f;

filter<3,horizontal> smooth_x = 1,2,1;
filter<3,horizontal> grad_x = 1,0,1;
filter<3,vertical> smooth_y = 1,2,1;
filter<3,vertical> grad_y = -1,0,1;

// Computes matrix M :
//
// | a c |
// M = | c b |

t1 = grad_x(I);
t2 = grad_y(I);
a = (smooth_x*smooth_y)(t1*t1);
b = (smooth_x*smooth_y)(t2*t2);
c = (smooth_x*smooth_y)(t1*t2);

// Computes matrix H
H = (a*b-c*c)-k*(a+b)*(a+b);

Figure 6.1. The Harris detector, coded with eve
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The performances of this detector implementation have been compared to those
of the same algorithm written in C, both using 320*240 pixels video sequence as input.
The tests were run on a 2GHz Power PC G5 and compiled with gcc 3.3. As the two
steps of the algorithm (filtering and detection) use two different parts of the E.V.E.
API, we give the execution time for each step along with the total execution time.

Step Execution Time Speed Up
Filtering 1.4ms 5.21
Evaluation 0.45ms 4.23
Total Time 1.85ms 4.98

7. Related Work. Projects aiming at simplifying the exploitation of the SIMD
extensions of modern micro-processors can be divided into two broad categories :
compiler-based approaches and library-based approaches.

The swar (SIMD Within A register, [15]) project is an example of the first
approach. Its goal is to propose a versatile data parallel C language making full SIMD-
style programming models effective for commodity microprocessors. An experimental
compiler (scc) has been developed that extends C semantics and type system and
can target several family of microprocessors. Started in 1998, the project seems to be
in dormant state.

Another example of the compiler-based approach is given by Kyo et al. in [14].
They describe a compiler for a parallel C dialect (1dc, One Dimensional C) producing
SIMD code for Pentium processors and aimed at the succinct description of parallel
image processing algorithms. Benchmarks results show that speed-ups in the range of
2 to 7 (compared with code generated with a conventional C compiler) can be obtained
for low-level image processing tasks. But the parallelization techniques described in
the work – which are derived from the one used for programming linear processor
arrays – seems to be only applicable to simple image filtering algorithms based upon
sweeping a horizontal pixel-updating line row-wise across the image, which restricts
its applicability. Moreover, and this can be viewed as a limitation of compiler-based
approaches, retargeting another processor may be difficult, since it requires a good
understanding of the compiler internal representations.

The vast code optimizer [10] has a specific back-end for generating Altivec/Power
PC code. This compiler offers automatic vectorization and parallelization from con-
ventional C source code, automatically replacing loops with inline vector extensions.
The speedups obtained with vast are claimed to be closed to those obtained with
hand-vectorized code. VAST is run prior to any compilation. It completely parses the
code, extract far more informations than just the Abstract Syntax Tree and output
a completely vectorized code. VAST can handle any type of input code and has a
large spectrum of solution to vectorize it. At the opposite, E.V.E. is mainly focused
on mathematic or image processing optimisation. vast is a commercial product.

There have been numerous attempts to provide a library-based approach to the
exploitation of SIMD features in micro-processors. Apple veclib [3], which provides
a set of Altivec-optimized functions for signal processing, is an example. But most of
these attempts suffer from the weaknesses described in Sect. 2; namely, they cannot
handle complex vector expressions and produce inefficient code when multiple vector
operations are involved in the same algorithm. MacSTL [11] is the only work we
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are aware of that aims at eliminating these weaknesses while keeping the expressivity
and portability of a library-based approach. MacSTL is actually very similar to
eve in goals and design principles. This C++ class library provides a fast valarray
class optimized for Altivec and relies on template-based metaprogramming techniques
for code optimization. The only difference is that it only provides STL-compliant
functions and operators (it can actually be viewed as a specific implementation of the
STL for G4/G5 computers) whereas eve offers additional domain-specific functions
for signal and image processing that can’t be optimized as much as with eve.

8. Conclusion. We have shown how a classical technique – template-based
metaprogramming – can be applied to the design and implementation of an efficient
high-level vector manipulation library aimed at scientific computing on PowerPC plat-
forms. This library offers a significant improvement in terms of expressivity over the
native C API traditionnaly used for taking advantage of the SIMD capabilities of
this processor. It allows developers to obtain significant speedups without having to
deal with low level implementation details. Moreover, The eve API is largely com-
pliant with the STL standard and therefore provides a smooth transition path for
applications written with other scientific computing libraries. A prototype version
of the library can be downloaded from the following URL: http://wwwlasmea.univ-
bpclermont.fr/Personnel/Joel.Falcou/eng/eve. We are currently working on improv-
ing the performances obtained with this prototype. This involves, for instance, glob-
ally minimizing the number of vector load and store operations, using more judiciously
Altivec-specific cache manipulation instructions or taking advantage of fused opera-
tions (e.g. multiply/add). Finally, it can be noted that, although the current version
of eve has been designed for PowerPC processors with Altivec, it could easily be re-
targeted to Pentium 4 processors with MMX/SSE2 because the code generator itself
(using the expression template mechanism) can be made largely independent of the
SIMD instruction set or of any particular parallelization scheme. Porting eve onto
multiprocessors systems or MPI based clusters is not out of question and will surely
be a way to explore in the near future.
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Appendix A: Simple 3x1 gaussian filter written using Altivec C API

void AV_filter( char* img, short* res)
{
vector unsigned char zu8,t1,t2,t3,t4;
vector signed short x1h,x1l,x2h;
vector signed short x2l,x3h,x3l;
vector signed short zs16 ,rh,rl,v0,v1,shift;

// Generate constants
v0 = vec_splat_s16(2);
v1 = vec_splat_s16(4);
zu8 = vec_splat_u8(0);
zs16 = vec_splat_s16(0);
shift = vec_splat_s16(8);

for( int j = 0; j< SIZE/16 ; j++ )
{
// Load input vectors
t1 = vec_ld(j*16, img); t2 = vec_ld(j*16+16, img);

// Generate shifted vectors
t3 = vec_sld(t1,t2,1); t4 = vec_sld(t1,t2,2);

// Cast to short
x1h = vec_mergeh(zu8,t1); x1l = vec_mergel(zu8,t1);
x2h = vec_mergeh(zu8,t3); x2l = vec_mergel(zu8,t3);
x3h = vec_mergeh(zu8,t4); x3l = vec_mergel(zu8,t4);

// Actual filtering
rh = vec_mladd(x1h,v0,zs16);
rl = vec_mladd(x1l,v0,zs16);
rh = vec_mladd(x2h,v1,rh);
rl = vec_mladd(x2l,v1,rl);
rh = vec_mladd(x3h,v0,rh);
rl = vec_mladd(x3l,v0,rl);
rh = vec_sr(rh,shift);
rl = vec_sr(rl,shift);

// Pack and store result vector
t1 = vec_packsu(rh,rl);
vec_st(t1,j,out);

}
}

14


