
Formal semantics applied to the implementation of
a skeleton-based parallel programming library

Joel Falcou and Jocelyn Sérot

LASMEA, UMR6602 UBP/CNRS, Campus des Cézeaux, 63177 Aubière, France.
E-mail: {Joel.FALCOU, Jocelyn.SEROT}@lasmea.univ-bpclermont.fr

1 Introduction

In a previous paper1, we described QUAFF, a skeleton-based parallel programming li-
brary which main originality is to rely on C++ template meta-programming2, 3 techniques
to significantly reduce the overhead traditionally associated with object-oriented imple-
mentations of such libraries. The basic idea is to use the C++ template mechanism so
that skeleton-based programs are actually run at compile-time and generate a new C+MPI
code to be compiled and executed at run-time. The implementation mechanism support-
ing this compile-time approach to skeleton-based parallel programming was only sketched
mainly because the operational semantics of the skeletons were not stated in a formal way,
but “hardwired” in a set of complex meta-programs. As a result, changing this seman-
tics or adding a new skeleton was difficult. In this paper, we give a formal model for the
QUAFF skeleton system, describe how this model can efficiently be implemented using
C++ meta-programming techniques and show how this helps overcoming the aforemen-
tioned difficulties. It relies on three formally defined stages. First, the C++ compiler
generates an abstract syntax tree representing the parallel structure of the application, from
the high-level C++ skeletal program source. Then, this tree is turned into an abstract pro-
cess network by means of a set of production rules; this process network encodes, in a
platform-independent way, the communication topology and, for each node, the schedul-
ing of communications and computations. Finally the process network is translated into
C+MPI code. By contrast to the previous QUAFF implementation, the process network
now plays the role of an explicit intermediate representation. Adding a new skeleton now
only requires giving the set of production rules for expanding the corresponding tree node
into a process sub-network. The paper is organized as follows. Section 2 briefly recalls the
main features of the QUAFF programming model. Section 3 presents the formal model we
defined to turn a skeleton abstract syntax tree into a process network. Section 4 shows how
template meta-programming is used to implement this model. We conclude with experi-
mental results for this new implementation (section 5) and a brief review of related work
(section 6).

2 The QUAFF library

The programming model of QUAFF is a classical skeleton-based one. Skeletons are defined
as follows:

Σ ::= Seq f | Pipe Σ1 . . .Σn| Farm n Σ | Scm n fs Σ fm | Pardo Σ1 . . .Σn

f, fs, fm ::= sequential, application-specific user-defined C++ functions
n ::= integer ≥ 1

1

All user-defined functions take at most one argument and return at most one result. The
skeleton set is classical. Intuitively, Seq encapsulates sequential user-defined functions in
such a way that they can be used as parameters to other skeletons; Pipe and Farm are
the usual task-parallel skeletons (with computations performed in stages and under a mas-
ter/workers scheme respectively); Scm models data-parallel computations: fs decomposes
the input data into a set of (possibly) overlapping data subsets, the inner skeleton processes
each subset in parallel and the fm function merges the sub-results; Pardo models parallel,
independent computations, where n distinct tasks are run on n distinct processors. The
parallel structure of an application can then be represented by a tree with nodes corre-
sponding to skeletons and leaves to user-defined sequential functions. A distinctive feature
of QUAFF – compared to other skeleton-based parallel programming libraries4–6 – is that
this structure is completely described by means of type definitions. This, of course, is the
key point allowing optimized message-passing code to be produced at compile-time, as
will be explained in section 4. Considering a simple application like:

A = Pipe(Seq f1, Farm(4, Seq w), Seq f2)

It’s implemented via the the following code using QUAFF:

Listing 1. Sample QUAFF application

typedef task<f1, void_ , int > F1;
typedef task<w , int , double> W;
typedef task<f2, double, void_ > F2;

run(pipeline(seq(F1), farm<4>(seq(W)), seq(F2)));

Lines 1–3 register user-defined C functions as tasks used into skeleton definitions. A
QUAFF task is defined by specifying a function and a pair of input/output types. The
function itself can be either a C-style function or a C++ functor. On line 5, the skeleton
structure is defined using the pipeline and farm skeleton constructors and executed
through the run function.

With QUAFF , the same language is used for describing the parallel structure of the
application, writing application-specific sequential functions and as the target implemen-
tation language. This method has two advantages. First, programmers do not have to
learn a separate language for describing this structure (as is the case with several existing
skeleton-based parallel programming systems such as P3L5 or Skipper7). Second, it makes
insertion of existing sequential functions into skeletons easier and more efficient since no
special foreign function interface is required: they just need to conform to the generic
t result f(t arg) prototype.

3 Formal model

The implementation model of QUAFF is CSP-based. A parallel program is described as a
process network, i.e. a set of processes communicating by channels and each executing a
sequence of instructions. In this section, we describe how such a process network can be
built from the skeleton tree describing an application by means of a simple process algebra
formalized by a set of production rules.

2

3.1 Process network description

Formally, a process network (PN) is a triple π = 〈P, I, O〉 where

• P is a set of labeled processes, i.e. pairs (pid , σ) where pid is a (unique) process
id and σ a triple containing: a lista of predecessors (pids of processes p for which a
communication channel exists from p to the current process), a list of successors (pids
of processes p for which a communication channel exists from the current process to
p) and a descriptor ∆. We note L(π) the set of pids of a process network π. For a
process p, its predecessors, successors and descriptor will be denoted I(p), O(p) et
δ(p) respectively.

• I(π) ⊆ L(π) denotes the set of source processes for the network π (i.e. the set of
processes p for which I(p) = ∅)

• O(π) ⊆ L(π) denotes the set of sink processes for the network π (i.e. the set of
processes p for which O(p) = ∅)

The process descriptor ∆ is a pair (instrs, kind) where instrs is a sequence of (ab-
stract) instructions and kind a flag (the meaning of the kind flag will be explained in
section 3.2).

∆ ::= 〈instrs, kind〉
instrs ::= instr1, . . . , instrn

kind ::= Regular | FarmM

The sequence of instructions describing the process behavior is implicitly iterated (pro-
cesses never terminate). Instructions use implicit addressing, with each process holding
four variables named vi, vo, q and iws. The instruction set is given below. In the subse-
quent explanations, p designates the process executing the instruction.

instr ::= SendTo | RecvFrom | CallFn fid | RecvFromAny | SendToQ |
Ifq instrs1 instrs2 | GetIdleW | UpdateWs

The SendTo instruction sends the contents of variable vo to the process whose pid is
given inO(p). The RecvFrom instruction receives data from the process whose pid is given
in O(p) and puts it in the variable vi. The CallFn instruction performs a computation by
calling a sequential function. This function takes one argument (in vi) and produces one
result (in vo). The RecvFromAny instruction waits (non-deterministically) data from the
set of processes whose pids are given in I(p). The received data is placed in the variable
vi and the pid of the actual sending process in the variable q. The SendToQ instructions
sends the contents of variable vo to the process whose pid is given by variable q. The
Ifq instruction compares the value contained in variable q to the first pid listed in I(p).
If case of equality, the instruction sequence instrs1 is executed; else instrs2 is executed.
The UpdateWs instruction reads variable q and updates the variable iws accordingly. The
variable iws maintains the list of idle workers for FARM master processes. The GetIdleW
retrieves a process id from the iws list and places it in the variable q. Together, these two
instructions encapsulate the policy used in a FARM skeleton to allocate data to workers.
They are not detailed here further.

aNote that this is really a list, and not a set, since the order is relevant.

3

3.2 A basic process network algebra

The following notation will be used. If E is a set, we denote by E [e← e′] the set obtained
by replacing e by e′ (assuming E [e ← e′] = E if e /∈ E). This notation is left-associative:
E [e ← e′][f ← f ′] means (E [e ← e′])[f ← f ′]. If e1, . . . , em is an indexed subset of
E and φ : E → E a function, we will note E [ei ← φ(ei)]i=1..m the set (. . . ((E [e1 ←
φ(e1)])[e2 ← φ(e2)]) . . .)[em ← φ(em)]. Except when explicitly indicated, we will note
I(πk) = {i1k, . . . , imk } and O(πk) = {o1

k, . . . , on
k}. For concision, the lists I(oj

k) et O(ijk)
will be noted sj

k et dj
k respectively. For lists, we define a concatenation operation ++ as

usual : if l1 = [e1
1, . . . , e

m
1] and l2 = [e1

2, . . . , e
n
2] then l1++l2 = [e1

1, . . . , e
m
1 , e1

2, . . . ; e
n
2].

The empty list is noted []. The length of list l (resp. cardinal of a set l) is noted |l|.

The d.e operator creates a process network containing a single process from a process
descriptor, using the function NEW() to provide “fresh” process ids :

δ ∈ ∆ l = NEW()
dδe = 〈{(l, 〈[], [], δ〉)}, {l}, {l}〉

(SINGL)

The • operation “serializes” two process networks, by connecting outputs of the first to
the inputs of the second :

πi = 〈Pi, Ii, Oi〉 (i = 1, 2) |O1| = |I2| = m

π1 • π2 = 〈(P1 ∪ P2)[(o
j
1, σ)← φd((o

j
1, σ), ij2)]j=1...m[(ij2, σ)← φs((i

j
2, σ), oj

1)]j=1...m,
I1, O2〉

(SERIAL)

This rule uses two auxiliary functions φs and φd defined as follows :

φs((p, 〈s, d, 〈δ,Regular〉〉), p′) = (p, 〈[p′]++s, d, 〈[RecvFrom]++δ,Regular〉〉)
φd((p, 〈s, d, 〈δ,Regular〉〉), p′) = (p, 〈s, d++[p′], 〈δ++[SendTo],Regular〉〉)
φs((p, 〈s, d, 〈δ,FarmM〉〉), p′) = (p, 〈[p′]++s, d, 〈δ,FarmM〉〉)
φd((p, 〈s, d, 〈δ,FarmM〉〉), p′) = (p, 〈s, d++[p′], 〈δ,FarmM〉〉)

The function φs (resp. φd) adds a process p′ as a predecessor (resp. successor) to
process p and updates accordingly its instruction list. This involves prepending (resp.
appending) a RecvFrom (resp. SendTo) instruction) to this instruction list, except for FARM
masters (identified by the FarmM kind flag), for which the instruction list is not modified.

The ‖ operation puts two process networks in parallel, merging their inputs and outputs
respectively.

πi = 〈Pi, Ii, Oi〉 (i = 1, 2)
π1 ‖ π2 = 〈P1 ∪ P2, I1 ∪ I2, O1 ∪O2〉

(PAR)

The 1 operation merges two process networks by connecting each input and output of
the second to the output of the first :

4

πi = 〈Pi, Ii, Oi〉 (i = 1, 2) |O1| = 1 |I2| = m |O2| = n

π1 1 π2 = 〈(P1 ∪ P2)[(o1, σ)← Φ((o1, σ), I(π2), O(π2))][(i
j
2, σ)← φs((i

j
2, σ), o1)]j=1...m

[(oj
2, σ)← φd((i

j
2, σ), o1)]j=1...n,

I1, O1〉
(JOIN)

where Φ(p, pss, psd) = Φs(Φd(p, psd), pss) and Φs (resp. Φd) generalizes the func-
tion φs (resp. φd) to a list of processes :

Φs(p, [p1, . . . , pn]) = φs(. . . , φs(φs(p, p1), p2), . . . , pn)
Φd(p, [p1, . . . , pn]) = φd(. . . , φd(φd(p, p1), p2), . . . , pn)

Skeletons can now be defined in terms of the operations defined above, using the fol-
lowing conversion function Cb :

C[[Seq f]] = dfe
C[[Pipe Σ1 . . .Σn]] = C[[Σ1]] • . . . • C[[Σn]]

C[[Farm n Σ]] = dFarmMe 1 (C[[Σ]]1 ‖ . . . ‖ C[[Σ]]n)
C[[Scm m fs Σ fm]] = C[[Seq fs]] / (C[[Σ]]1 ‖ . . . ‖ C[[Σ]]m) . C[[Seq fm]]
C[[Pardo Σ1 . . .Σn]] = C[[Σ1]] ‖ . . . ‖ C[[Σn]]

where FarmM is a process descriptor predefined as :

∆(FarmM) = 〈[RecvFromAny; Ifq [GetIdleW;SendToQ] [UpdateWs;SendTo]],FarmM〉

4 Implementation

We now explain how the production rules and the conversion function C introduced in
the previous section can be implemented as a compile-time process. The process itself is
sketched on figure 1.

C++

PIPE

FARM3φ1 φ3

φ2
φ1 φ3

φ2

φ2

f

φ2

Skeleton tree
Generation

Process network
Production

C+MPI Code
Generation C

MPI

Figure 1. QUAFF code generation process

bThe production rules for the operators / and ., used in the definition of the Scm skeleton have been omitted due
to space constraints.

5

It consists of three steps: generating the skeleton tree, turning this structure into a
process network and producing the C+MPI target code. These three steps are carried out at
compile-time. The key idea is that each object of the formal semantics defined in section 3
is encoded as a type in the implementation language. Production rules, in particular, are
encoded as meta-programs taking arguments and producing results as C++ types. The
whole process is illustrated with a very simple application consisting of a two-stages
pipeline. Using QUAFF, this application is written:

run(pipeline(seq(F1),seq(F2)));

where F1 and F2 are registered sequential functions, as illustrated in listing 1.

4.1 Generating the skeleton tree

For each skeleton, the corresponding function at the API level returns a value the type of
which is a compile-time representation of the skeleton. Here’s, for example, the definition
of the seq and farm functions:

Listing 2. Skeleton constructors for SEQ and FARM

template<class F>
Seq<F> seq(const F&) { return Seq<F>(); }

template<int N, class W>
Farm<N,W> farm(const W&) { return Farm<N,W>(); }

In the two-stages pipeline example, the call run() at the API level needs to call the
pipeline function, and therefore the seq function. This will generate the following
residual code, in which the argument to the run function is an instance of a type encoding
of the skeleton tree:

run(Serial< Seq<F1>, Seq<F2> >());

This template now carries informations about the skeleton tree in a form usable by our
meta-functions.

4.2 Producing the process network

We first give, in listing 3, the type encoding of the process network, labeled process and
process descriptor objects. Each of these types is defined as a simple template container,
with arguments statically encoding the aggregated objects. In the process network
type, the P, I and O fields are compile-time lists of process IDs. Technically speaking,
process IDs themselves are encoded as type-embedded integral constants and type lists
are built and manipulated using the BOOST::MPL library3. In the process type, the
input type and output type encode the argument and return type of the associated
user-defined function. In the descriptor type, the i pids and o pids fields encode
the list of successors and predecessors respectively and the instrs field encodes the list
of instructions executed by the process.

6

Listing 3. process network, process and descriptor related data types

template<class P,class I,class O> struct process_network
{
typedef P process;
typedef I inputs;
typedef O outputs;

};

template<class ID,class DESC, class IT, class OT> struct process
{
typedef ID pid;
typedef DESC descriptor;
typedef IT input_type;
typedef OT output_type;

};

template<class IPID,class OPID,class CODE, class KIND> struct descriptor
{
typedef IPID i_pids;
typedef OPID o_pids;
typedef CODE instrs;
typedef KIND kind;

};

The run function now has to convert the type describing the skeleton tree produced by
the previous step into a type describing the corresponding process network (i.e. to imple-
ment the C function specified in section 3.2).

Listing 4. The run function

template<class SKL> void run(const SKL&)
{
typedef typename convert<SKL>::type p_net;
p_net::Run();

}

This code shows that run simply extracts type informations from its template param-
eter and pass it through the convert meta-function. This function is statically over-
loaded for each skeleton constructor. Listing 5 shows the overloaded meta-function for the
pipeline skeleton.

Listing 5. pipeline template conversion

template<class S0,class S1,class ID> struct convert<Serial<S0,S1>,ID>
{
typedef Serial<S1,mpl::void_> tail;
typedef typename convert<S0,ID>::type proc1;
typedef typename convert<S0,ID>::new_id next_id;
typedef typename convert<tail,next_id>::new_id new_id;
typedef typename convert<tail,next_id>::type proc2;
typedef typename rule_serial<proc1,proc2>::type type;

};

7

The convert meta-function extracts the skeleton sub-trees from S0 and S1, converts
them into process networks, computes a new process ID and applies the appropriate
production rule (SERIAL) to generate a new process network embedded in the type
typedef.

The production rules are also implemented as meta-programs. The template equiva-
lent of the rule SERIAL defined in section 3.2, for example, is given in listing 6. This
template takes as parameters the types encoding the two process networks to serialize.
The type encoding the resulting process network is then built incrementally, by means of
successive type definitions, each type definition precisely encoding a value definition of
the formal production rule and by using MPL meta-function like transform which is
a meta-programmed iterative function application or copy which is used in conjunction
with the back inserter manipulator to concatenate two lists of process networks.

Listing 6. The meta-programmed (SERIAL) rule

template<class P1, class P2> struct rule_serial
{
// Get list of processus and I/O from P1 and P2
typedef typename P1::process proc1;
typedef typename P2::process proc2;
typedef typename P1::inputs i1;
typedef typename P2::inputs i2;
typedef typename P1::outputs o1;
typedef typename P2::outputs o2;

// Add new process graph into the new process network
typedef typename mpl::transform< proc1, phi_d<_1,o1,i2> >::type np1;
typedef typename mpl::transform< proc2, phi_s<_1,i2,o1> >::type np2;
typedef typename mpl::copy<np2, mpl::back_inserter<np1> >::type process;

// Process network definition
typedef process_network<process,i1,o2> type;

};

4.3 Generating parallel application code

The last step consists in turning the process network representation into C+MPI code.
This transformation is triggered at the end of the run function. The Run method of the
process network class created by the application of convert sequentially instanti-
ates and executes each macro-instruction of its descriptor. The actual process of turning
the macro-instructions list into a C+MPI code is based on tuple generation similar to the
one used in the previous QUAFF implementation1. Each instance is then able to check if
its PID matches the actual process rank and executes its code. For our two-stages pipeline,
the residual code looks as shown in listing 7

5 Experimental results

We have assessed the impact of this implementation technique by measuring the overhead
ρ introduced by QUAFF on the completion time over hand-written C+MPI code for both

8

Listing 7. Generated code for the two stage pipeline

if(Rank() == 0)
{
do {
out = F1();
MPI_Send(&out,1,MPI_INT,1,0,MPI_COMM_WORLD);

} while(isValid(out))
}
else if(Rank() == 1)
{
do {
MPI_Recv(&in,1,MPI_INT,0,0,MPI_COMM_WORLD,&s);
F2(in);

} while(isValid(in))
}

single skeleton application and when skeletons are nested at arbitrary level. For single
skeleton tests, we observe the effect of two parameters: τ , the execution time of the inner
sequential function and N , the ”size” of the skeleton (number of stages for PIPELINE,
number of workers for FARM and SCM). The test case for nesting skeletons involved
nesting P FARM skeletons, each having ω workers. Results were obtained on a PowerPC
G5 cluster with 30 processors and for N = 2− 30 and τ = 1ms, 10ms, 100ms, 1s.

For PIPELINE, ρ stays under 2%. For FARM and SCM, ρ is no greater than 3% and
becomes negligible for N > 8 or τ > 10ms. For the nesting test, worst case is obtained
with P = 4 and ω = 2. In this case, ρ decreases from 7% to 3% when τ increases from
10−3s to 1s.

6 Related work

The idea of relying on a process network as an intermediate representation for skeletal
programs is not new; in fact, several implementations of skeleton-based parallel program-
ming libraries, such as P3L5, implicitly rely on such a representation. But, the process of
translating the skeleton tree into such a network has never been formalized before. Aldin-
ucci8 proposed a formal operational semantics for skeleton-based programs but, contrary
to QUAFF , the actual implementation relies on a dynamic runtime. Thus, to our best
knowledge, our work is the first to both rely on a formal approach of skeleton compilation
while also offering a performance on par with hand-coded C+MPI implementations.

On the other hand, using generative programming and meta-programming for im-
plementing parallel applications and libraries is currently an upcoming trend. Works by
Czarnecki et al.9,Puschel and al.10, Hammond11, Langhammer and Hermann12 uses meta-
programming in MetaOCaml13 or Template Haskell to generate parallel domain
specific languages for solving problem like signal processing optimizations or parallel
process scheduling on MIMD machines thus making generative programming a valid tech-
nique to solve realistic problems. Our work can be viewed as a specific application of these
general techniques.

9

7 Conclusion

In this paper, we have shown how generative and meta-programming techniques can be
applied to the implementation of a skeleton-based parallel programming library . The
resulting library, QUAFF , both offers a high level of abstraction and produces high perfor-
mance code by performing most of the high to low-level transformations at compile-time
rather than run-time. The implementation is derived directly from a set of explicit produc-
tion rules, in a semantic-oriented style. It is therefore formally sounded and much more
amenable to proofs or extensions.

References

1. Joel Falcou, Jocelyn. Sérot, Thierry Chateau, and Jean-Thierry Lapresté. QUAFF: Efficient
C++ Design for Parallel Skeletons. Parallel Computing, 32:604–615, 2006.

2. Todd Veldhuizen. Using C++ template metaprograms. C++ Report, 7(4):36–43, May 1995.
Reprinted in C++ Gems, ed. Stanley Lippman.

3. David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming: Concepts, Tools,
and Techniques from Boost and Beyond (C++ in Depth Series). Addison-Wesley Professional,
2004.

4. Herbert Kuchen. A skeleton library. In Euro-Par ’02: Proceedings of the 8th International
Euro-Par Conference on Parallel Processing, pages 620–629, London, UK, 2002. Springer-
Verlag.

5. B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3l: A structured high level
programming language and its structured support. Concurrency: Practice and Experience,
7:225–255, 1995.

6. M. Cole. Research Directions in Parallel Functional Programming, chapter 13, Algorithmic
skeletons. Springer, 1999.

7. J. Sérot and D. Ginhac. Skeletons for parallel image processing: an overview of the skipper
project. Parallel Computing, 28(12):1685–1708, 2002.

8. Marco Aldinucci and Marco Danelutto. Skeleton based parallel programming: functional and
parallel semantic in a single shot. Computer Languages, Systems and Structures, 2006.

9. K. Czarnecki, J.T. O’Donnell, J. Striegnitz, and W. Taha. Dsl implementation in metaocaml,
template haskell and c++. In C. Lengauer, D. Batory, C. Consel, and M. Odersky, editors,
Domain-Specific Program Generation, volume 3016 of Lecture Notes in Computer Science,
pages 51–72. Springer-Verlag, 2004.

10. Markus Puschel, José Moura, Jeremy Johnson, David Padua, Manuela Veloso, Bryan Singer,
Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W. John-
son, and Nick Rizzolo. SPIRAL: Code Generation for DSP Transforms. In Proceedings of the
IEEE special issue on ”Program Generation, Optimization, and Adaptation”, 2005.

11. K. Hammond, R. Loogen, and J. Berhold. Automatic Skeletons in Template Haskell. In
Proceedings of 2003 Workshop on High Level Parallel Programming, Paris, France, June 2003.

12. Christoph A. Herrmann and Tobias Langhammer. Combining partial evaluation and staged
interpretation in the implementation of domain-specific languages. Sci. Comput. Program.,
62(1):47–65, 2006.

13. MetaOCaml. A compiled, type-safe multi-stage programming language. Available online from
http://www.metaocaml.org/, 2003.

10

